
COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 46

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Lab 5: Input/Output using a Library of Procedures

Contents

5.1. Using an External Library of Procedures for Input and Output

5.2. Writing Characters, Strings, and Integers to Standard Output

5.3. Displaying Memory/Registers and Setting Text Color

5.4. Reading Characters, Strings, and Integers from Standard Input

5.5. Generating Random Numbers and Delaying Program Execution

5.1 Using an External Library of Procedures for Input and Output
The Irvine32 library, authored by Kip Irvine, provides a number of useful procedures that can
be used for basic input and output. First, we need to define few terms:

• Console: This is the Command Prompt window running in color text mode under
MS-Windows. The console can execute 32-bit protected-mode programs as well as
16-bit real-address mode programs. The console window is divided into rows and
columns. There are 25 rows and 80 columns by default, but it can be resized.

• Standard Output: by default, the console defines standard output as the screen
display device, although standard output can be also redirected to write to a file.

• Standard Input: By default, the console defines standard input as the keyboard
device, although standard input can be also redirected to read from a file.

Here is the list of output procedures for writing characters, strings, and integers. You can find
more details in the textbook and class notes. There is also an online help for the Irvine library
that comes with this lab.

Procedure Description
Clrscr Clears the console and locates the cursor at the upper left corner.

Crlf Writes end-of-line control chars (CR=13, LF=10) to standard output.

WriteChar Writes a single character in register AL to standard output.

WriteString Writes a null-terminated string, with address in EDX, to standard output.

WriteHex Writes register EAX in hexadecimal format to standard output.

WriteBin Writes register EAX in binary format to standard output.

WriteDec Writes register EAX in unsigned decimal format to standard output.

WriteInt Writes register EAX in signed decimal format to standard output.

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 47

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

5.2 Writing Characters, Strings, and Integers to Standard Output

TITLE Writing characters, strings, and integers (output.asm)

; Testing Following Procedures in the assembly32.lib Library:

; Clrscr: Clears the console screen
; Crlf: Write CR and LF characters (end-of-line)
; WriteChar: Write a single character to standard output
; WriteString: Write a null-terminated string to standard output
; WriteHex: Write 32-bit integer in eax in hexadecimal format
; WriteBin: Write 32-bit integer in eax in binary format
; WriteDec: Write 32-bit integer in eax in unsigned decimal format
; WriteInt: Write 32-bit integer in eax in signed decimal format

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data

CR EQU 0Dh ; carriage return
LF EQU 0Ah ; line feed

string BYTE "Hello World",CR,LF,0

.code
main PROC
; Clear the screen
 call Clrscr ; Call procedure Clrscr

; Write a character to standard output
 mov al, 'A' ; al = 'A' (or 41h)
 call WriteChar ; Write character in register al
 call Crlf ; Write CR and LF chars (end-of-line)

; Write a null-terminated string to standard output
 lea edx, string ; load effective address of string into edx
 call WriteString ; write string whose address is in edx

; Write an integer to standard output
 mov eax,0F1A37CBFh ; eax = 0F1A37CBFh
 call WriteHex ; Write eax in hexadecimal format
 call Crlf ; Write CR and LF chars (end-of-line)

 call WriteBin ; Write eax in binary format
 call Crlf ; Write CR and LF chars (end-of-line)

 call WriteDec ; Write eax in unsigned decimal format
 call Crlf ; Write CR and LF chars (end-of-line)

 call WriteInt ; Write eax in signed decimal format
 call Crlf ; Write CR and LF chars (end-of-line)

 exit
main ENDP
END main

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 48

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

5.2.1 Lab Work: Assemble and Link Output.asm

5.2.2 Lab Work: Trace the Execution of Output.exe
Guess the Console Output of the above program and write it in the specified box.

Run the 32-bit Windows Debugger. Open the source file output.asm from the File menu if it
is not already opened. Watch the registers by selecting Registers in the View menu or by
pressing Alt+4. Customize the registers to have registers al, eax, and edx on top of the list.

Place the cursor at the beginning of main procedure and press F7 to start debugging it. Press
F10 to step through the execution of the program. Watch the changes in the output window.
Make the necessary corrections to the Console Output that you have guessed.

5.3 Displaying Memory/Registers and Setting Text Color
The following output procedures are used to dump a block of memory, to dump registers, to
set the foreground and background colors of text, to display a wait message, and to locate the
cursor at a specific row and column. For more details, refer to your textbook, class notes, and
online help for the Irvine library.

Procedure Description
DumpMem Writes a block of memory to standard output in hexadecimal format.

The start address of the memory block should be in the ESI register
The number of elements to be displayed should be in the ECX register
The type of each element should be in the EBX register

DumpRegs Writes the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, and EIP
registers in hexadecimal, as well as the Carry, Sign, Zero, and Overflow flags.

SetTextColor Sets the foreground and background colors of all subsequent text output. The
desired color should be specified in the EAX register before calling this
procedure. The least significant 4 bits of EAX specify the text color and the
next 4 bits specify the background color.

WaitMsg Writes "Press [Enter] to continue…" and waits for Enter to be pressed.

Gotoxy Locate the cursor at row specified by DH and column specified by DL.

The following program demonstrates the use of the above procedures:

Console for ‘output.exe’

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 49

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

TITLE Setting Text Color, Dumping Memory and Registers (Output2.asm)

; Testing following Output Procedures in the assembly32.lib Library:

; Clrscr: Clears the console screen
; SetTextColor: Set the foreground and background colors of text
; DumpMem: Write a block of memory in hexadecimal
; DumpRegs: Display basic registers and flags in hexadecimal
; WaitMsg: Display a message and wait for Enter key to be pressed
; Gotoxy: Put the cursor at a specific row/column on the console

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
CR EQU 0Dh ; carriage return
LF EQU 0Ah ; line feed

string BYTE "This is a string", CR, LF, 0

.code
main PROC
; Clear the screen after setting text color
 mov eax, yellow+(blue*16) ; yellow = 14 and blue = 1
 call SetTextColor ; set yellow text on blue background
 call Clrscr ; Call procedure Clrscr

; Call DumpMem that display a block of memory to standard output
 mov esi, OFFSET string ; esi = address of memory block
 mov ecx, LENGTHOF string ; ecx = number of elements to display
 mov ebx, TYPE BYTE ; ebx = type of each element
 call DumpMem ; write 19 bytes of string

; Call WaitMsg that displays "Press [Enter] to continue ..."
 call WaitMsg ; wait for [Enter] key to be pressed

; Call DumpRegs that display the basic registers and flags in hex
 call DumpRegs ; write basic registers

; Call WaitMsg after locating the cursor on the console
 mov dh, 10 ; row 10
 mov dl, 20 ; column 20
 call Gotoxy ; locate cursor
 call WaitMsg ; wait for [Enter] key to be pressed

 exit
main ENDP
END main

5.3.1 Lab Work: Assemble and Link Output2.asm

5.3.2 Lab Work: Trace the Execution of Output2.exe
Run the 32-bit Windows Debugger. Open the source file output2.asm from the File menu if it
is not already opened. Watch the registers by selecting Registers in the View menu or by
pressing Alt+4. Place the cursor at the beginning of main procedure and press F7 to start
debugging it. Press F10 to step through the execution of the program. Watch the changes in

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 50

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

the registers as well as the output window. When the program displays the Wait message
“Press [Enter] to continue...” it is waiting for your input. Click inside the
Console output and press Enter. The program will advance to the next instruction. Go back to
the program and click F10 to continue tracing it. Write below the final Console output:

You can also run the program Output2.exe from a command prompt to check its output.

5.4 Reading Characters, Strings, and Integers from Standard Input
The following input procedures are used to read characters, integers, and strings:

Procedure Description
ReadChar Reads a character from standard input and returns it in AL register. The

character is NOT echoed on the screen.

ReadString Reads a string from standard input. Reading stops when the user presses the
[Enter] key. Before calling ReadString, EDX should contain the address of
the array of bytes where the input characters should be stored, and ECX
should contain the maximum number of bytes to be read plus one extra byte
for the null character to terminate the string. This procedure returns a count
of the actual number of bytes read in the EAX register.

ReadHex Reads a hexadecimal string from standard input, converts it to a number, and
returns it in the EAX register. Reading stops when the user presses the
[Enter] key. A maximum of eight hex digit chars should be entered. The hex
digits: 0-9, a-f, and A-F may be used only. Leading spaces are not allowed.
No error checking is performed and no error messages are displayed. If an
invalid hex string is entered then it will not be converted properly.

ReadInt Reads a signed integer string from standard input, converts it to a number,
and returns it in the EAX register. Reading stops when the user presses the
[Enter] key. An optional leading + or – character can be entered by the user.
Decimal digits 0-9 can be entered only after the optional sign. Error checking
is performed by this procedure. The overflow flag is set and an error
message is displayed if the entered number is invalid or out-of-range and
cannot be represented as a signed 32-bit integer.

The following program demonstrates the use of the above procedures:

Console for ‘output2.exe’

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 51

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

TITLE Reading characters, strings, and integers (input.asm)
; Testing Following Procedures in the assembly32.lib Library:
; ReadChar: Read a single character from standard input
; ReadString: Read a null-terminated string from standard input
; ReadHex: Read hexadecimal integer from standard input
; ReadInt: Read signed decimal integer from standard input

.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc

.data
charvar BYTE 0 ; Character variable
string BYTE 21 DUP(0) ; Extra byte for null char
bytecount DWORD 0 ; Count of bytes read in string
hexvar DWORD 0 ; Unsigned integer variable
intvar SDWORD 0 ; Signed integer variable

prompt1 BYTE "Enter a character (char will not appear): ",0
prompt2 BYTE "Enter a string (max 20 chars): ",0
prompt3 BYTE "Enter a hexadecimal number (max 8 digits): ",0
prompt4 BYTE "Enter a decimal number with optional sign: ",0

.code
main PROC
 call Clrscr

; Display prompt1
 lea edx, prompt1
 call WriteString
; Read a character (without echo) from standard input
 call ReadChar ; character is returned in AL
 mov charvar, al ; save character in charvar
 call Crlf ; Write end-of-line after reading character

; Display prompt2
 lea edx, prompt2
 call WriteString
; Read a null-terminated string from standard input
 lea edx, string ; edx = address of storage area for string
 mov ecx, SIZEOF string ; ecx = max characters to be stored
 call ReadString ; read string from standard input
 mov bytecount, eax ; eax = actual number of chars read

; Display prompt3
 lea edx, prompt3
 call WriteString
; Read a hexadecimal string and convert it to a number
 call ReadHex ; number is returned in EAX register
 mov hexvar, eax ; save number in hexvar

; Display prompt4
 lea edx, prompt4
 call WriteString
; Read a signed decimal string and convert it to a number
 call ReadInt ; number is returned in EAX register
 mov intvar, eax ; save number in intvar
 exit
main ENDP
END main

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 52

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

5.4.1 Lab Work: Assemble and Link Input.asm

5.4.2 Lab Work: Trace the Execution of Input.exe
Run the 32-bit Windows Debugger. Open the source file input.asm from the File menu if it is
not already opened. Watch the registers by selecting Registers in the View menu or by
pressing Alt+4. Customize the registers to have registers al, eax, ecx, edx on top of the list.
Select Memory from the View menu, or press Alt+5 to view memory. Type string in the
virtual address box to view the string variable in memory. Select Watch from the View
menu, or press Alt+2 to open the Watch window. Watch the values of the variables charvar,
bytecount, hexvar, and intvar by inserting their names.

Place the cursor at the beginning of main procedure and press F7 to start debugging it. Press
F10 to step through the execution of the program.

When the program asks to Enter a character (char will not appear): then enter character A
in the console window then press F10 to step through call ReadChar in the program. When
the program asks to Enter a string (max 20 chars): then enter My String and press enter.
When the programs asks to Enter a hexadecimal number (max 8 digits): then enter ab09F
and press enter. When the program asks to Enter a decimal number with optional sign:
then enter –12345678 and press enter.

Show the values of the following variables, just before exiting the program:

5.4.3 Lab Work: Invalid Input
Repeat the program execution entering invalid input. For the string, enter a string longer than
20 characters. For the hexadecimal number, enter more than 8 digits and try also invalid
characters. For the signed integer, try long integers that are outside the range –2,147,483,648
to +2,147,483,647. Also try invalid input and see what happens.

What happens when entering a string longer than 20 characters?

What happens when entering an invalid hexadecimal number?

What happens when entering an invalid decimal number?

1) charvar (in hex and as a character) =

2) 12 bytes of string (in hex)

3) bytecount (in decimal) =

4) hexvar (in hex) =

5) intvar (in decimal) =

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 53

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

5.5 Generating Random Numbers and Delaying Program Execution
The following miscellaneous procedures are defined in the Irvine32.lib library and can be of
practical use to some programs:

Procedure Description
Random32 Generates a 32-bit pseudorandom integer in the range 0 to FFFFFFFFh, and

returns it in the EAX register. When called repeatedly, Random32 generates
a pseudorandom sequence of integers.

RandomRange Generates a pseudorandom integer from 0 to n – 1. Before calling
RandomRange, n should be passed in the EAX register. RandomRange
returns its result in the EAX register.

Randomize Seeds the random number generators Random32 and RandomRange with a
unique value. The seed is initialized from the time of the day obtained from
the system. This procedure virtually ensures that each time you run a
program, the sequence of random integers will be different. You need to call
Randomize once at the beginning of your program.

Delay Delay program execution for specified n milliseconds. The register EAX
should be set to the desired value of n before calling the Delay procedure.

GetMseconds Return the number of milliseconds that have elapsed since midnight. The
return value is in the EAX register. This procedure is useful when you want
to measure the time between two events such as the beginning and end of
program execution.

The following program illustrates the use of the above procedures:
TITLE Generating random numbers and delaying execution (rand.asm)

; Testing Following Procedures in the assembly32.lib Library:
; Randomize: Seeds the random number generator with a unique value
; Random32: Generates 32-bit random integer between 0 and FFFFFFFFh
; RandomRange: Generates a random integer between 0 and n-1
; Delay: Delay program execution for specified n milliseconds
; GetMseconds: Number of milliseconds that have elapsed since midnight

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
CR EQU 0Dh ; carriage return
LF EQU 0Ah ; line feed

rand1 BYTE "Generating 5 pseudo-random integers ",
 "between 0 and FFFFFFFFh", CR, LF, 0
rand2 BYTE "Generating 5 pseudo-random integers ",
 "between 0 and 999", CR, LF, 0
time BYTE "Execution time in milliseconds: ",0
start DWORD ? ; start execution time

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 54

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

.code
main PROC
; Get starting execution time
 call GetMseconds ; EAX = number of msecs since midnight
 mov start, eax ; save starting execution time

; Seeds the random number generator from the time of the day
 call Randomize ; different seed for each run

; Display message rand1
 mov edx, OFFSET rand1
 call WriteString

; Generate 5 random integers between 0 and FFFFFFFFh.
; Put a delay between each.
 mov ecx,5 ; loop counter
L1: mov eax, 1000 ; 1000 milliseconds
 call Delay ; pause for 1 second
 call Random32 ; EAX = random integer
 call WriteHex ; display ax hexadecimal integer
 call Crlf ; advance cursor to next line
 Loop L1

; Display message rand2
 mov edx, OFFSET rand2
 call WriteString

; Generate 5 random integers between 0 and 999.
; Put a delay between each.
 mov ecx,5 ; loop counter
L2: mov eax, 1000 ; 1000 milliseconds
 call Delay ; pause for 1 second
 mov eax,1000 ; indicate top of range + 1
 call RandomRange ; EAX = random integer
 call WriteDec ; display as unsigned decimal
 call Crlf ; advance cursor to next line
 Loop L2

; Compute and display execution time
 mov edx, OFFSET time
 call WriteString
 call GetMseconds ; EAX = number of msecs since midnight
 sub eax, start ; difference since starting time
 call WriteDec

 exit
main ENDP
END main

5.5.1 Lab Work: Assemble and Link Rand.asm

5.5.2 Lab Work: Run Rand.asm
Run the rand.exe program from the Command Prompt twice and watch the console output.
What changes need to be done to the rand.asm program to generate the same random
sequence every time the program is executed?

COE 205 Lab Manual Lab 5: Input/Output using a Library of Procedures - Page 55

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Review Questions

1. Which procedure in the Irvine link library displays “Press [Enter] to continue …”?

2. Which procedure writes an integer in unsigned decimal format to standard output?

3. Which procedure generates a random integer within a selected range?

4. Which procedure places the cursor at a specific console window location?

5. What are the required input parameters for the ReadString Procedure?

6. Locate and examine the Irvine.inc file. What type of statements are inside this file?

Programming Exercises

1. Write a program that uses a loop to input ten signed 32-bit integers from the user, stores
the integers in an array, and redisplays the integers.

2. Write a program that displays the string “Assembly Language is COOL” in four different
colors. Each word should be displayed in a different color of your choice.

3. Write a program that clears the screen, places the cursor near the middle of the screen,
prompts the user for two integers, adds the integers, and displays their sum.

4. Write a program that generates and displays 50 random integers between -20 and +20.

5. Write a program that generates and displays twenty random strings, each consisting of ten
random capital letters {A .. Z}.

6. Write a program that displays a single character ‘*’ at 100 random screen locations. Use a
delay of 100 milliseconds before displaying the ‘*’ at the next random screen location.

