
Arithmetic Circuits

COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 3

Binary Addition

❖ Start with the least significant bit (rightmost bit)

❖ Add each pair of bits

❖ Include the carry in the addition

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 4

Iterative Design: Ripple Carry Adder

❖ Uses identical copies of a full adder to build a large adder

❖ Simple to implement: can be extended to add any number of bits

❖ The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

❖ Carry-out of cell i becomes carry-in to cell (i +1)

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4ciFull

Adder

ai bi

si

ci+1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 5

Full-Adder Equations

𝑠𝑖 = 𝑎𝑖
′𝑏𝑖

′𝑐𝑖 + 𝑎𝑖
′𝑏𝑖𝑐𝑖

′ + 𝑎𝑖𝑏𝑖
′𝑐𝑖

′ + 𝑎𝑖𝑏𝑖𝑐𝑖

𝑠𝑖 = odd function = 𝑎𝑖  𝑏𝑖  𝑐𝑖

𝑐𝑖+1 = 𝑎𝑖
′𝑏𝑖𝑐𝑖 + 𝑎𝑖𝑏𝑖

′𝑐𝑖 + 𝑎𝑖𝑏𝑖𝑐𝑖
′ + 𝑎𝑖𝑏𝑖𝑐𝑖

𝑐𝑖+1 = 𝑎𝑖
′𝑏𝑖 + 𝑎𝑖𝑏𝑖

′ 𝑐𝑖 + 𝑎𝑖𝑏𝑖 (𝑐𝑖
′ + 𝑐𝑖)

𝑐𝑖+1 = 𝑎𝑖  𝑏𝑖 𝑐𝑖 + 𝑎𝑖𝑏𝑖

K-map: 𝑐𝑖+1 = 𝑎𝑖𝑏𝑖 + 𝑎𝑖𝑐𝑖 + 𝑏𝑖𝑐𝑖

ai bi ci ci+1 si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

00 01 11 10

0

1

𝑎𝑖

𝑏𝑖𝑐𝑖

0 1 0 1

1 0 1 0

K-Map of 𝑠𝑖

00 01 11 10

0

1

𝑎𝑖

𝑏𝑖𝑐𝑖

0 0 1 0

0 1 1 1

K-Map of 𝑐𝑖+1

ciFull

Adder

ai bi

si

ci+1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 6

Carry Propagation

❖Major drawback of ripple-carry adder is the carry propagation

❖ The carries are connected in a chain through the full adders

❖ This is why it is called a ripple-carry adder

❖ The carry ripples (propagates) through all the full adders

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 7

Longest Delay Analysis

Suppose the XOR delay is 1 and AND-OR delay is 2

For an N-bit ripple-carry adder, if all inputs are present at once:

1. Most-significant sum-bit delay = 21 +(N – 1) 2

2. Final Carry-out delay = 1 + N 2

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4
2222

1

1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 8

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 9

Magnitude Comparator

❖ A combinational circuit that compares two unsigned integers

❖ Two Inputs:

 Unsigned integer A (m-bit number)

 Unsigned integer B (m-bit number)

❖ Three outputs:

 A > B (GT output)

 A == B (EQ output)

 A < B (LT output)

❖ Exactly one of the three outputs must be equal to 1

❖While the remaining two outputs must be equal to 0

m-bit

Magnitude

Comparator

A[m–1:0]
m

B[m–1:0]
m

GT: A > B

EQ: A == B

LT: A < B

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 10

Example: 4-bit Magnitude Comparator

❖ Inputs:

 𝐴 = 𝐴3𝐴2𝐴1𝐴0

 𝐵 = 𝐵3𝐵2𝐵1𝐵0

 8 bits in total ➔ 256 possible combinations

Not simple to design using conventional K-map techniques

❖ The magnitude comparator can be designed at a higher level

❖ Let us implement first the 𝐸𝑄 output (𝐴 is equal to 𝐵)

 𝐸𝑄 = 1 ↔ 𝐴3 == 𝐵3 , 𝐴2 == 𝐵2 , 𝐴1 == 𝐵1 , and 𝐴0 == 𝐵0

Define: 𝐸𝑖 = 𝐴𝑖 == 𝐵𝑖 = 𝐴𝑖𝐵𝑖 + 𝐴𝑖
′𝐵𝑖

′

 Therefore, 𝐸𝑄 = 𝐴 == 𝐵 = 𝐸3𝐸2𝐸1𝐸0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 11

The Greater Than Output

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 > 𝐵3 then 𝐺𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐺3 = 𝐴3𝐵3
′ (𝐴3 == 1 and 𝐵3 == 0)

2. If 𝐴3 == 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐺2 = 𝐴2𝐵2
′ (𝐴2 == 1 and 𝐵2 == 0)

3. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2, we compare 𝐴1 with 𝐵1

Define: 𝐺1 = 𝐴1𝐵1
′ (𝐴1 == 1 and 𝐵1 == 0)

4. If 𝐴3 == 𝐵3 and 𝐴2 == 𝐵2 and 𝐴1 == 𝐵1, we compare 𝐴0 with 𝐵0

Define: 𝐺0 = 𝐴0𝐵0
′ (𝐴0 == 1 and 𝐵0 == 0)

Therefore, 𝐺𝑇 = 𝐺3 + 𝐸3𝐺2 + 𝐸3𝐸2𝐺1 + 𝐸3𝐸2𝐸1𝐺0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 12

The Less Than Output

We can derive the expression for the 𝐿𝑇 output, similar to 𝐺𝑇

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 < 𝐵3 then 𝐿𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐿3 = 𝐴3
′ 𝐵3 (𝐴3 == 0 and 𝐵3 == 1)

2. If 𝐴3 = 𝐵3 (𝐸3 == 1), we compare 𝐴2 with 𝐵2

Define: 𝐿2 = 𝐴2
′ 𝐵2 (𝐴2 == 0 and 𝐵2 == 1)

3. Define: 𝐿1 = 𝐴1
′𝐵1 (𝐴1 == 0 and 𝐵1 == 1)

4. Define: 𝐿0 = 𝐴0
′ 𝐵0 (𝐴0 == 0 and 𝐵0 == 1)

Therefore, 𝐿𝑇 = 𝐿3 + 𝐸3𝐿2 + 𝐸3𝐸2𝐿1 + 𝐸3𝐸2𝐸1𝐿0

Knowing 𝐺𝑇 and 𝐸𝑄, we can also derive 𝐿𝑇 = (𝐺𝑇 + 𝐸𝑄)′

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 13

Iterative Magnitude Comparator Design

❖ The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells

Design can be extended to any number of cells

❖ Comparison starts at least-significant bit

❖ Final comparator output: 𝐺𝑇 = 𝐺𝑇4 , 𝐸𝑄 = 𝐸𝑄4 , 𝐿𝑇 = 𝐿𝑇4

𝐺𝑇3

𝐸𝑄3

𝐿𝑇3

Cell 3

𝐺𝑇4

𝐸𝑄4

𝐿𝑇4

𝐴3 𝐵3

𝐺𝑇2

𝐸𝑄2

𝐿𝑇2

Cell 2

𝐴2 𝐵2

𝐺𝑇1

𝐸𝑄1

𝐿𝑇1

Cell 1

𝐴1 𝐵1

𝐺𝑇0 = 0

𝐸𝑄0 = 1

𝐿𝑇0 = 0

Cell 0

𝐴0 𝐵0

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 14

Cell Implementation

❖ Each Cell 𝑖 receives as inputs:

Bit 𝑖 of inputs 𝐴 and 𝐵: 𝐴𝑖 and 𝐵𝑖

𝐺𝑇𝑖, 𝐸𝑄𝑖, and 𝐿𝑇𝑖 from cell (𝑖 − 1)

❖ Each Cell 𝑖 produces three outputs:

𝐺𝑇𝑖+1, 𝐸𝑄𝑖+1, and 𝐿𝑇𝑖+1

Outputs of cell 𝑖 are inputs to cell (𝑖 + 1)

❖ Output Expressions of Cell 𝑖

𝐸𝑄𝑖+1 = 𝐸𝑖 𝐸𝑄𝑖 𝐸𝑖 = 𝐴𝑖
′𝐵𝑖

′ + 𝐴𝑖𝐵𝑖 (𝐴𝑖 equals 𝐵𝑖)

𝐺𝑇𝑖+1 = 𝐴𝑖 𝐵𝑖
′ + 𝐸𝑖 𝐺𝑇𝑖 𝐴𝑖𝐵𝑖

′ (𝐴𝑖 > 𝐵𝑖)

𝐿𝑇𝑖+1 = 𝐴𝑖
′𝐵𝑖 + 𝐸𝑖 𝐿𝑇𝑖 𝐴𝑖

′𝐵𝑖 (𝐴𝑖 < 𝐵𝑖)

Third output can be produced for first two: 𝐿𝑇 = (𝐸𝑄 + 𝐺𝑇)′

𝐺𝑇𝑖

𝐸𝑄𝑖

𝐿𝑇𝑖

Cell 𝑖

𝐺𝑇𝑖+1

𝐸𝑄𝑖+1

𝐿𝑇𝑖+1

𝐴𝑖 𝐵𝑖

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 15

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 16

Design by Contraction

❖ Contraction is a technique for simplifying the logic

❖ Applying 0s and 1s to some inputs

❖ Equations are simplified after applying fixed 0 and 1 inputs

❖ Converting a function block to a more simplified function

❖ Examples of Design by Contraction

 Incrementing a number by a fixed constant

 Comparing a number to a fixed constant

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 17

Designing an Incrementer

❖ An incrementer is a special case of an adder

Sum = A + 1 (B = 0, C0 = 1)

❖ An n-bit Adder can be simplified into an n-bit Incrementer

𝑎0

1

𝑠0

0𝑎1

𝑠1

0𝑎2

𝑠2

0𝑎3

𝑠3

0

𝑐3 𝑐2 𝑐1

𝑐4

𝒂𝟎

𝒂𝟎
′

0 𝒂𝟎
0 𝒂𝟏

0 𝒂𝟐
0 𝒂𝟑

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 18

Simplifying the Incrementer Circuit

❖Many gates were eliminated

❖ No longer needed when an input is a constant

❖ Last cell can be replicated to implemented an n-bit incrementer

𝑎1

𝑠1

𝑐4

𝑎0

𝑠0

𝑎2

𝑠2

𝑐2

𝑎3

𝑠3

𝑐3 𝑐1

Incrementer

4

4

a [3:0]

s [3:0]

c4

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 19

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 20

Signed Numbers

❖ Several ways to represent a signed number

 Sign-Magnitude

 1's complement

 2's complement

❖ Divide the range of values into two parts

 First part corresponds to the positive numbers (≥ 0)

 Second part correspond to the negative numbers (< 0)

❖ The 2's complement representation is widely used

 Has many advantages over other representations

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 21

Sign-Magnitude Representation

❖ Independent representation of the sign and magnitude

❖ Leftmost bit is the sign bit: 0 is positive and 1 is negative

❖ Using n bits, largest represented magnitude = 2n-1 – 1

Sign

Bit

bit

n-2

bit

2

bit

1

bit

0
. . .

Magnitude = n – 1 bits

n-bit number

10110100 10110101

Sign-magnitude

8-bit representation of +45

Sign-magnitude

8-bit representation of -45

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 22

Properties of Sign-Magnitude

❖ Symmetric range of represented values:

For n-bit register, range is from -(2n-1 – 1) to +(2n-1 – 1)

For example, if n = 8 bits then range is -127 to +127

❖ Two representations for zero: +0 and -0 NOT Good!

❖ Two circuits are needed for addition & subtraction NOT Good!

 In addition to an adder, a second circuit is needed for subtraction

 Sign and magnitude parts should be processed independently

 Sign bit should be examined to determine addition or subtraction

 Addition of numbers of different signs is converted into subtraction

 Increases the cost of the add/subtract circuit

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 23

Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation
ADD

Magnitudes

Subtract Magnitudes

A >= B A < B

(+A) + (+B) +(A+B)

(+A) + (-B) +(A–B) -(B–A)

(-A) + (+B) -(A–B) +(B–A)

(-A) + (-B) -(A+B)

(+A) – (+B) +(A–B) -(B–A)

(+A) – (-B) +(A+B)

(-A) – (+B) -(A+B)

(-A) – (-B) -(A–B) +(B–A)

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 24

1’s Complement Representation

❖ Given a binary number A

The 1’s complement of A is obtained by inverting each bit in A

❖ Example: 1’s complement of (01101001)2 = (10010110)2

❖ If A consists of n bits then:

A + (1’s complement of A) = (2n – 1) = (1…111)2 (all bits are 1's)

❖ Range of values is -(2n-1 – 1) to +(2n-1 – 1)

For example, if n = 8 bits, range is -127 to +127

❖ Two representations for zero: +0 and -0 NOT Good!

1's complement of (0…000)2 = (1…111)2 = 2n – 1

-0 = (1…111)2 NOT Good!

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 25

2’s Complement Representation

❖ Standard way to represent signed integers in computers

❖ A simple definition for 2’s complement:

Given a binary number A

The 2’s complement of A = (1’s complement of A) + 1

❖ Example: 2’s complement of (01101001)2 =

(10010110)2 + 1 = (10010111)2

❖ If A consists of n bits then

A + (2’s complement of A) = 2n

2’s complement of A = 2n – A

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 26

Computing the 2's Complement

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 001001002 = +36

step1: Invert the bits (1's complement) 110110112

step 2: Add 1 to the value from step 1 + 12

sum = 2's complement representation 110111002 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least

significant 1

2’s complement of 110111002 (-36) = 001000112 + 1 = 001001002 = +36

The 2’s complement of the 2’s complement of A is equal to A

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 27

Properties of the 2’s Complement

❖ Range of represented values: -2n-1 to +(2n-1 – 1)

For example, if n = 8 bits then range is -128 to +127

❖ There is only one zero = (0…000)2 (all bits are zeros)

❖ The 2’s complement of A is the negative of A

❖ The sum of A + (2’s complement of A) must be zero

The final carry is ignored

❖ Consider the 8-bit number A = 001011002 = +44

2’s complement of A = 110101002 = -44

001011002 + 110101002 = 1 000000002 (8-bit sum is 0)

Ignore final carry = 28

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 28

Values of Different Representations

8-bit Binary
Representation

Unsigned
Value

Sign Magnitude
Value

1's Complement
Value

2's Complement
Value

00000000 0 +0 +0 0

00000001 1 +1 +1 +1

00000010 2 +2 +2 +2

.

01111101 125 +125 +125 +125

01111110 126 +126 +126 +126

01111111 127 +127 +127 +127

10000000 128 -0 -127 -128

10000001 129 -1 -126 -127

10000010 130 -2 -125 -126

.

11111101 253 -125 -2 -3

11111110 254 -126 -1 -2

11111111 255 -127 -0 -1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 29

2's Complement Signed Value

❖ Positive numbers (sign-bit = 0)

 Signed value = Unsigned value

❖ Negative numbers (sign-bit = 1)

 Signed value = Unsigned value – 2n

 n = number of bits

❖ Negative weight for sign bit

 The 2's complement representation

assigns a negative weight to the sign

bit (most-significant bit)

-128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

8-bit
Binary

Unsigned
Value

Signed
Value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111101 125 +125

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

10000010 130 -126

.

11111101 253 -3

11111110 254 -2

11111111 255 -1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 30

Next . . .

❖ Ripple-Carry Adder

❖ Magnitude Comparator

❖ Design by Contraction

❖ Signed Numbers

❖ Addition/Subtraction of Signed 2's Complement

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 31

Converting Subtraction into Addition
❖When computing A – B, convert B to its 2's complement

A – B = A + (2’s complement of B)

❖ Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

❖ Final carry is ignored, because

A + (2's complement of B) = A + (2n – B) = (A – B) + 2n

Final carry = 2n, for n-bit numbers

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

– 0 0 1 1 1 0 1 0 + 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

borrow: carry:-1-1-1 1111

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 32

Adder/Subtractor for 2's Complement

❖ Same adder is used to compute: (A + B) or (A – B)

❖ Subtraction (A – B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

❖ Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

n-bit Adder

n

A [n-1:0]

S [n-1:0]

n

n

n

B [n-1:0]

c0

OP

cn

n-bit input
vectors

n-bit output
vector

n XOR
gates

OP = 0 (ADD)

B XOR 0 = B

S = A + B + 0 = A + B

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

S = A – B

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 33

Carry versus Overflow

❖ Carry is important when …

 Adding unsigned integers

 Indicates that the unsigned sum is out of range

 Sum > maximum unsigned n-bit value

❖ Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

❖ Overflow occurs when …

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

❖ Simplest way to detect Overflow: V = Cn–1  Cn

 Cn-1 and Cn are the carry-in and carry-out of the most-significant bit

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 34

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143 (-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples

❖We can have carry without overflow and vice-versa

❖ Four cases are possible (Examples on 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Arithmetic Circuits COE 202 – Digital Logic Design © Muhamed Mudawar – slide 35

❖Unsigned Integers: n-bit representation

❖Signed Integers: 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2
n
–1min = 0

Carry = 1 for

Addition

Number > max

Borrow for

Subtraction

Number < 0

Positive

Overflow

Number > max

Negative

Overflow

Number < min

max = 2
n-1

–1

Finite Set of Signed Integers

0min = -2
n-1

Finite Set of Unsigned Integers

