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Presentation Outline
* Ripple-Carry Adder
*+ Magnitude Comparator
» Design by Contraction
»» Sighed Numbers

» Addition/Subtraction of Signed 2's Complement
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Binary Addition

» Start with the least significant bit (rightmost bit)

*+ Add each pair of bits

¢ Include the carry in the addition

Arithmetic Circuits

carry 1 1 1
O/1 |1 0 1
+ O/0 |1 1 1
10100
bit position: 6 5 4 3 2
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Iterative Design: Ripple Carry Adder

“ Uses identical copies of a full adder to build a large adder
*+ Simple to implement: can be extended to add any number of bits
“* The cell (iterative block) is a full adder

Adds 3 bits: a;, b;,, c;,, Computes: Sum s; and Carry-out c;,,

¢ Carry-out of cell i becomes carry-in to cell (i+1)

a b a; b a, b, a; by ay by
L ! ! ! !
Ci+1 | Full i Cs | Full Cs | Full C, | Full Ci: | Full &
Adder Adder Adder Adder Adder
J J J J J
Si S3 S, S, So
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Full-Adder Equations

a b
s; = a;bic; + a;b;c; + a;b;c; + a;b;c; ll ll
s; = odd function = (a; @ b;) @ ¢; c.. | Eul | c
Adder
Civ+1 = a{bici + Clibl{Ci + ClibiCi, + aibici ¢
ci+1 = (a;b; + a;b;) ¢; + a;b; (¢; + ¢;) Si
Civ1 = (ai S bl) Ci + al-bl- a; bi C;i Civa  Si
O 00 (%) (%)
K-map: Ci+1 = Cll'bl' + a;C; + biCi 90 1 ) 1
160 (%) 1
bic; K-Map of s; bic, K-Map of ¢;;1 9011 1 0
a; OO 01 11 10 a; OO 01 11 10 100 7] 1
Ol O 1 0 1 Ol O 0 1 0 101 1 (%)
1111 0 1 0 11 O 1 1 1 110 1 °
111 1 1
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Carry Propagation

a3 by a, b, a, b, ag by
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*» Major drawback of ripple-carry adder is the carry propagation
*» The carries are connected in a chain through the full adders
¢ Thisiswhy it is called aripple-carry adder

¢ The carry ripples (propagates) through all the full adders
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Longest Delay Analysis

a3 by a, b, a, b,

Suppose the XOR delay is A, and AND-OR delay is A,

For an N-Dbit ripple-carry adder, if all inputs are present at once:
1. Most-significant sum-bit delay = 2A, +(N — 1) A,

2. Final Carry-out delay = A, + N A,
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Next . ..

** Ripple-Carry Adder

* Magnitude Comparator

» Design by Contraction

¢ Signed Numbers

» Addition/Subtraction of Signed 2's Complement
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Magnitude Comparator

*» A combinational circuit that compares two unsigned integers

s Two Inputs:
<> Unsigned integer A (m-bit number)

<> Unsigned integer B (m-bit number)

s Three outputs: — GT:A>B
A[m—-1:0] == m-bit
m

Magnitude [~ EQ:A==
<~ A ==B (EQ output) BIm-1:01 =3 = omparator

< A>B (GT output)

— [T:A<B

< A< B (LT output)

*» Exactly one of the three outputs must be equal to 1

*» While the remaining two outputs must be equal to O
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Example: 4-bit Magnitude Comparator

** Inputs:

A= A34,A,4,

$ B = B3B, BB,

<> 8 bits in total =» 256 possible combinations

< Not simple to design using conventional K-map techniques
*» The magnitude comparator can be designed at a higher level
¢ Let us implement first the EQ output (4 is equal to B)

$EQ=1<A;==B;, A, ==B,, A, ==B;, and 4, == B,

<> Define: E; = (A; == B;) = A;B; + A}B;

< Therefore, EQ = (A == B) = E3E,EE|,
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The Greater Than Output

Given the 4-bit input numbers: A and B

1. If A; > B3 then GT = 1, irrespective of the lower bits of A and B
Define: G3 = A3B5 (A3 == 1and B; == 0)

2. If A; == B; (E3 == 1), we compare A, with B,
Define: G, = A,B, (A, == 1and B, == 0)

3. If A; == B; and A, == B,, we compare A; with B;
Define: G; = A;B; (A; == 1 and B; == 0)

4. If A; == By and A, == B, and A; == B;, we compare 4, with B,
Define: G, = AyBj, (Ag == 1 and B, == 0)

Therefore, GT = G; + E;G, + E3E,G, + E3E,E,G,
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The Less Than Output

We can derive the expression for the LT output, similar to GT

Given the 4-bit input numbers: A and B

1. If A; < B3 then LT = 1, irrespective of the lower bits of A and B

Define: Ly = A3B; (A3 ==0and B3 ==1)
2. 1f A; = B3 (E3 == 1), we compare A4, with B,

Define: L, = A,B, (A, ==0andB, ==1)
3. Define: Ly =A1B; (A ==0and B; ==1)
4. Define: Ly = ApBy, (4, ==0and B, == 1)
Therefore, LT = L; + E3L, + EsE,L, + E3E,E{ L

Knowing GT and EQ, we can also derive LT = (GT + EQ)’

Arithmetic Circuits
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Iterative Magnitude Comparator Design

* The Magnitude comparator can also be designed iteratively
4-bit magnitude comparator is implemented using 4 identical cells
Design can be extended to any number of cells

s Comparison starts at least-significant bit

¢ Final comparator output: GT = GT,, EQ = EQ,, LT = LT,

GT4 GT3 GTZ GTl GTO =0
EQ, < Cell3 EQ;— Cell2 —FEQ,— Celll —EQ,— Cell0 k— EQ,=1
LT, <— LT; — <—LT, — <—LT, — <— LTy =0
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Cell Implementation

*» Each Cell i receives as inputs:

Bit i of inputs 4 and B: 4; and B; 4 B
GT;, EQ;, and LT; from cell (i — 1) l l
, GTitq GT;
s Each Cell i produces three outputs: .
EQii1 < Celli |« EQ;
GTiv1, EQiyq, @nd LTj14 LT, , < «— LT,
Outputs of cell i are inputs to cell (i + 1)
¢ Output Expressions of Cell i
EQi+1 = E; EQ; E; = A;B; + A;B; (A; equals B;)
GTi+1 = A; B + E; GT; A;B; (A; > B;)
LTiyy = AiB; + E; LT, AiB; (A; < By)

Third output can be produced for first two: LT = (EQ + GT)'

Arithmetic Circuits COE 202 - Digital Logic Design © Muhamed Mudawar — slide 14



Next . ..

** Ripple-Carry Adder

*+ Magnitude Comparator

“ Design by Contraction

¢ Signed Numbers

» Addition/Subtraction of Signed 2's Complement
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Design by Contraction

¢ Contraction is a technique for simplifying the logic

“+ Applying Os and 1s to some inputs

*» Equations are simplified after applying fixed O and 1 inputs
% Converting a function block to a more simplified function

s Examples of Design by Contraction

< Incrementing a number by a fixed constant

<> Comparing a number to a fixed constant
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Designing an Incrementer

* An incrementer is a special case of an adder
Sum=A+1(B=0,C,=1)

* An n-bit Adder can be simplified into an n-bit Incrementer
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Simplifying the Incrementer Circuit

“* Many gates were eliminated
“* No longer needed when an input is a constant

 Last cell can be replicated to implemented an n-bit incrementer

d [3:0] U O O y,

S ot o i

f Incrementer
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Next . ..

** Ripple-Carry Adder

*+ Magnitude Comparator

» Design by Contraction

*» Signed Numbers

» Addition/Subtraction of Signed 2's Complement
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Signed Numbers

* Several ways to represent a signed number
< Sign-Magnitude
< 1's complement

< 2's complement

¢ Divide the range of values into two parts
< First part corresponds to the positive numbers (= 0)

<> Second part correspond to the negative numbers (< 0)

*» The 2's complement representation is widely used

<> Has many advantages over other representations

Arithmetic Circuits COE 202 - Digital Logic Design
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Sign-Magnitude Representation

n-bit number

A

Sign bit bit bit bit
Bit n-2 S 2 1 0

Y

Magnitude = n — 1 bits

*» Independent representation of the sign and magnitude
¢ Leftmost bit is the sign bit: O is positive and 1 is negative

¢ Using n bits, largest represented magnitude = 2"1 -1

Sign-magnitude Sign-magnitude
8-bit representation of +45 8-bit representation of -45
Oj]011]0]11|1]0{1 110202111 O0
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Properties of Sign-Magnitude

% Symmetric range of represented values:
For n-bit register, range is from -(2"1 — 1) to +(2"! - 1)
For example, if n = 8 bits then range is -127 to +127

s Two representations for zero: +0 and -0 NOT Good!

s+ Two circuits are needed for addition & subtraction NOT Good!
< In addition to an adder, a second circuit is needed for subtraction
<> Sign and magnitude parts should be processed independently
< Sign bit should be examined to determine addition or subtraction
< Addition of numbers of different signs is converted into subtraction

< Increases the cost of the add/subtract circuit
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Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation

(+A) + (+B)
(+A) + (-B)
(-A) + (+B)
(-A) + (-B)
(+A) - (+B)
(+A) - (-B)
(-A) - (+B)
(-A) - (-B)

ADD Subtract Magnitudes
Magnitudes A >= B A< B
+(A+B)
+(A-B) -(B-A)
-(A-B) +(B-A)
- (A+B)
+(A-B) -(B-A)
+(A+B)
- (A+B)
-(A-B) +(B-A)

COE 202 - Digital Logic Design
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1's Complement Representation

> Given a binary number A
The 1's complement of A is obtained by inverting each bit in A
< Example: 1's complement of (01101001), = (10010110),
“ If A consists of n bits then:
A + (1's complement of A) = (2"—-1) = (1...111), (all bits are 1's)
% Range of values is -(2"1 - 1) to +(2"* - 1)
For example, if n = 8 bits, range Is -127 to +127
“* Two representations for zero: +0 and -0 NOT Good!
1's complement of (0...000), = (1...111),=2"-1
-0=(1...111), NOT Good!
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2's Complement Representation

*» Standard way to represent signed integers in computers
*» A simple definition for 2’s complement:
Given a binary number A
The 2's complement of A = (1's complement of A) + 1
“ Example: 2's complement of (01101001), =
(10010110), + 1 = (10010111),
“ If A consists of n bits then
A + (2's complement of A) = 2"

2's complement of A=2"- A
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Computing the 2's Complement

starting value 00100100, = +36
stepl: Invert the bits (1's complement) 11011011,
step 2: Add 1 to the value from step 1 + 1,
sum = 2's complement representation 11011100, = -36

2’s complement of 11011100, (-36) = 00100011, + 1 = 00100100, = +36

The 2's complement of the 2’s complement of A is equal to A

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the Os to its right unchanged
Complement all the bits to its left

Binary Value

2

00100

's Complement

11011

least
1 IOO significant 1

1]o0

Arithmetic Circuits COE 202 - Digital Logic Design
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Properties of the 2's Complement

% Range of represented values: -2™! to +(2"1 - 1)
For example, if n = 8 bits then range iIs -128 to +127
“ There is only one zero = (0...000), (all bits are zeros)
*» The 2’s complement of A is the negative of A
¢ The sum of A + (2's complement of A) must be zero
The final carry is ignored
% Consider the 8-bit number A = 00101100, = +44
2’'s complement of A =11010100, = -44

00101100, + 11010100, = 1 00000000, (8-bit sum is 0)
— Ignore final carry = 28
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Values of Different Representations

8-bit Binary Unsigned Sign Magnitude | 1's Complement | 2's Complement
Representation Value Value Value Value
00000000 (% +0 +0 0
00000001 +1 +1 +1
00000010 2 +2 +2 +2
01111101 125 +125 +125 +125
01111110 126 +126 +126 +126
01111111 127 +127 +127 +127
10000000 128 -9 -127 -128
10000001 129 -1 -126 -127
10000010 130 -2 -125 -126
11111101 253 -125 -2 -3
11111110 254 -126 -1 -2
11111111 255 -127 -0 -1

Arithmetic Circuits
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2's Complement Signed Value

¢ Positive numbers (sign-bit = 0)
< Signed value = Unsigned value

** Negative numbers (sign-bit = 1)
< Signed value = Unsigned value — 2"
< n = number of bits

“* Negative weight for sign bit

< The 2's complement representation
assigns a negative weight to the sign
bit (most-significant bit)

1/0/1]1, 01 /0]O0

-128 64 32 16 8 4 2 1

-128+32+ 16 +4 =-76

Arithmetic Circuits COE 202 - Digital Logic Design

8-bit Unsigned | Signed

Binary Value Value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111101 125 +125
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
10000010 130 -126
11111101 253 -3
11111110 254 -2
11111111 255 -1
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Next . ..

** Ripple-Carry Adder

*+ Magnitude Comparator

» Design by Contraction

¢ Signed Numbers

¢ Addition/Subtraction of Signed 2's Complement
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Converting Subtraction into Addition

“* When computing A — B, convert B to its 2's complement
A-B =A +(2’s complement of B)
«» Same adder is used for both addition and subtraction

This Is the biggest advantage of 2's complement

borrow: -1-1 -1 carry: 1 1 11
01001101 01001101
- 00111010 ™ + 11000110 (2'scomplement)
00010011 00010011 (same result)

“ Final carry is ignored, because
A + (2's complementofB) =A+(2"-B)=(A-B) + 2"

Final carry = 2", for n-bit numbers
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Adder/Subtractor for 2's Complement

* Same adder is used to compute: (A + B) or (A—B)
¢ Subtraction (A — B) is computed as: A + (2's complement of B)
2's complement of B = (1's complement of B) + 1

% Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

B [n-1:0] OP OP =0 (ADD)
A [n-1:0] n4 ! BXORO0=B
nA\— n-bit input n XOR S=A+B+0=A+B
gates
vectors n
OP =1 (SUBTRACT)
o B XOR 1 = 1's complement of B

Cp<— n-bit Adder

S=A+ (1'scomplementof B) + 1
n i n-bit output S = A+ (2's complement of B)
S [n-1:0] vector S=—A_B
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Carry versus Overflow

* Carry is important when ...
< Adding unsigned integers
< Indicates that the unsigned sum is out of range

< Sum > maximum unsigned n-bit value
*» Overflow is important when ...
< Adding or subtracting signed integers
< Indicates that the signed sum is out of range
“ Overflow occurs when ...
< Adding two positive numbers and the sum is negative
<> Adding two negative numbers and the sum is positive
% Simplest way to detect Overflow:V=C__, & C,

< C,.,and C, are the carry-in and carry-out of the most-significant bit

Arithmetic Circuits COE 202 - Digital Logic Design © Muhamed Mudawar — slide 33



Carry and Overflow Examples

* We can have carry without overflow and vice-versa

¢ Four cases are possible (Examples on 8-bit numbers)

1 1 1 1 1 1
O/0, 001 1|1 15 Oo/0/0|0 1 1 1|1 15
+ +
Oo/o0, 001,070 8 1 /1,1 ,1/1,0|0| 0| 248(-8
OO0, 01, 011 23 O/0, 0001 1|1 7
Carry =0 Overflow =0 Carry=1 Overflow =0
1 1 1 1
o(1|/0|0 1|11 79 1/1/0|1|1|0|1]|0 | 218(-38)
+ +
Oo(1,0,0,0,01]0 64 100|211 1|0 1/|157(-99
1/0[{0|]0 |1 |1 1 143 (-113) o(1,1/1, 0,1 1|1 119

Arithmetic Circuits

Carry =0 Overflow =1

Carry=1 Overflow =1
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Range, Carry, Borrow, and Overflow

“* Unsigned Integers: n-bit representation

Number <0 Number > max
Borrow for .. : Carry = 1 for
. Int r .
Subtraction Sl SetofUn5|gned IIIIII ege S IIIIIIIIIIIIII Addition
min=0 max = 2n—1

“» Signed Integers: 2's complement representation

Number < min Number > max
Negative . . Positive
Fini f Signed In r
Overflow ' te Set O SI g | ed y tege S IIIIIIIIIIIIIIII Overflow
....................................... [FHHHHHHHH
min = -2™* 0 max = 2"'-1
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