EE 200- Digital Logic Circuit Design 3.6 NAND and NOR Implementation

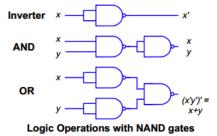
Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

October 3, 2013

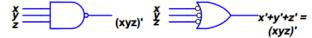
Introduction

• Can you give an example of don't-care condition


Lecture Outline

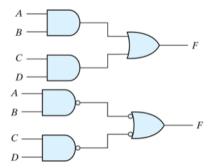
- 1 The Map Method
 - NAND Implementation
 - NOR Implementation

NAND Implementation


Using NAND instead of AND and OR.

NAND Implementation

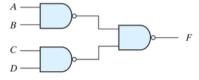
Alternative graphic symbol for NAND gate.


Two Graphic Symbols for NAND gate

Two-Level Implementation with NAND

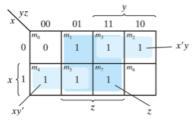
Must have the function as sum-of-products.

The Map Method


• F = AB + CD

Two-Level Implementation with NAND

The Map Method

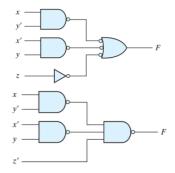

•
$$F = ((AB)'(CD)')' = AB + CD$$

Two-Level Implementation (Example)

The Map Method

• Implement F using NAND gates F(x, y, z) = (1, 2, 3, 4, 5, 7)

• F = xy' + x'y + z



Two-Level Implementation (Example)

The Map Method

$$F = xy' + x'y + z$$

Multi-Level Implementation with NAND

The Map Method

$$F = A(CD + B) + BC'$$

$$C$$

$$D$$

$$B$$

$$C$$

$$C$$

$$D$$

$$B$$

$$C$$

$$C$$

$$D$$

$$B$$

$$A$$

$$B$$

$$C$$

Multi-Level Implementation with NAND

•
$$F = (AB' + A'B)(C + D')$$

A

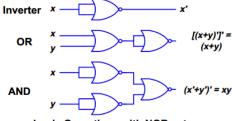
B

C

D

AND-OR gates

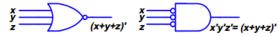
NAND zates


Multi-Level Implementation with NAND (HOW TO)

- Convert all AND gates to NAND gates with AND-invert symbol.
- Convert all OR gates to NAND gates with invert-OR symbol.
- Make sure that every bubble is compensated with another on the same line, if not, insert an inverter.

NOR Implementation

Using NOR instead of AND and OR.



Logic Operations with NOR gates

NAND Implementation

Alternative graphic symbol for NOR gate.

Two graphic symbols for NOR gate

NOR Implementation

•
$$F = (A + B)(C + D)E$$

A

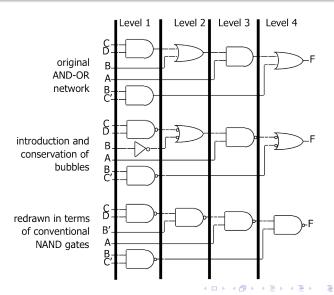
B

C

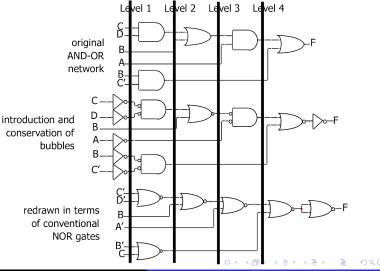
D

E'

NOR Implementation


•
$$F = (AB' + A'B)(C + D')$$

The Map Method



AND-OR to NAND Conversion

AND-OR to NOR Conversion

Summary

- 1 The Map Method
 - NAND Implementation
 - NOR Implementation

Next Lecture

- XOR
- HDL