EE 200- Digital Logic Circuit Design 2.6 Canonical and Standard Forms.

Dr. Muhammad Mahmoud

جامعة الملك فهد للبترول والمعادن King Fahd University of Petroleum & Minerals

▲ ▶ ▲ ●

September 24, 2013

Entry Questions

- Can we represent a Boolean function in more than one form?
- What for look for to get a better Boolean function form?

A ►

1 Canonical and Standard Forms

- Canonical Forms
- Standard Forms

æ

-≣->

Canonical Forms

• Canonical forms: each term of the Boolean function must contain all the variables.

x	y	z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

•
$$f_1 = x'y'z + xy'z' + xyz$$

æ

メロト メポト メヨト メヨト

Minterms and Maxterms

Expressing combinations of 1's and 0's with binary variables (normal form \times or complement form \times ')

- For *n*-variables, we have 2^n compilations.
- Example: for variables x and y, we have x'y', xy', x'y, and xy.
- Each variable is primed " ' " if it represent a "0", otherwise it is unprimed.

< </>
Image: A matrix and a

Sum of Minterms

• Each of these AND terms is called *minterm* or *standard product*.

Ainterms for Three Binary Variables						v	7	Functio
			Minterms		*	Ŷ	2	Funct
x	y	z	Term	Designation	0	0	0	0
0	0	0	x'y'z'	m_0	0	0	1	1
0	0	1	x'y'z	m_1	0	1	0	0
0	1	0	x'yz'	m_2	0	1	1	0
0	1	1	x'yz	m_3	1	0	0	1
1	0	0	xy'z'	m_4	1	0	1	0
1	0	1	xy'z	m_5			1	0
1	1	0	xyz'	m_6	1	1	0	0
1	1	1	xyz	m_7	1	1	1	1

• $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$

æ

★国外

・ロト ・回ト ・ヨト

Product of Maxterms

v	~	7	Function f.	Maxteri	Maxterms for Three Binary Variables					
^	,	-	runction /				Maxt	erms		
0	0	0	0	x	y	z	Term	Designation		
0	0	1	1	0	0	0	x + y + z	M_0		
0	1	0	0	0	0	1	x + y + z'	M_1		
)	1	1	0	0	1	0	x + y' + z	M_2		
	0	0	1	0	1	1	x + y' + z'	M_3		
	0		1	1	0	0	x' + y + z	M_4		
	0	1	0	1	0	1	x' + y + z'	M_5		
	1	0	0	1	1	0	x' + y' + z	M_6		
	1	1	1	1	1	1	x' + y' + z'	M_7		

- if $f'_1 = x'y'z' + x'yz' + x'yz + xy'z + xyz'$ $f_1 = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z)$ $f_1 = M_0M_2M_3M_5M_6$
- Each grouped OR term is called *maxterm* or *standard sum*.

Minterms and Maxterms Conversions

- Canonical form: expressing a Boolean function using sum of minterms or product of maxterms.
- Minterms whose sum defines the Boolean function are those which give 1's in the truth table.
- Maxterms whose product defines the Boolean function are those which give 0's in the truth table.
- Maxterm M_j is the complement of minterm m_j .
- $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7 = \sum (1, 4, 7)$
- $f_1 = M_0 M_1 M_2 M_5 M_6 = \prod (0, 1, 2, 5, 6)$

イロト イヨト イヨト イヨト

Standard Forms

- Standard forms: the terms that form the function may contain one, two, or any number of variables.
- Sum of products $F_1 = y' + xy + x'yz'$

• Product of sums $F_2 = x(y' + z)(x' + y + z')$

イロト イヨト イヨト イヨト

æ

Minterms and Maxterms Conversions

• A nonstandard form Boolean function, $F_3 = AB + C(D + E)$ can be written in standard form as, $F_3 = AB + CD + CE$.

• A two-level implementation is preferred: produces the least amount of delay through the gates when the signal propagates from the inputs to the output.

Conversion to Canonical Forms

Express F = A + B'C as a sum of minterms

- each term should have all variables.
- 1st term missing B & C.

$$=A(B+B')=AB+AB'$$

- = AB(C+C') + AB'(C+C') = ABC + ABC' + AB'C + AB'C'
- 2nd term missing A.

=B'C(A+A')=AB'C+A'B'C

• F = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C= $m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1, 4, 5, 6, 7)$

イロト イポト イヨト イヨト

Conversion to Canonical Forms

Express F = A + B'C as a product of maxterms

• convert to OR terms (A + B')(A + C).

$$A + B' = A + B' + CC'$$

$$= (A + B' + C)(A + B' + C')$$

• 2nd term missing B, add BB'.

A + C = A + C + BB' = (A + B + C)(A + B' + C)

•
$$F = (A + B' + C)(A + B' + C')(A + B + C)(A + B' + C)$$

= $m_2 + m_3 + m_0 = \prod(0, 2, 3)$

1 Canonical and Standard Forms

- Canonical Forms
- Standard Forms

æ

<ロ> <同> <同> <同> < 同>

- < ≣ →

Next Lecture

• Gate-Level Minimization.

2

・ロン ・回 と ・ ヨン ・ ヨン