EE 200- Digital Logic Circuit Design 2.6 Canonical and Standard Forms.

Dr. Muhammad Mahmoud

جامعـة الـملك فـهد للبتـرول والـمعـادن King Fahd University of Petroleum \&t Minerals

September 24, 2013

Entry Questions

- Can we represent a Boolean function in more than one form?
- What for look for to get a better Boolean function form?

Objectives

(1) Canonical and Standard Forms

- Canonical Forms
- Standard Forms

Canonical Forms

- Canonical forms: each term of the Boolean function must contain all the variables.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Function $\boldsymbol{f}_{\mathbf{1}}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- $f_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z$

Minterms and Maxterms

Expressing combinations of 1's and 0's with binary variables (normal form \times or complement form \times ')

- For n-variables, we have 2^{n} compilations.
- Example: for variables x and y, we have $x^{\prime} y^{\prime}, x y^{\prime}, x^{\prime} y$, and $x y$.
- Each variable is primed " ' " if it represent a " 0 ", otherwise it is unprimed.

Sum of Minterms

- Each of these AND terms is called minterm or standard product.

Minterms for Three Binary Variables

			Minterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	$x^{\prime} y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z^{\prime}$	m_{6}
1	1	1	$x y z$	m_{7}

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Function $\boldsymbol{f}_{\mathbf{1}}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- $f_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z=m_{1}+m_{4}+m_{7}$

Product of Maxterms

\boldsymbol{x}	$\boldsymbol{\gamma}$	\boldsymbol{z}	Function $\boldsymbol{f}_{\mathbf{1}}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Maxterms for Three Binary Variables

			Maxterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation
0	0	0	$x+y+z$	M_{0}
0	0	1	$x+y+z^{\prime}$	M_{1}
0	1	0	$x+y^{\prime}+z$	M_{2}
0	1	1	$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	$x^{\prime}+y+z$	M_{4}
1	0	1	$x^{\prime}+y+z^{\prime}$	M_{5}
1	1	0	$x^{\prime}+y^{\prime}+z$	M_{6}
1	1	1	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

- if $f_{1}^{\prime}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y z+x y^{\prime} z+x y z^{\prime}$
$f_{1}=(x+y+z)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right)$
$f_{1}=M_{0} M_{2} M_{3} M_{5} M_{6}$
- Each grouped OR term is called maxterm or standard sum.

Minterms and Maxterms Conversions

- Canonical form: expressing a Boolean function using sum of minterms or product of maxterms.
- Minterms whose sum defines the Boolean function are those which give 1's in the truth table.
- Maxterms whose product defines the Boolean function are those which give 0's in the truth table.
- Maxterm M_{j} is the complement of minterm m_{j}.
- $f_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z=m_{1}+m_{4}+m_{7}=\sum(1,4,7)$
- $f_{1}=M_{0} M_{1} M_{2} M_{5} M_{6}=\prod(0,1,2,5,6)$

Standard Forms

- Standard forms: the terms that form the function may contain one, two, or any number of variables.
- Sum of products
$F_{1}=y^{\prime}+x y+x^{\prime} y z^{\prime}$
- Product of sums

(a) Sum of Products

$$
F_{2}=x\left(y^{\prime}+z\right)\left(x^{\prime}+y+z^{\prime}\right)
$$

(b) Product of Sums

Minterms and Maxterms Conversions

- A nonstandard form Boolean function, $F_{3}=A B+C(D+E)$ can be written in standard form as, $F_{3}=A B+C D+C E$.

(a) $A B+C(D+E)$

(b) $A B+C D+C E$
- A two-level implementation is preferred: produces the least amount of delay through the gates when the signal propagates from the inputs to the output.

Conversion to Canonical Forms

Express $F=A+B^{\prime} C$ as a sum of minterms

- each term should have all variables.
- 1st term missing B \& C.

$$
\begin{aligned}
& =A\left(B+B^{\prime}\right)=A B+A B^{\prime} \\
& =A B\left(C+C^{\prime}\right)+A B^{\prime}\left(C+C^{\prime}\right)=A B C+A B C^{\prime}+A B^{\prime} C+A B^{\prime} C^{\prime}
\end{aligned}
$$

- 2nd term missing A.

$$
=B^{\prime} C\left(A+A^{\prime}\right)=A B^{\prime} C+A^{\prime} B^{\prime} C
$$

- $F=A B C+A B C^{\prime}+A B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A^{\prime} B^{\prime} C$

$$
=m_{1}+m_{4}+m_{5}+m_{6}+m_{7}=\sum(1,4,5,6,7)
$$

Conversion to Canonical Forms

Express $F=A+B^{\prime} C$ as a product of maxterms

- convert to OR terms $\left(A+B^{\prime}\right)(A+C)$.
- 1st term missing C, add $C C^{\prime}$.

$$
\begin{aligned}
& A+B^{\prime}=A+B^{\prime}+C C^{\prime} \\
& =\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)
\end{aligned}
$$

- 2nd term missing B, add $B B^{\prime}$.

$$
\begin{aligned}
& A+C=A+C+B B^{\prime}=(A+B+C)\left(A+B^{\prime}+C\right) \\
& -F=\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)(A+B+C)\left(A+B^{\prime}+C\right) \\
& =m_{2}+m_{3}+m_{0}=\prod(0,2,3)
\end{aligned}
$$

Summary

(1) Canonical and Standard Forms

- Canonical Forms
- Standard Forms

Next Lecture

- Gate-Level Minimization.

