
IEEE Communications Surveys & Tutorials • 3rd Quarter 200744

ften it is thought that the use of encryption is suffi-
cient to secure communication. However, encryp-
tion only prevents unauthorised parties from

decoding the communication. In many cases the simple exis-
tence of communication or changes in communication pat-
terns, such as an increased message frequency, are enough to
raise suspicion and reveal the onset of events. Covert channels
aim to hide the very existence of the communication. Typical-
ly, covert channels use means of communication not normally
intended to be used for communication, making them quite
elusive.

Lampson introduced covert channels in 1973 in the context
of monolithic systems as a mechanism by which a process at a
high security level leaks information to a process at a low
security level that would otherwise not have access to it [1].
While a serious threat even for single hosts, the potential for
covert channels in computer networks is greatly increased. In
computer networks overt channels, such as network protocols,
are used as carriers for covert channels [2, 3].

The huge amount of data and vast number of different
protocols in the Internet makes it ideal as a high-bandwidth
vehicle for covert communications. The capacity of covert
channels in computer networks has greatly increased because
of new high-speed network technologies, and this trend is like-

ly to continue. Even if only one bit per packet can be covertly
transmitted, a large Internet site could lose 26GB of data
annually [4].

Covert channels in computer network protocols are similar
to techniques for hiding information in audio, visual or textual
content (steganography). While steganography requires some
form of content as cover, covert channels require some net-
work protocol as carrier.

The ubiquitous presence of a small number of network
protocols suitable as carriers (e.g. the Internet Protocol [5])
make covert channels widely available. They are usable even
in situations where steganography cannot be applied. For
example, the web-based techniques described later encode
information sent from client to server as a covert channel,
because normally web clients do not include any content in
their requests.

Many applications of covert channels are of a malicious or
unwanted nature, and therefore pose a serious threat to net-
work security. Furthermore, we think that because of
increased measures against open channels, such as the free
transfer of memory sticks in and out of organisations as
described in [6], the use of covert channels in computer net-
works will increase. Understanding existing covert channel
techniques is crucial in developing countermeasures. The

O

SEBASTIAN ZANDER AND GRENVILLE ARMITAGE, AND PHILIP BRANCH,
SWINBURNE UNIVERSITY OF TECHNOLOGY MELBOURNE, AUSTRALIA

ABSTRACT

Covert channels are used for the secret transfer of information. Encryption only
protects communication from being decoded by unauthorised parties, whereas covert
channels aim to hide the very existence of the communication. Initially, covert chan-
nels were identified as a security threat on monolithic systems i.e. mainframes. More

recently focus has shifted towards covert channels in computer network protocols.
The huge amount of data and vast number of different protocols in the Internet

seems ideal as a high-bandwidth vehicle for covert communication. This article is a
survey of the existing techniques for creating covert channels in widely deployed net-

work and application protocols. We also give an overview of common methods for
their detection, elimination, and capacity limitation, required to improve security in

future computer networks.

A SURVEY OF COVERT CHANNELS AND

COUNTERMEASURES IN COMPUTER NETWORK

PROTOCOLS

3RD QUARTER 2007, VOLUME 9, NO. 3

www.comsoc.org/pubs/surveys

1553-877X

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 45

detection, elimination, and capacity limitation of covert chan-
nels are challenging but need to be addressed to secure future
computer networks.

This article is a survey of existing covert channels in net-
work and application protocols and their countermeasures
over the period 1987–2006. There are a number of related
research areas we do not cover here for space reasons: covert
channels in single hosts [1, 7], steganographic techniques for
hiding information in content [8], and subliminal channels in
cryptosystems [9].

Another related area is the field of anonymous communi-
cations concerned with obfuscating sender/receiver identities
and their relationships (who is communicating with whom)
[10]. However, this topic does not address full covertness of
communication, since observers can still determine that some
form of communication is taking place [11].

The rest of the article is organised as follows. First we
describe potential application scenarios, define the terminolo-
gy and explain the basic communication principles of covert
channels. Then we present currently known covert channel
techniques and discuss possible countermeasures. Finally, we
conclude and identify future research.

APPLICATION SCENARIOS

A diverse range of individuals and groups has found reason to
utilise covert channels for communication and coordination.
Typically this is motivated by the existence of an adversarial
relationship between two parties (such as government agen-
cies versus criminal or terrorist organisations, hackers or cor-
porate spies versus a company IT department, or dissenting
citizens versus their governments).

Clearly, government agencies, criminals, or terrorist organ-
isations have an interest to keep their communication secret.
However, simply using encryption does not prevent adver-
saries from detecting communication patterns. Often only the
evidence that communication takes place is sufficient to
detect the onset of activity, discover organisational structures
or justify obtaining police warrants.

Once spies or hackers have compromised computer sys-
tems they usually ex-filtrate data or instrument the systems for
malicious purposes, including communication with installed
Trojan horses (malicious programs disguised as or embedded
within legitimate software) or tools for launching denial of
service attacks. Such activities generate network traffic that —
if not covert — would immediately alert system administra-
tors, who then would discover the compromised systems. Ex-
filtrating sensitive data over covert channels does not even
require compromised computers. It is sufficient if the attacker
can compromise an input device such as a keyboard [12], or a
software package such as a web browser [13].

It should be emphasized that often even ordinary employ-
ees may want to use covert channels to bypass their company
firewalls in order to access Internet resources. Furthermore,
recent attempts by some governments to limit the freedom of
speech in the Internet have led to proposals for using covert
channels to circumvent these measures [14, 15]. In countries
that forbid (strong) encryption of data, covert channels can be
used to secure the information transport (although this is not
strong security in the cryptographic sense).

Network administrators can use covert channels to secure
network management related communication by hiding it
from hackers [16]. Again this is not strong security in the
cryptographic sense. Honeypots, which are computer systems
set up as trap for hackers, can also use covert channels to
export logged data in real-time hidden from the attacker [17].

Computer viruses or worms can use covert channels to
spread themselves undetected or for covertly exchanging
information necessary for distributed processing (e.g. execute
brute-force attacks on cryptosystems [18]).

Moskowitz et al. showed that imperfections in techniques
for anonymous communication are effectively covert channels
usable to thwart anonymisation [19]. Covert channels have
been used for breaking anonymisation in specific network-
related scenarios: Xu et al. described an attack on network
traffic trace file anonymisation through covert channels [20]
and Bethencourt et al. developed a covert-channel-based tech-
nique to identify the locations of sensors used for detecting
malicious network traffic [21].

Covert channels can also be used for transmitting authenti-
cation data. A number of techniques have been developed for
allowing authorised external users to access open firewall
ports while presenting these ports as closed to all other users.
One particular technique, called port knocking, uses covert
channels for sending the authentication information [22].
Mazurczyk et al. proposed using covert channels and steganog-
raphy to link control information, including authentication
data, to the actual data flows [23, 24].

A number of researchers have developed packet traceback
techniques using covert channels [25, 26]. Traceback tech-
niques provide downstream nodes with information about the
path of incoming packets. This is important in case of denial
of service attacks, because it allows filtering the attack traffic
at upstream nodes or even isolating the attacker(s).

TERMINOLOGY AND COMMUNICATION MODEL

TERMINOLOGY

Different terms have been used for describing the process of
hiding information in network protocols. Whereas many
researchers referred to covert channels some also used the
terms steganography or information hiding. Partly this has
been caused by differences between Lampson’s original covert
channel definition and a later definition by the US Depart-
ment of Defense (US DoD). Lampson defined covert chan-
nels as “channels, […] not intended for information transfer
at all” [1] whereas the US DoD defined covert channels as
“[…] any communication channel that can be exploited by a
process to transfer information in a manner that violates the
system’s security policy” [27]. Another reason is that terminol-
ogy has evolved over the years: the term “information hiding”
simply had not been coined when the first covert channels in
computer network protocols were proposed [28].

Throughout this article we use the term covert channel
when we refer to the hiding of information in network proto-
cols and refer to the information transmitted across the covert
channel as hidden or covert information. Consistently with
Petitcolas et al. we use the term steganography (literally mean-
ing covered writing) when we refer to the hiding of informa-
tion in content, and the term information hiding as a generic
term for both [8]. Transmission of information through a sys-
tem mechanism is an overt channel [29].

Traditionally covert channels were classified into storage
and timing channels even though there is no fundamental dis-
tinction between them [27]:
• Storage channels involve the direct/indirect writing of

object values by the sender and the direct/indirect read-
ing of the object values by the receiver.

• Timing channels involve the sender signaling information
by modulating the use of resources (e.g. CPU usage)
over time such that the receiver can observe it and
decode the information.

IEEE Communications Surveys & Tutorials • 3rd Quarter 200746

THE PRISONER PROBLEM

The prisoner problem was first posed by Simmons and is the
de-facto model for covert channel communication [30]. Two
people, Alice and Bob,1 are thrown into prison and intend to
escape. To agree on an escape plan they need to communicate
but Wendy the warden monitors all their messages. If Wendy
finds any signs of suspicious messages she will place Alice and
Bob into solitary confinement — making it impossible for them
to escape. Alice and Bob must exchange innocuous messages
containing hidden information that (hopefully) Wendy will not
notice. Craver describes the different types of wardens [31]:
• A passive warden can only spy on the channel but cannot

alter any messages.
• An active warden is able to slightly modify the messages,

but without altering the semantic context.
• A malicious warden may alter the messages without

impunity, but in reality malicious wardens are rare [31].
Handel et al. extended this scenario towards computer networks,
where Alice and Bob use two networked computers for commu-
nication [32]. They run an innocuous looking overt communica-
tion channel between their computers, containing a hidden
covert channel. Alice and Bob share a secret, which is useful for
determining covert channel encoding parameters and encrypt-
ing/authenticating the hidden messages. For practical purposes
Alice and Bob may well be the same person, for example a
hacker ex-filtrating restricted information. Wendy manages the
network and can monitor the passing traffic for covert channels
or alter the passing traffic to eliminate or disrupt covert chan-
nels. Figure 1 depicts the model (Alice sending to Bob).

In the prisoner model Alice communicates with Bob, but
in general covert channels are not restricted to unicast (one-
to-one) channels. Alice could also send hidden information to
Bob, Carol and Dave at the same time if the channel allows
multicast (one-to-many) communication.

COMMUNICATION SCENARIOS

There are a number of different scenarios for
covert communication depending on whether Alice
and Bob are the sender and receiver of the overt
channel, or if they act as middlemen and manipu-
late an overt channel between innocent users [33].

If the sender of the covert channel is also the
sender of the overt channel, it can manipulate the
overt channel as desired (e.g. to maximise the covert
channel capacity or its stealth). However, sometimes
the covert sender may not be able to create overt
channels or may choose not to do so for increased
stealth. In this case the sender can act as middle-
man embedding a covert channel into an existing
overt channel. Obviously, then the covert sender has

no control of the overt channel, and the maximum capacity of
the covert channel depends on the existing overt channel.

The covert receiver can be the receiver of the overt chan-
nel, but to increase stealth the receiver can also be a middle-
man extracting the hidden information from an overt
communication destined for an innocent receiver. Then the
covert receiver should (if possible) remove the covert channel
preventing possible detection by the receiver or any other
intermediate nodes.

Being a middleman does not necessarily mean the covert
sender/receiver has to be physically separated from the overt
sender/receiver. Covert sender and receiver could be located
on routers/gateways between the overt sender and receiver,
but they could also be on the same physical device located in
lower levels of the network protocol stack.

Figure 2 illustrates the possible combinations of covert
sender and receiver locations. The actual communication sce-
nario depends on the application of the covert channel. For
example, if the covert channel is used to circumvent censor-
ship covert and overt sender/receiver would likely be identical,
whereas if it is used by a hacker for ex-filtrating data the
covert sender and receiver would likely be middlemen (e.g.
the sender could be inside the network protocol stack of the
compromised machine and the receiver could be on a router
close to the edge of the compromised network).

COVERT CHANNELS

In this section we give an overview of existing covert channel
techniques in computer network protocols. In contrast to pre-
vious work we group channels according to their mechanism
and not just based on the layers of the Open Systems Inter-
connection (OSI) model. We believe our approach is advanta-
geous because it provides a more fine-grained classification
and also accommodates the fact that some methods could be
applied very similarly on different OSI layers. For example,
the address modulation channel described later works on the
link layer with MAC addresses, on the network layer with IP
addresses and on the transport layer with UDP/TCP port
numbers.

UNUSED HEADER BITS

Covert channels can be encoded in unused or reserved bits of
frame or packet headers. This is particularly problematic if

nFigure 1. The prisoner problem – the de-facto model for covert
channel communication.

Alice

Shared secret
Covert

message

Overt
channel

Overt
channel

Overt+covert
channel

(Altered) overt+
covert channel

Covert
message

BobWendy

nFigure 2. Possible combinations of different covert sender/receiver locations.

Overt sender Middleman Middleman Overt receiver

Bob

Bob

Alice

Alice

Alice

Bob

Alice Bob
1 Cryptographic protocols are usually illustrated using two
participants named alphabetically (Alice, Bob) or with
names where the first letter matches their role (Wendy the
warden).

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 47

protocol standards do not mandate specific values or receivers
do not check for the standard values. Handel et al. proposed a
covert channel using the unused bits of the IP header’s Type
of Service (TOS) field or of the TCP header’s Flags field [32].
Kundur et al. suggested using the IP header’s Don’t Fragment
(DF) bit as a covert channel [34]. The DF bit can be set to
arbitrary values if the sender knows the Maximum Transfer
Unit (MTU) size of the path to the receiver and only sends
packets of less than MTU size. Hintz proposed transmitting
covert data in the TCP Urgent Pointer (used to indicate high
priority data) that is unused if the URG bit is not set [35].

Fisk et al. identified covert channels in TCP Reset seg-
ments (TCP segments with the RST flag set abort the connec-
tion and usually contain no data) and in the unused code
fields of some Internet Control Message Protocol (ICMP)
messages [4]. Wolf proposed covert channels in header fields
of multiple (now obsolete) protocols such as Token Ring [36].
Lucena et al. identified a number of covert channels in various
IPv6 header fields such as Traffic Class and Flow Label [37].

HEADER EXTENSIONS AND PADDING

Many protocols support extension of the standard header.
Usually there are some pre-defined header extensions that
allow transporting non-mandatory information on demand,
but many protocols also allow header extensions to carry data
not foreseen in the original specification, extending the capa-
bilities of the protocol.

Graf proposed transmitting covert information in the IPv6
destination options header [38]. This header carries optional
information for the packet’s destination node. If the option type
is set so that the receiver ignores the option, covert information
can be directly encoded as option data. Lucena et al. identified
covert channels in the IPv6 Hop-by-Hop, Routing, Fragment,
Authentication and Encapsulating Security Payload extension
headers [37]. Trabelsi et al. proposed to hide covert data masked
as IP addresses in IP Route Record option headers [39].

Covert information can be encoded in frame or packet
padding. For example, Ethernet frames must be padded to a
minimum length of 60 bytes. If the protocol standard does not
enforce specific values for the padding bytes, any data can be
used [32, 36]. Padding of the IP and TCP header to 4-byte
boundaries (in case header options are present) and padding
in IPv6 can also be used to transmit covert data [4, 37].

IP IDENTIFICATION AND FRAGMENT OFFSET

The IP Identification (ID) header field is used for reassembling
fragmented IP packets. The only requirement from the IP stan-
dard is that each IP ID uniquely identifies an IP packet for a
certain time period [5]. The Fragment Offset is used to deter-
mine in which sequence the fragments need to be reassembled.

Rowland proposed multiplying each byte of the covert
information by 256 and directly using it as the IP ID [15].
Ahsan et al. proposed transmitting covert information in the
high e ight bits of the IP ID (as the XOR of the data and a
secret key) and generate the low eight bits randomly [40].

Cauich et al. described how to use this covert channel
between middlemen [41]. If an existing packet is not fragment-

ed the covert sender inserts the covert information into the IP
ID and Fragment Offset fields and sets one bit from the
reserved bits of the flags field. This bit is used to mark packets
with covert information so that the covert receiver can distin-
guish between real final fragments (which have the More Frag-
ments bit set to zero) and packets with hidden information.

Danezis proposed an indirect covert channel using the IP
ID field [11]. This channel requires an (unwitting) intermedi-
ary host running an operating system with globally increment-
ing IP ID counter for outgoing packets. Furthermore, the
covert sender and receiver must be able to force the interme-
diary to receive packets and send packets back (e.g. using
ping). In each time interval the covert sender sends n packets
to the intermediary, where n is the encoded covert informa-
tion, forcing it to send n packets back. At the start of each
time interval the covert receiver forces the intermediary to
send one packet. The covert receiver can recover n (the covert
information) by computing the IP ID difference of two con-
secutive packets received from the intermediary.

TCP INITIAL SEQUENCE NUMBER FIELD

TCP sequence numbers are used to coordinate which data has
been transmitted and received guaranteeing reliable transport.
The first sequence number selected by the client is called the
Initial Sequence Number (ISN). The ISN must be chosen
such that the sequence numbers of new incarnations of a TCP
connection do not overlap with the sequence numbers of ear-
lier incarnations of a TCP connection [42].

Rowland proposed multiplying each covert byte with 2563

and directly using it as the TCP ISN [15]. He also outlined an
indirect channel called the bounce channel (Fig. 3). Instead of
sending the ISN directly in a TCP SYN packet to the receiver,
the sender sends the TCP SYN packet to a bounce host with a
spoofed IP source address set to the intended destination.
Upon reception of the SYN packet the bounce host sends a
SYN/ACK or SYN/RST to the receiver with the acknowledged
sequence number equal to the ISN+1. The receiver decre-
ments the ACK number and decodes the hidden information.

Rutkowska developed a covert channel based on TCP ISNs
for Linux, where the covert information is encrypted in the
ISN fields so that the resulting distribution is uniform random
[43]. However, Murdoch et al. pointed out that all the previ-
ous proposed ISN techniques produce a different distribution
than the real operating system implementations [44]. They
developed ISN covert channels tailored for Linux and OpenB-
SD, where the ISN distribution of the covert channel looks
like the normal ISN distribution.

CHECKSUM FIELD

Abad described how the IP header Checksum field could be
used for covert communication [45]. The Checksum field is
modified to encode the secret information and an IP header
extension is added with the content chosen such that the mod-
ified checksum is correct again. The same technique could be
used for the TCP header checksum. However, since this tech-
nique requires adding a header extension the covert informa-
tion could also be encoded directly into the header extension.

Since the checksum in UDP packets is optional [46], Fisk
et al. proposed using its presence or absence to signal one bit
of covert information per UDP packet [4].

MODULATING THE IP TIME TO LIVE FIELD

Jones et al. proposed a covert channel based on the IP header
Time to Live (TTL) field as solution to trace back IP flows

nFigure 3. The TCP Initial Sequence Number (ISN) bounce
channel.

SrcIP: C
DstIP: B
SN: ISN

SrcIP: B
DstIP: C
ACK: ISN+1

Sender
A

Receiver
C

Bounce
B

IEEE Communications Surveys & Tutorials • 3rd Quarter 200748

without using the source address field [25]. In their approach,
routers modulate the TTL field of packets so that downstream
receivers can unambiguously identify their upstream router.
The covert channel is used for marking instead of general
purpose communication.

Qu et al. and Lucena et al. proposed techniques for embed-
ding covert information into the TTL [47] and the IPv6 Hop
Limit field (IPv6 equivalent of the IP TTL) [37]. Neither
scheme takes into account typical initial TTL values chosen by
the sender and normal TTL variation occurring in networks.
Zander et al. analysed initial TTL values and normal TTL
variation and proposed an improved covert channel encoding
in the TTL field that is harder to detect [48].

MODULATING ADDRESS FIELDS AND PACKET LENGTHS

Any communication protocol uses address fields to identify
senders and receivers. The most prominent today are arguably
the IP source and destination address part of the IP header.
Padlipsky et al. and Girling proposed either directly encoding
information in the destination address fields or by modulating
the order of valid destination addresses in subsequent trans-
missions [2, 3]. An amount of bits can be communicated based
on the number of different addresses a covert sender can use.
The initial proposal was targeted to link layer frames but the
technique can be used on other layers, for example IP address-
es (network layer) or port numbers (transport layer) can be
modulated. Covert information can also be transmitted in
source addresses, if they can be modulated [37]. This is the
case for IP addresses (if spoofing is possible) or port numbers.

Any communication protocol uses length fields to indicate
the length of headers, header extensions or messages (frames,
packets). Padlipsky et al. and Girling proposed to modulate
the lengths of link layer frames to transmit covert information
[2, 3]. The same technique could be used to modulate the size
of IP/UDP/TCP packets as proposed in [37].

Perkins developed a protocol-independent covert channel
that encodes the information in the sum of all bits of a mes-
sage [49]. Covert sender and receiver agree on the maximum
possible sum S (all bits set in a message of maximum length)
and a division of [0, S] into several intervals. The channel
capacity depends on the number of intervals e.g. two bits per
packet can be transmitted if there are four intervals. The
covert sender encodes covert bits by constructing or reorder-
ing messages so that the bit sum is in the desired interval. The
covert receiver decodes the information by identifying the
interval in which the bit sum of a received message lies.

MODULATING TIMESTAMP FIELDS

Handel et al. proposed modulating the timestamp of the IP
timestamp header extension to transmit covert data [32].
However, this header extension limits a packet to only 24
hops and is no longer used.

Giffin et al. developed a method for covert messaging
through TCP timestamp header options, which are widely
used to improve TCP performance [50]. Covert information is
inserted in the low order bits of the sender timestamps,
because these are effectively random for slow TCP connec-
tions. Instead of directly modifying timestamps the algorithm
slows the TCP stream so that the timestamps on packets are
valid when they are sent. The algorithm compares the least
significant bit (LSB) of every TCP segment generated by the
system with the current covert bit to be sent. If the LSB
matches the covert bit the TCP segment is sent immediately
otherwise it is delayed for one timestamp tick (Fig. 4).

PACKET RATE/TIMING

Covert information can be encoded by varying packet rates,
which is equivalent to modulating the packet timing (the
interpacket times) [2, 3, 51]. The covert sender varies its pack-
et rate between two (binary channel) or multiple packet rates
each time interval. The receiver measures the rate in each
time interval and decodes the covert information. A binary
channel can transmit one bit per time interval, whereas a
multi-rate channel can transmit log2r bits per time interval
where r is the number of distinct rates. The sender and receiv-
er need a mechanism for synchronisation of the time intervals.

Padlipsky et al. outlined a timing channel where the sender
either transmits or stays silent in each time interval [2]. This
on/off timing channel is a special case of the binary channel
where one rate is zero and the other rate is chosen arbitrarily.
Girling also proposed covert timing channels at the packet level
and suggested mitigating the noise problem by the length of the
inter-packet delay (which is inversely proportional to the chan-
nel capacity) [3]. Cabuk et al. implemented the on/off timing
channel [51]. In their scheme the covert data is divided into
small fixed-size frames and synchronisation between sender and
receiver is achieved through a special start sequence at the
beginning of each frame. As the authors note this scheme does
not entirely solve the synchronisation problem and they pro-
pose several better techniques as future work.

Berk et al. introduced a variant of the packet-timing chan-
nel that does not require sender-receiver synchronisation
because the covert information is encoded directly in the
inter-packet delays of consecutive packets [52]. They com-
pared channels with two delays (binary channels) and multiple
delays, and developed a mechanism by which the sender can
pick the optimal symbol distribution in multi-rate channels
given the channel characteristics.

Murdoch developed an indirect covert channel that is a
hybrid between the packet rate and timestamp modulation
channels [53]. The channel requires an intermediary that
receives and sends packets to both covert sender and receiver.
The channel exploits the fact that a host’s CPU temperature is
proportional to the number of packets per time unit it pro-
cesses and a host’s system clock skew depends on the temper-
ature. The covert sender either sends packets to the
intermediary or stays silent. The covert receiver estimates the
intermediary’s clock skew by observing a series of timestamps
in packets sent by the intermediary (e.g. the TCP timestamps
introduced earlier). Although Murdoch developed the tech-
nique specifically for identifying the operator of servers hid-
den by anonymisation networks he concludes that it could also
be used as a noisy channel for general covert communication.

MESSAGE SEQUENCE TIMING

Wolf mentioned the possibility of constructing covert channels
by modulating the use of protocol operations [36]. For exam-

nFigure 4. Modulating the least significant bit of the TCP times-
tamp field.

Timestamp LSB
=

covert bit?

YES

NO

New TCP
segment

Send TCP
segment

Delay segment
one tick

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 49

ple, a receiving station can acknowledge each frame separate-
ly or wait until two frames have arrived before acknowledging
the first. Handel et al. proposed a covert channel based on
modulating the clear to send/ready to send (CTS/RTS) signals
of serial port communication [32]. This technique can be
applied to other network protocols utilising CTS/RTS (e.g.
Wireless LANs). Handel also proposed using the timing of
ICMP source quench messages [54] to create a covert chan-
nel. A gateway or receiver of an overt communication can
send source quench messages to the sender requesting a
decrease of traffic rate (flow control). In practice ICMP
source quench messages are no longer used.

Hintz described an indirect timing channel [35]. The
sender sends a large number of requests to a server or stays
silent in each time interval, equivalent to one bit per time
interval. The receiver periodically probes the server and mea-
sures the response time to recover the covert information.
Eßer et al. implemented a web-based timing channel and anal-
ysed its capacity [55]. In their scheme a web server sends
covert data to a client by delaying a response (one) or
responding immediately (zero).

PACKET LOSS AND PACKET SORTING

Servetto et al. demonstrated that channel erasures (packet
loss) intentionally introduced at the sender could be used as a
low-rate covert channel [56]. In practice, the technique
requires per packet sequence numbers and erasures are
realised by skipping sequence numbers (artificially losing
packets at the sender). Therefore, the authors also refer to
this mechanism as phantom packets.

Kundur et al. described a covert channel implemented
through packet sorting [34]. Because a set of n packets can be
arranged in any n! ways a maximum of log2n! bits can be
transmitted. This approach requires per packet sequence
numbers to determine the original packet order. Instead of
actually sorting the packets the method only modifies the
sequence numbers, thus keeping payload sent across multiple
packets intact. The authors proposed using the sequence num-
ber of the IPSec Authentication Header (AH) or Encapsulat-
ing Security Payload (ESP) [57], but other sequence numbers
could possibly be used as well (e.g. the TCP sequence num-
ber).

Galatenko et al. proposed sending covert information by
reordering packets so that destination addresses in a series of
subsequent packets are ordered [58]. The covert sender
encodes a one as a sequence of packets with increasing
addresses and a zero as a sequence of packets with decreasing
addresses. The sequence length used depends on the desired
error rate of the channel.

FRAME COLLISIONS

Handel et al. proposed exploiting the Ethernet Carrier Sense
Multiple Access Collision Detection (CSMA/CD) mechanism
[32]. If frames collide in CSMA/CD, a jamming signal is
issued and the senders back off a random amount of time.
The covert sender jams any packets of another user. Then it
uses a back-off delay of either zero or the maximum value.
Therefore all frames sent will either lead or lag packets sent
by the other user, essentially creating a one bit per frame
covert channel. The receiver can recover the information by
detecting the collisions and analysing the order of the frame
arrivals. Bhadra et al. proposed a similar jamming channel in
the slotted ALOHA protocol [59].

With the transition to switched Ethernet CSMA/CD has
disappeared, but the same technique can be used in current

Wireless LAN networks as proposed by Szczypiorski et al.
[60]. Since wireless networks use air connections with variable
bit error rate (BER), they provide the opportunity for inject-
ing synthetic corrupt frames. All stations that are part of the
covert channel communicate via sending some percentage of
their frames with intentionally created bad checksums. Other
stations discard the corrupted frames.

To improve performance of shared medium access, split-
ting algorithms are used to divide the set of collided senders
into smaller subsets and then these subsets retransmit in
order. Dogu et al. designed a covert channel using the First
Come First Serve (FCFS) splitting algorithm [61]. The covert
information is conveyed in the number of collisions observed
in a collision resolution period. The covert sender controls
this number by generating dummy packets and thus causing
additional collisions. The covert receiver passively monitors
the channel and keeps track of the collision resolution proce-
dure to extract the covert information.

Li and Ephremides’ transmission scheme uses the covert
sender’s splitting decisions (which subsets it joins) as the carri-
er of covert information [62]. The covert receiver passively
tracks the collision resolution procedure. When the covert
receiver detects a successful transmission from the covert
sender it can retrieve the past splitting decisions, which is the
encoded covert information.

AD-HOC ROUTING PROTOCOLS

Marone presented several covert channels in the Dynamic
Source Routing (DSR) protocol used for routing in ad-hoc
networks [63]. Covert information can be encoded in header
fields present in DSR routing requests, for example the
request identification number, hop limit, clock time, or
address fields. Covert data can also be piggybacked on regular
routing requests in the options header. Another, more sophis-
ticated method presupposes that the covert sender and receiv-
er have a prearranged list of routes, where each route is a
symbol. Sending a combination of routes transmits the covert
information.

Li et al. described a number of covert channels in the Ad
hoc On-Demand Distance Vector (AODV) protocol [64]. A
covert sender can modulate the delays between successive
AODV route requests, and the covert receiver can decode the
information from the message timing. Furthermore, covert
information can be transmitted by manipulating the source
sequence number field in the route requests, by embedding
covert information in the destination ID of route requests, or
by manipulating the lifetime field in route replies sent by an
intermediate node.

WIRELESS LAN (WLAN)

Szczypiorski et al. proposed embedding covert data in the
RC4 initialisation vector, which is part of the IEEE 802.11
Wired Equivalent Privacy (WEP) mechanism [60].

Qu et al. developed a covert channel based traceback
mechanism for WLANs to improve resistance against denial
of service attacks [26]. In their approach intermediate access
points encode the path of frames in the More Fragments bit
of the Frame Control field and the Duration/ID field of
802.11 header fields.

Butti et al. proposed sending covert information across
802.11 networks in unsolicited ACK frames or invalid frames
(frames with deliberately incorrect checksums) [65]. The
covert sender encodes the covert data and a magic number
inside the receiver address. The covert receiver decodes the
information from frames containing the magic number.

IEEE Communications Surveys & Tutorials • 3rd Quarter 200750

Krätzer et al. proposed two covert channels in 802.11
frames [66]. The first channel transmits the covert information
embedded in various header fields, such as the Retry bit and
More Data bit of the Frame Control field, and the
Duration/ID field. The second channel transmits information
through the retransmission of frames. The covert sender
encodes covert bits by duplicating frames of specific connec-
tions (frames going from a particular sender to a particular
receiver) and the covert receiver decodes the hidden data by
detecting the duplications.

HYPERTEXT TRANSFER PROTOCOL (HTTP)

Bauer proposed using covert channels in web traffic of unin-
volved users to enlarge the set of users and improve the
degree of anonymity [67]. The information is hidden in
JavaScript/HTML and transported through the use of
JavaScript redirects. An observer who cannot look into the
content transported by HTTP [68] cannot distinguish between
harmless web surfers and the covert senders/receivers.

Feamster et al. proposed Infranet — a framework to use
covert channels in HTTP to circumvent censorship [14]. Web
servers participating in Infranet receive covert requests for web
pages encoded as a sequence of HTTP requests to harmless
web pages and return the content hidden inside harmless
images using steganography. Bowyer proposed a very similar
mechanism to communicate with Trojans behind firewalls [69].
A Trojan on the compromised system sends HTTP requests to
a web server, with the covert data encoded as URL parameters.
The web server returns innocent looking web pages with images
that contain hidden data (steganography).

Dyatlov et al., Kwecka and Van Horenbeeck proposed vari-
ous methods for embedding covert channels into HTTP pro-
tocol headers [70–72]. These encompass encoding covert data
into header field values, the order of header fields, the use of
lower or upper case, the presence or non-presence of optional
header fields, the use of multiple white spaces, and new non-
standard header fields. More recently Castro et al. have also
developed a method for transmitting covert information
through HTTP cookies [73].

DOMAIN NAME SYSTEM (DNS) PROTOCOL

An anonymous author proposed an indirect covert channel
over the DNS protocol [74]. The channel exploits negative
caching of domain names [75]. Covert sender and covert
receiver agree on a series of non-existent domain names. The
covert sender recursively queries for all domain names for
which it wants to transmit a one and does nothing otherwise.
The covert receiver non-recursively queries for all domain
names interpreting a cached response as one and an uncached
response as zero.

Kaminsky and Gil independently implemented tools to
covertly tunnel IP packets over the DNS protocol [76, 77].
Communication takes place between a client and a fake DNS
server. The client sends data to the server in DNS requests
(hostname lookups) where the actual hostnames are the
encoded covert information. The server sends data back to
the client contained in the DNS responses.

OTHER APPLICATION PROTOCOLS

Mazurczyk et al. proposed using covert channels and water-
marking to embed control information in voice over IP
(VoIP) streams [23, 24]. VoIP data transmission is usually
based on the Real-time Transport Protocol (RTP), and con-
trol information is separately exchanged over the Real-time

Control Protocol (RTCP) [78]. Instead of using a separate
RTCP flow the authors proposed embedding the control
information into the actual RTP flow. Unused bits in the
IP/UDP/RTP headers signal the type of parameters, whereas
the parameter values are embedded as watermark in the voice
data.

Lucena et al. developed covert channels for the Secure
Shell (SSH) protocol [33]. The first technique hides informa-
tion in the Message Authentication Code (MAC) header pre-
sent in each packet. The sender either completely replaces the
MAC with encrypted covert data, or uses a short MAC
padded with encrypted covert information to make it resem-
ble a long MAC. This mechanism works only if the covert
sender/receiver is also the overt sender/receiver. The second
method also works if covert sender and receiver are middle-
men. The covert sender intercepts the SSH traffic and adds an
additional fixed-size encrypted message at the beginning of
the already encrypted payload. A 32-bit magic number at the
start marks the presence of the covert data. The covert receiv-
er decodes the covert information and removes it, restoring
the original packet.

Zou et al. proposed two mechanisms for embedding covert
channels into the File Transfer Protocol (FTP) [79]. The first
mechanism encodes covert bits directly into the FTP com-
mands defined [80]. The second mechanism transmits covert
data through varying the number of FTP NOOP commands
send during idle periods — the number of NOOPs sent is
equal to the integer value of the covert data.

PAYLOAD TUNNELING

Payload tunnels are covert channels that tunnel one protocol
(usually the IP protocol) in the payload of another protocol.
The main purpose of these channels is circumventing firewalls
that limit outgoing traffic to few allowed application protocols
(e.g. HTTP). Therefore, most of these channels do not aim
for stealth but rather for maximising the throughput. A variety
of tools exist for tunneling over application protocols that are
often not blocked such as ICMP or HTTP [81].

One of the first approaches for tunneling protocols over
ICMP was Loki, which tunnelled data in the payload of ICMP
echo messages [82]. Today many IP over ICMP tunnel solutions
exist, for example Stødle implemented another IP over ICMP
tunneling tool [83]. Zelenchuk implemented an indirect IP over
ICMP tunnel [84]. The covert sender sends echo request pack-
ets to a bounce host with spoofed source address (set to the
address of the covert receiver) and the covert data encoded in
the payload. The bounce host then sends echo replies to the
covert receiver with the same payload as in the requests.

Another popular method is to tunnel protocols over
HTTP. Padgett developed a tool that tunnels SSH over HTTP
proxies [85]. Dyatlov and LeBoutillier implemented tools for
tunneling UDP or TCP over HTTP [86, 87]. Lundström
implemented a tool that can establish a bi-directional tunnel
over the exchange of emails [88].

COVERT CHANNEL COUNTERMEASURES

In this section we provide an overview of the available coun-
termeasures. In the folloing sections we describe in detail
countermeasures against the covert channels outlined.

IDENTIFICATION

Before any action can be taken against a covert channel, first
it needs to be identified. The identification of a covert chan-

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 51

nel can be ad-hoc or based on a formal method. A number of
formal methods were developed for identifying covert chan-
nels in specifications or implementations of single host sys-
tems: information flow analysis [89, 90], non-interference
analysis [91], Shared Resource Matrix (SRM) method [92, 93]
and the Covert Flow Tree (CFT) method [94]. These tech-
niques can be applied to identify covert channels during the
design phase, or in an already deployed system. Gligor pro-
vides a good introduction to the different methods (except
CFT) [7]. There are only a few works on formal techniques
for identifying covert channels in computer network protocols.

Donaldson et al. discussed how analysis techniques, SRM
in particular, could be applied to network protocol covert
channels [95]. They proposed analysing network covert chan-
nels by separately inspecting host-to-host channels on the
lower network layers and intra-host channels between process-
es on a single host (which can be different layers in the net-
work stack).

Hélouët et al. proposed performing covert channel analysis
for distributed systems at the requirement level, when design
decisions can still be made to eliminate or limit covert chan-
nels [96]. Their approach is based on a representation of
requirements by scenarios. Covert channels detected during
the design phase are likely to be present in any implementa-
tion, and thus are not implementation-specific.

Aldini and Bernardo proposed a methodology for combin-
ing covert channel identification and performance evaluation
[97]. The advantage of this integrated approach is that it pro-
vides insights into how to trade off quality of service with
covert channel capacity. The authors applied their methodolo-
gy to the PUMP model (explained later), obtaining the rela-
tion of covert channel capacity and number of connection
requests served per time unit.

COUNTERMEASURES

Once a covert channel has been identified the generally avail-
able countermeasures are [98]:
• Eliminate the channel
• Limit the bandwidth of the channel
• Audit the channel
• Document the channel
According to Jeng et al. there are two causes of covert chan-
nels: design oversights and weaknesses inherent in the system
design [98]. While covert channels caused by oversights may
be corrected once discovered, those intrinsic to the system can
never be removed without redesigning the system. Therefore,
ideally covert channels should be identified and removed dur-
ing the design phase.

If a covert channel was not removed in the design phase
the next best option is to eliminate its possible use, because
even very low capacity channels could be successfully exploit-
ed. However, the removal of all covert channels leads to very
inefficient systems, as covert channels can often only be com-
pletely removed by replacing automated procedures with man-
ual procedures [99]. Furthermore, covert channels based on
the modulation of visible message parameters are inherent in
distributed systems, such as computer networks. Therefore, we
and many other researchers believe covert channels cannot all
be completely eliminated [98, 100].

If a channel cannot be eliminated its capacity should be
reduced. What is an acceptable capacity depends on the
amount of information leakage that is critical. For example, if
the channel is so small that classified information cannot be
leaked before it is outdated, then the channel capacity is tol-
erable. Limiting the channel capacity is often problematic,
because it means slowing down system mechanisms or intro-

ducing noise, which both limit the performance of the system.
Note that this approach assumes that there are means to
determine the capacity of the channel.

Any covert channels that cannot be removed should be
audited. Auditing acts as deterrence to possible users of the
covert channel and requires its reliable detection. Covert
channels with capacities too low to be significant, or which
cannot be audited should at least be documented (e.g. in the
protocol specification), so that everybody is aware of their
existence and potential threat.

ELIMINATING COVERT CHANNELS

In this section we describe approaches to eliminate many of
the covert channels described earlier.

HOST SECURITY

Securing hosts cannot remove covert network channels, but it
can prevent their exploitation in some application scenarios. If
hosts were secured from being hacked, the installation of Tro-
jans, and the modification of software or the network stack
would be impossible, thus hackers could not exploit covert
channels. However, relying on host security could be danger-
ous and it would be better to eliminate covert channels in the
first place where possible. Furthermore, this approach does
not solve the covert channel problem in other application sce-
narios (e.g. censorship circumvention).

NETWORK SECURITY

One approach to counter covert channels is to block proto-
cols/ports that are susceptible. For example, ICMP is blocked
by many firewalls these days rendering approaches such as
Loki [82] ineffective. Obviously, in the Internet some proto-
cols cannot be blocked because they are vital (e.g. IP, TCP,
DNS), or because their services are too important (e.g. email,
Web). However, in a closed network protocols prone to covert
channels could be blocked, or replaced by versions with fewer
or limited covert channels.

The leakage of classified information from a high security
system to a low security system (the classic covert channel)
can be prevented by a network design where only hosts on the
same security level are allowed to communicate. Such an
approach may be practical for highly secure networks, but not
for diverse large open networks such as the Internet.

Bouncing covert channels as described by Rowland [15]
only work if IP address spoofing is possible. Besides solving a
number of other security issues preventing IP spoofing (e.g. by
ingress/egress filtering) closes such channels. Furthermore,
securing networks against wiretapping, and securing routers
against compromise prevents some covert channel scenarios in
which covert senders or receivers act as middlemen [2].

TRAFFIC NORMALIZATION

Many of the channels described earlier can be eliminated by
normalising protocol headers, padding and extensions as
described by Malan et al. [101], Handley et al. [102] and Fisk
et al. [4] in general, or more specifically for the IPv6 protocol
by Lucena et al. [37] and ICMP tunneling by Singh [103].
Traffic normalisation can be performed by end hosts or by
network devices such as firewalls or proxies.

Unused or reserved bits and padding can be dealt with eas-
ily by setting them to zero and unknown header extensions
can be removed. Some covert channels exploit the fact that

IEEE Communications Surveys & Tutorials • 3rd Quarter 200752

certain header fields are not always used (and their use is
indicated by other header fields). This fact can be used for
normalisation as well. For example, set the IP ID to zero if
the DF bit is set, set the Urgent Pointer to zero if the URG
bit is not set, and set the Fragment Offset to zero if the DF
bit is set. Furthermore, it should be ensured that checksums
are always used and correct.

A number of other header fields can be rewritten under
certain assumptions. For example, enable the DF bit and set
IP ID and Fragment Offset to zero if the packet is below the
MTU size (assuming the normaliser knows the MTU), rewrite
the IP ID (assuming the normaliser can manipulate all frag-
ments), rewrite the TCP ISN, source IP address and source
port (assuming the normaliser can keep a mapping between
original and new values and rewrite packets going in the
opposite direction accordingly). Time-to-Live and TCP times-
tamp can also be rewritten (assuming the normaliser is locat-
ed at or very close to the source) or the low order bits can be
randomised (similar to fuzzy-time described in [104]).

The same concepts can be used for eliminating covert
channels in application protocols. Schear et al. proposed elim-
inating covert channels in HTTP responses by enforcing pro-
tocol-compliant behaviour and restricting usable response
headers to a fixed set in a particular order, and by verifying
response header fields against the corresponding object meta-
data and client request [105].

LIMITING COVERT CHANNEL CAPACITY

In this section we describe techniques that can be used to
limit the capacity of some channels described earlier. A pre-
requisite of determining the efficiency of capacity limitation is
that the capacity of the covert channel can be estimated.

CAPACITY ESTIMATION

In the absence of noise the covert channel capacity can be esti-
mated based on the size of the object values (storage channels)
or the amount of information encodable in the resources (tim-
ing channels) and the speed with which the objects/resources
can be modulated. For some channels it is easy estimating the
capacity in terms of bits per packet or bits per message
sequence. For example, the channels proposed in [15] have a
capacity of one byte per packet. However, capacity in bits per
second depends on the amount of the overt traffic between
covert sender and receiver or on the amount of suitable overt
traffic available in the network (if the sender is a middleman).

Some covert channels have inherent noise, for example the
packet rate channels described in [2, 51, 52] suffer from noise
introduced by sender timing inaccuracies, network switches
and routers, cross traffic, or jammers (active wardens). More
general approaches analysing the capacity of noisy timing
channels are based on Shannon [106].

Millen estimated the capacity of covert timing channels
with noise and/or memory [107], while Moskowitz analysed
the capacity of discrete, noiseless, and memoryless timing
channels [108]. Venkatraman extended Moskowitz work
towards a mode-based system [109]. A mode-based system
switches between modes in certain time intervals and only
allows a certain number of transitions in each mode, effective-
ly limiting the covert channel capacity. Berk et al. studied the
capacity of binary and multi-symbol inter-packet delay chan-
nels [52]. Gray developed an upper bound for the capacity of
timing channels when Wei-Mings’ fuzzy time [104] is used
[110]. Bhadra et al. derived the capacity of the frame collision
channel for slotted ALOHA [59].

LIMIT ADDRESS AND PACKET LENGTH MODULATION

To counter the address modulation channel described earlier
previous research has suggested limiting the number of possi-
ble addresses [2, 3, 95]. If the number of different usable
addresses is small, the covert channel capacity is very small.
Limiting the number of addresses effectively means limiting
the allowed host-to-host connections. This may be possible in
closed networks, but not in open networks such as the Inter-
net. The sender address should always be fixed (preventing IP
spoofing), but the number of destination addresses can hardly
be limited to a small number. Similarly, usable source and
destination ports can hardly be restricted.

Instead of limiting the interactions between hosts, sending
dummy packets between random hosts inserts noise into the
traffic patterns. Indirect routing achieves the same effect with
lower overhead [111].

Padding all packets to a common size eliminates the pack-
et length modulation channel introduced earlier [2], but this
adds significant overhead and decreases efficiency, especially
for small packets. Anonymiser networks use a constant packet
size to prevent traffic analysis [111], but it seems unrealistic
that such approaches would ever be deployed on a large scale.
To increase efficiency Girling proposed allowing a certain
number of possible packet sizes; the number of available
packet sizes should be small enough to limit the covert chan-
nel capacity appropriately [3].

However, it seems unlikely that a sender’s ability to modu-
late packet size could be limited in current IP networks (at
least the UDP packet size can be modulated within the limits
of the MTU).

LIMIT PACKET RATE/TIMING CHANNELS

Multiple solutions have been proposed to limit the capacity of
the channels described earlier: either random noise is intro-
duced to mask the covert channel or the overt channel is
forced using fixed packet/message rates and dummy packets
or messages are inserted when useful information is not sent
[98].

Wei-Ming’s et al. fuzzy-time proposal makes all clocks in
the system noisy [104]. A sender cannot exactly time outgoing
packets and a receiver cannot accurately measure the timing,
which reduces the capacity of the covert channel.

Link padding forces a packet flow to adhere to a specific
traffic pattern (e.g. packet rate) by delaying packets and
injecting dummy packets if necessary (for preventing on/off
channels) and should eliminate packet rate/timing channels
[112]. However, Graham et al. showed that even if link
padding is used information about the payload traffic rate is
still leaked because of the inability of the padding gateway to
completely isolate the processing of outgoing packets from the
interrupt processing necessary to handle incoming packets
[113]. These imperfections of link padding can still be used as
a covert channel.

Because padding links to a single packet rate creates signif-
icant overhead, Girling proposed that senders could emit a
small number of different packet rates [3]. This increases effi-
ciency and limits covert channels to acceptable capacities.

Message sequence timing channels can be eliminated by
buffering and delaying connection attempts, service requests
etc. Spurious data can be inserted into the network against
wiretapping receivers, but this does not help against end-host
receivers. Schear et al. proposed delaying HTTP responses to
limit the capacity of timing channels in HTTP [105].

Giles et al. [114] studied the problem of limiting the capac-
ity of covert timing channels in the framework of a game
between the covert sender-receiver pair and a jammer. The

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 53

jammer attempts to re-time the packets from the covert
sender. The mutual information between the input and output
processes is the objective of the game: the jammer wishes to
reduce this, while the covert sender-receiver pair would like it
to be high. The authors proved the value for certain games
and provided coding schemes for sender-receiver pair and
jammer.

Again, it seems unlikely that these countermeasures could
be deployed in current IP networks and therefore packet
rate/timing channels are likely to stay.

SPLIT CONNECTIONS

One of the simplest most common security policies is the Bell-
LaPadula model [115]. It can be summarised as no read up
and no write down where up is an entity with a higher security
level and down is an entity with a lower security level. A prob-
lem arises when a low entity wants to reliably send data to a
high entity. Reliable communication requires the high entity
sends back Acknowledgments (ACKs) for the data received.
The timing of the ACKs can be manipulated to transmit hid-
den information from high to low. A number of methods have
been proposed for minimising the capacity of this covert tim-
ing channel [116].

In the Store And Forward Protocol (SAFP) a gateway sits
between the low-security sender and high-security receiver
(Fig. 5). When the gateway receives a packet from low it
stores it into a buffer and sends an ACK to low. Then it trans-
mits the packet to high and waits for an ACK. If the ACK is
received the gateway removes the packet from the buffer.
However, when the buffer is full the gateway must wait for
high to acknowledge a received packet until another packet
from low can be acknowledged and stored in the buffer; the
time it takes the gateway to send an ACK to low is directly
related to the time of receiving an ACK from high. Since high
can vary the rate of its ACKs it can ensure the buffer is always
filled and still exploit the covert channel.

The PUMP model introduced by Kang and Moskowitz
substantially reduces the covert channel capacity of the SAFP
[117, 118]. The PUMP uses an historic average of
high’s ACK-rate as the rate of sending ACKs to
low (Fig. 6). For every packet from high received
by the trusted high process a moving average of
high’s ACK rate is updated. When the trusted
low process receives a message from low it inserts
the message into the buffer, and then sends an
ACK to low after a delay. The delay is a random
variable chosen from an exponential distribution
with the mean equal to the current average of
high’s ACKs rate. Although the PUMP does not
completely eliminate the covert channel it does
significantly decreases its capacity by decoupling
ACKs sent to low from high’s ACK timing and by
adding random noise.

Ogurtsov et al. proposed the quantised pump, which is an
easier to analyse version of the PUMP [116]. It has a provable
upper bound on the covert channel capacity and provides the
same performance as the original PUMP. Lanotte et al.
defined a probabilistic model for the PUMP that allows com-
puting the probability of security violations depending on vari-
ous parameters (e.g. buffer size) [119].

AUDITING COVERT CHANNELS

Auditing of covert channels requires reliable detection by a
passive warden. Many of the covert channel techniques
described earlier only provide security through obscurity and
can be detected easily. All proposed detection methods are
based on the detection of non-standard or abnormal behaviour
(anomaly detection). The assumption is that the warden
knows the normal behaviour of protocols and hosts and can
detect abnormal behaviour caused by covert channels.

While it is possible to detect many of the proposed covert
channels, every channel that looks identical to normal use of
the protocol will be harder to detect. For example, Murdoch’s
TCP ISN channel has a value distribution matching the distri-
bution of real operating systems [44], and Lucena’s SSH MAC
channel has statistical characteristics identical to real MACs
[33]. The only way a passive warden could reliably detect
these covert channels is to somehow detect the embedding
process at the covert sender.

HEADER FIELD CHANNELS

Most protocol standards mandate that unused or reserved bits
and padding must be filled with specific values (e.g. zeros).
Even if this is not the case the behaviour of actual implemen-
tations can be viewed as de-facto standards [44]. All covert
channels based on non-standard use of the protocol can be
detected easily. Furthermore, some proposed covert channels
are obsolete because previously unused bits are now used (for
example, some unused bits in the IP header are now widely
used for explicit congestion notification), or defined messages
or extension headers are de-facto not used anymore and their
appearance would be suspicious (for example ICMP based
flow control and IP timestamp header extension).

Some covert channels described previously exploit the fact
that header fields can have arbitrary values within the require-
ments of the standard. However, if the fields are naively used
and the resulting value distributions are different from the
distributions generated by real operating systems, the covert
channels are easy to detect (as demonstrated for IP ID chan-
nels in [44]). The usual approach is either to train a classifier
on the normal and abnormal behaviour, or to train a classifier
on the normal behaviour and detect anomalies. The behaviour

nFigure 5. The Store and Forward Protocol (SAFP) gateway —
a simple approach for limiting the covert timing channel in the
flow of ACKs from high to low.

SAFP

Low

ACK

Data

High

ACK

Data

nFigure 6. The PUMP significantly reduces covert channel capacity of the
SAFP because it decouples high’s ACKs from ACKs sent to low.

Data

ACK

PUMP

Average ACK rate

Data

ACK

Trusted
low

Trusted
highLow High

IEEE Communications Surveys & Tutorials • 3rd Quarter 200754

is analysed from a set of traffic flows, where each flow is
described by a number of characteristics (features).

Sohn et al. demonstrated that covert channels with a sim-
ple encoding in the IP ID or TCP ISN field (as proposed by
[15]) could be discovered with high accuracy using Support
Vector Machines (SVMs) [120]. The authors evaluated differ-
ent feature sets and achieved classification accuracies of up to
99 percent. Tumoian et al. evaluated the accuracy of a neural
network to detect Rutkowska’s [43] TCP ISN covert channel
[121, 122]. The neural network was trained to predict succes-
sive ISNs for different operating systems. Then ISNs used by
hosts are monitored and compared to the prediction model.
An actual ISN sequence not matching any prediction model
indicates a covert channel. The authors find that for more
than 100 consecutive ISNs observed detection accuracy reach-
es 99 percent.

Application protocol covert channels can be detected in a
similar way (as discussed for HTTP in [71, 105]).

TIMESTAMP CHANNEL

Hintz proposed a detection method for the TCP timestamp
channel described earlier [35]. In low-speed networks a ran-
domness test can be applied to the LSB of the timestamps.
Too much randomness could reveal the covert channel. In
high-speed networks the segment rate is usually larger than
the timestamp update rate, because the TCP timestamp clock
tick is only between 1Hz and 1kHz [123]. A warden can detect
the channel by computing the ratio of different timestamps
used and total number of possible timestamps (depending on
the duration of the connection). For a normal connection the
ratio should be very close to 1 (at least one segment sent at
every clock tick), but for the covert channel it should be ≤ 0.5
(if the LSB of the timestamp is not equal to the covert bit to
be sent at least one clock tick has to be skipped).

PACKET RATE/TIMING CHANNELS

Venkatraman et al. proposed auditing the change of traffic
rates over time to detect packet rate channels [109]. If the
traffic rate of one host changes by more than a certain thresh-
old this would indicate a covert channel. The authors pro-
posed setting the threshold to the standard deviation of the
rate change observed in the past for a large set of hosts.

Cabuk et al. proposed a detection method for on/off packet
timing channels [51]. They defined a metric that measures
whether the cumulative inter-arrival time distribution of a
traffic flow has only a small number of high jumps (indicating
a covert channel) or is more evenly spread (indicating a nor-
mal flow). In an empirical evaluation based on multiple traffic
traces Cabuk et al. showed that their metric can effectively
detect covert channels even if the sender changes the timing
interval or there is random noise [51].

Berk et al. proposed methods for detecting inter-packet
delay channels using two delays (binary channels) or multiple
delays (multi-symbol channels) [52]. For binary channels the
authors developed a simple detection method based on statis-
tical analysis of the packet inter-arrival times. For covert
channels the inter-arrival time histogram has two distinct
spikes, and the mean inter-arrival time is between the spikes
and has a very low packet count. For normal flows the interar-
rival time histogram will have a large (if not the largest) spike
at the mean inter-arrival time.

For multi-symbol channels Berk et al. argued that a skilled
covert sender would pick a delay distribution (symbol distribu-
tion) that maximizes the capacity. The passive warden can
also estimate the optimal distribution, compare it to the distri-

bution of the traffic flow under observation using a similarity
test, and detect the presence of the covert channel if both dis-
tributions are similar. A fundamental problem with this
approach is that a covert sender would probably not choose to
maximise capacity if this would compromise the covert chan-
nel. Another problem is that the warden would have to build
the channel matrix for each suspect traffic flow or have a very
large number of pre-built channel matrices based on different
times of day, hop counts etc. which seems impractical.

PAYLOAD TUNNELING

Sohn et al. used the same SVM-based approach as described
earlier to evaluate the accuracy of detecting covert channels
embedded in ICMP echo packets (as done by Loki [82]) and
achieved classification accuracies of up to 99 percent when
training a classifier on normal packets from Windows, Solaris
and Linux and abnormal packets generated by Loki [124].

Pack et al. proposed detecting HTTP tunnels by using
behaviour profiles of traffic flows [125]. Behaviour profiles are
based on a number of metrics such as the average packet size,
ratio of small and large packets, change of packet size pat-
terns, total number of packets sent/received, and connection
duration. If the behaviour of a flow under observation devi-
ates from the normal HTTP behaviour profile it is likely to be
an HTTP tunnel. Borders et al. developed a tool for detecting
covert channels over outbound HTTP tunnels based on a sim-
ilar approach [126]. The tool analyses HTTP traffic over a
training period, and is then able to detect abnormal HTTP
flows using metrics such as request size, request regularity,
time between requests, time of the day, and outbound band-
width usage.

OTHER CHANNELS

Depending on the normal network conditions high packet loss
or packet reordering or a high number of frame collisions
could indicate potential covert channels. The SSH middleman
covert channel could possibly be detected because it changes
the packet length distribution of normal SSH connections.
Analysis of address and packet length variation compared to
normal variation could reveal these covert channels.

However, it is difficult to detect covert channels if there is
a lot of variation in the normal behaviour of the protocol. For
example, Krätzer’s frame duplication channel is potentially
hard to detect because normal frame retransmission rates vary
significantly [66].

CONCLUSIONS AND FUTURE WORK

We have given an overview of covert channels in computer
network protocols. We have introduced the idea and commu-
nication model of covert channels and explained the different
application scenarios in which they can be used, many posing
serious security threats. We have then described the existing
covert channel techniques and the countermeasures used to
detect, eliminate, or limit the capacity of covert channels.

Many existing covert channels in network protocols follow
the security through obscurity approach and in principle their
detection or elimination is straightforward. However, while
researchers have developed a number of countermeasures,
real world experience shows that industry products still lack
methods to deal with covert channels. Also some proposed
countermeasures could significantly reduce overt channel per-
formance and therefore their applicability in real high-speed
networks is questionable. Furthermore, there are many possi-

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 55

bilities of creating covert channels in computer network pro-
tocols and the complete elimination of all these channels
seems almost impossible.

There are a number of directions for further research. Cur-
rently, a comprehensive taxonomy for classifying the different
covert channels and countermeasures is missing. Additionally,
there is a lack of work on capacity estimation in the presence
of channel errors, formal methods for identifying covert chan-
nels during protocol design, and more holistic approaches for
covert channel elimination/detection and their integration into
existing network security management methods. Finally, it
seems likely that the arms race of developing new covert
channels with improved stealth and capacity and developing
more effective detection and elimination techniques will con-
tinue.

ACKNOWLEDGMENTS

We thank Nigel Williams and the anonymous reviewers for
their valuable comments, which greatly helped improve the
article.

REFERENCES

[1] B. Lampson, “A Note on the Confinement Problem,” Commun.
ACM, vol. 16, no. 10, Oct. 1973, pp. 613–15.

[2] M. A. Padlipsky, D. W. Snow, and P. A. Karger, “Limitations of
End-to-End Encryption in Secure Computer Networks,” Tech.
Rep. ESD-TR-78-158, Mitre Corporation, August 1978.
http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=A059221&Loca-
tion=U2&doc=GetTRDoc.pdf.

[3] C. G. Girling, “Covert Channels in LAN’s,” IEEE Trans. Software
Engineering, vol. SE-13, no. 2, Feb. 1987, pp. 292–96.

[4] G. Fisk et al., “Eliminating Steganography in Internet Traffic
with Active Wardens,” Proc. 5th Int’l. Wksp. Information Hid-
ing, Oct. 2002.

[5] J. Postel, “Internet Protocol,” RFC 0791, IETF, Sept. 1981. http:
//www.ietf.org/rfc/rfc0791.txt

[6] A. Giani, V. H. Berk, and G. V. Cybenko, “Data Exfiltration and
Covert Channels,” Proc. SPIE Sensors, and Command, Control,
Commun., and Intelligence (C3I) Technologies for Homeland
Security and Homeland Defense V, Apr. 2006.

[7] V. Gligor, “A Guide to Understanding Covert Channel Analysis
of Trusted Systems,” Tech. Rep. NCSC-TG-030, National Com-
puter Security Center, Nov. 1993, http://www.radium.ncsc.
mil/tpep/library/rainbow/NCSC-TG-030.html.

[8] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Informa-
tion Hiding — A Survey,” Proc. IEEE, special issue on Protec-
tion of Multimedia Content, vol. 87, no. 7, July 1999, pp.
1062–78.

[9] G. J. Simmons, “The History of Subliminal Channels,” IEEE
JSAC, vol. 16, no. 4, May 1998, pp. 452–62.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Sec-
ondgeneration Onion Router,” Proc. 13th USENIX Security
Symp., Aug. 2004.

[11] G. Danezis, “Covert Communications Despite Traffic Data
Retention,” tech. rep., ESAT, University of Leuven, Jan. 2005,
http://homes.esat.kuleuven.be/~gdanezis/cover.pdf

[12] G. Shah, A. Molina, and M. Blaze, “Keyboards and Covert
Channels,” Proc. USENIX Security Symp., Aug. 2006.

[13] N. Vachharajani et al., “RIFLE: An Architectural Framework
for User-Centric Information-Flow Security,” Proc. 37th
IEEE/ACM Int’l. Symp. Microarchitecture, Dec. 2004, pp.
243–54.

[14] N. Feamster et al., “Infranet: Circumventing Web Censorship
and Surveillance,” Proc. 11th USENIX Security Symp., Aug.
2002.

[15] C. H. Rowland, “Covert Channels in the TCP/IP Protocol
Suite,” First Monday, Peer Reviewed Journal on the Internet,
July 1997.

[16] D. V. Forte et al., “SecSyslog: An Approach to Secure Logging
Based on Covert Channels,” Proc. First Int’l. Wksp. Systematic

Approaches to Digital Forensic Engineering, Nov. 2005, pp.
248–63.

[17] The Honeynet Project, “Know Your Enemy: Sebek — A Ker-
nel Based Data Capture Tool,” tech. rep . , 2003,
http://www.honeynet.org/papers/sebek.pdf

[18] S. R. White, “Covert Distributed Processing with Computer
Viruses,” Proc. 9th Annual Int’l. Cryptology Conf. Advances in
Cryptology, 1989, pp. 616–19.

[19] I. Moskowitz, R. Newman, and P. Syverson, “Quasi-Anony-
mous Channels,” Proc. Communication, Network, and Informa-
tion Security (CNIS), Dec. 2003.

[20] J. Xu et al., “Prefixpreserving IP Address Anonymization:
Measurement-based Security Evaluation and a New Cryptogra-
phy-based Scheme,” Proc. 10th IEEE Int’l. Conf. Network Pro-
tocols, Nov. 2002.

[21] J. Bethencourt, J. Franklin, M. Vernon, “Mapping Internet
Sensors with Probe Response Attacks,” Proc. USENIX Security
Symp., Aug. 2005.

[22] R. deGraaf, J. Aycock, and M. Jacobson Jr., “Improved Port
Knocking with Strong Authentication,” Proc. 21st Annual Com-
puter Security Applications Conf., Dec. 2005.

[23] W. Mazurczyk and Z. Kotulski, “New Security and Control
Protocol for VoIP Based on Steganography and Digital Water-
marking,” tech. rep., Institute of Fundamental Technological
Research, Polish Academy of Sciences, June 2005,
http://arxiv.org/ftp/cs/papers/0602/0602042.pdf

[24] W. Mazurczyk and Z. Kotulski, “New VoIP Traffic Security
Scheme with Digital Watermarking,” Proc. Int’l. Conf. Comput-
er Safety, Reliability, and Security (SafeComp), Sept. 2006, pp.
170–81.

[25] E. Jones, O. Le Moigne, and J.-M. Robert, “IP Traceback Solu-
tions Based on Time to Live Covert Channel,” Proc. 12th IEEE
Int’l. Conf. Networks (ICON), Nov. 2004, pp. 451–57.

[26] H. Qu, Q. Cheng, and E. Yaprak, “Using Covert Channel to
Resist DoS Attacks in WLAN,” Proc. Int’l. Conf. Wireless Net-
works, June 2005, pp. 38–44.

[27] National Computer Security Center, US DoD, “Trusted Com-
puter System Evaluation Criteria,” Tech. Rep. DOD 5200.28-
STD, National Computer Security Center, Dec. 1985,
http://csrc.nist.gov/publications/history/dod85.pdf

[28] J. Millen, “20 Years of Covert Channel Modeling and Analy-
sis,” Proc. IEEE Symp. Security and Privacy, May 1999, pp.
113–14.

[29] R. A. Kemmerer, “A Practical Approach to Identifying Storage
and Timing Channels,” Proc. IEEE Symp. Security and Privacy,
Apr. 1982.

[30] G. J. Simmons, “The Prisoners’ Problem and the Subliminal
Channel,” Proc. Advances in Cryptology (CRYPTO), 1983, pp.
51–67.

[31] S. Craver, “On Public-Key Steganography in the Presence of
an Active Warden,” Proc. 2nd Int’l. Wksp. Information Hiding,
Apr. 1998, pp. 355–68.

[32] T. Handel and M. Sandford, “Hiding Data in the OSI Network
Model,” Proc. 1st Int’l. Wksp. Information Hiding, 1996 pp.
23–38.

[33] N. Lucena et al., “Syntax and Semantics-Preserving Applica-
tion-Layer Protocol Steganography,” Proc. 6th Information Hid-
ing Wksp., May 2004.

[34] D. Kundur and K. Ahsan, “Practical Internet Steganography:
Data Hiding in IP,” Proc. Texas Wksp. Security of Information
Systems, Apr. 2003.

[35] A. Hintz, “Covert Channels in TCP and IP Headers,” 2003,
http://www.defcon.org/images/defcon-10/dc-10-presentations/
dc10-hintz-covert.ppt

[36] M. Wolf, “Covert Channels in LAN Protocols,” Proc. Wksp.
Local Area Network Security (LANSEC), 1989, pp. 91–101.

[37] N. B. Lucena, G. Lewandowski, and S. J. Chapin, “Covert
Channels in IPv6,” Proc. Privacy Enhancing Technologies (PET),
May 2005, pp. 147–66.

[38] T. Graf, “Messaging over IPv6 Destination Options,” tech.
rep., Swiss Unix User Group, 2003, http: / /gray-
world.net/papers/messip6.txt

[39] Z. Trabelsi et al., “Traceroute Based IP Channel for Sending
Hidden Short Messages,” Proc. Advances in Information and
Computer Security (IWSEC), Oct. 2006, pp. 421–36.

IEEE Communications Surveys & Tutorials • 3rd Quarter 200756

[40] K. Ahsan and D. Kundur, “Practical Data Hiding in TCP/IP,”
Proc. ACM Wksp. Multimedia Security, Dec. 2002.

[41] E. Cauich, R. Gómez Cárdenas, and R. Watanabe, “Data Hid-
ing in Identification and Offset IP Fields,” Proc. 5th Int’l.
School and Symp. Advanced Distributed Systems (ISSADS), Jan.
2005, pp. 118–25.

[42] J. Postel, “Transmission Control Protocol,” RFC 0793, IETF,
Sept. 1981, http://www.ietf.org/rfc/rfc0793.txt

[43] J. Rutkowska, “The Implementation of Passive Covert Chan-
nels in the Linux Kernel,” Proc. Chaos Communication
Congress, Dec. 2004.

[44] S. J. Murdoch and S. Lewis, “Embedding Covert Channels
into TCP/IP,” Proc. 7th Information Hiding Wksp., June 2005.

[45] C. Abad, “IP Checksum Covert Channels and Selected Hash
Collision,” tech. rep., UCLA, 2001. http://http://gray-world.net/
papers/ipccc.pdf

[46] J. Postel, “User Datagram Protocol,” RFC 0768, IETF, Aug.
1980. http://www.ietf.org/rfc/rfc0768.txt

[47] H. Qu, P. Su, and D. Feng, “A Typical Noisy Covert Channel in
the IP Protocol,” Proc. 38th Annual Int’l. Carnahan Conf. Secu-
rity Technology, Oct. 2004, pp. 189–92.

[48] S. Zander, G. Armitage, and P. Branch, “Covert Channels in
the IP Time To Live Field,” Proc. Australian Telecommunication
Networks and Applications Conf. (ATNAC), Dec. 2006.

[49] M. C. Perkins, “Hiding out in Plaintext: Covert Messaging
with Bitwise Summations,” Master’s thesis, Iowa State Univer-
sity, 2005.

[50] J. Giffin et al., “Covert Messaging Through TCP Timestamps,”
Proc. Privacy Enhancing Technologies Workshop (PET), Apr.
2002, pp. 194–208.

[51] S. Cabuk, C. E. Brodley, and C. Shields, “IP Covert Timing
Channels: Design and Detection,” Proc. 11th ACM Conf. Com-
puter and Communications Security (CCS), Oct. 25–29 2004,
pp. 178–87.

[52] V. Berk, A. Giani, and G. Cybenko, “Detection of Covert
Channel Encoding in Network Packet Delays,” Tech. Rep.
TR2005-536, Department of Computer Science, Dartmouth
College, Nov. 2005, http://www.ists.dartmouth.edu/library/
149.pdf

[53] S. J. Murdoch, “Hot or Not: Revealing Hidden Services by
Their Clock Skew,” Proc. 13th ACM Conf. Computer and Com-
munications Security (CCS), Nov. 2006, pp. 27–36.

[54] J. Postel, “Internet Control Message Protocol,” RFC 0792,
IETF, Sept. 1981, http://www.ietf.org/rfc/rfc0792.txt

[55] H.-G. Eßer and F. C. Freiling, “Kapazitätsmessung eines
verdeckten Zeitkanals über HTTP,” Tech. Rep. TR-2005-10, Uni-
versität Mannheim, 2005, http://bibserv7.bib.uni-mannheim.
de/madoc/volltexte/2005/1136/pdf/tr_2005_10.pdf (in german).

[56] S. D. Servetto and M. Vetterli, “Communication Using Phan-
toms: Covert Channels in the Internet,” Proc. IEEE Int’l. Symp.
Information Theory (ISIT), June 2001.

[57] S. Kent and R. Atkinson, “Security Architecture for the Inter-
net Protocol,” RFC 2401, IETF, Nov. 1998. http://www.ietf.org/
rfc/rfc2401.txt

[58] A. Galatenko et al., “Statistical Covert Channels Through
PROXY Server,” Proc. 3d Int’l. Wksp. Mathematical Methods,
Models, and Architectures for Computer Network Security,
Sept. 2005, pp. 424–29.

[59] S. Bhadra, S. Shakkottai, and S. Vishwanath, “Communica-
tion Through Jamming Over a Slotted ALOHA Channel,” Proc.
42nd Allerton Conf. Commun., Control, and Computing, Oct.
2004.

[60] K. Szczypiorski, “HICCUPS: Hidden Communication System for
Corrupted Networks,” Proc. 10th Int’l. Multi- Conf. Advanced
Computer Systems, Oct. 2003, pp. 31–40.

[61] T. M. Dogu and A. Ephremides, “Covert Information Trans-
mission through the Use of Standard Collision Resolution Algo-
rithms,” Proc. 3rd Int’l. Wksp. Information Hiding (IH), Sept.
1999, pp. 419–33.

[62] S. Li, A. Ephremides, “A Covert Channel in MAC Protocols
based on Splitting Algorithms,” Proc. Wireless Commun. and
Networking Conf. (WCNC), Mar. 2005, pp. 1168–73.

[63] M. Marone, “Adaptation and Performance of Covert Chan-
nels in Dynamic Source Routing,” tech. rep., Computer Science
Department, Yale University, Dec. 2003, http://zoo.cs.yale.edu/

classes/cs490/03-04a/michael.marone/paper.pdf
[64] S. Li and A. Ephremides, “A Network Layer Covert Channel in

Adhoc Wireless Networks,” Proc. 1st IEEE Conf. Sensor and Ad
Hoc Commun. and Networks (SECON), Oct. 2004, pp. 88–96.

[65] L. Butti and F. Veysset, “Wi-Fi Advanced Stealth,” Proc. Black
Hat US, Aug. 2006, http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Veyssett.pdf

[66] C. Krätzer et al., “WLAN Steganography: a First Practical
Review,” Proc. 8th ACM Multimedia and Security Wksp., Sept.
2006.

[67] M. Bauer, “New Covert Channels in HTTP: Adding Unwitting
Web Browsers to Anonymity Sets,” Proc. Wksp. Privacy Elec-
tronic Society, Oct. 2003, pp. 72–78.

[68] R. Fielding et al., “Hypertext Transfer Protocol — HTTP/1.1,”
RFC 2616, IETF, June 1999. http://www.ietf.org/rfc/rfc2616.txt

[69] L. Bowyer, “Firewall Bypass via Protocol Steganography,”
Sept. 2002, http: / /www.networkpenetration.com/
protocol_steg.html

[70] A. Dyatlov and S. Castro, “Exploitation of Data Streams
Authorized by a Network Access Control System for Arbitrary
Data Transfers: Tunneling and Covert Channels over the HTTP
Protocol,” tech. rep., Gray-World, June 2003, http: / /
gray-world.net/projects/papers/covert_paper.txt

[71] Z. Kwecka, “Application Layer Covert Channel Analysis and
Detection,” tech. rep., Napier University Edinburgh, 2006.
http://www.buchananweb.co.uk/zk.pdf

[72] M. Van Horenbeeck, “Deception on the Network: Thinking
Differently About Covert Channels,” Proc. 7th Australian Info.
Warfare and Security Conf., Dec. 2006.

[73] S. Castro and Gray World Team, “Cooking Channels,” hakin9
Magazine (www.hakin9.org), May 2006, pp. 50–57.

[74] Anonymous, “DNS Covert Channels and Bouncing Techniques,”
2005, http://archives.neohapsis.com/archives/fulldisclosure/
2005-07/att-0472/p63_dns_worm_covert_channel.txt

[75] M. Andrews, “Negative Caching of DNS Queries (DNS
NCACHE),” RFC 2308, IETF, Mar. 1998, http://www.ietf.org/rfc/
rfc2308.txt

[76] D. Kaminsky, “IP-over-DNS using Ozyman,” 2004, http://www.
doxpara.com/

[77] T. M. Gil, “IP-over-DNS using NSTX,” 2005, http://thomer.
com/howtos/nstx/

[78] A.-V. T. W. Group et al., “RTP: A Transport Protocol for Real-
Time App l ications,” RFC 1889, IETF, Jan. 1996,
http://www.ietf.org/rfc/rfc1889.txt

[79] X. Zou et al., “The Research on Information Hiding Based on
Command Sequence of FTP Protocol,” Proc. 9th Int’l. Conf.
Knowledge-Based Intelligent Info. and Engineering Systems,
Sept. 2005, pp. 1079–85.

[80] J. Postel and J. Reynolds, “File Transfer Protocol,” RFC 0959,
IETF, Oct. 1985. http://www.ietf.org/rfc/rfc0959.txt

[81] M. Smeets and M. Koot, “Research Report: Covert Channels,”
Master’s thesis, University of Amsterdam, Feb. 2006.

[82] daemon9, “LOKI2: The Implementation,” Phrack Magazine,
vol. 7, no. 51, Sept. 1997.

[83] D. Stødle, “ptunnel — Ping Tunnel,” 2005, http: / /
www.cs.uit.no/daniels/PingTunnel

[84] I. Zelenchuk, “Skeeve — ICMP Bounce Tunnel,” 2004,
http://www.gray-world.net/poc_skeeve.shtml

[85] P. Padgett, “Corkscrew,” 2001, http://www.agroman.net/
corkscrew/

[86] A. Dyatlov, “Firepass — Is a Tunneling Tool,” 2003, http://
gray-world.net/pr_firepass.shtml

[87] P. LeBoutillier, “HTTunnel,” 2005, http://sourceforge.net/
projects/httunnel/

[88] M. Lundström, “MailTunnel,” http : / /gray-world.net/
tools/mailtunnel-0.2.tar.gz

[89] D. Denning, “A Lattice Model of Secure Information Flow,”
Communications ACM, vol. 19, no. 5, May 1976, pp. 236–43.

[90] J. Millen, “Information Flow Analysis of Formal Specifica-
tions,” Proc. IEEE Symp. Security and Privacy, Apr. 1981, pp.
3–8.

[91] J. A. Goguen and J. Meseguer, “Security Policies and Security
Models,” Proc. IEEE Symp. Security and Privacy, Apr. 1982, pp.
11–20.

[92] R. A. Kemmerer, “Shared Resource Matrix Methodology: an

IEEE Communications Surveys & Tutorials • 3rd Quarter 2007 57

Approach to Identifying Storage and Timing Channels,” ACM
Transactions on Computer Systems (TOCS), vol. 1, no. 3, Aug.
1983, pp. 256–77.

[93] R. A. Kemmerer, “A Practical Approach to Identifying Storage
and Timing Channels: Twenty Years Later,” Proc. Annual Com-
puter Security Applications Conference (ACSAC), Dec. 2002,
pp. 109–18.

[94] R. Kemmerer and P. Porras, “Covert Flow Trees: A Visual
Approach to Analyzing Covert Storage Channels,” IEEE Trans.
Software Eng., vol. SE-17, no. 11, Nov. 1991, pp. 1166–85.

[95] A. L. Donaldson, J. McHugh, and K. A. Nyberg, “Covert Chan-
nels in Trusted LANs,” Proc. 11th NBS/NCSC National Comput-
er Security Conf., Oct. 1988, pp. 226–32.

[96] L. Hélouët, C. Jard, and M. Zeitoun, “Covert Channels Detec-
tion in Protocols Using Scenarios,” Proc. Wksp. Security Proto-
cols Verification (SPV), Apr. 2003.

[97] A. Aldini and M. Bernardo, “An Integrated View of Security
Analysis and Performance Evaluation: Trading QoS with Covert
Channel Bandwidth,” Proc. 23rd Int’l. Conf. Computer Safety,
Reliability and Security (SAFECOMP), Sept. 2004, pp. 283–96.

[98] A. B. Jeng and M. D. Abrams, “On Network Covert Channel
Analysis,” Proc. 3rd Aerospace Computer Security Conf., Dec.
1987.

[99] N. E. Proctor and P. G. Neumann, “Architectural Implications
of Covert Channels,” Proc. 15th National Computer Security
Conf., Oct. 1992, pp. 28–43.

[100] I. S. Moskowitz and M. H. Kang, “Covert Channels — Here
to Stay?,” Proc. 9th Annual Conf. Computer Assurance, 1994,
pp. 235–44.

[101] G. R. Malan et al., “Transport and Application Protocol
Scrubbing,” Proc. IEEE Conf. Computer Communications (INFO-
COM), Mar. 2000, pp. 1381–90.

[102] M. Handley, C. Kreibich, and V. Paxson, “Network Intrusion
Detection: Evasion, Traffic Normalization,” Proc. 10th USENIX
Security Symp., Aug. 2001.

[103] A. Singh et al., “Malicious ICMP Tunneling: Defense against
the Vulnerability,” Proc. 8th Australasian Conf. Information
Security and Privacy (ACISP), July 2003, pp. 226–35.

[104] H. Wei-Ming, “Reducing Timing Channels with Fuzzy Time,”
Proc. IEEE Computer Society Symp. Research in Security and
Privacy, May 1991, pp. 8–20.

[105] N. Schear et al., “Glavlit: Preventing Exfiltration at Wire
Speed,” Proc. 5th Wksp. Hot Topics in Networks (HotNets),
Nov. 2006.

[106] C. E. Shannon, “A Mathematical Theory of Communica-
tions,” Bell Systems Tech. J., vol. 27, no. 3, July 1948.

[107] J. K. Millen, “Covert Channel Capacity,” Proc. IEEE Symp.
Research in Security and Privacy, May 1987, pp. 60–66.

[108] I. S. Moskowitz and A. R. Miller, “Simple Timing Channels,”
Proc. IEEE Symp. Research in Security and Privacy, 1994, pp.
56–64.

[109] B. R. Venkatraman and R. E. Newman-Wolfe, “Capacity Esti-
mation and Auditability of Network Covert Channels,” Proc.
IEEE Symp. Security and Privacy, May 1995, pp. 186–98.

[110] J. W. Gray III, “Countermeasures and Tradeoffs for a Class
of Covert Timing Channels,” Tech. Rep. HKUST-CS94-18,
Hong Kong University of Science and Technology, 2000,
http://repository.ust.hk/dspace/bitstream/1783.1/25/1/tr94-18.pdf

[111] R. E. Newman-Wolfe, B. R. Venkatraman, “High Level Pre-
vention of Traffic Analysis,” Proc. 7th Annual Computer Securi-
ty Applications Conf., Dec. 1991, pp. 102–09.

[112] B. R. Venkatraman and R. E. Newman-Wolfe, “Transmission
Schedules To Prevent Traffic Analysis,” Proc. 9th Annual Com-
puter Security and Applications Conf., Dec. 1993, pp. 108–15.

[113] B. Graham et al., “Using Covert Channels to Evaluate the
Effectiveness of Flow Confidentiality Measures,” Proc. 11th
Int’l. Conf. Parallel and Distributed Systems, July 2005, pp.
57–63.

[114] J. Giles and B. Hajek, “The Jamming Game for Packet Timing
Channels,” Proc. IEEE Int’l. Symp. Information Theory (ISIT),
June 2000.

[115] D. Bell and L. LaPadula, “Secure Computer Systems: Mathe-

matical Foundation,” Tech. Rep. ESD-TR-73-278, Mitre Corp,
1973.

[116] N. Ogurtsov et al., “Experimental Results of Covert Channel
Limitation in One-Way Communication Systems,” Proc. Symp.
Network and Distributed System Security (SNDSS), Feb. 1997.

[117] M. H. Kang and I. S. Moskowitz, “A Pump for Rapid, Reli-
able, Secure Communication,” Proc. ACM Conf. Computer and
Communications Security (CCS), 1993, pp. 119–29.

[118] M. H. Kang, I. S. Moskowitz, and D. C. Lee, “A Network Ver-
sion of the Pump,” Proc. IEEE Symp. Security and Privacy, May
1995, pp. 144–54.

[119] R. Lanotte et al., “Automatic Covert Channel Analysis of a
Multilevel Secure Component,” Proc. 6th Int’l. Conf. Informa-
tion and Commun. Security (ICICS), Oct. 2004, pp. 249–61.

[120] T. Sohn, J. Seo, and J. Moon, “A Study on the Covert Chan-
nel Detection of TCP/IP Header Using Support Vector Machine,”
Proc. 5th Int’l. Conf. Info. and Commun. Security, Oct. 2003,
pp. 313–24.

[121] E. Tumoian and M. Anikeev, “Detecting NUSHU Covert
Channels Using Neural Networks,” tech. rep., Taganrog State
University of Radio Engineering, 2005, http: / /gray-
world.net/papers/neural_networks_vs_NUSHU.pdf

[122] E. Tumoian and M. Anikeev, “Network Based Detection of
Passive Covert Channels in TCP/IP,” Proc. 1st IEEE LCN Wksp.
Network Security, Nov. 2005, pp. 802–09.

[123] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for
High Performance,” RFC 1323, IETF, May 1992,
http://www.ietf.org/rfc/rfc1323.txt

[124] T. Sohn et al., “Covert Channel Detection in the ICMP Pay-
load Using Support Vector Machine,” Proc. 18th Int’l. Symp.
Computer and Information Sciences (ISCIS), Nov. 2003, pp.
828–35.

[125] D. Pack et al., “Detecting HTTP Tunneling Activities,” Proc.
3rd Annual Information Assurance Wksp., June 2002.

[126] K. Borders and A. Prakash, “Web Tap: Detecting Covert Web
Traffic,” Proc. 11th ACM Conf. Computer and Communications
Security (CCS), Oct. 2004, pp. 110–20.

BIOGRAPHIES

SEBASTIAN ZANDER [S’06] (szander@swin.edu.au) received his Dipl.-
Ing. in Technical Informatics from the Technical University of
Berlin, Germany in 1999. Since 2006 he is a Research Student at
the Centre for Advanced Internet Architectures at Swinburne Uni-
versity of Technology and his research topic is covert channels in
computer network protocols. Previously he has worked as a Scien-
tist at Fraunhofer FOKUS in Berlin, Germany and as a Research
Fellow at Swinburne University.

GRENVILLE ARMITAGE [M’03] (garmitage@swin.edu.au) earned a
B.Eng (Elec)(Hons) in 1988 and a PhD in electronic engineering in
1994, both from the University of Melbourne, Australia. Since
2002 he has been Associate Professor of Telecommunications
Engineering and Director of the Centre for Advanced Internet
Architectures at Swinburne University of Technology, Melbourne,
Australia. He authored “Quality of Service In IP Networks: Founda-
tions for a Multi-Service Internet” (Macmillan Technical Publishing,
April 2000) and co-authored “Networking and Online Games —
Understanding and Engineering Multiplayer Internet Games”
(John Wiley & Sons, UK, April 2006). Associate Professor Armitage
is also a member of ACM and ACM SIGCOMM.

PHILIP BRANCH [M’95] (pbranch@swin.edu.au) received a Ph.D. in
Engineering from Monash University, Victoria, Australia in 2000.
Since 2003 he has been a Senior Lecturer in Telecommunications
Engineering at Swinburne University of Technology, conducting
research within the Centre for Advanced Internet Architectures.
His research interests are in game traffic, network security and
lawful interception. He is a co-author of “Networking and Online
Games — Understanding and Engineering Multiplayer Internet
Games” (John Wiley & Sons, UK, April 2006).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

