From Classical to <Quantum</td>Computing>

Muhamad Felemban Director, IRC for Intelligent Secure Systems Assistant Professor, Computer Engineering Dept. Assistant Professor, Computer Science Dept. KFUPM

History of computing

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count) The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Can we think of another computing paradigm?

Simulating Physics with Computers - 1982

"The first question is, What kind of computer are we going to use to simulate physics?

Can physics be simulated by a universal computer? "

Quantum Computing

What can it do?

How many draws?

Deutsch-Jozsa algorithm - 1985

Quantum Computer Architectures

Google Quantum Al

Gate-based quantum computers

What is quantum computing?

Four postulates

Second postulate

Qubit Evolution

Quantum parallelism

We can "ADD" two qubits

Third postulate

Measurement

Fourth postulate

Full-fledged quantum computers

A quantum computer consists of multiple qubits $|\psi_0\psi_1\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$ $\alpha, \beta, \gamma, \delta \in C$

 $|\alpha|^{2} + |\beta|^{2} + |\gamma|^{2} + |\delta|^{2} = 1$

Can apply quantum gates to a subset of qubits in a multi-qubit state

Secret sauce of quantum algorithms

Desired output

- Warning: a quantum computer does *not* simply "try out all solutions in parallel"
- The magic comes from allowing complex (or even just negative real) superposition amplitudes

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $|\alpha|^2 + |+\beta|^2 = 1$

• Can *carefully* choreograph computations so that wrong answers "cancel" out their amplitudes, while correct answers "combine" to produce the desired output (**quantum interference**)

Shor's algorithm - 1994

Problem: Given a large integer N (typically several hundred digits long), factorize N as a product of primes.

الأستاذ الدكتور حساو الدر

The algorithms to machines gap

Year

Quantum computing landscape

¹ Software offerings can be further classified into SDKs, firmware / enablers, algorithms / applications, simulators etc. but many companies are offering a mixture across the stack ² Many QPU providers are offering full stack services (e.g. Pasqal acquired Qu&Co, Quantinuum was originally CQC prior to merger with HQS, etc.

Quantum hardware

Superconducting qubits

Neutral atoms

Photonic qubits

Trapped ions

Development Roadmap

	2016-2019 🛛	2020 🥥	2021 🛛	2022 🛛	2023 🛛	2024	2025	2026	2027	2028	2029	2033+
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Data Scientist						Platform						
						Code assistant 🛛 🕃	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Researchers					Middleware							
					Quantum 🔗 Serverless	Transpiler Service 👌	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Quantum			Qiskit Runtime									
Thysicist	IBM Quantum Experience	0	QASM3 🥏	Dynamic circuits 🛛 🥪	Execution Modes 🛛 🥑	Heron (5K) ම	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue Jay (1B)
	Early Canary Albatross Penguin Prototype 5 qubits 16 qubits 20 qubits 53 qubits	Falcon Benchmarking 27 qubits	0	Eagle Benchmarking 127 qubits	2	Error Mitigation 5k gates 133 qubits Classical modular	Error Mitigation 5k gates 156 qubits Quantum modular	Error Mitigation 7.5k gates 156 qubits Quantum modular	Errof Mitigation 10k gates 156 qubits Quantum modular	Errof Mitigation 15k gates 156 qubits Quantum modular	Error correction 100M gates 200 qubits Error corrected modularity	Error correction 1B gates 2000 qubits Error corrected modularity

Innovation Roadmap

Software Innovation	IBM Cuantum Quantum Experience	Qiskit Circuit and operator API with compilation to multiple targets	Application Control Co	Qiskit Runtime Performance and abstract through Primitives	Serverless Demonstrate concepts of quantum centric- supercomputing	AI enhanced quantum Prototype demonstrations of AI enhanced circuit transpilation	Resource System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder		
Hardware Innovation	Early Canary 5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon Component of the second	Hummingbird Demonstrate scaling with multiplexing readout	Eagle Demonstrate scaling with MLW and TSV	Osprey Enabling scaling with high density signal delivery	Condor © Single system scaling and fridge capacity	Flamingo Demonstrate scaling with modular connectors	Kookaburra Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gates
 Executed by IBM On target 	1					Heron © Architecture based on tunable- couplers	Crossbill 🕉 m-coupler				
IBM Quantum /	© 2023 IBM Corpo	oration									

IBM **Quantum**

Public Roadmap

Development roadmap

"analysis based on recent literature in new, novel error correcting codes predict that error could be as low as 1E-10 in Apollo (ref: arXiv:2403.16054, arXiv:2308.07915)

@ 2024 Quantinuum. All Rights Reserved.

Recent breakthroughs in QC

Google Logical Qubit Breakthrough Paves Way for Large Scale Quantum Computing

August 27, 2024 BY QUANTUM NEWS

Quantum computing applications

Disentagling hype from practicality

"the most promising candidates for quantum practicality are small-data problems with **exponential** speedup. Specific examples where this is the case are quantum problems in chemistry and materials science"

Variational quantum algorithms (VQAs)

A VQA is an algorithm that is based on the variational method based on a series of educated guesses, in the form of parameterized quantum circuits, with each guess being refined by classical optimizers until an approximate solution is found.

Vehcile routing problem using quantum computing

Fig. 2. Overall Structure of QAOA.

Fig. 4. Comparison of VRP solutions obtained by VQE, QAOA, and classical

Alsaiyari, Muhammad, and **Muhamad Felemban**. "Variational Quantum Algorithms for Solving Vehicle Routing Problem." In 2023 International Conference on Smart Computing and Application (ICSCA), pp. 1-4. IEEE, 2023.

Quantum-speedup for non-linear PDEs

Fig. 1: QAEA circuit

Fig. 5: Circuit Fig. 3 after applying gate fusing technique

nai Circuit
4
12
24
0.27
it using Gate Merging
4
11
22
0.27
uit using Gate Fusing
4
7
7 7
7 7 0.27
7 7 0.27 it using Both Methods
7 7 0.27 it using Both Methods 4
7 7 0.27 it using Both Methods 4 5
7 7 0.27 it using Both Methods 4 5 5 5
7 7 0.27 it using Both Methods 4 5 5 5 0.27
7 7 0.27 it using Both Methods 4 5 5 5 0.27 riginal Circuit
7 7 0.27 it using Both Methods 4 5 5 5 0.27 riginal Circuit 7
7 7 0.27 it using Both Methods 4 5 5 5 0.27 riginal Circuit 7 842

Oit - Onicinal Cincri

Table 1: Results of Simulation on Qibo and Pennylane platforms

PI: Shuroog Al-Ogbi – Researcher, IRC-ISS

Solving linear systems with quantum computing

Solve Ax = b

 $O(\log(N) \kappa^2/\epsilon)$

Duan, Bojia, Jiabin Yuan, Chao-Hua Yu, Jianbang Huang, and Chang-Yu Hsieh. "A survey on HHL algorithm: From theory to application in quantum machine learning." Physics Letters A 384, no. 24 (2020): 126595

Quantum machine learning

- The development of quantum machine learning was heavily biased by conventional approaches to quantum computing, and search for the computational speed-up
- This has now evolved into several new directions of how advantage can be achieved
- Possible advantages (space-time complexity):
 - computational (training)
 - expressivity
 - generalization
 - learning
 - sampling
 - memory

DI: <u>10.1039/D2CS00203E</u> (Review Article) <u>Chem. Soc. Rev.</u>, 2022, **51**, 6475-6573

Quantum machine learning for chemistry and physics

Manas Sajjan ^(b) ^{ab}, Junxu Li[†] ^(b) ^{bc}, Raja Selvarajan[†] ^{bc}, Shree Hari Sureshbabu[‡] ^(b) ^{bd}, Sumit Suresh Kale[‡] ^(b) ^{ab}, Rishabh Gupta[‡] ^{ab}, Vinit Singh[‡] ^{ab} and Sabre Kais ^(b) *^{abcd}

Al-Ogbi, Shuroog, Abdulrahman Ashour, and Muhamad Felemban. "Quantum image classification on NISQ devices." In 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 1-7. IEEE, 2022.

Molecular modeling with quantum computing

Jacob's ladder of quantum mechanical methods

*Taken from Matthias Troyer, Microsfot Keynote speech at IEEE QCE 2024

Discovery of quantum algorithms using genetic algorithms: exponential speedup via random sampling*

Methodology

PI: Tariq Almuqbil – MX Student

Results

Our experiments used a genetic algorithm to discover oracle-based quantum algorithms in circuits with 3 to 8 qubits. By reducing evaluation time complexity from $O(2^n)$ to O(n), we efficiently optimized larger circuits.

•Grover's Algorithm Discovery: The genetic algorithm identified the first iteration of Grover's algorithm in multiple experiments, proving the effectiveness of our approach. Sample of found circuits is shown in **Figure 1**.

Figure 1: Sample of the best circuits found

Figure 2: Average Normalized Scores Over Generations

*Demo paper – IEEE QCE 2024

Mitigation of coherent losses in the line of superconducting quantum circuits

Figure. 1 Coupling between Qubits and CPW resonators

مدينة الملك عبدالعزيز

Figure. 3 8-Qubits connected to superconducting resonators for controlling their quantum states that allow direct processing of information

Figure. 4 10 mm by 10 mm chip of Nb resonators of similar dimensions but different positions on 674 μ m thick Si substrate same as used in the 8-Qubit chip

PI: Dr. Saleem Rao

Quantum computing and technology group in IRC-ISS

Ρ Η Y S С S С 0 Μ Ρ U Ν G

Superconducting quantum system lab

- This lab will be for research in superconducting based quantum systems
- The lab will used to characterize superconducting quantum chips, i.e., control and measure qubits

Figure: Standard layout system from BlueFors. CU is the control unit, GHS is the gas handling system and LN2 Trap Dewar where liquid Ntrogen need to be filled. The compressor requires water supply, and the cryostal frame holds the system and minimizes unwandet mechanical vibrations.

surce: part of images is from BlueFors website

QC at KFUPM

KAIST

 \bigcirc Othern's

CX and MX in Quantum Computing

고려대학교 KOREA UNIVERSITY

🕱 서울대학교

From hype to hope

Quantum

Solving real-world problems that will impact 100% of humans requires a combination of ..

Technology

Quantum Computing

Computing

Simulation

Communication

Sensing

Thank you

For more information about our research <u>https://ri.kfupm.edu.sa/ISS</u> <u>https://faculty.kfupm.edu.sa/COE/mfelemban/</u> <u>mfelemban@kfupm.edu.sa</u>