
Efficient and Privacy-Preserving Spatial Keyword
Similarity Query Over Encrypted Data

Songnian Zhang , Suprio Ray ,Member, IEEE, Rongxing Lu , Fellow, IEEE, Yunguo Guan ,

Yandong Zheng , and Jun Shao , Senior Member, IEEE

Abstract—As a popular and practical query type in location-based services, the spatial keyword query has been extensively studied in

both academia and industry. Meanwhile, with the growing demand for data privacy, many privacy-preserving spatial keyword query

schemes have been proposed to deal with queries over encrypted data. However, none of the existing schemes preserve access

pattern privacy, and the recent research illustrates that leaking such privacy may incur inference attacks and thus disclose sensitive

information. In addition, most existing schemes only consider the boolean keyword search, which is not quite practical and flexible in

real-world applications. To address the above issues, in this paper, we propose two privacy-preserving spatial keyword similarity query

schemes that can preserve full and partial access pattern privacy, respectively. First, we present a basic privacy-preserving spatial

keyword similarity query scheme (PPSKS) by integrating a secure set membership test (SSMT) technique with secure circuits. After

that, to improve performance, we propose a tree-based scheme (PPSKS+) by employing a new index called FR-tree together with a

predicate encryption technique that can encrypt FR-tree. Formal security analysis shows that: i) our proposed schemes can protect

outsourced data, query requests, and query results; ii) our PPSKS scheme can hide full access patterns, while the PPSKS+ scheme

preservesm-access pattern privacy. Extensive experiments are also conducted, and the results indicate that our tree-based PPSKS+

scheme is much more efficient, almost two orders of magnitude better than our linear search PPSKS scheme in performing queries.

Index Terms—Spatial keyword similiarity query, privacy preservation, secure circuits, bloom filter, lagrange interpolation

Ç

1 INTRODUCTION

THE proliferation of the mobile Internet drives the wide-
spread use of location-based services (LBS), especially the

spatial keyword query services offered by a slew of commer-
cial applications, e.g., Yelp and Google Map. Due to its broad
utility in LBS, the spatial keyword query has been extensively
investigated in both academia and industry [1], [2], [3], [4],
[5]. One of the real-life examples is the POI (point of interest)
recommendation system, in which a user can enjoy the serv-
ices by requestingwith a spatial query range and keywords to
a service provider. Assume that the service provider is
equipped with a spatial keyword database containing POI
locations and feature keywords, e.g., a restaurant with loca-
tion (39.95, -82.99) and a set of keywords fcoffee; beef; pizzag.
By performing the spatial keyword query, the service pro-
vider can retrieve the POIs satisfying the following two

conditions: i) the POIs’ locations fall inside the spatial query
range; and ii) the POIs’ keywordsmatch the query keywords.

Meanwhile, with increasing concerns about data privacy,
performing queries over encrypted data has attracted con-
siderable attention. As a quite practical query type, process-
ing spatial keyword queries over encrypted data is
naturally an important research topic, and several privacy-
preserving spatial keyword query schemes have been pro-
posed [6], [7], [8], [9], [10]. However, existing schemes have
two issues: i) most of them [6], [7], [8], [9] only consider the
boolean keyword match, i.e., a data record’s keywords
must exactly contain all query keywords, which is not prac-
tical and flexible enough in real-world applications.
Although the work [10] studied the keyword similarity, it
adopted the euclidean distance as the metric, which is more
suitable for the vector space characterized by the fixed vec-
tor length instead of the scenario with dynamic keyword set
sizes [11]; and ii) none of the existing schemes protect access
pattern privacy [12], i.e., the information about which data
records satisfy the query conditions. As reported in [13],
[14], leaking access patterns may incur inference attacks
and thus disclose sensitive information.

Aiming at the above two issues, we focus on privacy-pre-
serving spatial keyword similarity query schemes by con-
sidering keyword similarity and protecting the access
pattern privacy. Notably, since the Jaccard similarity is very
popular in measuring the keyword set similarity [15], [16],
and this work exact considers such a scenario, it is adopted
in this paper. However, the privacy-preserving spatial key-
word similarity query scheme is more challenging to
develop than the privacy-preserving boolean spatial key-
word query scheme. This is because the latter only involves

� Songnian Zhang, Suprio Ray, Rongxing Lu, and Yunguo Guan are with
the Faculty of Computer Science, University of New Brunswick, Fredericton,
NBE3B 5A3, Canada. E-mail: {szhang17, sray, rlu1, yguan4}@unb.ca.

� Yandong Zheng is with the State Key Laboratory of Integrated Services
Networks, Xidian University, Xi’an 710071, China. E-mail: yzheng8
@unb.ca.

� Jun Shao is with the School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China. E-mail: chn.
junshao@gmail.com.

Manuscript received 26 March 2022; revised 13 November 2022; accepted 26
November 2022. Date of publication 6 December 2022; date of current version
1 September 2023.
This work was supported in part by the NSERC Discovery under Grants
04009, 03787, and RGPIN-2022-03244.
(Corresponding author: Rongxing Lu.)
Digital Object Identifier no. 10.1109/TDSC.2022.3227141

3770 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0002-0558-4485
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0002-3965-3389
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0003-4534-5670
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-8352-0973
mailto:szhang17@unb.ca
mailto:sray@unb.ca
mailto:rlu1@unb.ca
mailto:yguan4@unb.ca
mailto:State Key Laboratory of Integrated Services NetworksXidian University3427Xi’an710071China
mailto:State Key Laboratory of Integrated Services NetworksXidian University3427Xi’an710071China
mailto:chn.junshao@gmail.com
mailto:chn.junshao@gmail.com

the equality test for keywords, while the former contains a
typical compute-then-compare operation in dealing with key-
words, which is recognized as challenging when securing
this operation in a single-server model [9], [17]. Further-
more, in addition to the data and query privacy, our pro-
posed schemes have a stricter security goal, i.e., preserving
the privacy of access patterns, which makes it even more
difficult to design the privacy-preserving spatial keyword
similarity query schemes. Besides these, protecting access
patterns will inevitably introduce the performance issue.
Therefore, devising an efficient scheme while preserving
the privacy of access patterns is a challenging problem that
we have to tackle.

In this paper, we first propose a privacy-preserving spa-
tial keyword similarity query scheme, named as PPSKS, to
securely determine range constraint, compute keyword simi-
larity, and hide access patterns. The main idea is to map the
spatial data into bloom filters and then encrypt them with
fully homomorphic encryption (FHE). Then, the operator
can obtain an encrypted flag to determine whether a data
record satisfies the spatial query range. However, a problem
arises, i.e., “how do we compute encrypted flags from the
encrypted bloom filters?”. To tackle it, we design a Lagrange
interpolation-based approach and propose a secure setmem-
bership test (SSMT) scheme to make it possible. For the key-
word similarity, we surprisingly found that we can
transform the encrypted flags (obtained by our SSMT
scheme) into an encrypted bit sequence, which can represent
the number of intersecting elements of two keyword sets, by
designing a secure partial addition circuit. Based on this
observation, we can then use the secure addition and secure
comparison circuits to obtain an encrypted flag that can
determine whether these two keyword sets are similar. With
these encrypted flags, we can compute (not select) the
encrypted query results and thus hide access patterns.

To improve performance, we further propose a tree-based
privacy-preserving spatial keyword similarity query
scheme, PPSKS+, in which we introduce an index called FR-
tree and modify a predicate encryption technique [18] allow-
ing the operator to search over the encrypted FR-tree. Note
that the modified predicate encryption technique can protect
the conjunctive privacy discussed in [9], which refers to the
information about the spatial constraint or the keyword con-
straint mismatches when a data record is not picked. Specifi-
cally, our paper has the following contributions:

� First, we propose a novel secure set membership test
(SSMT) scheme that can securely determine whether
an element belongs to a set or not. In our SSMT
scheme, we combine the bloom filter technique and
Lagrange interpolation function such that it can pro-
tect the privacy of the element, the set, and the deci-
sion result. Note that our SSMT scheme can also be
applied to other privacy-preserving schemes that
seek the fully secure set membership test in a single-
server model.

� Second, we propose a privacy-preserving spatial key-
word similarity query scheme, PPSKS, to securely
retrieve the data records that satisfy the query con-
straints. In our PPSKS scheme, we first transform the
spatial query problem into the set membership test,

which makes it possible to use our SSMT scheme. In
addition, we observe that secure circuits can also be
introduced to securely calculate Jaccard similarity. It
is worth noting that we are the first to consider the
Jaccard similarity and access patterns in privacy-pre-
serving spatial keyword query schemes.

� Third, we propose a tree-based PPSKS scheme,
denoted as PPSKS+, by employing an FR-tree index
and a predicate encryption technique. In order to
further improve performance, we present a vector
bucketing technique to split a large vector into sub-
vectors. Theoretically, this technique can reduce the
computational overheads in key generation, data
outsourcing, and token generation phases.

� Finally, we formally analyze the security of our pro-
posed schemes and demonstrate that our proposed
schemes can attain our privacy goals. Besides, we
conduct extensive experiments to evaluate our pro-
posed schemes, and the results illustrate that our
tree-based PPSKS+ scheme can significantly reduce
the computational costs of the linear search scheme
(PPSKS).

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model,
and design goal. Then, we review the preliminaries in Sec-
tion 3. After that, we present our PPSKS and PPSKS+
schemes in Section 4, followed by security analysis and per-
formance evaluation in Sections 5 and 6, respectively.
Finally, we discuss some related works in Section 7 and
draw our conclusion in Section 8.

2 MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

2.1 System Model

In our system model, we consider a typical outsourcing
model, which is comprised of four entities: a data owner O,
a powerful cloud server C, a query proxy P, and multiple
query users U ¼ fu1; u2; � � �g, as shown in Fig. 1.

Data Owner O: In our system model, the data owner O
has a spatial keyword dataset X ¼ fxi ¼ fðpi;x; pi;yÞ;
Wig j 1 � i � ng, where ðpi;x; pi;yÞ is the spatial location of
the data point, and Wi is the keyword set. In order to make
full use of the dataset, the data owner O offers the spatial
keyword similarity (SKS) query services to the query
users. However, since O may not be powerful in storage

Fig. 1. System model under consideration.

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3771

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

and computing, it tends to outsource the dataset X and
the SKS query services to a cloud. Meanwhile, to ensure
privacy, the data owner O generates secret keys and
encrypts the outsourced data before uploading them to
the cloud.

Cloud Server C: In our system, the cloud server C is con-
sidered as powerful in storage and computing. It receives
the outsourced dataset from the data owner O and provides
the SKS query services to the query users by leveraging the
received dataset.

Query Proxy P: In order to manage the generated keys,
the data owner O can deploy a query proxy P and authorize
the generated keys to P. In our system, P is sitting between
the cloud server C and query users and can provide the
query token generation and query result decryption services
to the query users. It is worth noting that we can also make
the data owner O undertake the tasks of P as adopted in [6],
[19]. In order to allow O to go offline after initialing the
whole system, we deploy P in our system.

Query Users U ¼ fu1; u2; . . .g: In our system, query users
U should first register to the data owner O and obtain the
authorized keys. After that, U can enjoy the SKS query serv-
ices through the query proxy P.

2.2 Security Model

In our security model, the data owner O is considered to be
trusted because it initializes the whole system. For the query
users, we consider the registered ones to be honest, i.e., they
will honestly follow the proposed scheme. However, in our
model, the cloud server C and the query proxy P are consid-
ered as semi-honest [20], which indicates that they will sin-
cerely follow the proposed schemes but are curious to learn
some private information. For the cloud server C, it may
attempt to infer the outsourced data, query requests, and
query results. Regarding the query proxy P, it may be inter-
ested in the query requests and query results received from
the query users U and cloud server C, respectively. We
assume that there is no collusion between any two entities
of the cloud server C, the query proxy P, and query users
U [9]. It is reasonable since they are strictly regulated, and
their reputation will be damaged when collusive behavior
is detected. Note that, as this work mainly focuses on
privacy computation techniques, other active attacks,
e.g., authentication and verification issues, are beyond
the scope of this paper and will be discussed in our
future work.

2.3 Design Goal

In this work, our goal is to present privacy-preserving and
efficient SKS query schemes. In particular, the following
objectives should be attained.
� Privacy Preservation: The basic requirement of our pro-

posed scheme is privacy preservation. First, we should pro-
tect the privacy of outsourced data, query requests, and
query results against the cloud server C. Then, we should
protect the privacy of query requests and query results
against the query proxy P.

In addition, our proposed scheme should hide access
patterns for the cloud server C, which indicates C has no
idea about which data records are returned as the query

results. Assume C knows query distribution as background
knowledge. If the access patterns are leaked, C can learn the
access distribution of outsourced data over time and thus
infer query contents by correlating the query distribution to
the data access distribution. Once the content of an
encrypted query is known, C may further infer outsourced
data retrieved by this query [12], [14]. Therefore, hiding
access patterns is significant in privacy preservation.
� Efficiency: Achieving the privacy requirements will

inevitably incur additional costs. As a result, we also aim to
minimize the computational costs when performing the pri-
vacy-preserving SKS queries.

3 PRELIMINARIES

In this section, we first define the spatial keyword similarity
(SKS) queries. Then, we introduce bloom filter, fully homo-
morphic encryption, and secure circuits, which will be used
in our proposed scheme.

3.1 Spatial Keyword Similarity Queries

The spatial keyword queries have been extensively investi-
gated in both academic and industrial communities due to
its wide applications [1], [2], [3]. Given a spatial keyword
query Q ¼ fðRq;x; Rq;yÞ; Wqg, where ðRq;x ¼ ½pq;xl; pq;xu�; Rq;y ¼
½pq;yl; pq;yu�Þ are the ranges of x and y dimensions, and Wq is
the query keyword set, the basic spatial keyword query
retrieves the data records that satisfy: pi;x 2 Rq;x, pi;y 2 Rq;y,
and Wq � Wi [1]. However, the exact matching of the key-
word sets lacks flexibility and practicality. For example, the
basic spatial keyword queries would not return the data
records if there is only one element of a query keyword set
mismatch (while all other elements are matched). To make
the spatial keyword query more flexible and practical, the
SKS queries are defined to measure the similarity of key-
word sets [5].

Definition 1 (Spatial Keyword Similarity Queries).
Given a spatial keyword dataset X , a query request Q, and a
similarity threshold t, the spatial keyword similarity (SKS)
queries return the data records in X satisfying:

i) spatial constraint, i.e., pi;x 2 Rq;x, pi;y 2 Rq;y;
ii) keyword constraint, i.e., simðWq; WiÞ � t.

Same as [5], [15], [16], here we use the Jaccard similarity
for the keyword set similarity:

simðWq; WiÞ ¼ jWq \ Wij
jWq [Wij : (1)

A simple example of the SKS query is shown in Fig. 2, in
which Wi ð1 � i � 8) is the keyword set of the data record
xi ¼ fðpi;x; pi;yÞ; Wig. Given a spatial query Q and a Jaccard
similarity threshold t ¼ 2=5, x5 is returned as the query
result. First, it is clear that fx2; x3; x5g satisfy the spatial con-
straint. Then, since the Jaccard similarity of fx2; x3; x5g is
f1=5; 1=5; 1=2g, respectively, only x5 satisfies the keyword
constraint.

3772 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

3.2 Bloom Filter

A bloom filter (BF) can determine whether an element exists
in a given set [21]. In general, given a set S, the bloom filter
represents all elements in S using an array of h bits, denoted
as BF½t�; 1 � t � h. Initially, all bits in the array are set to 0.
Then, with g independent hash functions fh1; . . . ; hgg, each
element x 2 S is mapped to the array, i.e., BF½hiðxÞ� ¼ 1.
Given an element x0, to determine whether x0 2 S or not, we
can check whether all BF½hiðx0Þ� ð1 � i � gÞ are set to 1. If
not, x0 must be not a member of S. If yes, x0 is in S with a
high probability. Obviously, a bloom filter may yield false
positive. Assuming the size of the set S is m, i.e., m ¼ jSj, the
false positive probability is:

fp ¼ 1� ð1� 1=hÞgmð Þg	 ð1� e�g
m
hÞg : (2)

Given m and h, the value of g that minimizes the false positive
probability is: g ¼ ln 2 � ðh=mÞ. In this case, fp 	 ð1=2Þg . If fp,
g, and m are given, we could obtain h ¼ g � m= ln 2, which is
the optimal size of the bloom filter array.

3.3 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is a popular crypto-
graphic primitive that can support computations through
encrypted data [22]. Due to its nice homomorphic proper-
ties, it is widely used to design searchable encryption
schemes [23], [24]. Typically, an FHE scheme satisfies two
homomorphic properties: i) Homomorphic addition:
Eðm1Þ þ Eðm2Þ ! Eðm1 þm2Þ; ii) Homomorphic multiplica-
tion: Eðm1Þ � Eðm2Þ ! Eðm1 �m2Þ, where m1 and m2 are two
plaintexts, and Eðm1Þ and Eðm2Þ are the corresponding FHE
ciphertexts. In our proposed scheme, we employ the FHE
scheme as cryptography primitive and exploit its addition
and multiplication homomorphic properties. Since our pro-
posed schemes can be constructed on any FHE scheme,
here we do not show the algorithms of FHE and refer read-
ers to [25], [26] for details.

3.4 Secure Circuits

Assume there are two non-negative integers fx; yg of the
same bit length, and the corresponding encrypted bit
sequences are:

Eð~xÞ ¼ ðEðxjÞj0j¼lÞ ¼ EðxlÞ;Eðxl�1Þ; . . . ;Eðx0Þ� �
;

Eð~yÞ ¼ ðEðyjÞj0j¼lÞ ¼ EðylÞ;Eðyl�1Þ; . . . ;Eðy0Þ� �
;

where xj; yj 2 f0; 1g, j ¼ l; . . . ; 1; 0, and l is the most signifi-
cant bit position.

� Secure addition circuit [27]. Given Eð~xÞ and Eð~yÞ, the
secure addition circuit, denoted as Sadd, can compute
Eð~zÞ ¼ ðEðzjÞj0j¼lÞ ¼ SaddðEð~xÞ;Eð~yÞÞ satisfying z ¼ xþ y,
where z is an integer, and Eð~zÞ is its encrypted bit sequence.
The main idea of Sadd is to derive logical expressions from
the truth table of the addition circuit and then adopt the
homomorphic properties of FHE to execute the derived log-
ical expressions over ciphertexts. See details in [27].
� Secure comparison circuit [28]. Given Eð~xÞ and Eð~yÞ, the

secure comparison circuit, denoted as Scom, can output
EðzÞ ¼ ScomðEð~xÞ;Eð~yÞÞ ¼ Eð1Þ if x < y, otherwise EðzÞ ¼
Eð0Þ. The main idea of Scom is to identify the most signifi-
cant differing bit of two bit sequences, and we can formalize
it as follows, seeing the detailed analysis in [28]:

EðzÞ ¼
Xl
j¼0

EðxjÞ < EðyjÞ� � Y
j< t< l

EðxtÞ ¼ EðytÞ� � !
;

where ðEðxjÞ < EðyjÞÞ ¼ Eðyj � ðxj þ 1ÞÞ and ðEðxtÞ ¼
EðytÞÞ ¼ Eðyt þ xt þ 1Þ. Note that, we need to calculate z ¼
zmod 2 to ensure z 2 f0; 1g.
� Secure multiplication circuit. Given Eð~xÞ and Eð~yÞ, the

secure multiplication circuit, denoted as Smul, can compute
Eð~zÞ ¼ ðEðzjÞj0j¼2lþ1Þ ¼ SmulðEð~xÞ;Eð~yÞÞ satisfying z ¼ x � y.
It can be achieved by calculating Saddwith l times:

Eð~zÞ ¼
Xl
j¼0

Eð0Þ; . . . ;Eð0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
lþ1�j

;EðyjÞ � Eð~xÞ;Eð0Þ; . . . ;Eð0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
j

0B@
1CA:

Note that here the sum symbol indicates performing the
secure addition circuit, Sadd.

Now, we give examples to illustrate the above secure
circuits. If we set x ¼ 5 and y ¼ 7, we would have Eð~xÞ ¼
ðEð0Þ;Eð1Þ;Eð0Þ;Eð1ÞÞ and Eð~yÞ ¼ ðEð0Þ;Eð1Þ;Eð1Þ;Eð1ÞÞ.
Thus, SaddðEð~xÞ;Eð~yÞÞ ¼ ðEð1Þ;Eð1Þ;Eð0Þ;Eð0ÞÞ ¼ Eð~12Þ,
ScomðEð~xÞ;Eð~yÞÞ ¼ Eð1Þ, and SmulðEð~xÞ;Eð~yÞÞ ¼ ðEð0Þ;Eð0Þ;
Eð1Þ;Eð0Þ;Eð0Þ;Eð0Þ;Eð1Þ;Eð1ÞÞ ¼ Eð~35Þ.

4 OUR PROPOSED SCHEMES

In this section, we first propose a novel secure set member-
ship test (SSMT) scheme, which servers as the building
block. Then, we present our privacy-preserving spatial key-
word similarity query scheme, PPSKS. Finally, we carefully
design a tree-based PPSKS scheme, denoted as PPSKS+, to
achieve a sub-linear search efficiency. Before delving into
the details, we provide a notation table (Table 1) to describe
the main notations used in our proposed schemes.

4.1 Secure Set Membership Test Scheme

Given a set S with m elements, our SSMT scheme deter-
mines whether an element x 2 S or not in a fully secure
manner, namely, without leaking any information, includ-
ing the set S, the element x, and the information about
whether x 2 S or not. Our key idea is to map all elements in
S into a bloom filter, denoted as BFs, and map x into another
bloom filter, denoted as BFx, using the same hash functions
and keeping the same length as BFs. Then, we encrypt each
bit in these bloom filters with FHE, denoted as EðBFsÞ and
EðBFxÞ, respectively, and calculate the inner product of these

Fig. 2. An example of SKS query (the background map was extracted
from Google maps).

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3773

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

two encrypted bloom filters. Finally, the Lagrange interpo-
lation function is used to output Eð1Þ if x 2 S, otherwise
Eð0Þ. We formally describe our SSMT scheme as follows.

� SSMT:Setupð�Þ: Given a security parameter �, the
setup algorithm outputs an FHE key pair ðpk; skÞ,
where pk is the public key, and sk is the secret key.
Then, it chooses g independent hash functions H ¼
fh1; h2; . . . ; hgg.

� SSMT:InterpolationðgÞ: Given the number of hash func-
tions g, the interpolation algorithm chooses a large
prime number p and constructs a polynomial func-
tion fðxÞ using Lagrange interpolation at nodes
fð0; 0Þ; ð1; 0Þ; ð2; 0Þ; . . . ; ðg � 1; 0Þ; ðg; 1Þg:

fðxÞ ¼ a0 þ a1xþ a2x
2 þ � � � agxg mod p:

� SSMT:EncðS; pk;HÞ: On input of a set S, the public
key pk, and a set of hash functions H, the encryption
algorithm maps all elements in S into a bloom filter
BFs, encrypts each bit in BFs with the public key pk,
and outputs EðBFsÞ as the result, i.e., EðBFsÞ ¼
SSMT:EncðS; pk;HÞ.

� SSMT:Tokenðx; pk;HÞ: On input of an element x, the
public key pk, and a set of hash functions H, the
token generation algorithm maps x into a bloom fil-
ter BFx, encrypts each bit in BFx with the public key
pk, and outputs EðBFxÞ as the result, i.e., EðBFxÞ ¼
SSMT:Tokenðx; pk;HÞ.

� SSMT:Check ðEðBFsÞ; EðBFxÞ; fðxÞÞ: Given EðBFsÞ,
EðBFxÞ, and fðxÞ, the check algorithm determines
whether x 2 Swith the following two steps:

Step-1. Conduct the inner product operation between
EðBFsÞ and EðBFxÞ and output EðsÞ as the result:

EðsÞ ¼ EðBFsÞ
 EðBFxÞ ¼
Xh
t¼1

EðBFs½t�Þ � EðBFx½t�Þð Þ

¼ E
Xh
t¼1
ðBFs½t� � BFx½t�Þ

 !
; (3)

where h is the length of both bloom filters.
Step-2. Calculate EðuÞ as the result of the check algorithm

by integrating fðxÞ and EðsÞ:

EðuÞ ¼ fðEðsÞÞ ¼ EðfðsÞÞ:

Correctness. We say our SSMT scheme is correct when it
outputs EðuÞ ¼ Eð1Þ if x 2 S, otherwise EðuÞ ¼ Eð0Þ.
Proof. From Eq. (3), we know that s is one of the values in the

set f0; 1; 2; . . . ; gg. Onlywhen s ¼ g, we have x 2 S accord-
ing to the definition of bloom filter (see Section 3.2). Since
our polynomial function fðxÞ is interpolated at nodes
fð0; 0Þ; ð1; 0Þ; ð2; 0Þ; . . . ; ðg � 1; 0Þ; ðg; 1Þg, we have fðgÞ ¼ 1
and fðxÞ ¼ 0 for x ¼ 0; 1; � � � g � 1. Therefore, from Step 2,
we have x 2 S, s ¼ g , EðuÞ ¼ EðfðgÞÞ ¼ Eð1Þ. tu
In Fig. 3, we give an example to determine whether a set

S ¼ fx; yg contains x and x0 separately. Assume the bloom
filter’s length is 8, and two hash functions are used to map
elements to a bloom filter. In this case, fðxÞ can be interpo-
lated at nodes fð0; 0Þ; ð1; 0Þ; ð2; 1Þg. If we assume p ¼ 71, we
could obtain fðxÞ ¼ 0þ 35xþ 36x2 mod 71. As shown in
Fig. 3, x 2 S due to EðuÞ ¼ Eð1Þ, while x0 62 S as EðuÞ ¼ Eð0Þ.

Remark. To securely determine whether an element is in a
set, existing schemes [6], [9] leak the decision information
about x 2 S or x 62 S. However, our proposed scheme can
hide this information by integrating Lagrange interpolation
function into FHE encrypted bloom filters. We argue that, if
a compute-then-compare operation, which is hard to be
securely implemented on a single-server model [17], can be
converted into the problem of set membership test, our
SSMT scheme can provide a fully secure solution.

4.2 Basic Construction: Our PPSKS Scheme

4.2.1 Overview of Our PPSKS Scheme

Recalling the definition of the SKS query (Definition 1),
since the spatial constraint is to check whether a value

TABLE 1
Notations Used in Our Proposed Scheme

Notation Definition

ðpk; skÞ the public key and secret key of FHE
mk the master key held by the cloud server C
sski a shared key of query user ui, sski ¼ Hðmk; idiÞ
ssi a session key at timestamp ts, ssi ¼ Hðsski; tsÞ
m the number of elements to be put into bloom filter
g the number of hash functions of bloom filter
h the length of bloom filter
BF� the bloom filter corresponding to �
’ the maximum size of keyword sets
t� the size of the corresponding set
w the bit length of an integer
xi a spatial keyword data point, 1 � i � n
ðpi;x; pi;yÞ the spatial location of the data point xi
Wi the keyword set of the data point xi
ðRq;x; Rq;yÞ the spatial rectangle of queryQ
Wq the keyword set of queryQ
ðt1; t2Þ two integers represent the threshold t
~x the bit sequence of x
F the cardinality of intersection, F ¼ jWq \ Wij
k the number of query results
vj a vector with n elements, 1 � j � k
p the permutation function
BM� a bitmap of the corresponding keyword set
r the number of unique keywords in the dataset
ðTx; TyÞ the upper bound of x and y dimensions
d the number of dummy values
k the length of a sub-vector
� the number of sub-vectors
M the invertible randommatrix

Fig. 3. An example of our SSMTscheme, in which the length of bloom fil-
ters is 8, i.e., h ¼ 8, the number of hash functions is 2, i.e., g = 2, and
fðxÞ is interpolated at nodes fð0; 0Þ; ð1; 0Þ; ð2; 1Þg.

3774 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

belongs to a range, it can be securely achieved by our SSMT
scheme. However, it is still challenging to deal with the key-
word constraint. This is because we need to calculate the
cardinality of intersection and union of two sets and com-
pare their quotient with t 2 ½0; 1�. To address it, we trans-
form the keyword constraint into the following inequality:

simðWq; WiÞ � t) simðWq; WiÞ

� t1

t2

F ¼ jWq \ Wij��������! F

jWqj þ jWij �F
� t1

t2

) ðt1 þ t2ÞF � t1jWqj þ t1jWij; (4)

where t1 and t2 are two integers that can represent t. Conse-
quently, the keyword constraint is transformed into calcu-
lating F (set membership test) and determining whether the
inequality (Eq. (4)) holds. Although it is simple to securely
compute F with our SSMT scheme, it is non-trivial to deter-
mine Eq. (4) without leaking the values in the inequality. To
tackle it, our idea is to convert the result of SSMT into a bit
sequence and then introduce secure circuits (Section 3.4). In
this way, we can securely determine whether Eq. (4) holds
or not. If yes, we can obtain Eð1Þ, otherwise Eð0Þ.

From the above analysis, we know that the SSMT scheme
will be used to securely compute F for our PPSKS scheme.
However, the bloom filter length h will negatively affect the
performance of our PPSKS scheme due to the inner product
operation in the SSMT scheme (Eq. (3)). As discussed in Sec-
tion 3.2, we can improve the efficiency of our PPSKS scheme
by reducing the number of elements mmapped into a bloom
filter. In this paper, we employ a prefix encoding tech-
nique [29] to reduce m, leading to a smaller h.

Given a value x and a range R, the prefix encoding
technique [30] can encode them into two sets: FðxÞ and
SðRÞ, respectively.FðxÞ ¼ fx1x2 . . .xw;x1x2 . . .xw�1�; . . . ; x1 �

. . . �; � � . . . �g is a set containing wþ 1 elements by continually
replacing x’s bit with �, where w is the bit length of x. SðRÞ is a
set generated by extracting the minimum set of prefix elements
covering the rangeR. For example, ifwe assumex ¼ 6 andR ¼
½3; 7�, Fð6Þ ¼ f110; 11�; 1 � �; � � �g and Sð½3; 7�Þ ¼ f011; 1 �
�g: Therefore, determining x 2 R is converted into checking
whether FðxÞ \ SðRÞ ¼ ? or not. If yes, x =2 R, otherwise x 2
R. As demonstrated in [30], the number of elements in SðRÞ is
at most 2w� 2. Thus, we can reduce m from all integers in the
range ofR to 2w� 2.

4.2.2 Description of Our PPSKS Scheme

Based on the above transformation, prefix encoding tech-
nique, and our SSMT scheme, we construct our PPSKS
scheme, which is comprised of five phases: 1) system ini-
tialization; 2) data outsourcing; 3) token generation; 4)
search; 5) data recovery.

System Initialization. In our PPSKS scheme, the data
owner O initializes the whole system. First, O employs
SSMT.setup(�) to generate the FHE key pair (pk, sk) and g

hash functions H ¼ fh1; h2; . . . ; hgg. Then, O generates a
master key mk. Next, O chooses a secure symmetric key
encryption SEðÞ, e.g., AES-256, and a secure hash function
HðÞ. After that, the data owner O has the following tasks:

� O authorizes sk to the query proxy P and mk to the
cloud server C, as shown in Fig. 4.

� When a query user ui registers to the system with
his/her identity idi, O generates a shared key sski ¼
Hðmk; idiÞ for ui and authorizes fsski;Hg to ui.

Finally, the data owner O publishes fpk;SEðÞ;HðÞ; gg.
Note that, in our proposed schemes, all data transmissions
are via secure channels.

Data Outsourcing. Assume the data ownerO has a dataset
X ¼ fxi ¼ fðpi;x; pi;yÞ; Wig j 1 � i � ng, where ðpi;x; pi;yÞ is the

Fig. 4. The main process of PPSKS, in which SER contains the encrypted random numbers generated by query user ui and can be decrypted by C
with mk. Notably, on the cloud server C side, we only take the calculation of EðzÞ as an example, in which z ¼ 1 indicates the query keyword set and
the data keyword set satisfy the keyword constraint, i.e., Eq. (4) holds.

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3775

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

location information and scaled into integers. Each keyword
in Wi is also encoded into an integer. For each data record
xi ¼ fðpi;x; pi;yÞ; Wig, the data owner O prepares the out-
sourced data with the following steps:

� Step-1.O generates Fðpi;xÞ and Fðpi;yÞwith the prefix
encoding technique (see details in Section 4.2.1).
Then, by invoking the SSMT:Enc algorithm, O
constructs two encrypted bloom filters, denoted as
EðBFpi;xÞ and EðBFpi;yÞ, where EðBFpi;xÞ ¼ SSMT:Enc

ðFðpi;xÞ; pk;HÞ and EðBFpi;yÞ ¼ SSMT:EncðFðpi;yÞ; pk;
HÞ.

� Step-2. Regarding the keyword set Wi,O constructs an
encrypted bloom filter EðBFWiÞ ¼ SSMT:EncðWi; pk;HÞ.
Then, O encodes the value jWij (the number of key-
words) into its bit sequence format and encrypts
each bit as an FHE ciphertext. We denote the
encrypted bit sequence as Eðj~WijÞ.

� Step-3. O encrypts each data record fðpi;x; pi;yÞ; Wig as
fðEðpi;xÞ;Eðpi;yÞÞ;EðWiÞg, whereEðWiÞ indicates encrypt-
ing each keyword in Wi into an FHE ciphertext. Notably,
O will pad Eð0Þ to make each EðWiÞ have ’ elements,
where ’ ¼ argmaxi2½1;n�ðjWijÞ.

Finally, the data ownerO outsources

EðxiÞ ¼fEðBFpi;xÞ;EðBFpi;yÞ;EðBFWiÞ;
Eðpi;xÞ;Eðpi;yÞ
� �

;EðWiÞ;Eðj~WijÞg (5)

to the cloud server C, as shown in Fig. 4. To ensure the con-
sistency of the bloom filter length, O sets:

hpx ¼ dargmaxi2½1;n� ð2wpi;x
� 2Þ � g= ln 2

� �
e ! length of BFpi;x

hpy ¼ dargmaxi2½1;n� ð2wpi;y
� 2Þ � g= ln 2

� �
e ! length of BFpi;y

hW ¼ d’ � g= ln 2e ! length of BFWi ;

8>>><>>>:
(6)

where wpi;x
and wpi;y

are the bit length of pi;x and pi;y, respec-
tively. Finally, O publishes fhpx ; hpy ; hWg.

Token Generation. When a query user ui launches an SKS
query, i.e., Q ¼ fRq; Wqg and ft1; t2g, where Rq ¼ ðRq;x ¼
½pq;xl; pq;xu�; Rq;y ¼ ½pq;yl; pq;yu�Þ, the query token can be gener-
ated as follows.
� Step-1. ui encodes Rq;x and Rq;y into SðRq;xÞ and SðRq;yÞ

respectively by using the prefix encoding technique. Then,
ui maps each element in SðRq;xÞ into a bloom filer and gener-
ates a set of bloom filters BFRq;x ¼ fBFRq;x;1 ;BFRq;x;2 ; . . . ;
BFRq;x;tx g, where tx is the number of elements in SðRq;xÞ, and
each bloom filter has the length hpx . After that, ui chooses a
set of random values, denoted as rx, which has tx � hpx ran-
dom positive integers, i.e., jrxj ¼ tx � hpx . Next, ui adds the
random values of rx into the corresponding element in
BFRq;x . We denote the new bloom filter set as BF0Rq;x .

Similarly, ui can generate BFRq;y that has ty bloom filters,
and each of them has the length hpy . After adding a set of
random values, denoted as ry (jryj ¼ ty � hpy), into BFRq;y , ui

can obtain a new bloom filter set BF0Rq;y .� Step-2. Regarding the query keyword set Wq, ui con-
structs a bloom filter for each keyword in Wq. Assuming
there are tw keywords in Wq, i.e., tw ¼ jWqj, ui generates BFWq ¼

fBFWq;1 ;BFWq;2 ; . . . ;BFWq;tw g, and each bloom filter has the
length hW. Then, ui chooses tw � hW random positive integers,
organized as rw ¼ ðr1;1; r1;2; . . . ; r1;hW ; . . . ; rtw;1; rtw;2; . . . ; rtw;hWÞ,
and adds them into each bit of BFWq . We denote the new
bloom filters as BF0Wq ¼ fBF0Wq;1 ;BF0Wq;2 ; . . . ;BF0Wq;tw g.

Besides, ui encodes tw � t1, t1, and t1 þ t2 into bit sequen-
ces, denoted as~tt,~t1, and~t2, where the lengths of f~tt;~t1;~t2g
are flt; l1; l2g. Next, ui generates three random sets: rtt ¼
ðrtt;1; rtt;2; . . . ; rtt;ltÞ, rt1 ¼ ðrt1;1; rt1;2; . . . ; rt1;l1Þ, and rt2 ¼
ðrt2;1; rt2;2; . . . ; rt2;l2Þ and adds them into ~tt, ~t1, and ~t2,
respectively. The randomized bit sequences are denoted as
f~t0t;~t01;~t02g.
� Step-3.With the authorized sski, ui first computes a ses-

sion key ssi ¼ Hðsski; tsÞ, where ts is the timestamp. Then,
using the session key ssi, ui encrypts the random sets
frx; ry; rw; rtt ; rt1 ; rt2g into:

SER ¼ SEssiðrxjjryjjrwjjrtt jjrt1 jjrt2Þ
and sends the following encoded query request:

fBF0Rq;x ;BF0Rq;y ;BF0Wq ;~t0t;~t01;~t02; SER; idi; tsg

to the query proxy P. Here, since we add random values
into each bloom filter and bit sequence, it can prevent P
from inferring the original query requestQ and ft1; t2g.
� Step-4. Upon receiving the encoded query request, P

can encrypt bloom filters and bit sequences into
fEðBF0Rq;xÞ;EðBF0Rq;yÞ;EðBF0Wq Þ;Eð~t0tÞ;Eð~t01Þ;Eð~t02Þgwith the FHE
secret key sk. Then, P forwards the query token:

Token1 ¼fEðBF0Rq;xÞ;EðBF0Rq;yÞ;EðBF0Wq Þ;
Eð~t0tÞ;Eð~t01Þ;Eð~t02Þ; SER; idi; tsg;

(7)

to the cloud server C. See the process in Fig. 4.
Search. After receiving Token1, C first calculates the ses-

sion key ssi with the authorized master key mk, i.e., ssi ¼
HðHðmk; idiÞ; tsÞ. Then, C can recover frx; ry; rw; rtt ; rt1 ; rt2g
from SER with ssi. Next, C exploits the homomorphic prop-
erties of FHE to remove these random sets frx; ry; rw;
rtt ; rt1 ; rt2g from fEðBF0Rq;xÞ;EðBF0Rq;yÞ;EðBF0Wq Þ; Eð~t0tÞ;Eð~t01Þ;
Eð~t02Þg and get:

fEðBFRq;xÞ;EðBFRq;yÞ;EðBFWqÞ;Eð~ttÞ;Eð~t1Þ;Eð~t2Þg:
After that, the cloud server C can compute an encrypted flag
set EðSfÞ ¼ fEðfiÞ j i 2 ½1; n�g, in which fi ¼ 1 if the data
record xi satisfies the query Q, otherwise fi ¼ 0. The con-
crete process is as follows.
� Step-1. C invokes SSMT:InterpolationðgÞ to generate a

polynomial function fðxÞ.
� Step-2. C first checks whether pi;x 2 Rq;x with the

SSMT:Check algorithm. For each bloom filter EðBFRq;x;jÞ in
EðBFRq;xÞ, where j 2 ½1; tx�, the cloud server C obtains:

Eðux;jÞ ¼ SSMT:Check EðBFpi;xÞ;EðBFRq;x;jÞ; fðxÞ
� �

:

Afterward, C computes EðuxÞ ¼
Ptx

j¼1 Eðux;jÞ to represent
whether pi;x 2 Rq;x. If yes, EðuxÞ ¼ Eð1Þ, otherwise Eð0Þ. This
is because, for the prefix encoding technique, there is only
one common element for FðxÞ and SðRÞ when x 2 R, i.e.,
jFðxÞ \ SðRÞj ¼ 1. Similarly, C can obtain EðuyÞ to indicate

3776 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

whether pi;y 2 Rq;y or not by computing
Pty

j¼1 SSMT:Check

ðEðBFpi;yÞ;EðBFRq;y;jÞ; fðxÞÞ.
� Step-3. Regarding the keyword set, C first obtains

Eðuw;jÞ ¼ SSMT:CheckðEðBFWiÞ;EðBFWq;jÞ; fðxÞÞ, where j 2 ½1;
tw�. After calculating EðFÞ ¼Ptw

j¼1 Eðuw;jÞ, C needs to deter-
mine whether Eq. (4) holds or not. If yes, Eð1Þ is produced,
otherwise Eð0Þ. However, since all values in Eq. (4) are
encrypted, it is hard to directly execute the comparison.
Our solution is to introduce secure circuits by providing
Eðj~WijÞ and fEð~ttÞ;Eð~t1Þ;Eð~t2Þg. Nevertheless, there is still a
gap between EðFÞ and Eð~FÞ as the prerequisite of using
secure circuits is to convert EðFÞ into its bit sequence format
Eð~FÞ without decryption. To tackle it, we devise a secure
partial addition circuit, denoted as SPadd, and illustrate the
conversion in Algorithm 1.

Algorithm 1. Calculating Eð~FÞ
Input: An encrypted data, EðxiÞ. An encrypted query token,

Token1.
The maximum bit length of secure circuits lmax;

Output: The number of intersecting keywords, Eð~FÞ;
1: Eð~FÞ fEð0Þj0j¼lmax�1g;
2: for each EðBFWq;jÞ in EðBFWq Þ do
3: Eðuw;jÞ SSMT:CheckðEðBFWi Þ;EðBFWq;j Þ; fðxÞÞ;
4: Eð~FÞ SPaddðEð~FÞ;Eðuw;jÞ; lmaxÞ;
5: SPaddSPaddSPaddSPaddSPaddSPaddSPadd(Eð~xÞ, EðuÞ; lmax)
6: Ecarry EðuÞ;
7: for j 0 to lmax � 1 do
8: Esum EðxjÞ þ Ecarry; Emul EðxjÞ � Ecarry;
9: EðzjÞ Esumþ 2 � Emul � Eð�1Þ
10: Ecarry Emul;
11: return Eð~zÞ ðEðzjÞj0j¼lmax�1Þ;

With Eð~FÞ, C can obtain the left value of Eq. (4), denoted
as Vl (Vl ¼ ðt1 þ t2Þ �F), using Smul, i.e., Eð~VlÞ ¼ Smul
ðEð~t2Þ;Eð~FÞÞ, where ~t2 is the bit sequence of t1 þ t2. Then,
with Eð~t1Þ, Eð~ttÞ, and Eðj~WijÞ, C can obtain the right value of
Eq. (4), denoted as Vr (Vr ¼ t1jWqj þ t1jWij), using Smul and
Sadd, i.e., Eð~VrÞ ¼ SaddðEð~ttÞ; SmulðEð~t1Þ;Eðj~WijÞÞÞ, where
~tt ¼ t1 � tw ¼ t1 � jWqj. Finally, C uses Scom to check Eq. (4),
i.e., EðzÞ ¼ ScomðEð~VlÞ;Eð~VrÞÞ. If Eq. (4) holds, z ¼ 1, other-
wise z ¼ 0. We depict the process of computing EðzÞ in
Fig. 4. Note that here we need to flip z by computing EðzÞ ¼
Eð1� zÞ since Eq. (4) requires “� ,” while Scom ensures “< ”.
� Step-4. C calculates EðfiÞ ¼ EðuxÞ � EðuyÞ � EðzÞ ¼ Eðux � uy

�zÞ, where EðuxÞ and EðuyÞ have been calculated in Step-2. Then,
C sends EðSfÞ ¼ fEðfiÞ j i 2 ½1; n�g to the query proxy P after
applying permutation p on EðSfÞ. In Fig. 5, we give an example
of EðSfÞ with n ¼ 5, in which we assume the second and fifth
data records satisfy the queryQ.
� Step-5. P first recovers Sf ¼ ffi j i 2 ½1; n�gwith the secret

key sk. If there are k data records satisfying the query Q, P

constructs k encrypted vectors fEðv1Þ;Eðv2Þ; . . . ;EðvkÞg,
where EðvjÞ ¼ fEðvj;1Þ;Eðvj;2Þ; . . . ;Eðvj;nÞg, j 2 ½1; k�. For an
encrypted vector EðvjÞ, only one element is Eð1Þ, and others
are Eð0Þ. After that, P forwards fEðvjÞ j j 2 ½1; k�g to the cloud
server C. In the example of Fig. 5, since there are two data
records satisfying the query Q, the query proxy P generates
two encrypted vectors fEðv1Þ;Eðv2Þg. If k ¼ 0, P returns ? to
the query user ui.
� Step-6. Upon receiving fEðvjÞ j j 2 ½1; k�g, the cloud

server C applies the inverse permutation p�1 on each vector
EðvjÞ and then calculates the k encrypted results as follows:

Eðpj;xÞ ¼
Xn
i¼1

Eðvj;iÞ � Eðpi;xÞ
� �

¼ Eð
Xn
i¼1

vj;i � pi;xÞ
� �

Eðpj;yÞ ¼
Xn
i¼1

Eðvj;iÞ � Eðpi;yÞ
� �

¼ Eð
Xn
i¼1

vj;i � pi;yÞ
� �

EðWjÞ ¼
Xn
i¼1

Eðvj;iÞ � EðWiÞ
� � ¼ Eð

Xn
i¼1

vj;i � WiÞ
� �

;

8>>>>>>>>><>>>>>>>>>:
(8)

where j 2 ½1; k�. After that, C chooses 2þ ’ random positive
integers: rj ¼ ðrj;x; rj;y; rj;1; rj;2; . . . ; rj;’Þ for each encrypted
result, in which rj;x is added into Eðpj;xÞ, rj;y is added into
Eðpj;yÞ, and frj;1; rj;2; . . . ; rj;’g are added into encrypted key-
words EðWjÞ. We denote the new result as fEðp0j;xÞ;
Eðp0j;yÞ;EðW0jÞg. After encrypting rj with the query user’s ses-
sion key ssi, the cloud server C sends

ERes ¼ f Eðp0j;xÞ;Eðp0j;yÞ
� �

;EðW0jÞ;SEssiðrjÞ; idi j j 2 ½1; k�g

to the query proxy P.
Data Recovery. Upon receiving ERes, P first recovers

fðp0j;x; p0j;yÞ; W0j j j 2 ½1; k�g with the FHE secret key sk. After
that, P forwards the query result:

Res0 ¼ fðp0j;x; p0j;yÞ; W0j;SEssiðrjÞ j j 2 ½1; k�g
to the query user ui. With Res0, ui first recovers rj using his/
her session key ssi. Finally, ui obtains the desired result:
Res ¼ fðpj;x; pj;yÞ; Wj j j 2 ½1; k�g by removing rj.

Remark. Our PPSKS scheme is the first to consider the
keyword set similarity while hiding access patterns. To
achieve it, there are three key points: i) transforming the Jac-
card similarity into the combination of set membership test
and a simple compute-then-compare operation; ii) designing
the SSMT scheme that uses the Lagrange interpolation func-
tion to map encrypted values into Eð0Þ or Eð1Þ; iii) devising
SPadd to convert EðFÞ into Eð~FÞ without decryption and
introducing secure circuits. Although our PPSKS scheme
leaks the number of data records for the query result, it is a
trivial leakage, and we will prove that it is secure against
the semi-honest cloud server and query proxy in Section 6.

4.3 Tree-Based Construction: Our PPSKS+ Scheme

4.3.1 Overview of Our PPSKS+ Scheme

Although our PPSKS scheme can hide access patterns
among n data records, its performance is limited to be linear
to the dataset size. To improve efficiency, we propose a tree-
based privacy-preserving SKS query scheme, denoted as
PPSKS+, to attain a sublinear efficiency. Specifically, we first

Fig. 5. An example of constructing fEðvjÞ j j 2 ½1; k�g, in which there are
five data records, and the second and fifth ones satisfy the queryQ.

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3777

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

design an index that we call FR-tree by modifying R*-
tree [31]. Then, we encrypt the FR-tree by adopting a predi-
cate encryption technique for non-leaf nodes and Eq. (5) for
leaf nodes. Finally, we employ a vector bucketing technique
to improve the efficiency of our PPSKS+ scheme.

Build FR-Tree Over Plaintexts. Same as R*-tree [31], our FR-
tree groups nearby spatial data and represents them with their
minimum bounding rectangle (MBR) in the higher level of the
tree, as shown in Fig. 6. Different from R*-tree, however, our
FR-tree counts the keyword frequency of the given dataset X
and sorts them with the decreasing order according to the fre-
quencies. Then, for each keyword set Wi, we can build a bitmap,
which is denoted as BMi and has the length r as the same as the
number of unique keywords in the dataset. Next, our FR-tree
merges BMi from bottom to top. For instance, in Fig. 6, BM9 and
BM10 are merged into a new bitmap f1; 1; 0; 1; 0; 1; 0; 1; 0g. In
this way, we can effectively filter out the data records whose
keyword sets do not satisfy the constraint of Jaccard similar-
ity [32]. The details of our FR-tree are shown as follows.

� Root node. The root node must intersect with a spa-
tial keyword query in both spatial and keyword
domains. Therefore, we ignore the root node and
store nothing in it.

� Non-leaf nodes. Each non-leaf node represents an
MBR containing two components: i) the spatial rect-
angle of MBR R ¼ ðRx; RyÞ, where Rx ¼ ½pxl; pxu� and
Ry ¼ ½pyl; pyu�; ii) the merged bitmap BM.

� Leaf nodes. Each leaf node represents a spatial keyword
data record xi ¼ fðpi;x; pi;yÞ; Wig. Note that since the bit-
map of Wi is only for generatingmerged bitmaps, we do
not store it in the corresponding leaf node.

Given a query Q ¼ fRq; Wqg and an MBR=fR;BMg, if Rq
intersects with R, and the inner product of the bitmap BMq

(generated by Wq) and the merged bitmap BM is larger than
0, we need to access the MBR’s children. Formally, the con-
dition of accessing MBR’s children is to check:

ðR \ Rq 6¼ ?Þ ^ ðBM
 BMq > 0Þ: (9)

Since our keyword constraint is the Jaccard similarity,
we can modify the above condition and adopt a more

reasonable and stricter condition:

ðR \ Rq 6¼ ?Þ ^ ðBM
 EðBMqÞ > 0Þ; (10)

where EðBMqÞmeans removing the first tw � ðbð1� tÞtwc þ 1Þ
elements in Wq before mapping Wq’s elements into BMq. See
details in [32]. Here, tw ¼ jWqj, and t is a similarity threshold.

Encrypt FR-Tree. In our FR-tree, each leaf node is
encrypted as Eq. (5). For encrypting the MBRs of non-leaf
nodes, we propose a predicate encryption technique by
modifying the hyper-rectangle intersection predicate
encryption used in [18].

On the one hand, with regard to the spatial rectangle, our
main idea is based on the following transformation:

R \ Rq 6¼ ? , ðpxl 2 ½1; pq;xu�Þ ^ ðpxu 2 ½pq;xl; Tx�Þ
ðpyl 2 ½1; pq;yu�Þ ^ ðpyu 2 ½pq;yl; Ty�Þ;

�
(11)

where Tx and Ty are the upper bound of x and y dimensions,
respectively. Consequently, we can convert R into a vector
VR and encrypt VR into the corresponding ciphertext CVR by
using the matrix encryption, i.e., CVR ¼ VRM, where M is a
random invertible matrix. Given a query rectangle Rq, we
convert it into a vector VRq and encrypt VRq into CVRq ¼
VRq ðM�1ÞT . Here T means transposition. Finally, we can
check whether CVR
 CVRq ¼ VR
 VRq > 0 or not. If yes, it
means R \ Rq 6¼ ? , otherwise Rq \ R ¼ ? .

On the other hand, we can determine whether the key-
word condition is satisfied by computing CBM
 CBMq, where
CBM ¼ BM � M and CBMq ¼ EðBMqÞ � ðM�1ÞT . If CBM
 CBMq ¼
BM
 EðBMqÞ > 0, the keyword condition is satisfied, other-
wise not.

However, we cannot directly use the above approach to
determine whether an MBR’s children should be accessed.
That is because the above approach leaks the privacy about
which constraint (spatial or keyword) leads Eq. (10) to fail.
Here, we term it as conjunctive privacy. Such a kind of pri-
vacy leakage has been penetratingly analyzed in [9]. To
tackle it, we propose a random mask solution by construct-
ing an integrated vector VR;BM with the size of 2ðTx þ TyÞ þ
1þ rþ d, where d is the number of dummy values, and
encrypting it into CVR;BM ¼ VR;BM � M. Specifically,

Fig. 6. An example of FR-tree, in which the keyword dictionary size is 9, i.e., r ¼ 9.

3778 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

VR;BM ¼ ðrsaðRxÞ; rsaðRyÞ;�rs; rkBM;�r1;�r2; . . . ;�rdÞ;
where rs; rk, and ri ði 2 ½1; d�Þ are random real numbers sat-
isfying rs > rk >

Pd
i¼1 ri. If we let � 2 fx; yg, we have:

aðR�Þj2½1;2T�� ¼
1 if j ¼ p�l or j ¼ p�u þ T�
0 Otherwise:

�
(12)

Given a queryQ containing Rq and EðBMqÞ, it is encoded as a
2ðTx þ TyÞ þ 1þ rþ d dimensional vector VRq ;BMq and then
encrypted into CVRq ;BMq ¼ VRq ;BMq � ðM�1ÞT .

VRq ;BMq ¼ ðrqbðRq;xÞ; rqbðRq;yÞ; 4rq; rtEðBMqÞ; r01; r02; . . . ; r0dÞ;

where rq; rt, and r0i ði 2 ½1; d�Þ are random real numbers sat-
isfying rq > rt � f >

Pd
i¼1 r

0
i, and f is the number of ele-

ment 1 in EðBMqÞ. If we let � 2 fx; yg, we have:

bðRq;�Þj2½1;2T�� ¼
1 if j 2 ½1; pq;�u�

or j 2 ½pq;�l þ T�; 2T��
0 Otherwise:

8<: (13)

With CVR;BM and CVRq ;BMq , we can determine whether Eq. (10)
holds or not by computing CVR;BM
 CVRq ;BMq . If CVR;BM

CVRq ;BMq > 0, Eq. (10) holds, and we need to access the
MBR’s children, otherwise it does not hold, and we
should ignore the MBR’s children. In this way, when we
decide not to access an MBR’s children, the information
about which constraint does not hold is preserved. Next,
we show the correctness proof of our random mask solu-
tion as follows.

Proof.

CVR;BM
 CVRq ;BMq ¼ CVR;BM � ðCVRq ;BMq ÞT

¼ VR;BM � M
� � � VRq ;BMq � ðM�1ÞT

� �T
¼ VR;BM � ðVRq ;BMq ÞT ¼ VR;BM
 VRq ;BMq
¼ rsrq aðRxÞ
 bðRq;xÞ þ aðRyÞ
 bðRq;yÞ � 4

� �
þ rkrt BM
 EðBMqÞð Þ �

Xd
i¼1

rir
0
i (14)

From Eqs. (11), (12), and (13), we know that, if R \ Rq 6¼ ? ,
we have aðRxÞ
 bðRq;xÞ þ aðRyÞ
 bðRq;yÞ ¼ 4, otherwise
ðaðRxÞ
 bðRq;xÞ þ aðRyÞ
 bðRq;yÞÞ 2 ½0; 3�. Regarding the
keyword condition, if it is satisfied, we have BM

EðBMqÞ > 0, otherwise it is 0. Since rsrq > rkrt � f >Pd

i¼1 rir
0
i, iff Eq. (10) holds, we have CVR;BM
 CVRq ;BMq > 0.tu

Vector Bucketing Technique. In our random mask solution,
we need to construct the vectors VR;BM and VRq ;BMq with the
size of 2ðTx þ TyÞ þ 1þ rþ d. In some cases, Tx, Ty, or r may
be large, leading to efficiency deterioration in generating
random matrix and encrypting these vectors. To tackle this
issue, we propose a vector bucketing technique to split a
vector into several sub-vectors, each of which has the size of
k. Totally, there are � ¼ d2ðTxþTyÞþ1þrþd

k
e sub-vectors:

VR;BM ¼ ðV1R;BM; V2R;BM; . . . ; V�R;BMÞ;
VRq ;BMq ¼ ðV1Rq ;BMq ; V2Rq ;BMq ; . . . ; V

�
Rq ;BMq Þ: (15)

Note that the last sub-vector will be padded with 0 if its size
is less than k, and the permutation technique can be used
here to swap the positions of these sub-vectors. Then, we
add at least 2 random real numbers into each sub-vector,
i.e., ~VjR;BM ¼ ðVjR;BM; rjx;1; rjx;1; rjx;2; rjx;2Þ and ~V

j
Rq ;BMq

¼ ðVjRq ;BMq ; rjq;1;
�rjq;1; rjq;2;�rjq;2Þ, where j 2 ½1; ��. After that, we generate �
random invertible matrices fM1;M2; . . . ;M�g and encrypt
sub-vectors as follows:

fCVR;BM ¼ ð~V1R;BM � M1; ~V
2
R;BM � M2; . . . ; ~V

�
R;BM � M�Þ;fCVRq ;BMq¼ð~V1Rq ;BMq �ðM�11ÞT ; ~V2Rq ;BMq � ðM�12ÞT ; . . . ; ~V�Rq ;BMq � ðM�1�ÞT Þ: (16)

Similarly, we can determine whether Eq. (10) holds or not
by computing fCVR;BM
fCVRq ;BMq . Since we have fCVR;BM
fCVRq ;BMq ¼ ~VR;BM
 ~VRq ;BMq ¼ VR;BM
 VRq ;BMq , the vector bucketing
technique can ensure the correctness of the predicate
encryption according to Eq. (14). In this way, we can
improve the performance in generating random invertible
matrices and encrypting vectors. First, in the process of gen-
erating a randommatrix, most of time is taken in calculating
its inverse matrix. Although we need to generate � random
invertible matrices, generating a ðkþ 4Þ � ðkþ 4Þ random
invertible matrice is more efficient than generating a ð2Tx þ
2Ty þ 1þ rþ dÞ � ð2Tx þ 2Ty þ 1þ rþ dÞ random invertible
matrix. Second, the vector bucketing technique can reduce
the multiplication and addition operations from around
ð2Tx þ 2Ty þ 1þ rþ dÞ2 to � � ðkþ 4Þ2.

4.3.2 Description of Our PPSKS+ Scheme

Based on the above FR-tree, random mask solution, and
vector bucketing technique, we construct our PPSKS+
scheme, which is also comprised of five phases: 1) system
initialization; 2) data outsourcing; 3) token generation; 4)
search; 5) data recovery.

System Initialization. In our PPSKS+ scheme, the system
initialization phase is similar to that of our PPSKS scheme.
The only difference is that the data owner O needs to gener-
ate � random invertible matricesM¼ fM1;M2; . . . ;M�g, each
of which has the size of ðkþ 4Þ � ðkþ 4Þ, and authorizes
them to the query proxy P.

Data Outsourcing. The data owner O first builds the FR-
tree over the dataset X ¼ fxi ¼ fðpi;x; pi;yÞ; Wig j 1 � i � ng.
Here, we denote the FR-tree as G. Then, O encrypts G as
EðGÞ. Specifically, for each non-leaf node, O constructs VR;BM
and generates encrypted vectorfCVR;BM using the vector buck-
eting technique. For each leaf node, O generates EðxiÞ
according to Eq. (5) and pads the last level’s MBR to have m
leaf nodes with the values outside the possible queries,
where m is the maximum number of children. After that, O
outsources EðGÞ to the cloud server C. Besides, O sends the
parameters fTx; Ty; d; kg and the sorted keyword dictionary
to the registered query users.

Token Generation. First, the query user ui constructs the
vector ~VRq ;BMq ¼ ð~V1Rq ;BMq ; ~V2Rq ;BMq ; . . . ; ~V

�
Rq ;BMq Þ according to the

query request Q. For each ~VRq ;BMq
j ð1 � j � �Þ, ui chooses

two random real numbers frj1; rj2g and two random vectors
fVRj1; VRj2g satisfying ~VjRq ;BMq ¼ rj1 � VRj1 þ rj2 � VRj2. Then, ui fur-
ther chooses random real numbers frj1;"; rj2;" j " ¼ 1; 2; 3; 4g
and two random vectors fVRj3; VRj4g. After that, ui generates
VQj ¼ fVQj1;1; VQj1;2; VQj2;1; VQj2;2g, where

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3779

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

VQ
j
1;1 ¼ rj1;1 � VRj1 þ rj1;2 � VRj3;

VQ
j
1;2 ¼ rj1;3 � VRj1 þ rj1;4 � VRj3;

VQ
j
2;1 ¼ rj2;1 � VRj2 þ rj2;2 � VRj4;

VQ
j
2;2 ¼ rj2;3 � VRj2 þ rj2;4 � VRj4:

8>>><>>>: (17)

After generating the session key ssi ¼ Hðsski; tsÞ, ui sends

fVQj;SEssiðrj1jjrj2jjrj1;"jjrj2;"Þ j j 2 ½1; ��; " 2 ½1; 4�g and fBF0Rq;x ;
BF0Rq;y ;BF

0
Wq
;~t0t;~t

0
1;~t
0
2; SERg (generated in Step-3 of the

PPSKS’s token generation phase) to the query proxy P.
Upon receiving them, P first generates Token1 with

Eq. (7). Then, P generates Token2 with the authorized matri-
cesM¼ fM1;M2; . . . ;M�g as follows.

Token2 ¼ fVQj � ðM�1j ÞT ;SEssiðrj1jjrj2jjrj1;"jjrj2;"Þ;
idi; ts j j 2 ½1; ��; " 2 ½1; 4�g;

where VQj � ðM�1j ÞT ¼ fVQj1;1 � ðM�1j ÞT ; VQj1;2 � ðM�1j ÞT ; VQj2;1 �
ðM�1j ÞT ; VQj2;2 � ðM�1j ÞTg. Next, P forwards query tokens
fToken1; Token2g to the cloud server C.

Search. After receiving the query tokens, with the master
key mk, the cloud server C first calculates the session key
ssi ¼ HðHðmk; idiÞ; tsÞ and then recovers random sets
frx; ry; rw; rtt ; rt1 ; rt2g from SER and frj1; rj2; rj1;"; rj2;"g from
SEssiðrj1jjrj2jjrj1;"jjrj2;"Þ. For Token1, C obtains fEðBFRq;xÞ;
EðBFRq;yÞ; EðBFWq Þ;Eð~ttÞ;Eð~t1Þ;Eð~t2Þg by removing random
sets. For Token2, C recovers ~VjRq ;BMq � ðM�1j ÞT using VQj � ðM�1j ÞT
and frj1; rj2; rj1;"; rj2;"g as follows.

~V
j
Rq ;BMq

� ðM�1j ÞT ¼ rj1 �
rj1;4 � VQj1;1 � ðM�1j ÞT � rj1;2 � VQj1;2 � ðM�1j ÞT

rj1;1 � rj1;4 � rj1;3 � rj1;2

þ rj2 �
rj2;4 � VQj2;1 � ðM�1j ÞT � rj2;2 � VQj2;2 � ðM�1j ÞT

rj2;1 � rj2;4 � rj2;3 � rj2;2
from Eq. (17)����������! ¼ ðrj1 � VRj1 þ rj2 � VRj2Þ � ðM�1j ÞT ¼ ~V

j
Rq ;BMq

� ðM�1j ÞT :

Then, C can generate fCVRq ;BMq , as shown in Eq. (16). Next, C
traverses the encrypted tree EðGÞ by checking whetherfCVR;BM
fCVRq ;BMq > 0 or not. If yes, C accesses the MBR’s chil-
dren. When navigating to leaf nodes, C executes the same
steps as the search phase in the PPSKS scheme to obtain the
encrypted results: ERes. Note that, in our PPSKS scheme, C
needs to calculate ERes among the whole dataset. While, in
our PPSKS+ scheme, C only needs to calculate ERes within
the leaf nodes under an MBR. See the detailed search pro-
cess in Algorithm 2.

Data Recovery. In our PPSKS+ scheme, the data recovery
phase is the same as that in the PPSKS scheme.

Remark. The basic idea of our PPSKS+ scheme is to build
an encrypted FR-tree and make the cloud server search over
the tree. Since R*-tree has fewer overlaps than the original
R-tree, we choose it as the building block of our FR-tree.
When traversing the encrypted FR-tree, we use the predi-
cate encryption that allows the cloud server to quickly navi-
gate to the last level’s MBR. After that, the cloud server can
calculate the encrypted results among the leaf nodes in the
MBR. As a result, our PPSKS+ scheme can achieve better
efficiency than our PPSKS scheme while hiding access pat-
terns amongm encrypted data records.

5 SECURITY ANALYSIS

Following our design goal in privacy preservation, in this
section, we will demonstrate that i) our proposed schemes
(PPSKS and PPSKS+) can protect the privacy of outsourced
data, query requests, query results, and access patterns
against the cloud server C; ii) our proposed schemes can
preserve the privacy of query requests and query results
against the query proxy P. Since our PPSKS and PPSKS+
schemes are built on the SSMT scheme, we will first prove
the security of our SSMT scheme and then discuss the pri-
vacy preservation of our PPSKS and PPSKS+ schemes.

Algorithm 2. PPSKS+ Search Over Encrypted Data

Input: Encrypted FR-tree, EðGÞ and query tokens, fToken1,
Token2g;

Output: A set containing encrypted data records, ERes;
1: fEðBFRq;xÞ;EðBFRq;yÞ;EðBFWq Þ;Eð~ttÞ;Eð~t1Þ;Eð~t2Þg Token1;
2: fCVRq ;BMq Token2;
3: Initialize an MBR set SMBR ? ;

fðxÞ SSMT:InterpolationðgÞ
4: SearchOnFRtreeðEðGÞ.root,fCVRq ;BMq Þ
5: for each MBR in SMBR do
6: for each leaf node EðxiÞ, i 2 ½1;m�, under MBR do
7: EðuxÞ

Ptx
j¼1 SSMT:CheckðEðBFpi;xÞ;EðBFRq;x;j Þ; fðxÞÞ

8: EðuyÞ
Pty

j¼1 SSMT:CheckðEðBFpi;yÞ;EðBFRq;y;j Þ; fðxÞÞ
9: EðzÞ SSMT:CheckðEðBFWi Þ;EðBFWq;j Þ; fðxÞÞ and

secure circuits: SPadd, Sadd, Scom, Smul;
10: EðfiÞ EðuxÞ � EðuyÞ � EðzÞ ¼ Eðux � uy � zÞ;
11: fEðvjÞ j j 2 ½1; k�g fEðfiÞ j i 2 ½1;m�g
12: fEðp0j;xÞ;Eðp0j;yÞ;EðW0jÞg Eq. (8) and random integers;
13: ERes.add(fEðp0j;xÞ;Eðp0j;yÞ;EðW0jÞg);
14: function SearchOnFRtree(node,fCVRq ;BMq)
15: if node is non-leaf node then
16: fCVR;BM encrypted vector of node.MBR;
17: iffCVR;BM
fCVRq ;BMq > 0 then
18: if node is last level’s non-lead node then
19: SMBR.add(node.MBR);
20: else
21: for each childNode of node do
22: SearchOnFRtree(childNode,fCVRq ;BMq);

First of all, we would briefly review the security model
for securely realizing an ideal functionality in the presence
of the static semi-honest adversary [33]. In our security
model, since the cloud server C and the query proxy P are
semi-honest, we will separately prove that our schemes are
secure against C and P. If we denote I as the instance of C
and P, i.e., I 2 fC;Pg, we have the following models:

Real world model: The real world execution of a scheme P
takes place in I and an adversary A, who corrupts I .
Assuming that x is the input of the scheme P over I , and y
is the auxiliary input, the execution of P under A in the real
world model is defined as:

REALP;A;yðxÞ ¼def fOutputPðxÞ;ViewPðxÞ; yg, in which
OutputPðxÞ is the output of the execution of P with the
input x on I , and ViewPðxÞ is the view of I during an execu-
tion of Pwith the input x.

Ideal world model: In the ideal world execution, I interacts
with the ideal functionality F for a function f . Here, the exe-
cution of f under simulator Sim in the ideal world model on
input x and auxiliary input y is defined as:

3780 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

IDEALF ;Sim;yðxÞ ¼def ffðxÞ; Simðx; fðxÞÞ; yg:

Definition 2 (Security against semi-honest adversary).
Let F be a deterministic functionality and P be a scheme in I .
We say that P securely realizes F if there exists Sim of PPT
(Probabilistic Polynomial Time) transformations (where
Sim ¼ SimðAÞ) such that for semi-honest PPT adversary A,
for x and y, for I holds:

REALP;A;yðxÞ 	c IDEALF ;Sim;yðxÞ

where 	c denotes computational indistinguishability.

5.1 The Security of SSMT Scheme

In this subsection, with Definition 2, we will prove that our
SSMT scheme achieves indistinguishability under Chosen-
Plaintext Attacks (IND-CPA).

Theorem 1. The SSMT scheme is IND-CPA secure if the used fully
homomorphic encryption scheme (FHE) is IND-CPA secure.

Proof. For the work process of the simulator, Sim first ran-
domly chooses a set S0, an element x0, and g independent
hash functions. Then, Sim simulatesA as follows: i) it gen-
erates an encrypted bloom filter EðBFs0 Þ for the set S0; ii) it
generates an encrypted bloom filter EðBFx0 Þ for the ele-
ment x0; iii) with g, it builds a polynomial function f 0ðxÞ;
iv) it calculates Eðs0Þ ¼ EðBFs0 Þ
 EðBFx0 Þ and Eðu0Þ ¼
Eðfðs0ÞÞ. Finally, Sim outputs fEðu0Þg and fEðBFs0 Þ;
EðBFx0 Þ; f 0ðxÞ;Eðs0Þg as A’s ideal view. In the real execu-
tion, A receives fEðBFsÞ;EðBFxÞ; fðxÞg and calculates
fEðsÞ;EðuÞg. Obviously, distinguishing the real and ideal
views is equivalent to breaking the FHE ciphertexts.
Therefore, our proposed SSMT scheme is IND-CPA
secure if the employed FHE is IND-CPA secure. tu

5.2 The Privacy Preservation of PPSKS and PPSKS
+ Schemes Against the Cloud Server

Before analyzing the security of our PPSKS and PPSKS+
schemes against the cloud server C, we first define the lea-
kages of our PPSKS and PPSKS+ schemes as L1 and L2,
respectively.
� In our PPSKS scheme, since C can only obtain the num-

ber of query result k, the leakage L1 ¼ k.
� In our PPSKS+ scheme, when searching on the non-leaf

nodes, C knows whether the MBR’s children should be
accessed by checking fCVR;BM
fCVRq ;BMq > 0. Consequently, C
knows the inner product result between fCVR;BM and fCVRq ;BMq ,
denoted as dotðfCVR;BM;fCVRq ;BMq Þ. When reaching leaf nodes,
since C executes the same operations as our PPSKS scheme
to obtain the encrypted query results, it also knows k. Thus,
L2 ¼ fdotðfCVR;BM;fCVRq ;BMqÞ; kg.

Next, we show that our PPSKS and PPSKS+ schemes can
achieve the privacy goals against the cloud server C.
Theorem 2. The PPSKS scheme securely computes ERes under
L1 without leaking the outsourced data, query requests, query
results, and access pattern privacy to C.

Proof. In our PPSKS scheme, C holds the encrypted out-
sourced data fEðxiÞ j i 2 ½1; n�g and the search token

Token1. First, C uses the SSMT scheme to calculate the
encrypted flag EðfiÞ indicating whether the correspond-
ing data record EðxiÞ satisfies the query requests or not.
Since the outsourced data and query requests are
encrypted with FHE, and the SSMT scheme has been
proved to be IND-CPA secure, the cloud server C has no
idea about the outsourced data, query requests, and flags
fi. After obtaining EðfiÞ, C can get fEðvjÞ j j 2 ½1; k�g and
calculate k encrypted results with Eq. (8). Since all opera-
tions are conducted under FHE ciphertexts, the security
of FHE can guarantee the query results are kept secret
from C although it has L1. Besides, since C has no idea
about fi, and the k encrypted results are calculated from
n data records (see Eq. (8)), C only knows that there are k
data records satisfying the query request and cannot infer
which data records in the dataset are selected as the query
results. Therefore, our PPSKS scheme can hide access
patterns. tu

Theorem 3. The PPSKS+ scheme securely computes ERes under
L2 without leaking the outsourced data, query requests, query
results, and m-access pattern privacy to C.
Before proving Theorem 3, we first definem-access pattern

privacy.

Definition 3 (m-access pattern privacy). Given an
encrypted dataset X with n data items, after forming a subset
XðmÞ with m data items, where m < n, the m-access pattern
privacy ensures the adversary has no idea about which data
items in XðmÞ are selected as query results.

Proof. In our PPSKS+ scheme, C holds the encrypted FR-
tree EðGÞ and query tokens fToken1; Token2g. First, as
shown in Algorithm 2, C uses Token2 to traverse the FR-
tree on non-leaf nodes, in which the predicate encryption
technique motivated by [18] is adopted. In [18], such a
predicate encryption technique had been proved to be
selectively secure under the leakage of inner product
result dotðÞ. Therefore, C cannot infer the underlying
plaintexts of MBRs and Token2. Then, with Token1, C uses
the same approach as our PPSKS scheme to calculate the
encrypted query results on m leaf nodes. Therefore, C has
no idea regarding the plaintexts of encrypted leaf nodes
fEðxiÞ j i 2 ½1; n�g, Token1, and query results. Besides, in
our PPSKS+ scheme, we ensure that there are m leaf
nodes in the last level MBR by padding dummy data
records. Therefore, C cannot infer which data records are
returned as the query requests in the m leaf nodes. Thus,
our PPSKS+ scheme hides m-access pattern privacy. tu

5.3 The Privacy Preservation of PPSKS and PPSKS
+ Schemes Against the Query Proxy

Now, with Definition 2, we prove that the query requests
and query results of our PPSKS and PPSKS+ schemes are
kept secret from the query proxy P.
Theorem 4. The PPSKS and PPSKS+ schemes are secure

against the query proxy P if the employed symmetric key
encryption SEðÞ, e.g., AES-256, is secure.

Proof. Compared to our PPSKS scheme, our PPSKS+
scheme has an extra query token Token2. Therefore, if we

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3781

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

prove our PPSKS+ scheme to be secure against P, we can
also ensure the security of our PPSKS scheme. Next, we
show how to construct the simulator of our PPSKS+
scheme on P. First, Sim randomly chooses an SKS query
Q00 ¼ fR00q ; W00q ; t001 ; t002g, random sets fr00x; r00y; r00w; r00tt ; r00t1 ; r00t2g,
and random real numbers fr0j1 ; r0j2 ; r0j1;"; r0j2;" j j 2 ½1; ��; " 2
½1; 4�g. Then, Sim simulates A as follows: i) it generates
fBF00Rq;x ;BF00Rq;y ;BF00Wq ;~t00t ;~t001 ;~t002g by adding fr00x; r00y; r00w; r00tt ;
r00t1 ; r

00
t2
g into encoded Q00; ii) it first constructs ~VRq ;BMq

0

according to Q00 and then generates fVQ0j j j 2 ½1; ��g fol-
lowing Eq. (17). Finally, Sim outputs fBF00Rq;x ;BF00Rq;y ;
BF00Wq ;~t

00
t ;~t
00
1 ;~t
00
2 ; VQ

01; VQ02; . . . ; VQ0�g as A’s ideal view. In the
real execution, A receives fBF0Rq;x ;BF0Rq;y ;BF0Wq ;~t0t;~t01;~t02; VQ1;
VQ2; . . . ; VQ�g. In A’s real view, all elements are added
with random values: frx; ry; rw; rtt ; rt1 ; rt2g and frj1; rj2;
rj1;"; r

j
2;"g. Clearly, distinguishing the real and ideal views

is equivalent to obtaining these random values. However,
these values are encrypted by SEðÞ with the session key
ssi. Since P does not have ssi, the security of SEðÞ ensures
that the query request of our PPSKS+ scheme is secure.
Similarly, due to the random sets frj j j 2 ½1; k�g, which
are encrypted with SEðÞ, the query results are also secure
against P. tu

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our PPSKS
and PPSKS+ schemes, focusing on data outsourcing, token
generation, and search phases.

Notably, we do not compare our proposed schemes with
the existing privacy-preserving spatial keyword query
schemes in terms of performance. That is because this work
is the first to consider the similarity of keyword sets while
protecting access pattern privacy in privacy-preserving spa-
tial keyword queries. Since the stricter security goal or more
challenging functionality (both of which we have) unavoid-
ably incur additional costs, it is unreasonable and unfair to
compare the performance of schemes that have different
security goals or functionalities. Nonetheless, to explore the
differences between our proposed schemes and the existing
schemes, we provide a detailed characteristic comparison in
Table 3.

Experimental Setting. In our experiments, we use a real-
world Yelp business dataset [34], denoted as Yelp. For each
item in the dataset, we extract the location information of
Florida as spatial data and the categories attribute as key-
word sets. Table 2 lists the description of the Yelp dataset.
Further, we scale the location information and have Tx ¼
111; 135; Ty ¼ 95; 102. Therefore, wpi;x

¼ wpi;y
¼ 17.

Recalling Section 3, we employ the bloom filter and FHE
in our proposed schemes. For bloom filters, we will use the
optimal version, i.e., following the equation h ¼ g � m= ln 2 to
set the bloom filter’s length, in which the false positive

probability is fp 	 ð1=2Þg . For the spatial bloom filters, m ¼
2wpi;x

� 2 ¼ 2wpi;x
� 2 ¼ 32, while m ¼ 27 for the keyword

bloom filter. Regarding FHE, we adopt the symmetric
homomorphic encryption (SHE) used in [35], [36] due to its
high efficiency. For SHE’s security parameters, we set k0 =
4096, k1 = 80, and k2 = 160. See detailed definitions in [35].
Note that: i) the SHE scheme also has its public-key set-
ting [36]; ii) although SHE is a leveled homomorphic
encryption scheme, we can refresh ciphertexts by using the
bootstrapping protocol proposed in [35]. All of our pro-
posed schemes were implemented with Java and executed
on a machine with 16 GB memory, 3.4 GHz Intel(R) Core
(TM) i7-3770 processors, and Ubuntu 16.04 OS.

6.1 Evaluation of Data Outsourcing Phase

From Section 4, we know that the performance of our
PPSKS and PPSKS+ schemes is affected by the number of
data records n and the number of hash functions g.
Besides, the maximum number of FR-tree children has an
impact on the performance of our PPSKS+ scheme due to
employing the tree structure. Fig. 7 depicts the perfor-
mance of our PPSKS and PPSKS+ schemes in the data out-
sourcing phase varying with the above parameters. From
Figs. 7a and 7b, we can see that the PPSKS scheme con-
sumes less time than our PPSKS+ scheme in preparing out-
sourcing data. This is because, compared to the PPSKS
scheme, the PPSKS+ scheme needs to additionally build
FR-tree and encrypt the constructed FR-tree. It is reason-
able since data outsourcing is offline and usually takes
once. The tree-based scheme, PPSKS+, benefits the perfor-
mance of search operations that are frequent and are the
focus of the optimization. See detailed search evaluations
in Section 6.3. Furthermore, Figs. 7a and 7b illustrate that
the outsourcing time of the PPSKS+ scheme increases
sharply with growing n, while it almost remains stable
with the growth of g. The reason is that the time cost of
encrypting FR-tree’s non-leaf nodes dominates that of leaf
nodes. In Fig. 7c, we evaluate the outsourcing performance
of our PPSKS+ scheme under different maximum children
settings. We can see that: i) the time costs increase with the
growth of n for each maximum children setting. Obvi-
ously, it is due to the increase in the number of non-leaf
nodes; ii) more children under an MRB leads to better out-
sourcing performance. This is because there are fewer non-
leaf nodes if n is fixed.

6.2 Evaluation of Token Generation Phase

In the token generation phase, the PPSKS scheme generates
one token Token1, while the PPSKS+ generates two tokens:
Token1 and Token2. For Token1, it is affected by the number
of hash functions g and the number of keywords jWqj.
Regarding Token2, it is affected by the number of sub-vec-
tors � introduced by our vector bucketing technique. Since
we will discuss the performance varying with � in Sec-
tion 6.4, here we only evaluate the token generation perfor-
mance varying with g and jWqj, as shown in Figs. 8a and 8b.
From these two figures, we have: i) our PPSKS scheme has
better performance in generating tokens. It is obvious since
the PPSKS+ scheme needs to generate an additional token
Token2; ii) the token generation time of our PPSKS scheme

TABLE 2
Description of the Yelp Dataset

Name Dataset
size

Maximum size of
keyword sets

Keyword dictionary
size

Yelp 21,900 27 1123

3782 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

increases with the growth of g and jWqj, while the PPSKS+
scheme presents a stable trend. This is because generating
random vectors VQj ðj 2 ½1; ��Þ and encrypting them into
Token2 take more time than generating Token1. However, g
and jWqj only have an impact on generating Token1; iii)
although our PPSKS+ scheme is not as good as the PPSKS
scheme in the performance of token generation, it is still less
than 200 ms for all experimental cases, validating its effi-
ciency in this phase.

6.3 Evaluation of Search Phase

In the search phase, we explore the impact of the number of
data records n, the number of hash functions g, and the
number of query keywords jWqj on search efficiency, as
shown in Figs. 9a, 9b, and 9c, respectively. From these three
figures, we can see that: i) our PPSKS+ scheme achieves at
least two orders of magnitude better performance than the
PPSKS scheme; ii) our PPSKS+ is at the level of second and
fewer than 10 seconds in all experimental cases, which is
already quite efficient in performing spatial keyword
queries over encrypted data, especially under the goals of
calculating Jaccard similarity and protecting access patterns.
The significant advantage of our PPSKS+ scheme stems
from searching over encrypted FR-tree, allowing it to attain

sublinear efficiency. In contrast, our PPSKS scheme is linear
efficiency to the dataset size.

In Fig. 9d, we explore the impact of the number of FR-
tree’s maximum children on search efficiency, in which we
vary n and observe the search performance under different
maximum children settings. We can see that the dataset size
n has a minor impact on the search efficiency, whereas it is
a bit significant for the number of maximum children. That
is because it is quite efficient for our PPSKS+ scheme to
make search decisions by computing inner products at non-
leaf nodes, but it is relatively expensive in calculating search
results at leaf nodes. Therefore, fewer children under an
MBR can lead to better search performance.

As we employ the bloom filter technique in our schemes,
accuracy is another importantmeasurement. In fact, it is going
to be a trade-off between accuracy and efficiency, i.e., the
larger g will improve accuracy since fp 	 ð1=2Þg , but it will
increase the computational costs, as shown in Figs. 7b, 8a, and
9b. In our experiments, we set the maximum value of g as 20,
i.e., fp 	 0:0001%, which is acceptable for many real-world
applications. Since the number of hash functions g has an
insignificant effect on computational costs in data outsourcing
and token generation phases, we can further improve accu-
racy by enlarging g. Regarding the search phase, when g ¼
20 ðfp 	 0:0001%Þ, the performance of our PPSKS+ scheme is
still at the level of second and fewer than 10 seconds.

6.4 Performance Gain of Vector Bucketing
Technique

As the theoretical analysis in Section 4.3.1, the vector bucket-
ing technique can improve the performance in two aspects: i)
generating matrix and its inversion; ii) encrypting the non-
leaf node of FR-tree and the query token (Token2). In this sec-
tion, we evaluate the performance improvement of the vector
bucketing technique in key (matrix and its inversion) genera-
tion, token generation, and data outsourcing. Since the token

Fig. 7. Data outsourcing time: (a) varying with n, and setting g = 10; (b) varying with g, and setting n = 104; (c) varying with n, exploring the impact of
maximum children of FR-tree, and setting g = 10.

Fig. 8. Token generation time: (a) varying with g, and setting jWqj = 4;
(b) varying with jWqj, and setting g = 10.

TABLE 3
Comparison With Existing Schemes

Schemes ELCBFR+ [6] PBRQ-L [7] PBRQ-Q [7] PrivSTL [8] SKSE-I [9] SKSE-II [9] GRQ+MSSAC [10] PPSKS PPSKS+

Sub-linear complexity ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓
Keyword search Boolean Boolean Boolean Boolean Boolean Boolean Euclidean Jaccard Jaccard
Single-server model ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Conjunctive privacy ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓
Access pattern ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

- Note that, indicates the PPSKS+ scheme hidesm-access pattern privacy instead of the full access pattern privacy in PPSKS.

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3783

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

generation only involves one encryption operation for each
query, we plot the performance of key generation and token
generation in one figure, as shown in Fig. 10a. In the figure,
we vary � from 10 to 104 to observe the performance of matrix
generation MatrixGen, inverse matrix calculation InverseGen,
and token generation TokenGen. We can see that the vector
bucketing technique sharply reduces the execution time for
all of these operations, especially for the expensive operation
of InverseGen.Wehave analyzed the reasons in the description
of the vector bucketing technique, seeing details in Sec-
tion 4.3.1. Regarding the data outsourcing, Fig. 10b depicts
the execution time varying with �, in which we select n ¼
10; 000 and n ¼ 20; 000 as the number of outsourced data
records, and vary � from 102 to 104. We exclude the case of � ¼
10 because it takes dozens of hours to outsource the corre-
sponding datasets. Obviously, the vector bucketing technique
significantly improves the computational costs in preparing
the outsourced data and makes our proposed scheme avail-
able and efficient.

7 RELATED WORK

Due to the wide applications in LBS, several privacy-preserv-
ing spatial keyword query schemes have been designed to pre-
serve the privacy of outsourced data and query requests. In
2019, Cui et al. [6] proposed a privacy-preserving boolean spa-
tial keyword query scheme ELCBFR+ based on the matrix
encryption and linear transformation method. It can retrieve
the objects satisfying: i) their locations fall inside a query rectan-
gle; ii) their keyword sets contain all query keywords. Aiming
at the same query type,Wang et al. [7] adopted symmetric-key
hidden vector encryption, gray code, and bitmap encoding
technique to protect the data and query privacy. The designed
schemes are denoted as PBRQ-L and PBRQ-Q. Recently,Wang
et al. [9] further presented two privacy-preserving schemes,
SKSE-I and SKSE-II, for boolean spatial keyword queries, in

which hidden vector encryption was employed as the crypto-
graphic primitive, and bloom filter technique was used to con-
struct their schemes. By integrating bilinear map, RSA
encryption, and linear encryption, Huang et al. [8] proposed a
privacy-preserving scheme PrivSTL for the spatio-temporal
keyword query that supports an additional temporal condition
for the boolean spatial keyword query. Different from the
above schemes that only consider the boolean keyword search,
our proposed schemes are able to support the keyword set sim-
ilarity over encrypted data, which is more challenging but
more practical than the boolean keyword search.

Considering keyword set similarity, Song et al. [10] pro-
posed a privacy-preserving spatial keyword similarity query
scheme, denoted as GRQ+MSSAC, using matrix encryption.
However, this scheme adopted the euclidean distance tomea-
sure the keywords similarity, which is not as popular as the
Jaccard metric (used in our proposed schemes) for measuring
the similarity of keyword sets [16]. In addition, this scheme
did not consider the conjunctive privacy discussed in [9],
namely, it leaks the information about the spatial condition or
the keyword conditionmismatches the query request.

In addition, none of the aforementioned privacy-preserv-
ing schemes protect access pattern privacy, and our pro-
posed schemes are the first to consider such privacy while
providing spatial keyword similarity queries at the same
time. In order to clearly show the differences between our
proposed schemes and the existing schemes in this topic,
we compare their characteristics in Table 3.

8 CONCLUSION

In this paper, we have proposed privacy-preserving spatial
keyword similarity query schemes, in which PPSKS is a linear
search scheme, and PPSKS+ can achieve the sublinear search
efficiency. In this domain, we are the first to consider Jaccard
similarity for keywords sets and simultaneously protect access
patterns. Specifically, we first designed an SSMT scheme using
the bloom filter technique, FHE, and Lagrange interpolation
function. Based on the SSMT scheme and secure circuits, we
constructed our basic scheme, PPSKS. Then, we devised the
FR-tree index and proposed a modified predicate encryption
technique that allows us to search over encrypted FR-treewith-
out leaking conjunctive privacy. With these components, we
presented our tree-based construction, PPSKS+, which is effi-
cient in performing the spatial keyword similarity queries.
Finally, we formally analyzed the security of our proposed
schemes and conducted extensive experiments to explore their
performance. For futurework,wewill further improve the per-
formance of our PPSKS+ scheme.

Fig. 9. Search time: (a) varying with n, and setting g = 10, jWqj = 4; (b) varying with g, and setting n = 104, jWqj = 4; (c) varying with jWqj, and setting
n = 104, g = 10; (d) varying with n, exploring the impact of maximum children of FR-tree, and setting g = 10, jWqj = 4.

Fig. 10. Execution time of matrix generation, token generation, and data
outsourcing varying with �: (a) impact on key and token generations;
(b) impact on data outsourcing.

3784 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword
query processing: An experimental evaluation,” Proc. VLDB
Endowment, vol. 6, no. 3, pp. 217–228, 2013.

[2] T. Lee, J.-W. Park, S. Lee, S.-W. Hwang, S. Elnikety, and Y. He,
“Processing and optimizing main memory spatial-keyword quer-
ies,” Proc. VLDB Endowment, vol. 9, no. 3, pp. 132–143, 2015.

[3] G. Cong and C. S. Jensen, “Querying geo-textual data: Spatial key-
word queries and beyond,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 2207–2212.

[4] A. Mahmood and W. G. Aref, “Query processing techniques for
big spatial-keyword data,” in Proc. ACM Int. Conf. Manage. Data,
2017, pp. 1777–1782.

[5] P. Tampakis, D. Spyrellis, C. Doulkeridis, N. Pelekis, C. Kalyvas,
and A. Vlachou, “A novel indexing method for spatial-keyword
range queries,” in Proc. 17th Int. Symp. Spatial Temporal Databases,
2021, pp. 54–63.

[6] N. Cui, J. Li, X. Yang, B. Wang, M. Reynolds, and Y. Xiang, “When
geo-text meets security: Privacy-preserving boolean spatial keyword
queries,” inProc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 1046–1057.

[7] X. Wang et al., “Search me in the dark: Privacy-preserving bool-
ean range query over encrypted spatial data,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 2253–2262.

[8] Q. Huang, J. Du, G. Yan, Y. Yang, and Q. Wei, “Privacy-preserv-
ing spatio-temporal keyword search for outsourced location-
based services,” IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2021.3088131.

[9] X. Wang, J. Ma, F. Li, X. Liu, Y. Miao, and R. H. Deng, “Enabling
efficient spatial keyword queries on encrypted data with strong
security guarantees,” IEEE Trans. Inf. Forensics Secur., vol. 16,
pp. 4909–4923, Oct. 2021.

[10] F. Song, Z. Qin, L. Xue, J. Zhang, X. Lin, and X. Shen, “Privacy-
preserving keyword similarity search over encrypted spatial data
in cloud computing,” IEEE Internet Things J., vol. 9, no. 8,
pp. 6184–6198, Apr. 2022.

[11] S. Kabir, C. Wagner, T. C. Havens, and D. T. Anderson, “A simi-
larity measure based on bidirectional subsethood for intervals,”
IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp. 2890–2904, Nov. 2020.

[12] Z. Zhang et al., “Practical access pattern privacy by combining PIR
and oblivious shuffle,” in Proc. 28th ACM Int. Conf. Inf. Knowl.
Manage., 2019, pp. 1331–1340.

[13] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation,”
inProc. 19th Annu.Netw. Distrib. Syst. Secur. Symp., 2012, Art. no. 12.

[14] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 1329–1340.

[15] J. Peng, H. Wang, J. Li, and H. Gao, “Set-based similarity search for
time series,” inProc. Int. Conf.Manage. Data, 2016, pp. 2039–2052.

[16] D. Amagata, S. Tsuruoka, Y. Arai, and T. Hara, “Feat-SKSJ: Fast
and exact algorithm for top-k spatial-keyword similarity join,” in
Proc. 29th Int. Conf. Adv. Geographic Inf. Syst., 2021, pp. 15–24.

[17] B. Wang, M. Li, and L. Xiong, “FastGeo: Efficient geometric range
queries on encrypted spatial data,” IEEE Trans. Dependable Secure
Comput., vol. 16, no. 2, pp. 245–258, Mar./Apr. 2019.

[18] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao, “Towards
efficient and privacy-preserving user-defined skyline query over
single cloud,” IEEE Trans. Dependable Secure Comput., to be pub-
lished, doi: 10.1109/TDSC.2022.3153790.

[19] X. Zhu, E. Ayday, and R. Vitenberg, “A privacy-preserving frame-
work for outsourcing location-based services to the cloud,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 1, pp. 384–399, Jan./
Feb. 2021.

[20] J. Brickell and V. Shmatikov, “Privacy-preserving graph algo-
rithms in the semi-honest model,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2005, pp. 236–252.

[21] S. Geravand and M. Ahmadi, “Bloom filter applications in net-
work security: A state-of-the-art survey,” Comput. Netw., vol. 57,
no. 18, pp. 4047–4064, 2013.

[22] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homo-
morphic evaluation of deep discretized neural networks,” in Proc.
Annu. Int. Cryptol. Conf., 2018, pp. 483–512.

[23] M.Kim,H. T. Lee, S. Ling, B.H.M. Tan, andH.Wang, “Private com-
pound wildcard queries using fully homomorphic encryption,”
IEEE Trans. Dependable Secure Comput., vol. 16, no. 5, pp. 743–756,
Sep./Oct. 2019.

[24] X. Liu, R.H.Deng,K.-K. R.Choo, Y. Yang, andH. Pang, “Privacy-pre-
serving outsourced calculation toolkit in the cloud,” IEEE Trans.
Dependable Secure Comput., vol. 17, no. 5, pp. 898–911, Sep./Oct. 2020.

[25] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACRCryptol. ePrint Arch., vol. 2012, 2012, Art. no. 144.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans.
Comput. Theory, vol. 6, no. 3, pp. 1–36, 2014.

[27] S. Zhang, S. Ray, R. Lu, Y. Zheng, Y. Guan, and J. Shao, “PPAQ:
Privacy-preserving aggregate queries for optimal location selec-
tion in road networks,” IEEE Internet Things J., vol. 9, no. 20,
pp. 20178–20188, Oct. 2022.

[28] G. S. Çetin, Y. Dor€oz, B. Sunar, and E. Savaş, “Depth optimized
efficient homomorphic sorting,” in Proc. Int. Conf. Cryptol. Inf.
Secur. Latin Amer., 2015, pp. 61–80.

[29] R. Li, A. X. Liu, H. Xu, Y. Liu, andH. Yuan, “Adaptive secure nearest
neighbor query processing over encrypted data,” IEEE Trans. Depend-
able Secure Comput., vol. 19, no. 1, pp. 91–106, Jan./Feb. 2022.

[30] P. Gupta and N. McKeown, “Algorithms for packet classi-
fication,” IEEE Netw., vol. 15, no. 2, pp. 24–32, Mar./Apr. 2001.

[31] N. Beckmann,H.-P. Kriegel, R. Schneider, andB. Seeger, “TheR*-tree:
An efficient and robust access method for points and rectangles,” in
Proc. ACMSIGMOD Int. Conf.Manage. Data, 1990, pp. 322–331.

[32] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in Proc. 22nd Int. Conf. Data Eng.,
2006, pp. 5–5.

[33] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[34] Yelp dataset, 2020. [Online]. Available:: https://www.kaggle.
com/yelp-dataset/yelp-dataset

[35] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and pri-
vacy-preserving similarity range query over encrypted time series
data,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 4,
pp. 2501–2516, Jul./Aug. 2022.

[36] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatiotemporal keyword
query for ITS in 6G era,” IEEE Internet Things J., vol. 8, no. 22,
pp. 16243–16255, Nov. 2021.

Songnian Zhang received the MS degree from
Xidian University, China, in 2016, and he is currently
working toward the PhD degree with the Faculty of
Computer Science, University of New Brunswick,
Canada. His research interests include cloud com-
puting security, Big Data query, and query privacy.

Suprio Ray (Member, IEEE) received the PhD
degree from the Department of Computer Sci-
ence, University of Toronto, Canada, in 2015. He
is an associate professor with the Faculty of Com-
puter Science, University of New Brunswick, Fred-
ericton, Canada. His research interests include
Big Data and database management systems,
run-time systems for scalable data science, prove-
nance and privacy issues in Big Data and query
processing onmodern hardware.

Rongxing Lu (Fellow, IEEE) is a Mastercard IoT
research chair, a University research scholar, an
Associate Professor with the Faculty of Computer
Science (FCS), University of NewBrunswick (UNB),
Canada. His research interests include applied
cryptography, privacy enhancing technologies, and
IoT-Big Data security and privacy. He has published
extensively in his areas of expertise, and was the
recipient of 9 best (student) paper awards from
some reputable journals and conferences. Cur-
rently, he serves as the chair of IEEE ComSoc CIS-

TC (Communications and Information Security Technical Committee), and
the founding co-chair of IEEE TEMS Blockchain and Distributed Ledgers
Technologies Technical Committee (BDLT-TC).

ZHANG ETAL.: EFFICIENTAND PRIVACY-PRESERVING SPATIAL KEYWORD SIMILARITY QUERYOVER ENCRYPTED DATA 3785

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2021.3088131
http://dx.doi.org/10.1109/TDSC.2022.3153790
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset

Yunguo Guan is currently working toward the
PhD degree with the Faculty of Computer Sci-
ence, University of New Brunswick, Canada. His
research interests include applied cryptography
and game theory.

Yandong Zheng received the MS degree from
the Department of Computer Science, Beihang
University, China, in 2017, and the PhD degree
from the Department of Computer Science, Uni-
versity of New Brunswick, Canada, in 2022. Since
2022, she has been an Associate Professor with
the School of Cyber Engineering, Xidian Univer-
sity. Her research interests include cloud comput-
ing security, Big Data privacy, and applied privacy.

Jun Shao (Senior Member, IEEE) received the
PhD degree from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2008. He was a
post-doctoral fellow with the School of Informa-
tion Sciences and Technology, Pennsylvania
State University, Pennsylvania, PA, USA, from
2008 to 2010. He is currently a professor with the
School of Computer and Information Engineer-
ing, Zhejiang Gongshang University, Hangzhou,
China. His current research interests include net-
work security and applied cryptography.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3786 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 5, SEPTEMBER/OCTOBER 2023

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on December 10,2024 at 13:41:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

