Lecture 17

Tuesday, October 22, 2024 8:56 AM

- f: {0,1} -> {0,1} where f is assumed to be either constant or balance!

Ex N= 2

X	1f(x) %	×	fox	•					
20	0	20		$\overline{}$	٨	5	0	1	
10	0 0 0	201	0		1 3	1	1	1 60	
Constant		، ما	b alanced						

- We need 2 +1 classically

- In quantum, we need & evaluation

Deutsch-Jozsa Algorithm

$$|\phi_3\rangle = \frac{2}{1} \sum_{x \in \{0\}} \frac{x \in \{0\}}{\sum_{x \in \{0\}}} \frac{1}{\sum_{x \in$$

Let assume that we measure IX>=10..0>

The amplitude would be
$$f(x)$$
 in constant $f(x) \times .2 = x_{n-1}.2_{n-1} + x_{n-2} + x_{0}z_{0}$

$$\frac{1}{Z^{n}} \sum_{z \in \{0\}} \frac{f(x)+b}{z} = \frac{1}{Z^{n}} \sum_{z \in \{0\}} \frac{f(z)}{z} = \frac{1}{Z^{n}} \frac{f(z)-b}{f(z)} = \frac{1}{Z^{n}} \frac{f(z)-b}{f(z)} = \frac{1}{Z^{n}} \frac{f(z)-b}{f(z)} = \frac{1}{Z^{n}} \frac{f(z)-b}{f(z)}$$

- If f(x) is constant, we will measure 100-0) with 1 pm

$$|\gamma_{3}\rangle - \frac{2}{1}\sum_{i=1}^{2n}\frac{26!o_{i}!!}{4(x)} = \frac{2}{1}$$
 = 0

- When f is balanced, prob. of measures 100- 0 is 0

Secret dut product string

fudel = 110

001

5= ?

I need 1 evaluation, classically

- In Quantum, were now 1 evaluation

BV

Bernstein-Vazirani Algorithm

In the property of the

$$|\phi_{3}\rangle = \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \sum_{z \in \{0,1\}^{n}} \frac{1}{|z|^{n}} = \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \frac{(-1)}{|z|^{n}} = \frac{1}{|z|^{n}} = \frac{1}{|z|^{n}} \sum_{x \in \{0,1\}^{n}} \frac{(-1)}{|z|^{n}} = \frac{1}{|z|^{n}} \sum_{x \in \{0,1\}^{n}} \frac{(-1)}{|z|^{n}} = \frac{1}{|z|^{n}} \sum_{x \in \{0,1\}^{n}} \frac{(-1)}{|z|^{n}} = \frac{1}{|z|^{n}} = \frac{1}{|z|^{n}} \sum_{x \in \{0,1\}^{n}} \frac{(-1)}{|z|^{n}} = \frac{1}{|z|^{n}} = \frac{1}{|z|^{$$

$$= \frac{1}{2^{n}} \sum_{t=1}^{\infty} (-1) |s\rangle = \frac{1}{2^{n}} \sum_{t=1}^{\infty} (-1) |s\rangle$$

$$= \frac{1}{2^{n}} |s\rangle = \frac{1}{2^{$$

- We will measure 15) with 1 prob.

Secret XOR

Whatir 57