$$
\text { Lecture } 9
$$

$$
30 / 9 / 2020
$$

Ex 4.11
Assume a particle cos be four. (C^{4})

$$
\begin{array}{rl}
|\psi\rangle & =\left[\begin{array}{c}
-3-i \\
-2 i \\
i \\
2
\end{array}\right] \quad P\left(x_{2}\right)=\frac{|i|^{2}}{(4.3589)^{2}} \\
|\psi|=4.3589 & P\left(x_{2}\right)=0.052624
\end{array}
$$

* Ret prop
(1) Addition

$$
\begin{aligned}
& |\psi\rangle=C_{0}\left|x_{0}\right\rangle+C_{1}\left|x_{1}\right\rangle+\cdots+C_{n-1}\left|x_{n-1}\right\rangle \\
& |\psi\rangle-C_{\cdot}\left|x_{0}\right\rangle+C_{1}\left|x_{1}\right\rangle+\cdots+C_{n-1}\left|x_{n-1}\right\rangle \\
& |\Psi\rangle+|\psi\rangle=\left(C_{0}+C_{0}^{\prime}\right)\left|x_{0}\right\rangle+\cdots+\left(C_{n-1}+C_{n}\right) \\
& \left|x_{n}\right\rangle
\end{aligned}
$$

b) Scalar mut.

$$
C|\psi\rangle=\left[C C_{0}, C C_{1}, \ldots, C C_{n-1}\right]^{\top}
$$

Ex
What $|\psi\rangle+|\psi\rangle$?

$$
\begin{aligned}
& \quad|\psi\rangle+|\psi\rangle=\left[2 C_{0}, 2 c_{1}, \ldots, 2 c_{n-1}\right]^{\top} \\
& |\phi\rangle=2|\psi\rangle \\
& P\left(x_{i}\right)=P\left(x_{i}\right) \text { i both case? }
\end{aligned}
$$

* We can milt. a let by any (coupler) number and get the physical state
+ We will work normalized $|\Psi|$
$\frac{|\psi\rangle}{||\psi\rangle|}$ which has a length of?
\& if $|\psi\rangle$ is normalized

$$
P\left(x_{i}\right)=\left|c_{i}\right|^{2}
$$

Figure 4.3. The Stern-Gerlach experiment.

Figure 4.4. Particles with spin.

+ There are two basic spin states for vertical axes: up spin $|\hat{\imath}\rangle$, down $\underset{\text { spin }}{ }|\downarrow\rangle$

$$
|\psi\rangle=\underset{I}{e_{g}}|\uparrow\rangle+c_{1}|\downarrow\rangle
$$

and \& finding a particle nit up
sat er-

Ex 4.1.4

$$
\begin{aligned}
& |\psi\rangle=(3-4 i)|\hat{\jmath}\rangle+(7+2 i)|b\rangle \\
& \text { levgt } \sqrt{|3-4 i|^{2}+|7+2 i|^{2}}=8.8318 \\
& P(\hat{})=\frac{|3-4 i|^{2}}{(8.8378)^{2}}=\frac{25}{78}, P(b)=\frac{53}{78}
\end{aligned}
$$

- Inner product of stage space gives us transition amplitude: determine how likely the state of system (before a measure) will charge to another (end) State (after measurement)

$$
\overbrace{n}^{|\psi\rangle}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right] \text { and } \frac{\left|\psi^{\prime}\right\rangle}{2}:\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{n-1}
\end{array}\right]
$$

bra-leet

+ The end stake will be a row vector whose cordinates are Couples conjugate of $\left|\psi^{\prime}\right\rangle$ Coordr-
* This is call (bra $<\psi \mid$

$$
\left\langle\psi^{\prime}\right|=\left|\psi^{\prime}\right\rangle^{\top}=\left[\bar{C}_{0}, \bar{C}_{1}, \ldots, \overline{C_{n-1}}\right]
$$

* Transition ampliterd

$$
\begin{aligned}
& \left\langle\psi^{\prime}\right||\psi\rangle=\langle\bar{\psi} \mid \psi\rangle \\
& =\left[\bar{c}_{0}, \bar{c}_{1}, \ldots, \bar{c}_{n-1}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right] \\
& =\bar{C}_{0} C_{0}+\bar{c}_{1} C_{1}+\ldots+\bar{c}_{n-1} c_{n-1} \\
& \frac{|\psi\rangle}{\frac{s \operatorname{tant}}{\langle\dot{\psi} \mid \psi\rangle}} \xrightarrow{ }\left|\psi^{\prime}\right\rangle
\end{aligned}
$$

+ What does it mean to have $\left\langle\Psi^{\prime} \mid \Psi\right\rangle=0$? once an electron in is the up state. it will never charge to down state.
* Orthogond state ore mutually exclusim alternatives

$$
\begin{gathered}
b_{v}=\left\langle b_{0} \mid \psi\right\rangle \\
b_{i}=\left\langle b_{i} \mid \psi\right\rangle \\
\sum\left|b_{i}\right|^{2}=1
\end{gathered}
$$

$\left\{b_{0}, b_{1}, \ldots, b_{n}-1\right\}$ orthonormal basis
a In other words, the result bmeasurement will be one ff either state, but not in a superposition of them

$$
A=\widehat{A^{2}}=A^{+}
$$

Ex

$$
\begin{aligned}
& |\psi\rangle=[3,1-2 i]^{\top} \\
& \langle\psi|=[3,1+2 i]
\end{aligned}
$$

$$
\begin{aligned}
& \text { y.1.6 }|\psi\rangle=\sqrt{2 / 2}[1, i]^{\top},|\phi\rangle=\sqrt{2} / 2[i,-1] \\
& \begin{aligned}
\langle\phi \mid \psi\rangle & =\frac{\sqrt{2}}{2}[-i,-1] \frac{\sqrt{2}}{2}\left[\begin{array}{c}
1 \\
i
\end{array}\right] \\
& =-i
\end{aligned}
\end{aligned}
$$

$\sec 4.2$
Observales are physical quantitithat can be observed at each state

Post. Y.2.1
To each physical observable there corrospouds a hermitian operator

* Think of an observable as a linear operater Ω that can be applied to $|\psi\rangle$ as. $\Omega|\psi\rangle$

Ex $|\psi\rangle=[-1,-1-i]^{\top}$

$$
\begin{aligned}
\Omega & =\left[\begin{array}{cc}
-1 & -i \\
i & 1
\end{array}\right] \\
\Omega|\psi\rangle & =[i,-1-2 i]^{\top}
\end{aligned}
$$

Post. 4. 2_2
For each observable, the ansers are the eigenvalues of the observable Ω

$$
P=\left[\right]
$$

$\sec 4.3$ Measuri-
Pos. 4.3.1
Let Ω be an observoble of $|\psi\rangle$ If the result of measuring Ω is the, eiganvalue λ, the state atter measurement vill always be an eiganvector Corrospondiy to λ

$$
E \times 4.3 .1
$$

Metcrial fo Quz2

Chapter 5 Quantum Architecture
Def 5.1.1 Abit is a unit of infor. describing a two-dimensional classical systems

$$
\begin{aligned}
& \text { * Boolean logic iT, F } \\
& \text { * switch: on, off } \\
& *|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \begin{array}{c}
0 \\
1
\end{array}
\end{aligned}
$$

Def 5.1.2
A quantum bit (quibit) is a Unit of information describing two-dim. quantum system

$$
0\left[\begin{array}{l}
C_{0} \\
c_{1}
\end{array}\right] \quad\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1
$$

* Once we measure a quoit, it $\left.\begin{array}{l}\text { becomes a bit }\left[\begin{array}{ll}c_{0} & {[, ~}\end{array}\right]^{\top} \underbrace{\left|C_{0}\right|^{2}}_{\left|C_{1}\right|^{2}}\left[\begin{array}{l}1 \\ 0\end{array}\right] \\ 1\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right] } & =c_{0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =c_{0}|0\rangle+c_{1}|1\rangle
\end{aligned}
$$

