Lecture 8

2819

Assembling system
Blue

$$
\begin{aligned}
& G_{m}=\left[\begin{array}{lll}
0 & 1 / 6 & 5 / 6 \\
1 / 3 & 1 / 2 & 1 / 6 \\
2 / 3 & 1 / 3 & 0
\end{array}\right] \\
& 0 G_{n}=\left[\begin{array}{ll}
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]
\end{aligned}
$$

* What should wen age?

$$
\begin{array}{r}
X=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \otimes\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
6 a \\
0 \\
0 \\
1 \\
1 \\
1 \\
b \\
2 \\
a \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{168}{b} \\
0 \\
2 / 18 \\
1 / 3 \\
0 \\
1 / 2
\end{array}\right] \\
\text { Blue - State } 2 b=1 / 2 \\
\text { Red } b=b
\end{array}
$$

$$
\begin{aligned}
& 41 a \xrightarrow{1 / 3 \times 2 / 3=2 / 4} 2 b \\
& i j \xrightarrow{M[i q] N[j j]} i j \\
& G_{m} \otimes G_{n}=\left[\begin{array}{ccc}
0 & 1 / 6 & 3 / 6 \\
1 / 3 & 1 / 2 & 1 / 6 \\
2 / 3 & 1 / 3 & 0
\end{array}\right] \\
& 6 \times 6 \\
& {\left[\begin{array}{cc}
1 / 3 & 2 / 3 \\
2 / 3 & \frac{1}{3}
\end{array}\right]} \\
& =\left[\begin{array}{llllll}
0 & 0 & 1 / 58 & 2 / 18 & 5 / 18 & 10 / 8 \\
0 & 0 & 2 / 18 & 1 / 18 & 10 / 88 & 5 / 18 \\
1 / 9 & 2 / 9 & 1 / 6 & 2 / 6 & 1 / 18 & 2 / 18 \\
2 / 9 & 1 / 9 & 2 / 6 & 1 / 6 & 2 / 18 & 1 / 18 \\
2 / 9 & 4 / 9 & 1 / 4 & 2 / 9 & 0 & 0 \\
4 / 9 & 2 / 9 & 2 / 9 & 1 / 9 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Page ga for a graph

4 Tensor product is used to Combine the states of two seperate (quarter) syst-

- TP is used model cabined changen of the tho systems by tensor product of adj. matrixes
* In quantum system, there ere way states than the ones is tensor product.
Those are called entangled states.
* To model m" blue" marbles

$$
\begin{aligned}
& \xlongequal{G^{m}}=\underbrace{G_{m} \times G_{m} \times \ldots \times G_{m}}_{m \text { mine } m \text { times }} \\
& M_{G}^{\otimes m}=M_{G \otimes} M_{6 \otimes \ldots * M_{G}} \\
& \text { (} 2)^{m}-b y-R_{2}^{m} \text { mar } 2^{8}-b y^{8}
\end{aligned}
$$

Chapter u
Objectiv: To model the quantum physical systiem of particles

* Consider a line with a finite nuta of points

$$
x_{1}=x_{0}+\delta_{x}, x_{2}=x_{1}+\delta_{x}, \ldots, x_{n-1}=x_{n-2}-\delta_{x}
$$

\& The state can be associated with a n-dimension complex vecta space

$$
\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]^{\top}
$$

* A particle at point x_{i} is denoted by $\left|x_{i}\right\rangle$: Kex potation (col vector)
*This is enough for classical system
- We car represent the superposition state using a linear cabination of $\left|x_{0}\right\rangle,\left|x_{1}\right\rangle \ldots\left|x_{n-1}\right\rangle$

$$
\underbrace{|\psi\rangle}_{\text {arbitrage }}=C_{0}\left|x_{0}\right\rangle+c_{1}\left|x_{1}\right\rangle+\ldots+C_{n-1}\left|x_{n-1}\right\rangle
$$

$C_{0}, C_{1}, \ldots, C_{n-1}$ as Couplexweigh Called Complex amplitudes

$$
\psi\rangle=\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]^{\top}
$$

is a superposition of all state

$$
\left|x_{0}\right\rangle,\left|x_{1}\right\rangle \ldots
$$

- There are different blending of such superposition states depend. on the values of $C_{0}, C_{1}, \ldots, C_{n-1}$
- The prob. of a particle is at Position x_{i} (after measuris)

$$
\begin{aligned}
& P\left(x_{2}\right)=\frac{\left|c_{i}\right|^{2}}{\left.\int|\psi\rangle\right|^{2}}=\frac{\left|c_{i}\right|^{2}}{\sum_{j}\left|c_{j}\right|^{2}} \\
&|\psi\rangle \sim \underset{\substack{\text { observation } \\
\text { (meas-) }}}{ }\left|x_{i}\right\rangle \\
& \mid P\left(x_{i}\right)
\end{aligned}
$$

