Lecture 5

14/9/202

Prop 2.6.5 (Pase 65)
If U is unitary, then

$$
\left\langle U V, U V^{\prime}\right\rangle=\left\langle V, V^{\prime}\right\rangle
$$

for any $V, V^{\prime} \in \mathbb{C}^{n}$

$$
+|U V|=|V|
$$

N Note

- Umatrix preserves the geometry - if U is untory, there is a matrix U^{+}that can undo the action st U

Tensor Product

- Given two vector spaces \mathbb{V} \& \mathbb{V}, their tensor product space $\overline{\mathbb{V}} \otimes \vec{V}$ is the set ot "terrors" at all vector $\{V \otimes V \mid V G \mathbb{V}$ and $\hat{V} \in \mathbb{V}\}$
\& A typical component is

> Po

$$
\sum_{i=0}^{r-1} C_{i}\left(V_{i} \otimes V_{i}\right)
$$

* The dimension of $\mathbb{\otimes} \mathbb{V}$ is the dimension of \mathbb{V} time the dimension ot \vec{V}
* XxV is the vector space whose state ore the states of a system V or \mathbb{V}, or both
$4 \mathbb{V} \mathbb{\mathbb { V }}$ is the vector space whose staten are pairs of states; ore from \mathbb{V} and the other in fro \mathbb{V}
- Ex \mathbb{C}^{m} and \mathbb{C}^{n}, Dimension $C^{m} \otimes \mathbb{C}^{n}$ $m n$

Def

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
a_{0} \\
a_{0} \\
a_{2} \\
a_{3}
\end{array}\right]} & \otimes\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
4
\end{array}\right]=\left[\begin{array}{c}
a_{0}\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
a_{1}\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
\vdots \\
a_{2} \\
a_{3}\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] \\
\\
=\left[\begin{array}{c}
a_{0} b_{0} \\
a_{0} b_{1} \\
a_{0} \\
a_{2} \\
a_{1} b_{0} \\
a_{1} b_{1} \\
a_{1} b_{2} \\
\vdots \\
a_{3} b_{2}
\end{array}\right]
\end{array}\right.
$$

* A vector that can be written as a tenser st two vectors is called separable
- . - not entangled
* Tensor product of matrices

$$
\begin{array}{cc}
A=\left[\begin{array}{ll}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{array}\right], & B=\left[\begin{array}{lll}
b_{00} & b_{01} & b_{02} \\
b_{00} & b_{11} & b_{12} \\
b_{20} & b_{21} & b_{22}
\end{array}\right] \\
\stackrel{A \otimes B=}{A_{0}}=\left[\begin{array}{ll}
a 00
\end{array}\right] \\
a_{01}[B] \\
a_{10}[B] & a_{11}[B]
\end{array}
$$

6×6

$$
\frac{\mathbb{C}^{m \times n} \otimes \mathbb{C}^{m \times n} \rightarrow \mathbb{C}^{m \times n} \times n \dot{n}}{\left[\begin{array}{ccc}
a_{00} b_{00} & a_{00} b_{01} & a_{00} b_{02} \\
a_{00} b_{10} & a_{00} b_{41} & a_{00} b_{12} \\
a_{00} b_{20} & a_{000} b_{21} & a_{00} b_{22} \\
\vdots & & \\
& &
\end{array}\right]}
$$

$$
*(A \otimes B)_{[0, k]}^{m+\bar{m}}=A[j / n, k / m] x
$$

$B[\mathrm{Cmod}(\pi, k \bmod \min)$
Ex
Cal culate

$$
\left[\begin{array}{lll}
3+2 i & 5-i & 2 i \\
0 & 12 & 6-3 i \\
2 & 4+4 i & 9+3 i
\end{array}\right] \otimes\left[\begin{array}{ccc}
1 & 3+4 i & 5-7 i \\
10+2 i & 6 & 2+5 i \\
0 & 1 & 2+9 i
\end{array}\right]
$$

$a \times 9$

$$
\left[\begin{array}{cccc}
3+2 i & 1+18 i & 19-11 i & \cdots \\
26+26 i & 18+12 i & -4+19 i & \cdots \\
0 & 3+2 i & -12+31 i & \cdots \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
+(A \otimes B)+\left(V \otimes V^{\prime}\right)=A \times V \otimes B \times V^{\prime}
$$

Chapter 3 Leap from Clasical to Quantum

Objectim
D Cast quantum mecanics i matrios graphs
2) Introduce core ideas QP

Ex | 0 | 1 | 2 |
| :---: | :---: | :---: |
| 6 | (2) | (1) |
| | 3 | 4 |
| 3 | (3) | 5 |

a) $X_{1}=[6,2,1,5,3,10]^{-1}$ a state b) $X_{2}=[5,5,0,2,0,15]^{\top}$

* Find a way to describe "dynamic" of this syst-

Def Agraph $G=\{V, E\}$, when
V is a set of vertion (nodes),
E is a set it edges. $(x, y) \in E$ where $x, y \in V$

$$
E \subseteq\left\{(x, y) \mid(x, y) \in V^{2} \not y\right\}
$$

* Each edge from node i to j regm a "time click" which marbles move fro node i' to j

* Adjancy Matrix

$$
A=\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & &
\end{array}\right]
$$

$M_{\left[_{i j}\right]}=1$ if there is anoedge from j to i

* M is ancon to describe how the marbles move from t to $t+1$
$* M_{[i, j]}^{2}=1$ if there exists a par for j to i of length 1

$1 y_{(2 ; j]}^{k}=1 \quad \cdots$ a path of text k
\& $Y_{k}=M^{k} \times$ rear. the new syst. state after k time lick.

Ex

$$
\begin{aligned}
& M^{2} x=M(M x)=M Y \\
& {\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
12 \\
5 \\
1 \\
9
\end{array}\right]=\left[\begin{array}{l}
0 \\
9 \\
5 \\
12 \\
1
\end{array}\right] } \\
& M Y_{1} \\
& M^{3} x=M\left(Y_{2}\right)=M\left(M\left(M Y_{1}\right)\right) \\
&=M^{3} x
\end{aligned}
$$

