King Fahd University of Petroleum and Minerals College of Computer Science and Engineering
 Computer Engineering Department
 COE 466: Quantum Architecture and Algorithms

Problem Set 1

Due date: Monday 21-9-2020 (Before the class)

Problem Sets

1. Prove that
$\left|c_{1}+c_{2}\right| \leq\left|c_{1}\right|+\left|c_{2}\right|$ where $c_{1}, c_{2} \in \mathbb{C}$.
(hint: square both sides).
2. Show that conjugation respects addition, i.e., $\overline{c_{1}}+\overline{c_{2}}=\overline{c_{1}+c_{2}}$
3. Find the transpose, conjugate, and adjoint of the following matrix

$$
\left[\begin{array}{ccc}
6-3 i & 2+12 i & -19 i \\
0 & 5+2.1 i & 17 \\
1 & 2+5 i & 3-4.5 i
\end{array}\right]
$$

4. Let $c_{1}=2 i, c_{2}=1+2 i$, and $A=\left[\begin{array}{cc}1-i & 3 \\ 2+2 i & 4+i\end{array}\right]$. Verify the following property. $c_{1} \cdot\left(c_{2} \cdot A\right)=\left(c_{1} \times c_{2}\right) \cdot A$
5. Let $A=\left[\begin{array}{ccc}3+2 i & 0 & 5-6 i \\ 1 & 4+2 i & i \\ 4-i & 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}5 & 2-i & 6-4 i \\ 0 & 4+5 i & 2 \\ 6-4 i & 2+7 i & 0\end{array}\right]$.

Show that $(A * B)^{\dagger}=B^{\dagger} * A^{\dagger}$
6. Show that the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-4 \\
-4
\end{array}\right]\right\}
$$

is not linearly independent.
7. Calculate the norm of $\left[\begin{array}{c}4+3 i \\ 6-4 i \\ 12-7 i \\ 13 i\end{array}\right]$
8. Let $V_{1}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$ and $V_{2}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]$. Calculate the distance between these two vectors.
9. Show that a matrix A is hermitian if and only if $A^{T}=\bar{A}$
10. Show that the matrix

$$
\left[\begin{array}{ccc}
\frac{1+i}{2} & \frac{i}{\sqrt{3}} & \frac{3+i}{2 \sqrt{15}} \\
\frac{-1}{2} & \frac{1}{\sqrt{3}} & \frac{4+3 i}{2 \sqrt{15}} \\
\frac{1}{2} & \frac{-i}{\sqrt{3}} & \frac{5 i}{2 \sqrt{15}}
\end{array}\right]
$$

is a unitary matrix.
11. Calculate the tensor product $\left[\begin{array}{l}3 \\ 4 \\ 7\end{array}\right] \otimes\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
12. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}3 & 2 \\ -1 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}6 & 5 \\ 3 & 2\end{array}\right]$. Calculate $A \otimes(B \otimes C)$ and $(A \otimes B) \otimes C$ and show that they are equal.

