King Fahd University of Petroleum and Minerals
College of Computer Science and Engineering
Computer Engineering Department
COE 466: Quantum Architecture and Algorithms

Problem Set 2

Due date: Wednesday 7-10-2020 (11:59 PM)

Problem Sets

1. Given matrix M that represents the dynamics of the marble system in
Figure 1.

_ O OO oo
oSO oo~ OO
O OO oo
OO RO OO
_ O OO OO
oo o~ OO

Calculate M? and M3. If all the marbles start at vertex 2, where will all
the marbles end up after 5 time steps?

Figure 1: Marble system

0- 1.

20

30 4.4>50

2. Consider the following hypothetical situation at a hypothetical college.
Thirty percent of all math majors become computer science majors after
one year. Another 60% become physics majors after one year. After a
year, 70% of the physics majors become math majors and 10% of the
physics majors become computer science majors. In contrast to the other



departments, computer science students are usually very happy: only 20%
of them become math majors and 20% become physics majors after a year.

(a) Draw a graph that describes the situation.

(b) Give the corresponding adjacency matrix. Notice that it is a doubly
stochastic matrix.

(c) Consider three students. If each student is majoring in one of these
three areas, indicate the student’s probable major after 2 and 4 years.
For example, if a student is majoring in Math, what is the probability
that he ended up majoring in CS or Phys in 2 and 4 years. Calculate
the same probability of a student majoring in Physics or CS.

3. (Programming assignment) Write a Python program that takes two in-
puts: a list of numbers and a target value. Your program should check if
the target value exists in the provided list of numbers. If the target value
exists, the program should return three outputs:

(a) The location of the (first) occurrence of target value in the list
(b) The time it took to find the target number

(¢) The number of steps (comparisons) it took to find the target number
You are requested to implement two searching algorithms:

(a) Linear search: A typical pseudocode for linear search is in Algorithm
1.

Data: list, value
Result: position of value
begin
for each item in list do
if item == wvalue then
| Return item’s location
end
end
end
Algorithm 1: Linear Search

(b) Binary search: A typical pseudocode for binary search is is in Algo-
rithm 2. Note that binary search must take the sorted list as input.

Your program should first read each (sorted) list from the file lists.tzt. The
format of each list is as the following: [value : x1x223%y,...,T,], Where
value is the target value you should search for and z1, s, ..., z, are the



Data: sorted list A, value
Result: position of value
begin

lower Bound = 1

lower Bound = size(list)
while value is not found do

if upper Bound < lower Bound then
Value doesn’t exist in the list

Return -1
end

midPoint = lower Bound + (upper Bound — lower Bound) /2

if A[midPoint] < value then
| lowerBound = midPoint + 1
end

if A[midPoint] > value then
| upper Bound = midPoint — 1
end

if A[midPoint] == value] then
Value is found

Return midPoint
end

end
end
Algorithm 2: Binary Search



list items separated with a space. Figure 2 depicts the expected output
of your program. Compare the number of steps for both algorithms, what
do you observe? Explain their performance in terms of the algorithms
complexity.

After that, you should run the same program with the other lists (worstCase_lists.tat).
Please compare the output of the two lists. What do you observe?

Figure 2: Expected output for each search algorithm
i 1 —> postition:19 # of steps:20
postition: of steps:42
postition: of steps:14
postition: of steps:29
postition: of steps:19
postition: of steps:50

postition: of steps:29
postition: of steps:39
postition:2 # of steps:3

@ —> postition:10 # of steps:11

Useful Resources

1. [Python Tutorial

2. Data Structure and Algorithms


https://www.youtube.com/watch?v=Z1Yd7upQsXY&list=PLBZBJbE_rGRWeh5mIBhD-hhDwSEDxogDg&ab_channel=CSDojo
https://www.tutorialspoint.com/data_structures_algorithms/linear_search_algorithm.htm

