SpelBots 2006 RoboCup Technical Report

Ashley Johnson, Kina McCanns, Andrea Roberson, Ebony Smith, Andrew Williams

Artificial Intelligence, Bioinformatics, and Robotics Lab
Spelman College
350 Spelman Lane SW
Atlanta, GA 30308

Contents

I Introduction e 3
II. Goalie Design Document L 4
A. SC Goalie Lil Shuffth 5
B. GoalieWalkNode (.ccand .h) ... 9
C. GoalieHeadFollowNode (.ccand .h) ..., 10
D. SC GoalieVisualTargeth 10
E. SC GoalieShuffTrans.h 11
F. TimeOutTrans e, 12
III. Attacker Design Document ... 13
A. SC Attacker2.h 14
IV. Vision Documentation: Blob Detection ccooiiiiiiiiiiiiiiin. 19
A. SC FindOrangeBallEventh ... 19
B. SC FindOrangeBlueEvent.h ... 20
C. SC FindOrangeYellowEvent.h ... 21
V. Motion and Locomotion Design ... 22
VI. Vision Calibration 32
A. SC CameraBehaviorh L 32
B. SC CameraBehavior.cc 32
VIL. Results e 34
VIII. Source code 35

1. Introduction

The Spelman College robotics team, SpelBots, has evolved into a multi-disciplinary
academic environment. There are three students in the computer science department and
one student from the mathematics department. The team is comprised of one returning
member from the previous competition, Ebony Smith, who serves as the team lead. The
remaining members of the team are new and have added another layer of enthusiasm
combined with hard work.

The SpelBots team was notably challenged in all aspects of the RoboCup 2005
competition. This code from RoboCup 2005 serves as a baseline to begin enhancements
for competitions in 2006. Utilizing the experience of RoboCup 2005, the SpelBots began
improving on their previous code. The SpelBots have made close companions with each
of the ERS-7 robots in the laboratory. Our focus has been to study diligently in efforts to
improve all areas of our previous game.

Similar to our code in 2005, the SpelBots did not use pre-existing soccer code from other
RoboCup teams. The code developed is unique in that it uses the Tekkotsu Robot
programming framework. The Tekkotsu project is an open source software project that
makes use of other base models including earlier versions of CMVision and CMWalk
and ROBOOP. The SpelBots continually strive to introduce our all-women
undergraduate institution to the fascinating world of robotics and artificial intelligence.
We look forward to competing again in RoboCup 2007 with more improvements in our
team’s vision, localization, and strategy.

This, second year competing, continues to be a great learning experience and allows the
team to interact with the more veteran teams of RoboCup. The UNSW and UPenn teams
were a great help this year during the competition. Their teams were very forthcoming
with information and patient with our understanding of the smallest details.

Overall, the women on the Spelman College robotics team have incorporated sedulous
study and a profound work ethic aimed at qualifying and being a worthy competitor for
RoboCup 2006.

II. Goalie Design Document

For RoboCup 2006, the SpelBots team created several documents to support the goalie
state machine. These documents include one main StateNode, several transitions, and
other StateNodes that support special motions specific to the goalie. This document lists
and describes these files with great detail.

SpelBots Goalie Position
State Machine

SC_Pan_Head_Node

Files Used

G. SC_Goalie Lil Shuffh
o Main goalie StateNode that implements goal state machine

H. GoalieWalkNode (.cc and .h)
o Implements a walk that follows the ball horizontally within the goalie box.
I. GoalieHeadFollowNode (.cc and .h)
o Implements a motion that allows the goalie to track the ball using only its
head joints, specifically the pan joint.
J. SC_GoalieVisualTarget.h
o Used to transition to into a block/kick when the ball is close enough to the
goal.
K. SC GoalieShuffTrans.h
o Used to transition into a walk that follows the ball horizontally when the
ball is sighted at a specified distance.
L. TimeOutTrans
o Used to transition to another node after executing the current node for a
specified amount of time.

A. SC Goalie Lil Shuffh

This document is the final layout of the goalie code that was implemented during
RoboCup 2006 in Bremen, Germany by the SpelBots team. This section corresponds to
the file entitled SC_Goalie Lil Shuff.h. After several different algorithms were tried and
tested, this particular algorithm proved to be the best for the SpelBots team. The file is
one very large Tekkotsu StateNode. Within the large StateNode, there are smaller
StateNodes that handle specific tasks. This section explains in detail each of these smaller
nodes and the reasoning behind them.

* Name: SC Start Node
o Purpose: Specifies the first small node that will be executed in the
StateNode
o Input Transitions: Initialization of execution of file
Output Transitions: None
o Basic Algorithm:
1. Upon the start of the program, the start node signals the first node to
be executed.

O

* Name: SC Goalie Pounce Node
o Purpose: Allows the robot to begin in a neutral stance to maximize field
coverage. Also, this stance gives the robot a height that is suitable for
transitioning into a powerful block/kick.
o Input Transitions:

—

Start Node pointer

SC Goalie Kick Node = TimeOutTrans: After the robot kicks the
ball, it recovers by transitioning back to this node to regain a neutral
position

o Output Transitions:

1.

2.

3.

TimeOutTrans: If robot does not recognize the ball within 1.5 seconds,
then transition to SC Pan Head Node.

SC Goalie Shuffle Node: If the ball is recognized near the goalie box
and is not close enough to kick, then transition to

SC Goalie Shuffle Node.

SC GoalieVisualTarget: If the ball is recognized from a very close
location, then transition to SC_Goalie Kick Node.

o Basic Algorithm:

Name:

Nk W=

Move robot into pounce position.

While doing so, continue looking for the ball.

The Node is a MediumMotionSequenceNode

Motion file used: goalsit.pos

The motion file does not manipulate any of the robot’s head joints,
only its body joints.

SC Pan Head Node

o Purpose: Allows the robot to move its head in search of the ball. This
motion sequence give the robot nearly a 155 degree view of the field.
o Input Transitions:

1. SC Goalie Pounce Node = TimeOutTrans: After moving to a

neutral stance, it then moves its head in search of the ball.

2. SC Goalie Shuffle Node = newDefaultLostTrans: While shuftling

to follow the ball, if the robot looses sight of it, transition to this
node to search for it again.

o Output Transitions:

1.

SC GoalieShuffTrans: If the ball is recognized near the goalie box
and is not close enough to kick, then transition to
SC Goalie Shuffle Node to begin walking sideways to follow it.

2. SC GoalieVisualTarget: If the ball is recognized near the goalie box

and is close enough to kick, then transition to SC_Goalie Kick Node

o Basic Algorithm:

1. Pan robot’s head in motion sequence (up, right, down, left) that will
maximize the robot’s field of view
2. The node is a LargeMotionSequenceNode.
3. Motion file used: newpan.mot
4. Posture files
a. hdupleft.pos
b. hdupmid.pos
c. hduprit.pos
d. hddwnrit.pos

e. hddwnmid.pos
f. hddwnlef.pos

* Name: SC Goalie Kick Node
o Purpose: Allow the robot to kick the ball when it comes close. It is a kick
that also serves as a block.
o Input Transitions:

1.

SC Goalie Pounce Node = SC GoalieVisualTarget: If the ball is
spotted in close proximity while dog is going into the pounce position,
the robot should kick it.

SC Pan Head Node = SC_GoalieVisualTarget: If the ball is spotted
in close proximity while dog is panning its head, the robot should kick
it.

SC Goalie Shuffle Node = SC GoalieVisualTarget: If the ball is
spotted in close proximity while dog is shuffling in chase of it, the
robot should kick it

SC Goalie Head Node = SC GoalieVisualTarget: : If the ball is
spotted in close proximity while dog is following the ball with just it
head, the robot should kick it

o Output Transitions:

1.

SC Time Out Transition: After the robot has blocked/kicked the ball
for 3.5 seconds, it should go back to a neutral search position by
transitioning to SC_Goalie Pounce Node

o Basic Algorithm:

1.
2.

3,
4,

A GroupNode is used to implement a kick.

Within the GroupNode, this is one SmallMotionSequenceNode called
kickball.

The kickball node used the motion file ekogoal.mot.
Posture files:

a. FALLDWN.pos

b. SPDARM.pos

c. ARMBND.pos

d. START.pos

* Name: SC Goalie Shuffle Node
o Purpose: Allows the robot to move horizontally in the same direction of
the ball, while maintaining eyesight of the ball and staying within the
goalie box.
o Input Transitions:

1.

SC Goalie Pounce Node = SC GoalieShuffTrans: While the robot
is moving into a neutral stance, if the ball is sighted at a distant
location, the robot should begin moving horizontally to follow the
ball’s movement.

2. SC Pan Head Node = SC_GoalieShuffTrans: While the robot is
panning its head, if the ball is sighted at a distant location, the robot
should begin moving horizontally to follow the ball’s movement.

o Output Transitions:

1. SC GoalieVisualTarget: If the ball is spotted from a position close
enough to kick it, transition to SC_Goalie Kick Node

2. SC TimeOutTrans: If the robot has been moving horizontally
following the ball for more than 3 seconds, it should then begin
tracking the ball’s movement with only its head joints be transitioning
to SC_Goalie Head Node.

3. newDefaultLostTrans: If the robot looses sight of the ball during its
shuffle, transition to SC Pan Head Node

o Basic Algorithm:

1. The robot moves horizontally based on the horizontal position if the
ball.

2. To implement the horizontal walk, a GoalieWalkNode is used.

* Name: SC Goalie Head Node

o Purpose: Allows the robot to follow the ball by using only its head joints.
This motion allows the goalie to stay within the goalie box, but still track
the ball’s position. It reduces the chances of the goalie leaving its box and
being unable to find its way back.

o Input Transitions: SC_Goalie Shuffle Node = TimeOutTrans: After
following the ball horizontally with its entire body for 3 seconds, the robot
transitions to this node to avoid leaving the goalie box.

o Output Transitions:

1. SC _GoalieVisualTarget; If the ball is sighted in a close proximity,
begin kicking/blocking by transitioning to SC_Goalie Kick Node.

2. SC Time Out Transition; If robot has been following the ball withits
head for more than 2 seconds, transition to SC Pan Head Node.

3. newDefaultLostTrans: If the robot looses sight of the ball white
following it with its head joints, transition to SC_Pan Head Node.

o Basic Algorithm:

1. Track the balls movement using only the head joints.
2. Implemented with a GoalieHeadFollowNode

Transitions

* Name: SC_GoalieVisualTarget
o Purpese: Fired when a specified object is recognized within the 200 vision
threshold distance.

e Name: TimeOutTrans
o Purpose: If the robot should remain in a node for a set amount of time, use
this transition to limit that time and move on to the next node.

* Name: SC_GoalieShuffTrans
o Purpose: When the ball is sighted with the 300 vision threashold distance,
the robot beginning moving its body horizontally in chase of the ball.

¢ Name: newDefaultLostTrans
o Purpese: If an object was once in sight, but now its not, use this transition
to determine the robot’s next move. Built-in transition with StateNode files
using the TimeOutTrans.h file.

B. GoalieWalkNode (.cc and .h)

The GoalieWalkNode files are based on the WalkToTargetNode files used by the
attacker. This file is a state node for walking horizontally toward a visual target.

Constructors:

* The first constructor passes one parameter of the VisionObjectSourcelD t for the
object that should be tracked by the robot.

* Similarly, the second constructor passes an instance name of the node as well as
the VisionObjectSourcelD t for the object that should be tracked by the robot.

Algorithm:

In the DoStart of the .cc file, a headpointer id and a walk id are initialized using the
motion manager, the HeadPointerMC, and the WalkMC. Also, a listener is added to the
event router to listen for events corresponding to the VisionObjectSourcelD t.

The main action of the code is found in the processEvent function. When an event is
thrown, first it is check to ensure that it is a vision object event and that it is a status
event. Once both these cases are true, the horizontal and vertical values of the object’s
center are obtained. These values are used to set the values of the robot’s head joints
using the HeadPointerMC. After all of the head joints are set, the robot’s head will point
to the center of the specified vision object.

Once the robot’s head is pointed toward the desired object (in our case, the ball), the
code then uses the WalkMC to allow the robot to follow the ball with its body. Using the
setTargetVelocity function, the robot moves horizontally based on the pan value of its
head. This is done by setting the x and z values in the setTargetVelocity function to zero.
The y value (which corresponds horizontal motion) is set to pan*100. This only happens

when the pan values is between -.05 and .05, other wise the robot does not move at all.
The insures that one the robot has lined up vertically with the ball, it will cease horizontal
movement with its body.

C. GoalieFollowHeadNode (.cc and .h)

The GoalieFollowHeadNode files are based on the GoalieWalkNode files. This file is a
state node for following visual target using only the robots head joints.

Constructors:

* The first constructor passes one parameter of the VisionObjectSourcelD t for the
object that should be tracked by the robot.

* Similarly, the second constructor passes an instance name of the node as well as
the VisionObjectSourcelD t for the object that should be tracked by the robot.

Algorithm:

In the DoStart of the .cc file, a headpointer id is initialized using the motion manager and
the HeadPointerMC. Also, a listener is added to the event router to listen for events
corresponding to the VisionObjectSourcelD t.

The main action of the code is found in the processEvent function. When an event is
thrown, first it is check to ensure that it is a vision object event and that it is a status
event. Once both these cases are true, the horizontal and vertical values of the object’s
center are obtained. These values are used to set the values of the robot’s head joints
using the HeadPointerMC. After all of the head joints are set, the robot’s head will point
to the center of the specified vision object.

D. SC_GoalieVisualTarget,h
The SC GoalieVisualTarget.h file is based on the VisualTargetCloseTransition.h file.
This file is a transition that fires when the ball is close enough to the goalie for
block/kick.
Constructors:
* The first parameter of the first constructor is the name of a destination node to

with the transition lead. The second parameter is a source id for a
VisionObjectSourcelD t. The last parameter is the distance threshold that

10

specifies the vision object should have an IRDistOffset of 200 or less when the
transition is thrown.

* Similarly, the second constructor passes all of the same information as the
pervious one, but is adds a specific class name to the destination node.

Algorithm:

In the processEvent function, first a VisionObjectEvent is defined. When a
VisionObjectEvent occurs, the x and y values for the object’s center are obtained. If the
IRDistOffset of the object’s center is less than the specified distance threshold of 200, the
transition is fired.

E. SC_GoalieShuffTrans,h

The SC_GoalieShuffTrans.h file is based on the VisualTargetCloseTransition.h file. This
file is a transition that fires when the ball is sighted at a distance to far away to kick.

Constructors:

* The first parameter of the first constructor is the name of a destination node to
with the transition lead. The second parameter is a source id for a
VisionObjectSourcelD t. The last parameter is the distance threshold that
specifies the vision object should have an IRDistOffset of 300 or less when the
transition is thrown.

* Similarly, the second constructor passes all of the same information as the
pervious one, but is adds a specific class name to the destination node.

Algorithm:
In the processEvent function, first a VisionObjectEvent is defined. When a
VisionObjectEvent occurs, the x and y values for the object’s center are obtained. If the

IRDistOffset of the object’s center is less than the specified distance threshold of 300, the
transition is fired.

11

F. TimeOutTrans,h

The TimeOutTrans.h file is a Tekkotsu Transition that is fired after a StateNode has
executed for a specified about of time.
Constructors:

* The first constructor passes two parameters. The first parameter is the name of the
destination node for the transition. The second is the delay for transition in
milliseconds.

* The second constructor has the same two parameters of the previous constructor
as well as a third parameter of an event generator id. If any events of that type are
received, the timer for the transition resets.

* The third and fourth constructors are similar to the second, but they allow more
specific information regarding the event to be passed as well in additional
parameters.

Algorithm:

In the DoStart, a switch statement is used is add listeners of specific events based on
which of the constructors is used. At the end of the DoStart, the timer is reset.

The resetTimer function throws an event that sets the timer to zero. In the processEvent

function, if an event is thrown by the timer (meaning the timer has expired), the transition
is fired. Else, the time is reset.

12

I1I. Attacker Design Document

For RoboCup 2006, the SpelBots team created several documents to support the attacker
state machine. These documents include one main StateNode, several transitions, and
other StateNodes that support special motions specific to the attacker. This document lists
and describes these files with great detail.

SpelBots Attacker
Position

State Machine

SC_VTT

\

r

13

Files Used

A. SC_Attacker2.h

O

Main attacker StateNode that implements attacker state machine

A. SC_Attacker2.h

This document is the final layout of the attacker code that was implemented during
RoboCup 2006 in Bremen, Germany by the SpelBots team. This section corresponds to
the file entitled SC_Attacker2.h. After several different algorithms were tried and tested,
this particular algorithm proved to be the best for the SpelBots team. The file is one very
large Tekkotsu StateNode. Within the large StateNode, there are smaller StateNodes that
handle specific tasks. This section explains in detail each of these smaller nodes and the
reasoning behind them.

e Name:
o)

O
O
O

e Name:

SC Start Node

Purpose: Specifies the first node that will be executed in the behavior

Input Transitions: Initialization of execution of behavior

Output Transitions: None

Basic Algorithm:

2. Upon the start of the program, the start node will point to the first node
to be executed.

SC Start Walk And Pan

Purpose: Allows the attack to start out by moving forward while looking

for the ball. At the beginning of any kickoff, the ball will always be in

front of the attackers. By moving forward first, the robot will always begin

by moving closer to the ball.

Input Transitions: Initialization of execution of behavior

Output Transitions:

1. TimeOutTrans: If robot does not recognize the ball within 3.5 seconds,
then transition to SC_frontNode.

2. VisualTargetCloseTrans: If the ball is recognized and is close enough
to kick, then transition to SC_Attacker2 Kick Node

3. VisualTargetTrans: If the ball is recognized from a very distant
location, then transition to SC_ Chase Node.

Basic Algorithm:

1. Upon the start of the program, the start node will point to this node.

2. This node should be a group node

3. The first node in the group should be a node that allows the robot to
walk forward.

4. The second node should be a node that incorporates a head pan.

5. Be careful that the head pan maximizes coverage of the field and does
not look over the ball too much.

14

Name: SC Pan Pounce 2 Node
o Purpose: Allows the robot to begin in a static search position with
maximum field view after ball has been kicked at least once.
o Input Transitions:
1. SC Chase Node = newDefaultLostTrans
6. SC Attacker2 Kick Node = TimeOutTrans
o Output Transitions:

3.

4,

5.

TimeOutTrans: If robot does not recognize the ball within 2.5
seconds, then transition to SC_frontNode.
VisualTargetCloseTrans: If the ball is recognized and it is close
enough to kick, then transition to SC_Attacker2 Kick Node
VisualTargetTrans: If the ball is recognized from a very distant
location, then transition to SC_Chase Node.

o Basic Algorithm:

5.
6.

7.
8.
9.

Move robot into pounce position.

Pan robot’s head in motion sequence (up, right, down, left) that will
maximize the robot’s field of view

If ball is seen up close then kick it.

If ball is seen at a distance, then run towards it.

If ball isn’t seen within 2.5 seconds, then turn in a circle and search.

Name: SC_Attacker2 Kick Node
o Purpose: Allow the robot to kick the ball when it comes close. This kick
will be different from the goalie kick because it should give precedence to
power, rather than blocking.
o Input Transitions:
5. SC Pan Pounce 2 Node = VisualTargetCloseTrans
6. SC Start Walk And Pan - VisualTargetCloseTrans
7. SC Chase Node = VisualTargetCloseTrans
8. SC 360 - VisualTargetCloseTrans
o Output Transitions:
2. TimeOutTrans: After the robot has finished kicking the ball for 1
second, it should go back to a neutral search position by transitioning
to SC_Pan Pounce 2 Node

o Basic Algorithm:
5. A Motion sequence should be used to implement a kick.
6. The postures that make up the motion sequence should be gradual
changes in position for the robot’s joints
7. The kick be very powerful.

15

Name:

Name:

SC Chase Node

Purpose: Allows the robot to run to the ball when it has been spotted from

afar.

Input Transitions:

1. SC Pan Pounce 2 Node = VisualTargetTrans

2. SC Start Walk And Pan > VisualTargetTrans

3. SC Turn_Straight Head Node = VisualTargetTrans

Output Transitions:

4. VisualTargetCloseTrans: If the ball is spotted from a position close
enough to kick it, transition to SC_Attacker2 Kick Node.

5. newDefaultLostTrans: If the robot does not see the ball any more,
transition to SC_Pan Pounce 2 Node.

Basic Algorithm:

3. The robot should walk towards the ball while maintaining the ball
within its view.

4. Refer to Explore Group and HeadPointerNode

SC 360

Purpose: Allows the robot to turn in a complete circle in search of the

ball.

Input Transitions: SC frontNode - TimeOutTrans

Output Transitions:

4. VisualTargetTrans; If the ball is spotted from afar, then robot should
transition to SC_Chase Node.

5. VisualTargetCloseTrans: If the ball is spotted from a position close
enough to kick it, transition to SC_Attacker2 Kick Node

6. TimeOutTrans: If the robot does not see the ball within 2.5 seconds,
transition to SC_downNode.

Basic Algorithm:

3. Turn in Place until ball is recognized

4. Once ball is recognized from a distance, walk towards it.

5. If the ball is not recognized, keep turning in place with a different head
position.

6. Ideally, the ball should be spotted after turning for so long.

SC Turn_Straight Head Node

Purpose:

Input Transitions: SC_downNode = TimeOutTrans
Output Transitions:

1. VisualTargetTrans; If the ball is spotted from afar, then robot should

transition to SC_Chase Node.

2. VisualTargetCloseTrans: If the ball is spotted from a position close

enough to kick it, transition to SC_Attacker2 Kick Node.

3. TimeOutTrans: If the ball is not spotted within 6 seconds, transition to

SC Walk And Pan.

o Basic Algorithm:

16

=

Name:

Name:

Name:

Turn in Place until ball is recognized

Once ball is recognized from a distance, walk towards it.

Once ball is recognized from up close, kick it.

If the ball is not recognized, walk to a different location and look for
the ball.

SC Walk And Pan

Purpose: Allows the robot to walk and search for the ball.

Input Transitions:

1. SC Turn_Straight Head Node = TimeOutTrans

Output Transitions:

1. VisualTargetCloseTrans: If the ball is spotted from a position close
enough to kick it, transition to SC_Attacker2 Kick Node.

2. VisualTargetTrans: If the ball is spotted from afar, then robot should
transition to SC_Chase Node.

3. TimeOutTrans: If the ball is not spotted within 3 seconds, transition to
SC_frontNode.

Basic Algorithm:

1. The robot should walk forward, while panning its head.

2. Once ball is recognized from a distance, the robot will chase the ball.

3. If the ball is really close to the robot, the robot will kick the ball.

4. If the ball is not seen at all within 3 seconds, then the robot will turn in
place searching for the ball.

SC _downNode

Purpose: Allows the robot to view the ball if it is in front of it.

Input Transitions:

1. SC 360 - TimeOutTrans

Output Transitions:

1. TimeOutTrans: After half a second, transition to the

SC Turn_Straight Head Node.

Basic Algorithm:

1. Robot’s head should point down to search the field for the ball up
close.

2. After half a second, the robot will turn in a circle.

SC_frontNode

Purpose: Allows the robot to view the ball if it is in the distance.
Input Transitions:

1. SC Pan Pounce 2 Node = TimeOutTrans

2. SC Start Walk And Pan - TimeOutTrans

3. SC Walk And Pan - TimeOutTrans

Output Transitions:

1. TimeOutTrans: : After half a second, transition to the SC 360.
Basic Algorithm:

17

1. Robot’s head should point up to search the field for the ball in the
distance.
2. After half a second, the robot will turn in a circle.

Transitions

* Name: VisualTargetTrans
o Purpeose: If an object is spotted recognized, no matter how far away it may
appear, use this transition.

* Name: VisualTargetCloseTrans
o Purpose: If the ball is spotted from a very close position.

Name: TimeOutTrans
o Purpose: If the robot should remain in a node for a set amount of time, use
this transition to limit that time and move on to the next node.

¢ Name: newDefaultLostTrans
o Purpese: If an object was once in sight, but now its not, use this transition
to determine the robot’s next move. Built-in transition with StateNode files
using the TimeOutTrans.h file.

18

IV. Vision Documentation: Blob Detection

To complement the EasyTrain vision tool of Tekkotsu, the SpelBots used blob detection
algorithms to identify desirable field attributes. The objects identified using these
algorithms are the blue goal, the yellow goal, and the orange ball. The following is a list
of the files used to detect blobs that correspond to these items along with detailed
description of how they work.

D. SC FindOrangeBallEvent.h
o Find orange blods and identifies of one them as the ball, it possible.
E. SC FindOrangeBlueEvent.h
o Finds the orange ball and checks to see if it is in front of the blue goal.
F. SC FindOrangeYellowEvent.h
o Finde the orange ball and checks to see if it is in front of the yellow goal.

A. SC FindOrangeBallEvent.h

The SC FindOrangeBallEvent.h file is a VisualRoutinesBehavior that attempts to
identify the orange ball by locating all of the orange blobs within a frame and using their
width, height, and area to determine whether one of them is the ball.

In the DoStart, a listener for visual region event is added to the event router. The variable
found is set to zero. In the processEvent function, first found is set to zero to indicate that
the event was not found whenever a visRegion event is posted. Next, all of the blobs are
obtained from the current camera. SHAPEVEC functions are then used to get all of the
orange blobs then the yellow blobs from the blob data obtained when all of the blobs in
the frame were identified.

After all of the yellow and orange blobs are identified, each orange blob is checked one
by one to see whether it is the orange ball. This is done by first getting the area of the
blob. Then the area is check to see whether it is between 70 and 17000. If the blob has an
area less than 70, it is too small to be the ball. If the ball’s area is over 17000, it is too
large to be the ball. Next, the height and width of blob is obtained. The height and width
is used to determine if the blob is roughly a square by checking to see is two values differ
by less than 20%. If a blob pasts all of these tests, than more than likely the orange blob
is a ball. An VisionObjectEvent is then throw to signal that the orange ball has been
found.

19

B. SC FindOrangeBlueEvent.h

The SC FindOrangeBlueEvent.h file is a VisualRoutinesBehavior that attempts to
identify the orange ball by locating all of the orange blobs within a frame and using their
width, height, and area to determine whether one of them is the ball. It then analyzes all
of the blue blobs in the frame to determine whether one of them is the blue goal. If the
blue goal is found, then the file checks to see if the orange ball is located in front of the
blue blob determined to be the goal.

In the DoStart, a listener for visual region event is added to the event router. The
variables found is set to zero. In the processEvent function, first found and foundBlue are
set to zero to indicate that the event was not found whenever a visRegion event is posted.
Next, all of the blobs are obtained from the current camera. SHAPEVEC functions are
then used get all of the orange blobs then all the blue blobs from the blob data obtained
when all of the blobs in the frame were identified.

After all of the blue and orange blobs are identified, each blue blob is checked one by one
to see whether it is the blue goal. This is done by first getting the area of each individual
blob. The area is then check to see if is greater than 800 and larger than all of the other
blue blobs that were previously analyzed. If the blob pasts these tests, the x- and y-
coordinates of the center of the blob are obtained. The maxAreaBlue (holds the value of
the area of the largest blob found) variable is updated to reflect the area of the current
blob. The foundBlue variable is set to 1 to indicated that the blue goal has been found.

Next, the orange blobs in the camera frame are analyzed to determine whether one of
them is the orange ball. This is done by first getting the area of each blob. Then the area
is check to see whether it is between 70 and 17000. If the blob has an area less than 70, it
is too small to be the ball. If the ball’s area is over 17000, it is too large to be the ball. If
the blob pasts these tests, the x- and y-coordinates of the center of the blob are obtained.
Next, the height and width of blob is obtained. The height and width is used to determine
if the blob is roughly a square by checking to see is two values differ by less than 20%.
If a blob pasts all of these tests, than more than likely the orange blob is a ball. The found
variable is set to 1 to indicated that the orange ball has been found.

Lastly, if the ball and the blue goal are found, a VisionObjectEvent is trown to indicate
this occurrence. Or, if only the ball was found, then a different VisionObjectEvent is
thrown to indicate this case. If the ball was not found at all, the found and the foundBlue
variables are both set to zero.

20

C. SC FindOrangeYellowEvent.h

The SC FindOrangeYellowEvent.h file is a VisualRoutinesBehavior that attempts to
identify the orange ball by locating all of the orange blobs within a frame and using their
width, height, and area to determine whether one of them is the ball. It then analyzes all
of the yellow blobs in the frame to determine whether one of them is the yellow goal. If
the yellow goal is found, then the file checks to see if the orange ball is located in front of
the yellow blob determined to be the goal.

In the DoStart, a listener for visual region event is added to the event router. The
variables found is set to zero. In the processEvent function, first found and foundYellow
are set to zero to indicate that the event was not found whenever a visRegion event is
posted. Next, all of the blobs are obtained from the current camera. SHAPEVEC
functions are then used get all of the orange blobs then all the yellow blobs from the blob
data obtained when all of the blobs in the frame were identified.

After all of the yellow and orange blobs are identified, each yellow blob is checked one
by one to see whether it is the yellow goal. This is done by first getting the area of each
individual blob. The area is then check to see if is greater than 800 and larger than all of
the other yellow blobs that were previously analyzed. If the blob pasts these tests, the x-
and y-coordinates of the center of the blob are obtained. The maxAreaYellow (holds the
value of the area of the largest blob found) variable is updated to reflect the area of the
current blob. The foundYellow variable is set to 1 to indicated that the yellow goal has
been found.

Next, the orange blobs in the camera frame are analyzed to determine whether one of
them is the orange ball. This is done by first getting the area of each blob. Then the area
is check to see whether it is between 70 and 17000. If the blob has an area less than 70, it
is too small to be the ball. If the ball’s area is over 17000, it is too large to be the ball. If
the blob pasts these tests, the x- and y-coordinates of the center of the blob are obtained.
Next, the height and width of blob is obtained. The height and width is used to determine
if the blob is roughly a square by checking to see is two values differ by less than 20%.
If a blob pasts all of these tests, than more than likely the orange blob is a ball. The found
variable is set to 1 to indicated that the orange ball has been found.

Lastly, if the ball and the yellow goal are found, a VisionObjectEvent is trown to indicate
this occurrence. Or, if only the ball was found, then a different VisionObjectEvent is
thrown to indicate this case. If the ball was not found at all, the found and the
foundYellow variables are both set to zero.

21

V. Motion and Locomotion Design

The term locomotion refers to the robots’ ability to move around the field. The term
motion refers to the robots’ actions in relation to the soccer game.
The motions and locomotion movements for the dogs will be as follows:
Locomotion:

* Pan head Motions
Motions:
Goalie:

* Two-leg Block
* Goalie Kick

Attackers:
* (Grab
¢ Shoulder Kick
* Head Kick

e Chest Kick
e Power Kick

These motions and loco motions are made using a Tekkotsu application called
ControllerGUI. ControllerGUI is used to communicate with the AIBO through wireless
signals. Using this tool, positions can be created and saved as position files (pos) by
manually positioning the dog’s joints while it rests in emergency stop. Motion sequences
are created through coding. The motion sequence file (mot) calls the necessary position
files to be loaded after specified times.

The following are the implementation plans for the above motions and loco motions:

* Name: Pan head
o File Name: newpan.mot, turnpan.mot, begnattk.mot
o Purpose: Every dog needs the ability to move its head around to search
for the ball or the goal.
o Description:
= (newpan.mot) The head will turn starting from a central position.
Then it will move to the left or right, down, to the left or right, up,
then back to that central position. The head will move in a circular
motion.
= (turnpan.mot) As the dog turns, it keeps its head in a central
position. After it has made a complete turn, it lowers its head then
makes another complete turn.

22

= (begnattk.mot) As the dog walks forward, it moves its head back
and forth with it’s neck at a central position to allow the dog to see
a wide range of distances.
The pan heads will move in this fashion continuously until it is stopped by
a condition programmed into the code of the behavior.
o Method: This motion will be composed of a position motion sequence.
o Transitions:
= (newpan.mot) The times between the loading of every position file
from the initial position to the last position is 500 msec.
= (turnpan.mot) The times between the loading of each position file
are 1.5 sec from the initial position to the srt8head.pos position,
250 msec from the str8head.pos position to the hddwnmid.pos
position, and 500 msec from the hddwnmid.pos position to the
position contained the node following the pan head or back to the
str8head.pos position.
= (begnattk.mot) The times between the loading of every position
file from the initial position to the last position is 500 msec.
o Positions:
= [newpan.mot] (6) hdupleft.pos, hdupmid.pos, hduprit.pos,
hddwnrit.pos, hddwnmid.pos, hddwnlef.pos
= [turnpan.mot] (2) str8head.pos, hddwnmid.pos
= [begnattk.mot] (3) attkpand.pos, attkpane.pos, attkpanf.pos
o Diagram:

Pan Head

Motion starts
(newpan.mot)

Initial
Position

23

Pan Head
(turnpan.mot)

During one complete turn

During one complete turn
Moves through motion sequence
during two complete 360° turns

Pan Head
(begnattk.mot)

tion . 500 msec l Position . 500 msec

Loops through sequence until
dog stops walking forward

24

Name: Two-Front Leg Block

©)
©)

File Name: goalblok.mot

Purpose: The goalie will use this block to cover as much of the area of the
goal possible without violation of the blocking rules by stretching out both
of its legs.

Description: When the goalie sees the ball close to its body, the dog will
extend its front legs out as fast and as far as possible. This motion has
already been designed in the past and will be tweaked if needed.

Method: This motion will be composed of a position motion sequence.
Transitions: the times between the loading of each position file are 1
second from the initial position to the Sprdmid.pos position, and 1 second
from the SprdMid.pos position to the SprdFar.pos position.

Positions: (2) SprdMid.pos, SprdFar.pos

Diagram:

Two-Front Leg Block

Initial
Position

25

Name: Goalie Kick

O
O

File Name: SC_Gkick.mot

Purpose: The goalie will use this kick to push the ball away from the goal
after it is blocked in order to make scoring more difficult for the opposing
team.

Description: After the dog gets into the two-front leg block position, the
dog will move its left leg forward and back and then move its right leg
forward and back. Moving both of the legs regardless of the position of the
ball will allow the dog to hit the ball away without having to recognize
which side of its body the ball is on. This kick can only be used when the
dog is in the two-front leg block position.

Method: This motion will be composed of a position motion sequence.
Transitions: The times between the loading of each position file are 400
msec from the initial position to the BlocKicA.pos position, 200 msec
from the BlocKicA.pos position to the BlocKicB.pos position, 400 msec
from the BlocKicB.pos position to the BlocKicA.pos position, 200 msec
from the BlocKicA.pos position to the BlocKicC.pos position, and 400
msec from the BlocKicC.pos position to the BlocKicA.pos position.
Positions: (3) BlocKicA.pos, BlocKicB.pos, BlocKicC.pos

Diagram:

Goalie Kick

Initial Position

Moves through right leg kick and back to starting kick position

BlocKicA S0imaes BlocKicC
Position Position

26

Name: Grab

O
O

@)

File Name: GrabA.mot

Purpose: This attacker can use this move to grab the ball before kicking
it.

Description: Dog will trap the ball between its to front arms. The it will
lower its head and open its mouth to gold onto the ball.

Method: This motion will be composed of a position motion sequence.
Transitions: The times between the loading of each file are 300 msec
from the initial position to the GrabStrt.pos position, 300 msec from the
GrabStrt.pos position to the GrabSprd.pos position, 200 msec from the
GrabSprd.pos position to the GrabDown.pos position, and 100 msec from
the GrabDown.pos position to the GrabFin.pos position.

Positions: (4) GrabStrt.pos, GrabSprd.pos, GrabDown.pos, GrabFin.pos
Diagram:

Grab

Initial
Position
GrabStrt
Position

27

Name: Shoulder Kick

O
O

@)

File Name: SC_Shkic.mot

Purpose: This kick will push the ball farther down the field in a slightly
random direction.

Description: The dog lunges forward and uses her head and arm to push
the ball. The hits are random depending of the placement of the ball. This
kick is also usually very powerful.

Method: This motion will be composed of a position motion sequence.
Transitions: The times between the loading of position each file are 200
msec from the initial position to the KickPos1.pos position, 200 msec
from the KickPos1.pos position to the KickPos2.pos position, 200 msec
from the KickPos2.pos to the KickPos3.pos, and 200 msec from the
KickPos3.pos position to the pounce.pos position.

Positions: (4) KickPos1.pos, KickPos2.pos, KickPos3.pos, pounce.pos
Diagram:

Shoulder Kick

Moves into Kick positions

Moves out of Kick positions

Pounce
Position

28

Name: Head Kick (with grab)

O
O

@)

File Name: SC_Hkick.mot

Purpose: This kick provides the dog with a straight and accurate kick that
can be used when aiming towards the goal.

Description: The dog traps the ball using its mouth and arms. Then it lifts
its head and uses its open mouth to push the ball away.

Method: The motion will be composed of added positions to the grab
motion sequence.

Transitions: The times between the loading of each position file are 3
msec from the initial position to the GrabStrt.pos position, 3 msec from
the GrabStrt.pos position to the GrabSprd.pos position, 200 msec from the
GrabSprd.pos position to the GrabDown.pos position, 100 msec from the
GrabDown.pos position to the GrabFin.pos position, and 800 msec from
the GrabFin.pos position to the HkickA.pos position. The HkickA.pos
position file transitions from the grab to the kick. The times between the
position files for the actual kick are 750 msec between the HkickA.pos
position and the HkickB.pos position, and 150 msec from the HkickB.pos
position to the HkickC.pos position.

Positions: (7) GrabStrt.pos, GrabSprd.pos, GrabDown.pos, GrabFin.pos,
HkickA.pos, HkickB.pos, HkickC.pos

Diagram:

Head Kick (With Grab)

Moves through grab positions

HkickC
Position

29

Name: Chest Kick

O
O

@)

File Name: SC_Ckick.mot

Purpose: The chest kick will provide the dogs with a hard kick to get the
ball across the field.

Description: This kick will be more common for all the dogs. When the
ball has been positioned in front of the dog, the dog will extend its legs
back supporting its weight on its paws. Then the dog will simultaneously
roll its front legs and back legs back causing the dog to lunge forward to
push the ball. The direction the ball is hit in is random and depends on the
placement of the ball.

Method: This motion will be composed of a position motion sequence.
Transitions: The times between the loading of each position file are 250
msec from the initial position to the chestA.pos position, 150 msec from
the chestA.pos position to the chestB.pos, 60 msec from the chestB.pos
position to the chestC.pos position, 25 msec from the chestC.pos position
to the chestD.pos position, 500 msec from the chestD.pos position to the
chestE.pos position, 250 msec from the chestE.pos position to the
chestF.pos position, and 250 from the chestF.pos position to the
pounce.pos position.

Positions: (7) chestA.pos, chestB.pos, chestC.pos, chestD.pos, chestE.pos,
chestF.pos, pounce.pos

Diagram:

Chest Kick

Moves into Kick positions

chestB
Position

Moves out of kick positions

chestF chestE Pounce
Position Position Position

30

Name: Power Kick

O
O

File Name: SC_Pkickmot

Purpose: This kick is just an idea for an extremely hard kick that can be
used to get the ball all the way across the field by the goalie or used by the
attacker during kick off or a penalty kick.

Description: The dog lunges forward and uses it's body and head to butt
the ball forward. The kick is dangerous because it forcibly pushes its head
forward using its body.

Method: This motion will be composed of a position motion sequence.
Transitions: The times between the loading of each position file are 500
msec from the initial position to the pounce.pos position, 200 msec from
the pounce.pos position to the PkickA.pos position, and 100 msec from the
PkickA.pos position to the PkickB.pos position.

Positions: (3) PkickA.pos, PkickB.pos, pounce.pos

Diagram:

Power Kick

Moves into Kick positions

Initial
Position

Moves out of kick positions

31

VI. Vision Calibration
Using the EasyTrain Vision Tool

Vision is one of, if not the most, important aspect of the RoboCup soccer competition.
The AIBO robots can only rely on vision to understand and utilize their environment on
the field. EasyTrain is a java application provided by Tekkotsu to create low-level vision
segmentations. This application defines objects as having a specific, solid color without
the distinction of shades and texture. EasyTrain uses the color image segmentation
algorithm developed by James Bruce, Tucker Balch, and Manuela Veloso, Fast and
inexpensive color image segmentation for interactive robots. In Proceedings of the 2000
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '00),
volume 3, pp. 2061-2066, October 2000.

Several pictures of the field and the objects on the field were taken by using the Tekkotsu
Raw Camera Viewer of the ERS-7 robot in the ControllerGUI tool. However, before any
pictures are taken, the camera has to get the full resolution of the image. In order to set up
the camera, the parameter “Take Snapshots” must be created in the dialog box of the
ControllerGUI tool. Then in the command box of this parameter, the following
commands must be added, saved, and selected:

Iset vision.rawcam_interval=1000

Iset vision.rawcam_transport=tcp

Iset vision.rawcam_y_skip=1

Iset vision.rawcam_uv_skip=1

Iset vision.rawcam_compression=none

The raw camera is converted to view it in its YUV format instead of its RGB format in
order to distinguish the differences in the intensity of the objects on the field. The
pictures can also be taken using a camera demo behavior for conveniance. Using a
camera behavior, he user can point the AIBO’s camera towards the desired image and tap
its head to capture the image. The information in “Take Snapshots” parameter along with
the gain and the shutter speed can be adjusted in the Tekkotsu configuration file due to
the AIBO taking pictures without the use of ControllerGUI. The camera behavior is as
follows:

Files Used
A. SC_CameraBehavior.h
o Defines the purpose of each variable and event. Creates the event that
allows the camera to take a picture what the head button of the robot is
pressed once.
B. SC_CameraBehavior.cc
o Implements the use of the camera by pressing the head button of the robot
once. Allows the format and resolution of the picture to be adjusted.

32

The vision segmentation is only defined for the colors that were significant to the robot
during the competition: blue, yellow, orange, and green. Any area of color that is not
defined in EasyTrain appears as empty gray space and is disregarded by the robot.

The vision must be recalibrated for every change in environment due to change of
lighting. Although to humans, lighting in different rooms do not always seem to change
dramatically, the ERS-7 robot will see the color images differently even when a
minuscule change in lighting occurs. The Raw Camera Viewer in the ControllerGUI tool
allows the user to change the contrast of the camera by adjusting the gain and the shutter
speed of the camera.

The gain of the camera has three possible parameters: high, mid, and low. When the gain
is adjusted, it will brighten or darken an image. However, the higher the gain of the
camera is adjusted, the higher the noise level in the image is increased. The noise level
has to be considered because it will cause static in the image. The gain can be adjusted in
the ControllerGUI tool by typing the following script into the “Send Input” window:

!set vision.gain=[low/mid/high]

The shutter speed of the camera has three possible parameters: fast, mid, and slow. When
the shutter speed is adjusted, it will also brighten or darken an image. However, the faster
the shutter speed of the camera, the more motion blur is increased. The motion blur has to
be considered because it will cause some images to blend together because the intensity
of the image will be lowered. The shutter speed can be adjusted in the ControllerGUI tool
by typing the following script into the “Send Input” window:

!set vision.shutter speed=[slow/mid/fast]

Once pictures are taken, the images collected can be opened up in EasyTrain. In the
“controls” bar of EasyTrain, the colors desired for calibration can be named. The “Color
Spectrum” window provides a choice of color pixels that were captured in the image.
Different areas of the image will correspond with various pixels in the spectrum. The
colors are defined by selecting the corresponding pixels in the spectrum. The RGB image
viewer allows the user to see the image in its real full color form. The Segmented Viewer
allows the user to see the image in its segmented color form displaying only the colors
defined by the user.

After the segmentation is finished and saved, EasyTrain will create three versions of the
file: the color file (.col), the threshold file (.tm), and the spectrum file (.spec). The files
are to be saved in the configuration folder in the Tekkotsu project folder. The
configuration for Tekkotsu, the “tekkotsu.cfg” file, must be altered to correspond with the
new color calibration by calling the color and threshold files.

Vision calibration must be the first task to complete before moving on because the AIBO
is programmed to perform actions based on its vision. The EasyTrain vision tool makes
vision calibration easy. The actual process of creating the calibration is quick, leaving
more time for other tasks. Although the EasyTrain vision tool makes calibration simple, it

33

is very limiting. The AIBO will only recognize objects as color rather than using the
shape or appearance of the objects. For example, the dog may be commanded to chase a
pink ball, but if it recognizes anything else in the room as pink, the AIBO will confuse
the other pink items as the ball, and chase the other pink items as a result. Different
objects in a room may carry pigments of the defined colors in the calibration; therefore,
its surrounding environment can easily distract the AIBO. Lighting can dramatically
affect the AIBO’s vision as well. A bright light can cause an item to reflect a bright white
or light yellow color, causing the object to disappear from the AIBO’s sight.

VII. Results

Using the described strategy, the SpelBots successfully qualified and competed in the
2006 RoboCup World Championship in Bremen, Germany during the summer of 2006.
Although the goal of qualifying and competing was reached, the SpelBots were not able
to secure a win with our three matches.

First Round Intermediate Round
UChilel Wright Eagle Northern Bites
(Department of Electrical (University of Science (Bowdoin College
Engineering, and Brunswick, Maine)
Universidad de Chile) Technology of China)
SpelBots
(Spelman College 0:4 1:5 0:1

Atlanta, Georgia)

Our team also gained the ultimate learning tool of experience during the competitions.
Other teams and researchers provided useful insights and again welcomed the Spelman
College’s robotics team into the world of RoboCup. The team looks forward to many
years of success in RoboCup and other applications of intelligent agents and robotics.

Conclusion

The SpelBots team will continue to study and learn improved techniques to incorporate
into developing code. The team seeks to utilize a more precise and dynamic vision
system. As the vision tools plays the pivotal role in our coding scheme, Any
enhancements in the vision will allow the SpelBots to improve their localization and
strategy.

Acknowledgments

The SpelBots team along with its advisors Dr. Andrew Williams and Dr. Andrea
Lawrence gratefully acknowledge the continuous support given by the General Electric
Company, NASA, and the Boeing Company. The SpelBots have also received an
overwhelming abundance of support from Dr. Beverly Tatum and the Spelman College
family. The SpelBots team thanks the organizers of RoboCup 2006 for a well-managed
and executed competition. Additionally, the present members of the SpelBots team
acknowledge the past contributions from all of the previous team members.

34

Source Code

#include "GoalieHeadFollowNode.h"

#include "Motion/HeadPointerMC.h"

#include "Motion/WalkMC.h"

#include "Motion/MMAccessor.h"

#include "Events/VisionObjectEvent.h"

#include "Shared/WorldState.h"

#include "Behaviors/Transitions/TimeOutTrans.h"

#include "Behaviors/Transitions/VisualTargetCloseTrans.h"
#include "SC_GoalieVisualTarget.h"

void GoalieHeadFollowNode::DoStart() {
StateNode: :DoStart();

headpointer id = motman-
>addPersistentMotion(SharedObject<HeadPointerMC>());

erouter-
>addListener(this,EventBase: :visObjEGID, tracking);

}

void GoalieHeadFollowNode: :DoStop() {
erouter->removeListener (this);

motman->removeMotion(headpointer id);
headpointer id=MotionManager::invalid MC_ID;

StateNode: :DoStop();
}

//this could be cleaned up event-wise (only use a timer
when out of view)
void GoalieHeadFollowNode: :processEvent(const EventBase&
event) {
static float horiz=0,vert=0;
const VisionObjectEvent *ve = dynamic_cast<const
VisionObjectEvent*>(&event);
if(ve!=NULL &&
event.getTypeID()==EventBase::statuskETID) {
horiz=ve->getCenterX();
vert=ve->getCenter¥Y();
} else
return;

//cout << "Pos: " << horiz << ' ' << vert << endl;

35

double tilt=state->outputs[HeadOffset+TiltOffset]-
vert*M PI/6;

double pan=state->outputs[HeadOffset+PanOffset]-
horiz*M PI/7.5;

if(tilt>outputRanges[HeadOffset+TiltOffset][MaxRange])

tilt=outputRanges[HeadOffset+TiltOffset][MaxRange];
if(tilt<outputRanges[HeadOffset+TiltOffset][MinRange]*

3/4)

tilt=outputRanges[HeadOffset+TiltOffset][MinRange]*3/4
7

if (pan>outputRanges[HeadOffset+PanOffset][MaxRange]*2/
3)

pan=outputRanges[HeadOffset+PanOffset][MaxRange]*2/3;

if (pan<outputRanges[HeadOffset+PanOffset][MinRange]*2/
3)

pan=outputRanges[HeadOffset+PanOffset][MinRange]*2/3;
{MMAccessor<HeadPointerMC>(headpointer id)-
>setJoints(tilt,pan,0);} //note use of {}'s to limit scope

}

Transition*
GoalieHeadFollowNode: :newDefaultLostTrans (StateNode* dest)
{

return new
TimeOutTrans(dest,1500,EventBase: :visObjEGID, tracking);

}

//Transition*
GoalieHeadFollowNode: :newDefaultCloseTrans(StateNode* dest)

{

// return new VisualTargetCloseTrans(dest,tracking);

/1%

Transition¥*
GoalieHeadFollowNode: :newDefaultCloseTrans(StateNode* dest)

{
}

return new SC_GoalieVisualTarget(dest,tracking);

/*1 @file

36

* @brief Implements a motion that allows the goalie to
track the ball using only its head joints, specifically the
pan joint.

* @author Ebony Smith (Creator)

S$Author: Ebony Smith $

SName: GoalieHeadFollowNode.cc $
SRevision: 1 $§

$SState: GA $

Shate: 05/20/2006 S

* %k Ok F F F X

//=*=CcH++-*—
#ifndef INCLUDED GoalieHeadFollowNode h
#define INCLUDED GoalieHeadFollowNode h

#include "Behaviors/StateNode.h"
#include "Motion/MotionManager.h"

//! a state node for walking towards a visual target
class GoalieHeadFollowNode : public StateNode {
public:
//!constructor, pass VisionObjectSourceID t
GoalieHeadFollowNode (unsigned int obj)

StateNode("GoalieHeadFollowNode", "GoalieWalk"),tracking(obj
),

{}

headpointer id(MotionManager::invalid MC_1ID)

//!constructor, pass instance name and
VisionObjectSourcelID t

GoalieHeadFollowNode(const std::string& nodename,
unsigned int obj)

StateNode("GoalieHeadFollowNode" ,nodename) ,tracking(obj),
headpointer id(MotionManager::invalid MC_1ID)

{}

virtual void DoStart();

virtual void DoStop();

static std::string getClassDescription() { return
"moves the head to track an object"; }

virtual std::string getDescription() const { return
getClassDescription(); }

37

//uses head to watch ball, walks towards it
virtual void processEvent(const EventBase& event);

virtual Transition* newDefaultLostTrans (StateNode*
dest); //!< returns a suggested transition for detecting
"lost" condition, but you don't have to use it

virtual Transition* newDefaultCloseTrans (StateNode*
dest); //!< returns a suggested transition for detecting
"close to target" condition, but you don't have to use it

protected:
//!constructor, pass class name, instance name,
and VisionObjectSourcelD t
GoalieHeadFollowNode(const std::string&
classname, const std::string& nodename, unsigned int obj)
: StateNode(classname,nodename),tracking(obj),
headpointer id(MotionManager::invalid MC_1ID)

{}

unsigned int tracking; //!< the object being tracked

MotionManager::MC_ID walker id; //!< so we can walk

MotionManager: :MC_ID headpointer id; //!< so we can
point the head at the object

private:
GoalieHeadFollowNode (const
GoalieHeadFollowNode&); //!< don't call this
GoalieHeadFollowNode operator=(const
GoalieHeadFollowNode&); //!< don't call this

}i

/*! @file

* @brief Implements a motion that allows the goalie to
track the ball using only its head joints, specifically the
pan joint.

* @authorEbony Smith (Creator)

S$Author: Ebony Smith $

SName: GoalieHeadFollowNode.h $
SRevision: 1 $§

$SState: GA $

Shate: 05/20/2006 S

/

* %k Ok F F F X

#endif

38

#include "GoalieWalkNode.h"

#include "Motion/HeadPointerMC.h"

#include "Motion/WalkMC.h"

#include "Motion/MMAccessor.h"

#include "Events/VisionObjectEvent.h"

#include "Shared/WorldState.h"

#include "Behaviors/Transitions/TimeOutTrans.h"

#include "Behaviors/Transitions/VisualTargetCloseTrans.h"

void GoalieWalkNode: :DoStart() {
StateNode: :DoStart();

headpointer id = motman-
>addPersistentMotion(SharedObject<HeadPointerMC>());

walker id = motman-
>addPersistentMotion(SharedObject<walkMC>());

erouter-
>addListener(this,EventBase: :visObjEGID,tracking);

}

void GoalieWalkNode: :DoStop() {
erouter->removeListener (this);

motman->removeMotion(headpointer id);
headpointer id=MotionManager::invalid MC_ID;
motman->removeMotion(walker id);

walker id=MotionManager::invalid MC_1ID;

StateNode: :DoStop();
}

//this could be cleaned up event-wise (only use a timer
when out of view)
void GoalieWalkNode: :processEvent (const EventBase& event)
static float horiz=0,vert=0;
const VisionObjectEvent *ve = dynamic_cast<const
VisionObjectEvent*>(&event);
if(ve!=NULL &&
event.getTypeID()==EventBase::statuskETID) {
horiz=ve->getCenterX();
vert=ve->getCenterY();
} else
return;

//cout << "Pos: " << horiz << ' ' << vert << endl;

39

{

double tilt=state->outputs[HeadOffset+TiltOffset]-
vert*M PI/6;

double pan=state->outputs[HeadOffset+PanOffset]-
horiz*M PI/7.5;

if(tilt>outputRanges[HeadOffset+TiltOffset][MaxRange])

tilt=outputRanges[HeadOffset+TiltOffset][MaxRange];
if(tilt<outputRanges[HeadOffset+TiltOffset][MinRange]*

3/4)

tilt=outputRanges[HeadOffset+TiltOffset][MinRange]*3/4
7

if (pan>outputRanges[HeadOffset+PanOffset][MaxRange]*2/
3)

pan=outputRanges[HeadOffset+PanOffset][MaxRange]*2/3;

if (pan<outputRanges[HeadOffset+PanOffset][MinRange]*2/
3)

pan=outputRanges[HeadOffset+PanOffset][MinRange]*2/3;
{MMAccessor<HeadPointerMC>(headpointer id)-
>setJoints(tilt,pan,0);} //note use of {}'s to limit scope

{
MMAccessor<WalkMC> walker (walker id);
if(pan<-.05 || pan>.05)
walker->setTargetVelocity(0,pan*100,0);
else
walker->setTargetVelocity(0,0,0);
}

}

Transition* GoalieWalkNode: :newDefaultLostTrans (StateNode*
dest) {

return new
TimeOutTrans (dest,1500,EventBase: :visObjEGID, tracking);

}

Transition* GoalieWalkNode: :newDefaultCloseTrans (StateNode*
dest) {
return new VisualTargetCloseTrans(dest,tracking);

}

/*! @file
* @brief Implements a walk that follows the ball
horizontally within the goalie box.

40

@author Ebony Smith (Creator)

S$Author: Ebony Smith $
SName: GoalieWalkNode.cc $
SRevision: 1 $§

$SState: GA $

SDate: 04/2006 $

* Ok k¥ ¥ O F X

//=*=CcH++-*—
#ifndef INCLUDED GoalieWalkNode h
#define INCLUDED GoalieWalkNode h

#include "Behaviors/StateNode.h"
#include "Motion/MotionManager.h"

//! a state node for walking towards a visual target
class GoalieWalkNode : public StateNode {
public:
//!constructor, pass VisionObjectSourceID t
GoalieWalkNode(unsigned int obj)

StateNode("GoalieWalkNode", "GoalieWalk"),tracking(obj),
walker id(MotionManager::invalid MC_1ID),
headpointer id(MotionManager::invalid MC_1ID)

{}

//!constructor, pass instance name and
VisionObjectSourcelID t

GoalieWalkNode(const std::string& nodename, unsigned
int obj)

StateNode("GoalieWalkNode",nodename),tracking(obj),
walker id(MotionManager::invalid MC_1ID),
headpointer id(MotionManager::invalid MC_1ID)

{}

virtual void DoStart();
virtual void DoStop();

static std::string getClassDescription() { return
"walks towards a visual target, using some basic logic for
moving the head to track it"; }

virtual std::string getDescription() const { return
getClassDescription(); }

//uses head to watch ball, walks towards it

41

virtual void processEvent(const EventBase& event);

virtual Transition* newDefaultLostTrans (StateNode*
dest); //!< returns a suggested transition for detecting
"lost" condition, but you don't have to use it

virtual Transition* newDefaultCloseTrans (StateNode*
dest); //!< returns a suggested transition for detecting
"close to target" condition, but you don't have to use it

protected:
//!constructor, pass class name, instance name, and
VisionObjectSourcelID t
GoalieWalkNode(const std::string& classname, const
std::string& nodename, unsigned int obj)
: StateNode(classname,nodename),tracking(obj),
walker id(MotionManager::invalid MC 1ID),
headpointer id(MotionManager::invalid MC_1ID)

{}

unsigned int tracking; //!< the object being tracked

MotionManager::MC_ID walker id; //!< so we can walk

MotionManager: :MC_ID headpointer id; //!< so we can
point the head at the object

private:

GoalieWalkNode (const GoalieWalkNode&); //!< don't call
this

GoalieWalkNode operator=(const GoalieWalkNode&); //!<
don't call this

}i
/*! @file
* @brief Implements a walk that follows the ball

horizontally within the goalie box.

* @Qauthor Ebony Smith (Creator)
*

* SAuthor: Ebony Smith §$

* SName: GoalieWalkNode.h $

* SRevision: 1 $

* $State: GA $

* SDate: 04/2006 $

*/

#endif

#ifndef INCLUDED SC_Attacker2 h

42

#define INCLUDED SC_Attacker2 h

#include "Behaviors/Transition.h"

#include "Behaviors/Nodes/WalkToTargetNode.h"
#include "Behaviors/Nodes/WalkNode.h"

#include "Behaviors/Demos/ExploreMachine.h"

#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetTrans.h"
#include "Behaviors/Nodes/OutputNode.h"

#include "Behaviors/Nodes/MotionSequenceNode.h"
#include "Behaviors/Nodes/GroupNode.h"

#include "Sound/SoundManager.h"

#include "Shared/ProjectInterface.h"

#include "Behaviors/Transitions/VisualTargetCloseTrans.h"
//#include "Behaviors/Nodes/KickNode.h"

#include "Behaviors/Nodes/HeadPointerNode.h"
#include "Behaviors/Transitions/CompletionTrans.h"
#include "Behaviors/StateNode.h"

#include "VisionHeader.h"

#include "GoalieWalkNode.h"

class SC_Attacker2 :

public StateNode {

protected:
StateNode *SC_Start_ Node;

public:

SC_Attacker2() :

StateNode("SC_Attacker2"),

SC_Start Node(NULL) {}

void SC_Attacker2::DoStart() {

}

StateNode: :DoStart();
SC_Start Node->DoStart();

virtual void setup() {

StateNode: :setup();

GroupNode * SC_Start Walk And Pan new

GroupNode (getName()+"::SC_Start Walk And Pan");

addNode (SC_Start_Walk And Pan);
{

WalkNode * SC_Walk_ Forward Node new

WalkNode(SC_Start Walk And Pan->getName()+"::TurnInPlace",

150 , O

14

0);

43

SC_Walk_Forward Node->setVelocity(150,0,0);
SC_Start Walk And Pan-
>addNode (SC_Walk_ Forward Node);

LargeMotionSequenceNode * SC_Pan_ Head Node =
new LargeMotionSequenceNode(SC_Start Walk And Pan-
>getName()+"::PanHead","/ms/data/motion/begnattk.mot", true)

4

SC_Start Walk And Pan-
>addNode (SC_Pan_Head_Node) ;

}

GroupNode * SC_Attacker2 Kick Node = new
GroupNode (getName()+"::SC_Attacker2 Kick Node");
addNode (SC_Attacker2 Kick Node);

{

LargeMotionSequenceNode * SC_Kick Node = new
LargeMotionSequenceNode (SC_Attacker2 Kick Node-
>getName()+"::KickBall", "SC_Shkic.mot");

SC_Attacker2 Kick Node-
>addNode (SC_Kick_Node);

}

WalkToTargetNode * SC_Chase_Node = new
WalkToTargetNode (visOrangeSID);

SC_Chase Node->setName(getName()+"::Chase");

addNode (SC_Chase Node) ;

GroupNode * SC_Turn Straight Head Node = new
GroupNode (getName()+"::SC_Turn Straight Head Node");

addNode (SC_Turn_Straight Head Node);

{

WalkNode * SC_Turn_360 = new
WalkNode(SC_Turn_ Straight Head Node-
>getName()+"::SC_Turn 360", 0 , 0 , .85);

SC_Turn_360->setVelocity(0,0,.85);

SC_Turn_Straight Head Node-
>addNode (SC_Turn_360);

MediumMotionSequenceNode * panhead = new
MediumMotionSequenceNode (getName()+": :PanHead","/ms/data/mo
tion/turnpan.mot",true);

SC_Turn_Straight Head Node-
>addNode (panhead) ;

44

GroupNode * SC2_ Turn_Straight Head Node = new
GroupNode (getName()+"::SC2_Turn_Straight Head Node");

addNode (SC2_Turn_Straight Head Node);

{

WalkNode * SC_Turn_360 = new
WalkNode(SC2_Turn_Straight Head Node-
>getName()+"::SC_Turn 360", 0 , 0 , .85);

SC_Turn 360->setVelocity(0,0,.85);

SC2_Turn_Straight Head Node-
>addNode (SC_Turn_360);

SmallMotionSequenceNode *
SC_Straight Head Node = new
SmallMotionSequenceNode(SC2_Turn_ Straight Head Node-
>getName()+": :PanHead","/ms/data/motion/str8head.pos", true)

4

SC2_Turn_Straight Head Node-
>addNode (SC_Straight Head Node);

}

GroupNode * SC _Walk And Pan = new
GroupNode (getName()+"::SC_Walk And Pan");

addNode (SC_Walk_And_Pan);

{

WalkNode * SC_Forward Node = new
WalkNode(SC_Walk And Pan->getName()+"::SC_Forward Node",
150 , 0, 0);

SC_Forward Node->setVelocity(150,0,0);

SC_Walk And Pan->addNode(SC_Forward Node) ;

LargeMotionSequenceNode * SC_Pan_ Node = new
LargeMotionSequenceNode (SC_Walk And Pan-
>getName()+"::SC_Pan Node","/ms/data/motion/newpan.mot",tru
e);

SC_Walk And_Pan->addNode(SC_Pan_Node) ;

WalkNode * SC_360 = new
WalkNode(getName()+"::SC_360", 0 , 0 , .85);
SC_360->setVelocity(0,0,.85);

45

addNode (SC_360) ;

WalkNode * SC2_ 360 = new

WalkNode (getName()+"::SC2_ 360", 0 , 0 , .85);
SC2_360->setVelocity(0,0,.85);
addNode (SC2_360);

SmallMotionSequenceNode * SC_Straight Node = new
SmallMotionSequenceNode (getName()+"::PanHead","/ms/data/mot
ion/atkkpana.pos",true);

addNode (SC_Straight Node) ;

HeadPointerNode * frontNode = new
HeadPointerNode ("UpNode");

addNode (frontNode) ;

frontNode-> getMC()->lookAtPoint(200,0,100,30);

HeadPointerNode * downNode = new
HeadPointerNode ("downNode") ;

addNode (downNode) ;

downNode-> getMC()->lookAtPoint(200,0,30,30);

GroupNode * SC_Pan_ Pounce_2 Node = new
GroupNode (getName()+"::SC_Pan Pounce_ 2 Node");

addNode (SC_Pan_Pounce_2 Node);

{

LargeMotionSequenceNode * SC_Pan Only Node =
new LargeMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::PanHead","/ms/data/motion/newpan.mot",true);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pan_Only Node) ;

StateNode *SC_Pounce_Node= new
MediumMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::stand","/ms/data/motion/pounce.pos", false);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pounce_Node) ;

}

StateNode *SC_Test Node= new
MediumMotionSequenceNode (getName()+"::stand","/ms/data/moti
on/pounce.pos",false);

addNode (SC_Test_Node) ;

46

Transition * tmptrans=NULL;
Transition * kicktrans=NULL;
//Transition * ctrans=NULL;

//starts out exploring

SC_Start Node=SC_Start Walk And Panj;

SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

SC_Start Walk And Pan->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

SC_Start Walk And Pan->addTransition(new
TimeOutTrans (frontNode, 3500));

//SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//SC_Start Walk And Pan->addTransition(new
VisualTargetCloseTrans(SC_Test Node,yellowGoalSID, 160));

//SC_Chase_ Node Transistions

SC_Chase Node->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

SC_Chase_Node-
>addTransition(tmptrans=SC_Chase Node-
>newDefaultLostTrans (SC_Pan_Pounce_ 2 Node));

//SC_Chase_ Node->addTransition(new
VisualTargetCloseTrans(SC_Test Node,yellowGoalSID, 160));

//SC_Attacker2 Kick Node Transistions
SC_Attacker2 Kick Node->addTransition(new
TimeOutTrans (SC_Pan Pounce 2 Node,1000));

//SC_Pan_Pounce_2 Node Transistions

SC_Pan_Pounce_2 Node->addTransition(new
TimeOutTrans (frontNode, 2500));

SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

//SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

47

//SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetCloseTrans(SC_Test Node,yellowGoalSID, 160));

frontNode->addTransition(new
TimeOutTrans(SC_360,500));

//SC_Turn_ 360 Transitions

SC_360->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

SC_360->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

SC_360->addTransition(new
TimeOutTrans (downNode, 6000));

//SC_360->addTransition(new
VisualTargetCloseTrans(SC_Test Node,yellowGoalSID, 160));

//SC_360->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

downNode->addTransition(new
TimeOutTrans(SC_Turn_Straight Head Node,500));

SC_Turn_Straight Head Node->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

SC_Turn_Straight Head Node->addTransition(new
TimeOutTrans (SC_Walk And Pan,6000));

//SC_Turn_Straight Head Node->addTransition(new
VisualTargetCloseTrans(SC_Test Node,yellowGoalSID, 160));

//SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

SC_Walk_And Pan->addTransition(new
VisualTargetCloseTrans (SC_Attacker2 Kick Node,visOrangeSID,
160));

SC_Walk_And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

SC_Walk_And Pan->addTransition(new
TimeOutTrans (frontNode, 3000));

//SC_Walk And Pan->addTransition(new
VisualTargetCloseTrans (SC_Test Node,yellowGoalSID, 160));
//SC_Walk And Pan->addTransition(new

VisualTargetTrans(SC_Test Node,yellowGoalSID));

48

//preload the sounds so we don't pause on
tranisitions

sndman->LoadFile("cutey.wav");

sndman->LoadFile("barkmed.wav");

sndman->LoadFile("whimper.wav");

sndman->LoadFile("fart.wav");

void SC_Attacker2::teardown() {
//release the sounds
sndman->ReleaseFile("cutey.wav");
sndman->ReleaseFile("barkmed.wav");
sndman->ReleaseFile("whimper.wav");
sndman->ReleaseFile("fart.wav");
StateNode: :teardown();

}

private:
SC_Attacker2(const SC_Attacker2&);
//!'< don't call;just satisfies the compiler
SC_Attacker2 operator=(const SC_Attacker2&); //t<
don't call;just satisfies the compiler

}i

#endif

// Author : Andrea Roberson

// Date : 06/2006

// Description: Main attacker StateNode that implements

attacker state machine

#include "SC_CameraBehavior.h"
#include "Events/EventRouter.h"
#include "Events/TextMsgEvent.h"
#include "Shared/ERS210Info.h"
#include "Shared/ERS220Info.h"
#include "Shared/ERS7Info.h"
#include "Wireless/Socket.h"
#include "Shared/WorldState.h"
#include "Sound/SoundManager.h"

49

#include "Shared/Config.h"

#include "Shared/ProjectInterface.h"
#include "Motion/LedMC.h"

#include "Motion/MMAccessor.h"

#include "Vision/FilterBankGenerator.h"
#include "Vision/RawCameraGenerator.h"
#include "Vision/InterleavedYUVGenerator.h"
#include "Vision/JPEGGenerator.h"

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <dirent.h>

void
SC_CameraBehavior::DoStart() {
BehaviorBase: :DoStart();
if (state->robotDesign&WorldState: :ERS210Mask) {

camera_click.setSourceID(ERS210Info: :HeadFrButOffset);
} else if(state->robotDesign&WorldState::ERS220Mask) {

camera_click.setSourceID(ERS220Info: :HeadFrButOffset);
} else if(state->robotDesign&WorldState::ERS7Mask) {

camera_click.setSourceID(ERS7Info: :HeadButOffset);
}

initIndex();

sndman->LoadFile("camera.wav");

ledID=motman-
>addPersistentMotion(SharedObject<LedMC>());

erouter->addListener(this,camera click);

erouter->addListener (this,EventBase: :textmsgEGID);

}

void SC_CameraBehavior::DoStop() {
erouter->removeListener (this);
sndman->ReleaseFile("camera.wav");
motman->removeMotion(ledID);
BehaviorBase: :DoStop();

/*! The format used depends on the current config settings.
If JPEG

50

* 1s the current choice, then a JPEG file will be
written.
* Otherwise, RawCameraGenerator::SaveFile() will be
called.
*/
void
SC_CameraBehavior: :processEvent (const EventBase& e) {
if (e.getGeneratorID()==EventBase::textmsgEGID) {
const TextMsgEvent * txt=dynamic cast<const
TextMsgEvent*>(&e);

if (txt==NULL || txt->getText()!="camera")
return;
} else if(e.shorterThan(camera click))
return;
{
MMAccessor<LedMC> leds(1ledID);
leds->cset (FaceLEDMask,2.0/3.0);
leds->set (TopBrLEDMask, 1) ;
}

if (config-
>vision.rawcam compression==Config::vision_ config::COMPRESS
_NONE) {
//this is our own odd little format, would be
nice to save a TIFF or something instead

// open file
//FILE * f=openNextFile(".raw"); *** ORIG
FILE * f=openNextFile(".raw");
if (£==NULL) //error message already displayed in
openNextFile()
return;

//! write actual image data

if (config-
>vision.rawcam_encoding==Config::vision_ config: :ENCODE_COLO
R) {

FilterBankGenerator *
gen=ProjectInterface::defInterleavedYUVGenerator; // just
an alias for readability

gen-
>selectSaveImage (ProjectInterface: :doublelLayer,InterleavedY
UVGenerator: :CHAN YUV);

unsigned int len=gen->SaveFileStream(f);

if(len==0) {

serr->printf ("Error saving file\n");

51

sndman->PlayFile(config-
>controller.error_snd);
return;
}
} else if(config-
>vision.rawcam encoding==Config::vision config::ENCODE_SING
LE_CHANNEL) {

FilterBankGenerator *
gen=ProjectInterface: :defRawCameraGenerator; // just an
alias for readability

gen-
>selectSaveImage (ProjectInterface: :doublelLayer,config-
>vision.rawcam channel);

unsigned int len=gen->SaveFileStream(f);

if(len==0) {

serr->printf ("Error saving file\n");
sndman->PlayFile(config-
>controller.error_snd);

return;
}
}
// close file
fclose(£f);

} else if(config-

>vision.rawcam compression==Config::vision_ config::COMPRESS
_JPEG) {

//save a JPEG image

JPEGGenerator * jpeg=NULL; // we'll set this to
pick between the color jpeg or a single channel grayscale
Jpeg

unsigned int chan=0; // and this will hold the
channel to use out of that jpeg generator

if (config-
>vision.rawcam_encoding==Config::vision_ config: :ENCODE_COLO
R)

jpeg=dynamic_cast<JPEGGenerator*>(ProjectInterface::de
fColorJPEGGenerator);
else if(config-
>vision.rawcam encoding==Config::vision config::ENCODE_SING
LE_CHANNEL) {

jpeg=dynamic_cast<JPEGGenerator*>(ProjectInterface::de
fGrayscaleJPEGGenerator) ;
chan=config->vision.rawcam channel;

}

52

if (jpeg!=NULL) {
unsigned int tmp g=jpeg->getQuality();
//temporary storage so we can reset the default
// jpeg->setQuality(92); set the quality to
100 so that there is virtually no compression
jpeg->setQuality(100);

// open file
// FILE * f=openNextFile(".jpg"); ***orig
FILE * f=openNextFile(".jpg");
if (£==NULL) //error message already
displayed in openNextFile()
return;

//! write actual image data
unsigned char * imgbuf=jpeg-
>getImage(ProjectInterface: :doublelLayer,chan);
unsigned int writ=fwrite(imgbuf, jpeg-
>getImageSize(ProjectInterface: :doubleLayer,chan),1l,f);
if(writ==0) {
serr->printf ("Error saving file\n");
sndman->PlayFile(config-
>controller.error_snd);
return;

}

// close file
fclose(£f);

jpeg->setQuality(tmp q);

}
}
{
MMAccessor<LedMC> leds(1ledID);
leds->clear();
leds->flash(TopBrLEDMask,700);
leds->flash(TopLLEDMask | TopRLEDMask,500) ;
leds->flash(MidLLEDMask |MidRLEDMask,300);
leds->flash(BotLLEDMask | BotRLEDMask,100);
}
sout->printf("done\n");
}
FILE *

SC_CameraBehavior: :openNextFile(const std::string& ext) ({

53

FILE * f=fopen(getNextName(ext).c_str(),"w+");

if (f==NULL) ({
serr->printf("Error opening file\n");
sndman->PlayFile(config->controller.error_ snd);
return NULL;

}

sndman->PlayFile("camera.wav");

return f;

std::string

SC_CameraBehavior: :getNextName(const std::string& ext) {
char tmp[100];
snprintf(tmp,100, "data/img%05d%s",index++,ext.c_str())

~e

std::string ans=config->portPath(tmp);
sout->printf("Saving "%s'...",ans.c_str());
return ans;

}

void
SC_CameraBehavior::initIndex() {
std::string path=config->portPath("data/");
DIR* dir=opendir(path.c_str());
if (dir==NULL) {
serr->printf("bad path: “%s'\n",path.c_str());
return;
}
struct dirent * ent=readdir(dir);
while(ent!=NULL) {
struct stat s;
std::string fullpath=path+ent->d name;
int err=stat(fullpath.c_str(),&s);
if(err!=0) {
serr->printf("File disappeared:
$s\n", fullpath.c_str());
return;
}
if((s.st_mode&S IFDIR)==0 && strncasecmp(ent-
>d_name, "IMG",3)==0) {
unsigned int cur=atoi(&ent->d name[3]);
if (cur>index)
index=cur;
}
ent=readdir(dir);

}

closedir(dir);

54

index++; //set index to next unused
sout->printf("The next saved image will go to
$simg%05d\n",path.c_str(),index);

}

// Author : Ashley Johnson

// Date : 06/2006

// Description: Implements the use of the camera by
pressing the head button of the robot once.

// Allows the format and

resolution of the picture to be adjusted.

//=*=CcH++-*—
#ifndef INCLUDED SC_CameraBehavior h
#define INCLUDED_ SC_CameraBehavior h

#include "Behaviors/BehaviorBase.h"
#include "Motion/MotionManager.h"
#include "Shared/Config.h"

//! Will take images and write to log file

/*! Press the head button to take a picture, back button to
write to memory

* stick. The leds will flash when finished writing.

*

* The reason for this is to provide sample code for
accessing vision

* data, and also simply because we should have a way to
save

* pictures to memstick instead of relying solely on
having wireless

* to transmit them over.

*

* TImage format is chosen by current config settings for
the

* Config::vision config::rawcam compression and

* Config::vision_config::rawcam channel. However, the
double

* resolution layer is always saved instead of whatever
the current

* config skip value indicates.

*/
class SC_CameraBehavior : public BehaviorBase {

public:

//! constructor, just sets up the variables

55

SC_CameraBehavior ()
: BehaviorBase("SC_CameraBehavior"),
camera_click(EventBase: :buttonEGID,0,EventBase: :deactivateE

TID,150), index(0),
{

/***

Vision train
Iset
Iset
Iset
Iset
Iset
***/

ledID(MotionManager::invalid MC 1ID)
Set vision to these parameters to use

vision.rawcam interval=1000
vision.rawcam transport=tcp
vision.rawcam y skip=1
vision.rawcam uv_skip=1
vision.rawcam compression=none

/** config->vision.rawcam interval=1000; // **x*

Remove these if you
parameters

want the default vision.rawcam

config->vision.rawcam transport=1l; // l=tcp,

O0=udp

config->vision.rawcam y skip=1;
config->vision.rawcam uv_skip=1;

// config-
>vision.rawcam compression=Config::vision config::COMPRESS
NONE ;
config-
>vision.rawcam compression=Config::vision config::COMPRESS
JPEG;
config->vision.gain = 3;
config->vision.shutter speed = 1;
k [
}

//! Register for events
virtual void DoStart();

//! Removes its two motion commands
virtual void DoStop();

//! Handles event processing - determines which
generator to save from and writes to current file
virtual void processEvent(const EventBase& e);

static std::string getClassDescription() { return
"Push head button to save a picture"; }

virtual std::string getDescription() const { return
getClassDescription(); }

56

protected:

//! opens the next file to be saved to (with @a ext
extension on the file name)

FILE * openNextFile(const std::string& ext);

//! returns the path and name of the next file to be
saved to (with @a ext extension on the file name)
std::string getNextName(const std::string& ext);

//! scans the /ms/data directory for image files and
assigns the next unused index to #index
void initIndex();

EventBase camera_click; //!< event mask for taking a
picture (head button)

unsigned int index; //!< the index to use for the next
image saved

MotionManager::MC_ID ledID; //!< the id of the LedMC
used to signal completion

}i

// Author : Ashley Johnson

// Date : 06/2006

// Description: Defines the purpose of each variable
and event.

// Creates the event that
allows the camera to take a picture what the head button of
the robot is pressed once.

#endif

#ifndef _SC FindOrangeBallEvent h
#define _SC_FindOrangeBallEvent h

#include "DualCoding/DualCoding.h"
#include "Vision/RegionGenerator.h"
#include "Events/VisionObjectEvent.h"
#include "VisionHeader.h"

using namespace DualCoding;
class SC_FindOrangeBallEvent : public

VisualRoutinesBehavior {
public:

57

SC_FindOrangeBallEvent() :
VisualRoutinesBehavior("SC_FindOrangeBallEvent") {}

void DoStart() {
VisualRoutinesBehavior: :DoStart();
erouter->addListener(this,
EventBase: :visRegionEGID);
found=0;

} // end DoStart taking this out
because I want to process only ONE camera frame. Otherwise
many visRegion events are generated and the max Area's are
replicated and too big

void processEvent(const EventBase &event) {

if (event.getGeneratorID() ==
EventBase: :visRegionEGID) {
found = 0; // say the event is not found
every time a visRegion event is posted

camSkS.clear();
camShS.clear();

NEW_SKETCH(camFrame, uchar,
sketchFromSeg());

NEW_SHAPEVEC(blob_shapes, BlobData,
BlobData: :extractBlobs(camFrame,70)); // ball is about
area=50 from center to front of goalie box.

NEW_SHAPEVEC (orange blobs, BlobData,
subset (blob shapes, isColor("orange")));
NEW_SHAPEVEC(yellow blobs, BlobData,

subset (blob shapes, isColor("yellow"))); // don't want to
kick to yellow goal
/* NEW_SHAPEVEC (green_blobs, BlobData,

subset (blob shapes, isColor('"green")));
NEW_SHAPEVEC(yellow _blobs, BlobbData,
subset (blob shapes, isColor("yellow")));

NEW_SHAPEVEC(blue_blobs, BlobData,
subset (blob shapes, isColor("blue")));

NEW_SHAPEVEC (pink_blobs, BlobData,
subset (blob shapes, isColor("pink"))):;
*/

float maxArea = 70;

SHAPEVEC_ITERATE (orange_blobs, BlobData, bl)

58

int count=0;

blArea = bl->getArea();

//cout << "orange blob area #" <<
count++ << " is " << blArea << endl;

// Look for the biggest blob and want
the blob to be less than a ball right in front of aibo's
nose, about area=16272

if ((blArea > maxArea) && (blArea <
17000)) {

Point maxShape = bl-
>getCentroid();

//cout << ">>>In
SC_FindOrangeBallEvent process event: Center X is " << bl-
>getCentroid().coordX()

// << " Center Y is " << bl-
>getCentroid().coordY() << " Area is " << bl->getArea() <<
endl;

orangeBallCenterX = bl-
>getCentroid().coordX();

orangeBallCenterY bl-

>getCentroid().coord¥();

NEW_SHAPE(goal, PointData, new
PointData(camShS, maxShape));

maxArea = blArea;

goal-
>setColor (ProjectInterface: :getColorRGB("orange"));
goal->setName("orangeBall"); //

this will allow me to refer to this blob as orangeBall in a
VisualRoutineStateNode

// Get the height and width of the
orange blobs

// determine the height of the
yvellow blob

float blobHeight = bl-
>bottomLeft.coordY() - bl->topLeft.coordY¥Y();

// determine the width of the
orange blob

float blobwWidth = bl-
>topRight.coordX() - bl->topLeft.coordX();

// Determine if it is roughly a
square . That is, height is within 20 percent of the
width)

59

if ((blArea <1000) && (blobHeight
< (0.80 * blobWidth)) && (blobHeight > (1.20 * blobWidth)))
{ // try to make sure it's a "square" circle

found = 0;

Point answer=bl-
>getCentroid();

NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else if ((blArea < 800) && (bl-
>bottomLeft.coordY() < 40)){ // try to make sure it's not
seeing an orange banner in the "sky"

found = 0;

Point answer=bl-
>getCentroid();

NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else {

found =1;

Point answer=bl-
>getCentroid();

NEW_SHAPE (foundIt, PointData,
new PointData(camShS, answer));

}

// Get the parameters for a vision
object event. These are normalized for the camera with the
origin at the center and the max ranges for x and y are (-
1,1).

dim =
max (camFrame.width,camFrame.height);

cw = camFrame.width/dim;

ch = camFrame.height/dim;

x1 2.0f*bl-
>topLeft.coordX()/camFrame.width - cw;

x2 = 2.0f*bl-
>bottomRight.coordX()/camFrame.width - cw;

yl = 2.0f*bl-
>topLeft.coordY()/camFrame.height - ch;

y2 = 2.0f*bl-
>bottomRight.coordY()/camFrame.height - ch;

}

} END_ITERATE;

// If found the orange goal then throw an
event

60

// Announce the goal by posting a
VisionObjectEvent
if (found == 1) {

VisionObjectEvent *obj = new
VisionObjectEvent (orangeBallYesSID,EventBase::activateETID,

x1l, x2, yl, y2,
blArea/(camFrame.width*camFrame.height), cw, ch,

ProjectInterface: :defRegionGenerator-
>getFrameNumber());
erouter->postEvent (obj);
cout << "Posted a vision object event
for orange ball " << endl;
return;

}
}

} // end processEvent

virtual void DoStop() {
VisualRoutinesBehavior: :DoStop();
erouter->removeListener (this,
EventBase: :visRegionEGID);

}

float orangeBallCenterX;
float orangeBallCenterY;

int found;
float blArea; // blob area

float dim; // maximum camera dimensions
float cw; // camera frame width

float ch; // camera frame height
float x1; // top left x coordinate
float x2; // bottom right x coordinate
float yl; // top left y coordinate
float y2; // bottom right y coordinate

}i

#endif

61

#ifndef _SC FindOrangeBlueEvent h
#define _SC_FindOrangeBlueEvent h

#include "DualCoding/DualCoding.h"
#include "Vision/RegionGenerator.h"
#include "Events/VisionObjectEvent.h"
#include "VisionHeader.h"

using namespace DualCoding;

class SC_FindOrangeBlueEvent : public
VisualRoutinesBehavior {

public:
SC_FindOrangeBlueEvent() :
VisualRoutinesBehavior("SC_FindOrangeBlueEvent") {}

void DoStart() {
VisualRoutinesBehavior: :DoStart();
erouter->addListener(this,
EventBase: :visRegionEGID);
found=0;

} // end DoStart taking this out
because I want to process only ONE camera frame. Otherwise
many visRegion events are generated and the max Area's are
replicated and too big

void processEvent(const EventBase &event) {

if (event.getGeneratorID() ==
EventBase: :visRegionEGID) {
foundBlue=0; // say the event is not found
every time a visRegion event is posted
found=0;

camSkS.clear();
camShS.clear();

NEW_SKETCH(camFrame, uchar,
sketchFromSeg());

NEW_SHAPEVEC(blob_shapes, BlobData,
BlobData: :extractBlobs(camFrame,70)); // ball is about
area=50 from center to front of goalie box.

NEW_SHAPEVEC (orange_ blobs, BlobData,
subset (blob shapes, isColor("orange")));

62

/* NEW_SHAPEVEC (green_blobs, BlobData,
subset (blob shapes, isColor("green")));
NEW_SHAPEVEC(yellow blobs, BlobbData,
subset (blob shapes, isColor("yellow")));
NEW_SHAPEVEC(blue_blobs, BlobData,
subset (blob shapes, isColor("blue")));
NEW_SHAPEVEC (pink_blobs, BlobData,
subset (blob shapes, isColor("pink"))):;
*/

NEW_SHAPEVEC(blue_blobs, BlobData,
subset (blob shapes, isColor("blue")));

//***

// Process blue blobs to look for blue goal

//***

float maxAreaBlue = 100;
SHAPEVEC_ ITERATE(blue blobs, BlobbData,
blueBlob) {
blueBlobArea = blueBlob->getArea();

// Look for the biggest blob and want
the blob to bigger than a blue marker blob, 800 pixels area
if ((blueBlobArea > maxAreaBlue) &&
(blueBlobArea > 800)) {
Point maxShape = blueBlob-

>getCentroid();

cout << "Center X is " <<
blueBlob->getCentroid().coordX()

<< " Center Y is " <<

blueBlob->getCentroid().coordY() << endl;

blueGoalCenterX = blueBlob-
>getCentroid().coordX();

blueGoalCenterY = blueBlob-

>getCentroid().coord¥();

NEW_SHAPE(goal, PointData, new
PointData(camShS, maxShape));

maxAreaBlue = blueBlobArea;
foundBlue=1;

}

} END_ITERATE;

63

//***

// Process orange blobs to look for blue

goal
//***
float maxArea = 70;
SHAPEVEC_ ITERATE (orange_blobs, BlobData, bl)
{

blArea = bl->getArea();

//cout << "orange blob area #" <<
count++ << " is " << blArea << endl;

// Look for the biggest blob and want
the blob to be less than a ball right in front of aibo's
nose, about area=16272

if ((blArea > maxArea) && (blArea <
17000)) {

Point maxShape = bl-
>getCentroid();

//cout << ">>>In
SC_FindOrangeBallEvent process event: Center X is " << bl-
>getCentroid().coordX()

// << " Center Y is " << bl-
>getCentroid().coordY() << " Area is " << bl->getArea() <<
endl;

orangeBallCenterX = bl-
>getCentroid().coordX();

orangeBallCenterY bl-

>getCentroid().coord¥();

NEW_SHAPE(goal, PointData, new
PointData(camShS, maxShape));

maxArea = blArea;

goal-
>setColor (ProjectInterface: :getColorRGB("orange"));
goal->setName("orangeBall"); //

this will allow me to refer to this blob as orangeBall in a
VisualRoutineStateNode

// Get the height and width of the
orange blobs

// determine the height of the
blue blob

float blobHeight = bl-
>bottomLeft.coordY() - bl->topLeft.coord¥Y();

64

// determine the width of the

orange blob
float blobWidth = bl-

>topRight.coordX() - bl->topLeft.coordX();

// Determine if it is roughly a
square . That is, height is within 20 percent of the
width)

if ((blArea <1000) && (blobHeight
< (0.80 * blobWidth)) && (blobHeight > (1.20 * blobWidth)))
{ // try to make sure it's a "square" circle

found = 0;

//Point answer=bl-
>getCentroid();

//NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else if ((blArea < 800) && (bl-
>bottomLeft.coordY() < 40)){ // try to make sure it's not
seeing an orange banner in the "sky"

found = 0;

//Point answer=bl-
>getCentroid();

//NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else {

found =1;

Point answer=bl-
>getCentroid();

NEW_SHAPE (foundIt, PointData,
new PointData(camShS, answer));

}

// If found the orange goal then
throw an event

// Announce the goal by posting a
VisionObjectEvent

// Get the parameters for a vision
object event. These are normalized for the camera with the
origin at the center and the max ranges for x and y are (-
1,1).

dim =
max (camFrame.width,camFrame.height);

cw = camFrame.width/dim;

ch = camFrame.height/dim;

65

xl = 2.0f*bl-
>topLeft.coordX()/camFrame.width - cw;

x2 = 2.0f*bl-
>bottomRight.coordX()/camFrame.width - cw;

yl = 2.0f*bl-
>topLeft.coordY()/camFrame.height - ch;

y2 = 2.0f*bl-
>bottomRight.coordY()/camFrame.height - ch;

}

} END_ITERATE;

if ((found==1) && (foundBlue==1)){

VisionObjectEvent *obj = new
VisionObjectEvent (orangeBlueYesSID,EventBase::activateETID,

x1l, x2, y1, y2,
blArea/(camFrame.width*camFrame.height), cw, ch,

ProjectInterface: :defRegionGenerator-

>getFrameNumber());

erouter->postEvent (obj);

cout << "Posted a vision object event
for orange ball " << endl;

found=0;

foundBlue=0;

return;

} else if ((found==1) && (foundBlue !=1)) {
VisionObjectEvent *obj = new
VisionObjectEvent (orangeBallYesSID,EventBase::activateETID,

x1l, x2, yl, y2,
blArea/ (camFrame.width*camFrame.height), cw, ch,

ProjectInterface: :defRegionGenerator-

>getFrameNumber());

erouter->postEvent (obj);

cout << "Posted a vision object event
for orange ball " << endl;

found=0;

foundBlue=0;

return;

} else {
found=0;

66

events???

}

foundBlue=0;
return; // NEEDED to quite posted

} // end processEvent

virtual void DoStop() {
VisualRoutinesBehavior: :DoStop();
erouter->removeListener (this,
EventBase: :visRegionEGID);

}

float
float

float
float

int found;

orangeBallCenterX;
orangeBallCenteryY;

blueGoalCenterX;
blueGoalCenterY;

int foundBlue;

float
float

float
float
float
float
float
float
float

}i

#endif

blArea; // orange blob area
blueBlobArea; // orange blob area

dim;

Ccw;
ch;
x1;
X2;

// maximum camera dimensions
// camera frame width

// camera frame height

// top left x coordinate

// bottom right x coordinate
// top left y coordinate

// bottom right y coordinate

#ifndef SC FindOrangeYellowEvent h
#define _SC FindOrangeYellowEvent h

#include "DualCoding/DualCoding.h"
#include "Vision/RegionGenerator.h"
#include "Events/VisionObjectEvent.h"
#include "VisionHeader.h"

67

using namespace DualCoding;

class SC_FindOrangeYellowEvent : public
VisualRoutinesBehavior {
public:

SC_FindOrangeYellowEvent() :
VisualRoutinesBehavior("SC_FindOrangeYellowEvent") {}

void DoStart() {
VisualRoutinesBehavior: :DoStart();
erouter->addListener(this,
EventBase: :visRegionEGID);
found=0;

} // end DoStart taking this out
because I want to process only ONE camera frame. Otherwise
many visRegion events are generated and the max Area's are
replicated and too big

void processEvent(const EventBase &event) {

if (event.getGeneratorID() ==
EventBase: :visRegionEGID) {
foundYellow=0; // say the event is not found
every time a visRegion event is posted
found=0;

camSkS.clear();
camShS.clear();

NEW_SKETCH(camFrame, uchar,
sketchFromSeg());

NEW_SHAPEVEC(blob_shapes, BlobData,
BlobData: :extractBlobs(camFrame,70)); // ball is about
area=50 from center to front of goalie box.

NEW_SHAPEVEC (orange_ blobs, BlobData,
subset (blob shapes, isColor("orange")));

/* NEW_SHAPEVEC (green_blobs, BlobData,
subset (blob shapes, isColor('"green")));
NEW_SHAPEVEC(yellow blobs, BlobData,
subset (blob shapes, isColor("yellow")));
NEW_SHAPEVEC(blue_blobs, BlobData,
subset (blob shapes, isColor("blue")));
NEW_SHAPEVEC (pink_blobs, BlobData,
subset (blob shapes, isColor("pink"))):;

68

*/

NEW_SHAPEVEC(yellow blobs, BlobbData,
subset (blob shapes, isColor("yellow")));

//***

// Process yellow blobs to look for yellow
goal

//***

float maxAreaYellow = 100;
SHAPEVEC_ ITERATE(yellow blobs, BlobData,
yellowBlob) {
yvellowBlobArea = yellowBlob->getArea();

// Look for the biggest blob and want
the blob to bigger than a yellow marker blob, 800 pixels
area

if ((yellowBlobArea > maxAreaYellow)
&& (yellowBlobArea > 800)) {

Point maxShape = yellowBlob-
>getCentroid();
cout << "Center X is " <<
yellowBlob->getCentroid().coordX()
<< " Center Y is " <<
yellowBlob->getCentroid().coordY() << endl;
yvellowGoalCenterX

yellowBlob-
>getCentroid().coordX();

yvellowGoalCenterY yellowBlob-

>getCentroid().coord¥();

NEW_SHAPE(goal, PointData, new
PointData(camShS, maxShape));

maxAreaYellow = yellowBlobArea;
foundYellow=1;

}

} END_ITERATE;

//***

// Process orange blobs to look for yellow
goal

//***

69

float maxArea = 70;
SHAPEVEC_ ITERATE (orange_blobs, BlobData, bl)

blArea = bl->getArea();

//cout << "orange blob area #" <<
count++ << " is " << blArea << endl;

// Look for the biggest blob and want
the blob to be less than a ball right in front of aibo's
nose, about area=16272

if ((blArea > maxArea) && (blArea <
17000)) {

Point maxShape = bl-
>getCentroid();

//cout << ">>>In
SC_FindOrangeBallEvent process event: Center X is " << bl-
>getCentroid().coordX()

// << " Center Y is " << bl-
>getCentroid().coordY() << " Area is " << bl->getArea() <<
endl;

orangeBallCenterX = bl-
>getCentroid().coordX();

orangeBallCenterY bl-

>getCentroid().coord¥();

NEW_SHAPE(goal, PointData, new
PointData(camShS, maxShape));

maxArea = blArea;

goal-
>setColor (ProjectInterface: :getColorRGB("orange"));
goal->setName("orangeBall"); //

this will allow me to refer to this blob as orangeBall in a
VisualRoutineStateNode

// Get the height and width of the
orange blobs

// determine the height of the
yvellow blob

float blobHeight = bl-
>bottomLeft.coordY() - bl->topLeft.coordY¥Y();

// determine the width of the
orange blob

float blobwWidth = bl-
>topRight.coordX() - bl->topLeft.coordX();

70

// Determine if it is roughly a
square . That is, height is within 20 percent of the
width)

if ((blArea <1000) && (blobHeight
< (0.80 * blobWidth)) && (blobHeight > (1.20 * blobWidth)))
{ // try to make sure it's a "square" circle

found = 0;

//Point answer=bl-
>getCentroid();

//NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else if ((blArea < 800) && (bl-
>bottomLeft.coordY() < 40)){ // try to make sure it's not
seeing an orange banner in the "sky"

found = 0;

//Point answer=bl-
>getCentroid();

//NEW_SHAPE (didNotFindIt,
PointData, new PointData(camShS, answer));

} else {

found =1;

Point answer=bl-
>getCentroid();

NEW_SHAPE (foundIt, PointData,
new PointData(camShS, answer));

}

// If found the orange goal then
throw an event

// Announce the goal by posting a
VisionObjectEvent

// Get the parameters for a vision
object event. These are normalized for the camera with the
origin at the center and the max ranges for x and y are (-
1,1).

dim =
max (camFrame.width,camFrame.height);

cw = camFrame.width/dim;

ch = camFrame.height/dim;

xl = 2.0f*bl-
>topLeft.coordX()/camFrame.width - cw;

x2 = 2.0f*bl-
>bottomRight.coordX()/camFrame.width - cw;

yl = 2.0f*bl-
>topLeft.coordY()/camFrame.height - ch;

71

y2 = 2.0f*bl-
>bottomRight.coordY()/camFrame.height - ch;
}

} END_ITERATE;

if ((found==1) && (foundYellow==1)){

VisionObjectEvent *obj = new
VisionObjectEvent (orangeYellowYesSID,EventBase::activateETI
D,

x1l, x2, y1, y2,
blArea/ (camFrame.width*camFrame.height), cw, ch,

ProjectInterface: :defRegionGenerator-

>getFrameNumber());

erouter->postEvent (obj);

cout << "Posted a vision object event
for orange ball " << endl;

found=0;

foundYellow=0;

return;

} else if ((found==1) && (foundYellow !=1))
{
VisionObjectEvent *obj = new
VisionObjectEvent (orangeBallYesSID,EventBase::activateETID,

x1l, x2, y1, y2,
blArea/ (camFrame.width*camFrame.height), cw, ch,

ProjectInterface: :defRegionGenerator-

>getFrameNumber());

erouter->postEvent (obj);

cout << "Posted a vision object event
for orange ball " << endl;

found=0;

foundYellow=0;

return;

} else {

found=0;

foundYellow=0;

return; // NEEDED to quite posted
events???

72

}

} // end processEvent

virtual void DoStop() {
VisualRoutinesBehavior: :DoStop();
erouter->removeListener (this,
EventBase: :visRegionEGID);

}

float orangeBallCenterX;
float orangeBallCenterY;

float yellowGoalCenterX;
float yellowGoalCenterY;

int found;
int foundYellow;

float blArea; // orange blob area
float yellowBlobArea; // orange blob area

float dim; // maximum camera dimensions
float cw; // camera frame width

float ch; // camera frame height
float x1; // +top left x coordinate
float x2; // bottom right x coordinate
float yl; // top left y coordinate
float y2; // bottom right y coordinate

}i

#endif
#ifndef INCLUDED SC_Goalie Lil Shuff h
#define INCLUDED SC_Goalie Lil Shuff h

#include "Behaviors/Transition.h"

#include "Behaviors/Nodes/WalkToTargetNode.h"
#include "Behaviors/Nodes/WalkNode.h"

#include "Behaviors/Demos/ExploreMachine.h"

#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetTrans.h"
#include "Behaviors/Nodes/OutputNode.h"

#include "Behaviors/Nodes/MotionSequenceNode.h"

73

#include "Behaviors/Nodes/GroupNode.h"

#include "Sound/SoundManager.h"

#include "Shared/ProjectInterface.h"

#include "Behaviors/Transitions/VisualTargetCloseTrans.h"
#include "Behaviors/Nodes/KickNode.h"

#include "Behaviors/Nodes/HeadPointerNode.h"
#include "Behaviors/Transitions/CompletionTrans.h"
#include "Behaviors/StateNode.h"

#include "VisionHeader.h"

#include "GoalieWalkNode.h"

#include "GoalieHeadFollowNode.h"

#include "SC_GoalieVisualTarget.h"

#include "SC_GoalieShuffTrans.h"

class SC_Goalie Lil Shuff : public StateNode {
protected:
StateNode *SC_Start_ Node;

public:
SC_Goalie Lil Shuff() :
StateNode("SC_Goalie Lil Shuff"), SC_Start Node(NULL) {}

void SC_Goalie Lil Shuff::DoStart() {
StateNode: :DoStart();
SC_Start Node->DoStart();

}

virtual void setup() {
StateNode: :setup();

LargeMotionSequenceNode * SC_Pan Head Node = new
LargeMotionSequenceNode (SC_Pan_Head Node-
>getName()+"::PanHead","/ms/data/motion/newpan.mot", true);

addNode (SC_Pan_Head_Node) ;

MediumMotionSequenceNode * SC_AK Pan Node = new
MediumMotionSequenceNode (getName()+": :PanHead","/ms/data/mo
tion/newpan.mot",true);

addNode (SC_AK Pan_Node) ;

GoalieWalkNode * SC_Goalie Shuffle Node = new
GoalieWalkNode(getName()+"::Chase", visOrangeSID);
addNode (SC_Goalie Shuffle Node);

GoalieHeadFollowNode * SC_Goalie Head Node = new

GoalieHeadFollowNode (getName()+"::SC_Goalie Head Node",
visOrangeSID);

74

addNode (SC_Goalie Head Node);

GroupNode * SC_Goalie Kick Node = new
GroupNode (getName()+"::SC_Goalie Kick Node");

addNode (SC_Goalie Kick_ Node);

{

SmallMotionSequenceNode * kickball = new
SmallMotionSequenceNode(SC_Goalie Kick_ Node-
>getName()+"::KickBall","/ms/data/motion/ekogoal.mot");

SC_Goalie_ Kick Node->addNode(kickball);

}

StateNode *SC_Goalie_ Pounce_Node= new
MediumMotionSequenceNode (getName()+"::stand","/ms/data/moti
on/goalsit.pos",false);

addNode (SC_Goalie Pounce_Node);

StateNode *SC_AK Pounce_Node= new
MediumMotionSequenceNode (getName()+"::stand","/ms/data/moti
on/goalsit.pos",false);

addNode (SC_AK Pounce_Node) ;

WalkNode * SC_Turn_360_Node = new

WalkNode(getName()+"::SC_Turn 360 Node", 0 , 0 , .85);
SC_Turn_360_Node->setVelocity(0,0,.85);
addNode (SC_Turn_360_Node) ;

GroupNode * SC_Goalie Turn Pan = new
GroupNode (getName()+"::SC_Goalie Turn Pan");
addNode (SC_Goalie Turn_Pan);
{
WalkNode * SC_Turn_Look Node = new
WalkNode(getName()+"::SC_Turn Look Node", 0 , 0 , .85);
SC_Turn_Look Node->setVelocity(0,0,.85);
SC_Goalie_ Turn_ Pan-
>addNode (SC_Turn_Look_Node) ;

MediumMotionSequenceNode * SC_Pan_Look Node
= new
MediumMotionSequenceNode (getName()+": :PanHead","/ms/data/mo
tion/pan_head.mot",true);

SC_Goalie_ Turn_ Pan-
>addNode (SC_Pan_Look_Node) ;

}

75

WalkToTargetNode * SC_Back To YGoal = new
WalkToTargetNode(yellowGoalSID);

SC_Back To_YGoal-
>setName (getName()+"::SC_Back To YGoal");

addNode (SC_Back_To_YGoal);

/*

SC_Pan_Head Node->addTransition(new
TimeOutTrans (SC_Find YGoal Node,9000));

SC_Find_YGoal Node->addTransition(new
VisualTargetTrans (SC_Back To_YGoal,yellowGoalSID));

SC_Back_To_YGoal->addTransition(new
VisualTargetCloseTrans(SC_Find BGoal Node,blueGoalSID));

SC_Find_BGoal Node->addTransition(new
VisualTargetTrans (SC_Goalie Pounce Node,blueGoalSID));

*/

//starts in a pounce position

SC_Start Node=SC_Goalie Pounce_ Node;

//If the ball is sighted from a distance, shuffle
and follow it horizontally

//SC_Goalie Pounce Node->addTransition(new
VisualTargetTrans (SC_Goalie Shuffle Node,visOrangeSID));

SC_Goalie_Pounce_Node->addTransition(new
SC_GoalieShuffTrans(SC_Goalie_Shuffle Node,visOrangeSID));

//If you get close enough to the ball, kick

//SC_Goalie Pounce Node->addTransition(new
VisualTargetCloseTrans (SC_Goalie Kick Node,visOrangeSID));

76

SC_Goalie_Pounce_Node->addTransition(new
SC_GoalieVisualTarget(SC_Goalie Kick Node,visOrangeSID));

//After a second, begin panning head in search of
ball

SC_Goalie_Pounce_Node->addTransition(new
TimeOutTrans (SC_Pan Head Node,1500,EventBase::visObjEGID,vi
sOrangeSID));

//Some definitions for transitions
Transition * tmptrans=NULL;
Transition * kicktrans=NULL;

//While panning head, shuffle and follow it
horizontally

//SC_Pan_Head_ Node->addTransition(tmptrans=new
VisualTargetTrans(SC_Goalie Shuffle Node,visOrangeSID));

SC_Pan_Head Node->addTransition(tmptrans=new
SC_GoalieShuffTrans(SC_Goalie_Shuffle Node,visOrangeSID));

//If you get close enough to the ball, kick

//SC_Pan_Head_ Node->addTransition(tmptrans=new
VisualTargetCloseTrans (SC_Goalie Kick Node,visOrangeSID));

SC_Pan_Head Node->addTransition(tmptrans=new
SC_GoalieVisualTarget(SC_Goalie Kick Node,visOrangeSID));

//If the ball is lost while shuffling, pan head
in search of it

SC_Goalie_Shuffle Node-
>addTransition(tmptrans=SC_Goalie_ Shuffle Node-
>newDefaultLostTrans (SC_Pan Head Node));

//If you get close enough to the ball, kick

//SC_Goalie_Shuffle Node->addTransition(kicktrans
=new VisualTargetCloseTrans(SC_Goalie Kick Node,
visOrangeSID));

SC_Goalie_Shuffle Node->addTransition(kicktrans
=new SC_GoalieVisualTarget(SC_Goalie Kick Node,
visOrangeSID));

SC_Goalie_sShuffle Node->addTransition(new
TimeOutTrans (SC_Goalie Head Node, 3000));

//If you have been shuffling following the ball
for a while, just follow it with your head.

//SC_Goalie_ Shuffle Node->addTransition(new
TimeOutTrans (SC_Goalie Head Node,9000));

77

//If the ball is lost while following with head,
pan head in search of it

SC_Goalie Head Node-
>addTransition(tmptrans=SC_Goalie Head Node-
>newDefaultLostTrans (SC_Pan Head Node));

//If you get close enough to the ball, kick

//SC_Goalie Head Node->addTransition(kicktrans
=new VisualTargetCloseTrans(SC_Goalie Kick Node,
visOrangeSID));

SC_Goalie Head Node->addTransition(kicktrans =new
SC_GoalieVisualTarget(SC_Goalie_Kick Node, visOrangeSID));

//If you have been shuffling following the ball
for a while, just follow it with your head.

SC_Goalie Head Node->addTransition(new
TimeOutTrans (SC_Pan Head Node,2000));

//After kicking the ball, go back to a pounce
position, but this pounce is a different node than the
first pounce used

SC_Goalie_ Kick Node->addTransition(new
TimeOutTrans (SC_Goalie Pounce_Node, 3500));

//SC_Goalie Kick Node->addTransition(tmptrans=new
SC_GoalieShuffTrans(SC_Goalie_Shuffle Node,visOrangeSID));

//preload the sounds so we don't pause on
tranisitions

sndman->LoadFile("cutey.wav");

sndman->LoadFile("barkmed.wav");

sndman->LoadFile("whimper.wav");

sndman->LoadFile("fart.wav");

void SC_Goalie Lil Shuff::teardown() ({
//release the sounds
sndman->ReleaseFile("cutey.wav");
sndman->ReleaseFile("barkmed.wav");

78

sndman->ReleaseFile("whimper.wav");
sndman->ReleaseFile("fart.wav");
StateNode: :teardown();

}

private:
SC_Goalie Lil Shuff(const SC_Goalie Lil Shuffs&);
//!'< don't call;just satisfies the compiler
SC_Goalie_Lil Shuff operator=(const

SC Goalie Lil Shuff&); //!'< don't call;just satisfies the
compiler

}i

#endif

// Author Ebony Smith

// Date : 04/2006
// Description: Main goalie StateNode that implements goal
state machine

//=*=CcH++-*—
#ifndef INCLUDED SC_GoalieShuffTrans h
#define INCLUDED SC_GoalieShuffTrans h

#include "Events/EventRouter.h"
#include "Events/VisionObjectEvent.h"
#include "Shared/debuget.h"

#include "Shared/WorldState.h"
#include "Shared/ERS210Info.h"
#include "Shared/ERS220Info.h"
#include "Shared/ERS7Info.h"

//! causes a transition when a visual object is "close"
class SC_GoalieShuffTrans : public Transition {
public:

//!constructor

SC_GoalieShuffTrans(StateNode* destination, unsigned
int source_id, float threshold=300)

: Transition("SC_GoalieShuffTrans",destination),
sid(source_id), distanceThreshold(threshold) {}

//lconstructor

SC_GoalieShuffTrans(const std::string& name,
StateNode* destination, unsigned int source id, float
threshold=300)

79

: Transition("SC_GoalieShuffTrans",name,destination),
sid(source_id), distanceThreshold(threshold) {}

//!starts listening for the object specified by the
source id in the constructor

virtual void DoStart() { Transition::DoStart();
erouter->addListener(this,EventBase: :visObjEGID,sid); }

//!'called by StateNode when it becomes inactive - undo
whatever you did in Enable()

virtual void DoStop() { erouter->removeListener(this);
Transition::DoStop(); }

//1'if the object is "close", calls fire()
virtual void processEvent(const EventBase& e) {
cout << ">>>in SC_GoalieShuffTrans: Event SID is
"<< e.getSourcelID() << endl;

const VisionObjectEvent* ve=dynamic_cast<const
VisionObjectEvent*>(&e);
ASSERTRET (ve!=NULL, "Casting error");

float x=ve->getCenterX();
float y=ve->getCenterY();

cout << ">>>in SC_GoalieShuffTrans: x is " << x
<< " and y is " << y << endl;

unsigned int IRDistOffset=-1U;
//The ERS-7 adds more IR distance sensors, so we
have to
//break it down by model so we can specify which
one
/*if (state->robotDesign & WorldState::ERS210Mask)
IRDistOffset=ERS210Info::IRDistOffset;
else if(state->robotDesign &
WorldState: :ERS220Mask)
IRDistOffset=ERS220Info::IRDistOffset;
else if(state->robotDesign &
WorldState: :ERS7Mask) */

IRDistOffset=ERS7Info::NearIRDistOffset;

cout << ">>>***in SC_GoalieShuffTrans: IR sensor
reading is "<< state->sensors[IRDistOffset] << endl;

80

//if(x*x+y*y<0.02f && IRDistOffset!=-1U && state-
>sensors[IRDistOffset]<distanceThreshold) { NOTE: take
out the x*x+y*y equation. Trying to look for a square

if(state-
>sensors[IRDistOffset]<distanceThreshold) {

cout << ">>>FIRING SC_GoalieShuffTrans
transition with distance threshold " << distanceThreshold
<< " and IR sensor " << state->sensors[IRDistOffset] <<
endl;

fire();

protected:
//1'Source ID of object to track
unsigned int sid;

//!Distance at which to trigger transition, in
millimeters
float distanceThreshold;

}i
// Author : Ebony Smith
// Date : 06/2006

// Description: Used to transition into a walk that
follows the ball horizontally when the ball is sighted at a
specified distance.

#endif

//=*=CcH++-*—
#ifndef INCLUDED SC_GoalieVisualTarget h
#define INCLUDED SC_GoalieVisualTarget h

#include "Events/EventRouter.h"
#include "Events/VisionObjectEvent.h"
#include "Shared/debuget.h"

#include "Shared/WorldState.h"
#include "Shared/ERS210Info.h"
#include "Shared/ERS220Info.h"
#include "Shared/ERS7Info.h"

//! causes a transition when a visual object is "close"
class SC_GoalieVisualTarget : public Transition {
public:

//!constructor

81

SC_GoalieVisualTarget(StateNode* destination, unsigned
int source_id, float threshold=200)

: Transition("SC_GoalieVisualTarget",destination),
sid(source_id), distanceThreshold(threshold) {}

//lconstructor

SC_GoalieVisualTarget(const std::string& name,
StateNode* destination, unsigned int source id, float
threshold=200)

Transition("SC_GoalieVisualTarget",name,destination),
sid(source_id), distanceThreshold(threshold) {}

//!starts listening for the object specified by the
source id in the constructor

virtual void DoStart() { Transition::DoStart();
erouter->addListener(this,EventBase: :visObjEGID,sid); }

//!'called by StateNode when it becomes inactive - undo
whatever you did in Enable()

virtual void DoStop() { erouter->removeListener(this);
Transition::DoStop(); }

//1'if the object is "close", calls fire()
virtual void processEvent(const EventBase& e) {
cout << ">>>in SC_GoalieVisualTarget: Event SID
is "<< e.getSourceID() << endl;

const VisionObjectEvent* ve=dynamic_cast<const
VisionObjectEvent*>(&e);
ASSERTRET (ve!=NULL, "Casting error");

float x=ve->getCenterX();
float y=ve->getCenterY();

cout << ">>>in SC_GoalieVisualTarget: x is " << x
<< " and y is " << y << endl;

unsigned int IRDistOffset=-1U;

//The ERS-7 adds more IR distance sensors, so we
have to

//break it down by model so we can specify which
one

/*if (state->robotDesign & WorldState::ERS210Mask)

IRDistOffset=ERS210Info::IRDistOffset;

else if(state->robotDesign &

WorldState: :ERS220Mask)

82

IRDistOffset=ERS220Info::IRDistOffset;
else if(state->robotDesign &
WorldState: :ERS7Mask) */

IRDistOffset=ERS7Info::NearIRDistOffset;

cout << ">>>***in SC_GoalieVisualTarget: IR
sensor reading is "<< state->sensors[IRDistOffset] << endl;
//if(x*x+y*y<0.02f && IRDistOffset!=-1U && state-
>sensors[IRDistOffset]<distanceThreshold) { NOTE: take
out the x*x+y*y equation. Trying to look for a square
if(state-
>sensors[IRDistOffset]<distanceThreshold) {
cout << ">>>FIRING SC_GoalieVisualTarget
transition with distance threshold " << distanceThreshold
<< " and IR sensor " << state->sensors[IRDistOffset] <<
endl;
fire();

protected:
//1'Source ID of object to track
unsigned int sid;

//!Distance at which to trigger transition, in
millimeters
float distanceThreshold;

}i
// Author : Ebony Smith
// Date : 06/2006

// Description: Used to transition to into a block/kick
when the ball is close enough to the goal.

#endif

//=*=CcH++-*—

#ifndef INCLUDED TimeOutTrans_h
#define INCLUDED TimeOutTrans_h

#include "Behaviors/Transition.h"
#include "Events/EventRouter.h"

//! causes a transition after a specified amount of time
has passed

83

/*! If any event parameters are specified, this transition
will listen

* for matching events, and if any are received, it will
reset the

* timer */
class TimeOutTrans : public Transition {
public:

//! constructor, specify delay in milliseconds

TimeOutTrans (StateNode* destination, unsigned int delay)

Transition("TimeOutTrans", "TimeOutTrans",destination),
d(delay),

eventargcount(0),
egid(EventBase: :unknownEGID), esid(0),
etid(EventBase::statuskETID) {}

//! constructor, specify delay in milliseconds, if any
events matching given parameters are received, the timer
will be reset

TimeOutTrans (StateNode* destination, unsigned int delay,
EventBase: :EventGeneratorID t gid)

Transition("TimeOutTrans", "TimeOutTrans",destination),
d(delay),

eventargcount(l), egid(gid), esid(0),
etid(EventBase::statuskETID) {}

//! constructor, specify delay in milliseconds, if any
events matching given parameters are received, the timer
will be reset

TimeOutTrans (StateNode* destination, unsigned int delay,
EventBase: :EventGeneratorID t gid, unsigned int sid)

Transition("TimeOutTrans", "TimeOutTrans",destination),
d(delay),

eventargcount(2), egid(gid), esid(sid),
etid(EventBase: :statuskETID) {}

//! constructor, specify delay in milliseconds, if any
events matching given parameters are received, the timer
will be reset

TimeOutTrans (StateNode* destination, unsigned int delay,
EventBase: :EventGeneratorID t gid, unsigned int sid,
EventBase: :EventTypeID t tid)

Transition("TimeOutTrans", "TimeOutTrans",destination),
d(delay),

84

eventargcount(3), egid(gid), esid(sid),
etid(tid) {}

//!starts timer
virtual void DoStart() {
Transition::DoStart();
switch (eventargcount) {
case 1l: erouter->addListener(this,egid); break;
case 2: erouter->addListener(this,egid,esid); break;
case 3: erouter->addListener(this,egid,esid,etid);
break;
}i

resetTimer();

}

//!stops timer

virtual void DoStop() {
erouter->removeListener (this);
Transition::DoStop();

}
//!resets timer
void resetTimer () {
// std::cout << "Reset @ " << get time() << " stop @ "
<< get_time()+d << ' ' << this << std::endl;

erouter->addTimer (this,0,d,false);

}

//'if we receive the timer event, fire()
virtual void processEvent(const EventBase& e) {

// std::cout << "Timeout @ " << get time() << " from "
<< event.getName() << ' ' << this << std::endl;
if (e.getGeneratorID()==EventBase::timerEGID)
fire();
else
resetTimer();
}
protected:

//! constructor, specify delay in milliseconds - use
assignment in your subclass's constructor if you want set
#egid,#esid,#etid (don't forget #eventargcount!)

TimeOutTrans (const std::string& classname, const
std::string& instancename, StateNode* destination, unsigned
int delay)

: Transition(classname,instancename,destination),
d(delay),

85

eventargcount(0),
egid(EventBase: :unknownEGID), esid(0),
etid(EventBase::statuskETID) {}

//'amount to delay (in milliseconds) before transition
unsigned int d;

//!'level of specificity of events to listen for
unsigned int eventargcount;

EventBase: :EventGeneratorID t egid; //!< the event
generator to listen for

unsigned int esid; //!< the source to listen for

EventBase: :EventTypeID t etid; //!< the type to listen
for

}i

/*! @file

* @brief Defines TimeOutTrans, which causes a transition
after a specified amount of time has passed

* @Qauthor Ebony Smith *

* @Date: 01/2006

*/

#endif

#ifndef INCLUDED SC_AttackerOrangeBlue h
#define INCLUDED SC_AttackerOrangeBlue h

#include "Behaviors/Transition.h"

//#include "Behaviors/Nodes/WalkToTargetNode.h"
#include "Behaviors/Nodes/WalkNode.h"

#include "Behaviors/Demos/ExploreMachine.h"

#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetTrans.h"
#include "Behaviors/Nodes/OutputNode.h"

#include "Behaviors/Nodes/MotionSequenceNode.h"
#include "Behaviors/Nodes/GroupNode.h"

#include "Sound/SoundManager.h"

#include "Shared/ProjectInterface.h"

//#include "Behaviors/Transitions/VisualTargetCloseTrans.h"
//#include "Behaviors/Nodes/KickNode.h"

#include "Behaviors/Nodes/HeadPointerNode.h"
#include "Behaviors/Transitions/CompletionTrans.h"
#include "Behaviors/StateNode.h"

#include "VisionHeader.h"

#include "GoalieWalkNode.h"

86

#include "SC_FindOrangeBlueEvent.h"
#include "Behaviors/Transitions/EventTrans.h"

#include "SC_WalkToTargetFastNode.h"
#include "SC_VisualTargetCloseTrans.h"
#include "SC_Attacker WalkAround.h"

class SC_AttackerOrangeBlue : public StateNode ({
protected:
StateNode *SC_Start_ Node;

public:
SC_AttackerOrangeBlue() :
StateNode("SC_AttackerOrangeBlue"), SC Start Node(NULL) {}

void SC_AttackerOrangeBlue::DoStart() {
StateNode: :DoStart();
vrOrangeBall->DoStart(); // *** IMPORTANT: Must
add this to start the Visual Routine to look for the ball!
SC_Start Node->DoStart();
}

virtual void setup() {
StateNode: :setup();

// Use Visual Routines to find orange ball
vrOrangeBall = new SC_FindOrangeBlueEvent();

GroupNode * SC_Start Walk And Pan = new
GroupNode (getName()+"::SC_Start Walk And Pan");

addNode (SC_Start _Walk And Pan);

{

WalkNode * SC_Walk Forward Node = new
WalkNode(SC_Start Walk And Pan->getName()+"::TurnInPlace",
150 , 0, 0);

SC_Walk_Forward Node->setVelocity(150,0,0);

SC_Start Walk And Pan-
>addNode (SC_Walk_ Forward Node);

LargeMotionSequenceNode * SC_Pan_ Head Node =
new LargeMotionSequenceNode(SC_Start Walk And Pan-
>getName()+": :PanHead","/ms/data/motion/begnattk.mot", true)

4

SC_Start Walk And Pan-
>addNode (SC_Pan_Head_Node) ;

87

}

GroupNode * SC_Attacker2 Kick Node = new
GroupNode (getName()+"::SC_Attacker2 Kick Node");
addNode (SC_Attacker2 Kick Node);

{

LargeMotionSequenceNode * SC_Kick Node = new
LargeMotionSequenceNode (SC_Attacker2 Kick Node-
>getName()+"::KickBall", "SC_Shkic.mot");

SC_Attacker2 Kick Node-
>addNode (SC_Kick_Node);

}
// SC_WalkToTargetFastNode * SC_Chase Node = new
SC_WalkToTargetFastNode(visOrangeSID);
SC_WalkToTargetFastNode * SC_Chase_Node = new

SC_WalkToTargetFastNode(orangeBallYesSID);
SC_Chase Node->setName(getName()+"::Chase");
addNode (SC_Chase Node) ;

GroupNode * SC_Turn Straight Head Node = new
GroupNode (getName()+"::SC_Turn Straight Head Node");

addNode (SC_Turn_Straight Head Node);

{

WalkNode * SC_Turn_360 = new
WalkNode(SC_Turn_ Straight Head Node-
>getName()+"::SC_Turn 360", 0 , 0 , .85);

SC_Turn 360->setVelocity(0,0,.85);

SC_Turn_Straight Head Node-
>addNode (SC_Turn_360);

MediumMotionSequenceNode * panhead = new
MediumMotionSequenceNode (getName()+": :PanHead","/ms/data/mo
tion/turnpan.mot",true);

SC_Turn_Straight Head Node-
>addNode (panhead) ;

}

GroupNode * SC2_ Turn_Straight Head Node = new
GroupNode (getName()+"::SC2_Turn_Straight Head Node");
addNode (SC2_Turn_Straight Head Node);

{

88

WalkNode * SC_Turn_360 = new
WalkNode(SC2_Turn_Straight Head Node-
>getName()+"::SC_Turn 360", 0 , 0 , .85);

SC_Turn 360->setVelocity(0,0,.85);

SC2_Turn_Straight Head Node-
>addNode (SC_Turn_360);

SmallMotionSequenceNode *
SC_Straight Head Node = new
SmallMotionSequenceNode(SC2_Turn_ Straight Head Node-
>getName()+"::PanHead","/ms/data/motion/str8head.pos", true)

4

SC2_Turn_Straight Head Node-
>addNode (SC_Straight Head Node);

}

GroupNode * SC _Walk And Pan = new
GroupNode (getName()+"::SC_Walk And Pan");

addNode (SC_Walk_And_Pan);

{

WalkNode * SC_Forward Node = new
WalkNode(SC_Walk And Pan->getName()+"::SC_Forward Node",
150 , 0, 0);

SC_Forward Node->setVelocity(150,0,0);

SC_Walk And Pan->addNode(SC_Forward Node) ;

LargeMotionSequenceNode * SC_Pan_ Node = new
LargeMotionSequenceNode (SC_Walk And Pan-
>getName()+"::SC_Pan Node","/ms/data/motion/newpan.mot",tru
e);

SC_Walk And_Pan->addNode(SC_Pan_Node) ;

WalkNode * SC_360 = new

WalkNode(getName()+"::SC_360", 0 , 0 , .85);
SC_360->setVelocity(0,0,.85);
addNode (SC_360) ;

WalkNode * SC_180 = new

WalkNode(getName()+"::SC_360", 0 , 0 , .75);
SC_180->setVelocity(0,0,.75);
addNode (SC_180);

89

WalkNode * SC2_ 360 = new

WalkNode (getName()+"::SC2_ 360", 0 , 0 , .85);
SC2_360->setVelocity(0,0,.85);
addNode (SC2_360);

SmallMotionSequenceNode * SC_Straight Node = new
SmallMotionSequenceNode (getName()+"::PanHead","/ms/data/mot
ion/atkkpana.pos",true);

addNode (SC_Straight Node) ;

HeadPointerNode * frontNode = new
HeadPointerNode ("UpNode");

addNode (frontNode) ;

frontNode-> getMC()->lookAtPoint(200,0,100,30);

HeadPointerNode * downNode = new
HeadPointerNode("downNode") ;

addNode (downNode) ;

downNode-> getMC()->lookAtPoint(200,0,30,30);

GroupNode * SC_Pan_ Pounce_2 Node = new
GroupNode (getName()+"::SC_Pan Pounce_ 2 Node");

addNode (SC_Pan_Pounce_2 Node);

{

LargeMotionSequenceNode * SC_Pan Only Node =
new LargeMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::PanHead","/ms/data/motion/newpan.mot",true);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pan_Only Node) ;

StateNode *SC_Pounce_Node= new
MediumMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::stand","/ms/data/motion/pounce.pos", false);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pounce_Node) ;

}
StateNode *SC_Test Node= new

MediumMotionSequenceNode (getName()+"::stand","/ms/data/moti
on/pounce.pos",false);
addNode (SC_Test_Node) ;

90

Transition * tmptrans=NULL;
Transition * kicktrans=NULL;
//Transition * ctrans=NULL;

//starts out exploring

SC_Start Node=SC_Start Walk And Panj;

//SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

// CHANGED this to a different kind of event
// SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node, orangeBallYesSID));

SC_Start Walk And Pan->addTransition(new
EventTrans (SC_Chase Node, EventBase::visObjEGID,
orangeBallYesSID, EventBase::activateETID)); // Need this
event transition for orange ball

// SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,visOrangeS
ID, 160));

SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans (SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Start Walk And Pan->addTransition(new
TimeOutTrans (frontNode, 3500));

//SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Chase Node Transistions
// SC_Chase Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,visOrangeS
ID, 160));

//Test for turn away for defending goal

SC_Chase Node->addTransition(new
EventTrans(SC_180, EventBase::visObjEGID, orangeBlueYesSID,
EventBase::activateETID)); // Need this event transition
for Blue goal and orange ball

SC_Chase Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

91

SC_Chase_Node-
>addTransition(tmptrans=SC_Chase Node-
>newDefaultLostTrans (SC_Pan_Pounce_ 2 Node));

//SC_Chase_ Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Attacker2 Kick Node Transistions
SC_Attacker2 Kick Node->addTransition(new
TimeOutTrans (SC_Pan Pounce 2 Node,1000));

//SC_Pan_Pounce_2 Node Transistions

SC_Pan_Pounce_2 Node->addTransition(new
TimeOutTrans (frontNode, 2500));

SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_Pan_Pounce_2 Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

//SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//SC_Pan_Pounce_2 Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

frontNode->addTransition(new
TimeOutTrans(SC_360,500));

//SC_Turn_ 360 Transitions

SC_360->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_360->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_360->addTransition(new
TimeOutTrans (downNode, 6000));

// SC_180->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

// SC_180->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

92

SC_180->addTransition(new
TimeOutTrans (SC_Pan Pounce 2 Node,2500));

//SC_360->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_360->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

downNode->addTransition(new
TimeOutTrans (SC_Turn_Straight Head Node,500));

SC_Turn_Straight Head Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans (SC_Chase Node,orangeBallYesSID));

SC_Turn_Straight Head Node->addTransition(new
TimeOutTrans (SC_Walk And Pan,6000));

//SC_Turn_Straight Head Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

SC_Walk_And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Walk_And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_Walk_And Pan->addTransition(new
TimeOutTrans (frontNode, 3000));

//SC_Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Walk And Pan->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//preload the sounds so we don't pause on
tranisitions
sndman->LoadFile("cutey.wav");

93

sndman->LoadFile("barkmed.wav");
sndman->LoadFile("whimper.wav");
sndman->LoadFile("fart.wav");

void SC_AttackerOrangeBlue::teardown() {
//release the sounds
sndman->ReleaseFile("cutey.wav");
sndman->ReleaseFile("barkmed.wav");
sndman->ReleaseFile("whimper.wav");
sndman->ReleaseFile("fart.wav");
StateNode: :teardown();

}

private:
SC_FindOrangeBlueEvent *vrOrangeBall;

SC_AttackerOrangeBlue(const SC_AttackerOrangeBlue&);
//!'< don't call;just satisfies the compiler
SC_AttackerOrangeBlue operator=(const
SC_AttackerOrangeBlue&); //1'< don't call;just
satisfies the compiler

}i
#endif

#ifndef INCLUDED SC_AttackerOrangeYellow h
#define INCLUDED SC_AttackerOrangeYellow h

#include "Behaviors/Transition.h"

//#include "Behaviors/Nodes/WalkToTargetNode.h"
#include "Behaviors/Nodes/WalkNode.h"

#include "Behaviors/Demos/ExploreMachine.h"

#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetTrans.h"
#include "Behaviors/Nodes/OutputNode.h"

#include "Behaviors/Nodes/MotionSequenceNode.h"
#include "Behaviors/Nodes/GroupNode.h"

#include "Sound/SoundManager.h"

#include "Shared/ProjectInterface.h"

//#include "Behaviors/Transitions/VisualTargetCloseTrans.h"
//#include "Behaviors/Nodes/KickNode.h"

#include "Behaviors/Nodes/HeadPointerNode.h"
#include "Behaviors/Transitions/CompletionTrans.h"
#include "Behaviors/StateNode.h"

94

#include "VisionHeader.h"

#include "GoalieWalkNode.h"

#include "SC_FindOrangeYellowEvent.h"
#include "Behaviors/Transitions/EventTrans.h"

#include "SC_WalkToTargetFastNode.h"
#include "SC_VisualTargetCloseTrans.h"
#include "SC_Attacker WalkAround.h"

class SC_AttackerOrangeYellow : public StateNode {
protected:
StateNode *SC_Start_ Node;

public:
SC_AttackerOrangeYellow() :
StateNode("SC_AttackerOrangeYellow"), SC_Start Node(NULL)

{}

void SC_AttackerOrangeYellow::DoStart() {
StateNode: :DoStart();
vrOrangeBall->DoStart(); // *** IMPORTANT: Must
add this to start the Visual Routine to look for the ball!
SC_Start Node->DoStart();

}

virtual void setup() {
StateNode: :setup();

// Use Visual Routines to find orange ball
vrOrangeBall = new SC _FindOrangeYellowEvent();

GroupNode * SC_Start Walk And Pan = new
GroupNode (getName()+"::SC_Start Walk And Pan");

addNode (SC_Start_Walk And Pan);

{

WalkNode * SC_Walk_ Forward Node = new
WalkNode(SC_Start Walk And Pan->getName()+"::TurnInPlace",
150 , 0, 0);

SC_Walk_Forward Node->setVelocity(150,0,0);

SC_Start Walk And Pan-
>addNode (SC_Walk_ Forward Node);

LargeMotionSequenceNode * SC_Pan_ Head Node =
new LargeMotionSequenceNode(SC_Start Walk And Pan-

95

>getName()+": :PanHead","/ms/data/motion/begnattk.mot", true)

4

SC_Start Walk And Pan-
>addNode (SC_Pan_Head_Node) ;

}

GroupNode * SC_Attacker2 Kick Node = new
GroupNode (getName()+"::SC_Attacker2 Kick Node");
addNode (SC_Attacker2 Kick Node);

{

LargeMotionSequenceNode * SC_Kick Node =
LargeMotionSequenceNode (SC_Attacker2 Kick Node-
>getName()+"::KickBall", "SC_Shkic.mot");

SC_Attacker2 Kick Node-
>addNode (SC_Kick_Node);

}
// SC_WalkToTargetFastNode * SC_Chase Node = new

SC_WalkToTargetFastNode(visOrangeSID);

SC_WalkToTargetFastNode * SC_Chase_Node = new

SC_WalkToTargetFastNode(orangeBallYesSID);
SC_Chase Node->setName(getName()+"::Chase");
addNode (SC_Chase Node) ;

GroupNode * SC_Turn Straight Head Node = new

GroupNode (getName()+"::SC_Turn Straight Head Node");
addNode (SC_Turn_Straight Head Node);
{

WalkNode * SC_Turn_360 = new
WalkNode(SC_Turn_ Straight Head Node-
>getName()+"::SC_Turn_ 360", 0 , 0 , .85);

SC_Turn 360->setVelocity(0,0,.85);

SC_Turn_Straight Head Node-
>addNode (SC_Turn_360);

MediumMotionSequenceNode * panhead = new
MediumMotionSequenceNode (getName()+": :PanHead","/ms/data/mo

tion/turnpan.mot",true);
SC_Turn_Straight Head Node-
>addNode (panhead) ;

}

96

new

GroupNode * SC2_ Turn_Straight Head Node = new
GroupNode (getName()+"::SC2_Turn_Straight Head Node");

addNode (SC2_Turn_Straight Head Node);

{

WalkNode * SC_Turn_360 = new
WalkNode(SC2_Turn_Straight Head Node-
>getName()+"::SC_Turn 360", 0 , 0 , .85);

SC_Turn 360->setVelocity(0,0,.85);

SC2_Turn_Straight Head Node-
>addNode (SC_Turn_360);

SmallMotionSequenceNode *
SC_Straight Head Node = new
SmallMotionSequenceNode(SC2_Turn Straight Head Node-
>getName()+"::PanHead","/ms/data/motion/str8head.pos", true)

4

SC2_Turn_Straight Head Node-
>addNode (SC_Straight Head Node);

}

GroupNode * SC _Walk And Pan = new
GroupNode (getName()+"::SC_Walk And Pan");

addNode (SC_Walk_And_Pan);

{

WalkNode * SC_Forward Node = new
WalkNode(SC_Walk And Pan->getName()+"::SC_Forward Node",
150 , 0, 0);

SC_Forward Node->setVelocity(150,0,0);

SC_Walk And Pan->addNode(SC_Forward Node) ;

LargeMotionSequenceNode * SC_Pan_ Node = new
LargeMotionSequenceNode (SC_Walk And Pan-
>getName()+"::SC_Pan Node","/ms/data/motion/newpan.mot",tru
e);

SC_Walk And_Pan->addNode(SC_Pan_Node) ;

WalkNode * SC_360 = new

WalkNode(getName()+"::SC_360", 0 , 0 , .85);
SC_360->setVelocity(0,0,.85);
addNode (SC_360) ;

97

WalkNode * SC_180 = new

WalkNode(getName()+"::SC_360", 0 , 0 , .75);
SC_180->setVelocity(0,0,.75);
addNode (SC_180);

WalkNode * SC2_ 360 = new

WalkNode (getName()+"::SC2_ 360", 0 , 0 , .85);
SC2_360->setVelocity(0,0,.85);
addNode (SC2_360);

SmallMotionSequenceNode * SC_Straight Node = new
SmallMotionSequenceNode (getName()+"::PanHead","/ms/data/mot
ion/atkkpana.pos",true);

addNode (SC_Straight Node);

HeadPointerNode * frontNode = new
HeadPointerNode ("UpNode");

addNode (frontNode) ;

frontNode-> getMC()->lookAtPoint(200,0,100,30);

HeadPointerNode * downNode = new
HeadPointerNode("downNode") ;

addNode (downNode) ;

downNode-> getMC()->lookAtPoint(200,0,30,30);

GroupNode * SC_Pan_ Pounce_2 Node = new
GroupNode (getName()+"::SC_Pan Pounce_ 2 Node");

addNode (SC_Pan_Pounce_2 Node);

{

LargeMotionSequenceNode * SC_Pan Only Node =
new LargeMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::PanHead","/ms/data/motion/newpan.mot",true);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pan_Only Node) ;

StateNode *SC_Pounce_Node= new
MediumMotionSequenceNode(SC_Pan Pounce 2 Node-
>getName()+"::stand","/ms/data/motion/pounce.pos", false);

SC_Pan_Pounce_2 Node-
>addNode (SC_Pounce_Node) ;

}
StateNode *SC_Test Node= new

MediumMotionSequenceNode (getName()+"::stand","/ms/data/moti
on/pounce.pos",false);

98

addNode (SC_Test Node);

Transition * tmptrans=NULL;
Transition * kicktrans=NULL;
//Transition * ctrans=NULL;

//starts out exploring

SC_Start Node=SC_Start Walk And Panj;

//SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,visOrangeSID));

// CHANGED this to a different kind of event
// SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node, orangeBallYesSID));

SC_Start Walk And Pan->addTransition(new
EventTrans (SC_Chase Node, EventBase::visObjEGID,
orangeBallYesSID, EventBase::activateETID)); // Need this
event transition for orange ball

// SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,visOrangeS
ID, 160));

SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Start Walk And Pan->addTransition(new
TimeOutTrans (frontNode, 3500));

//SC_Start Walk And Pan->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//SC_Start Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Chase Node Transistions
// SC_Chase Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,visOrangeS
ID, 160));

//Test for turn away for defending goal

SC_Chase Node->addTransition(new
EventTrans(SC_180, EventBase::visObjEGID,
orangeYellowYesSID, EventBase::activateETID)); // Need this
event transition for yellow goal and orange ball

99

SC_Chase Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Chase_Node-
>addTransition(tmptrans=SC_Chase Node-
>newDefaultLostTrans (SC_Pan_Pounce_ 2 Node));

//SC_Chase_ Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Attacker2 Kick Node Transistions
SC_Attacker2 Kick Node->addTransition(new
TimeOutTrans (SC_Pan Pounce 2 Node,1000));

//SC_Pan_Pounce_2 Node Transistions

SC_Pan_Pounce_2 Node->addTransition(new
TimeOutTrans (frontNode, 2500));

SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_Pan_Pounce_2 Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

//SC_Pan_Pounce_2 Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

//SC_Pan_Pounce_2 Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

frontNode->addTransition(new
TimeOutTrans(SC_360,500));

//SC_Turn_ 360 Transitions

SC_360->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_360->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_360->addTransition(new
TimeOutTrans (downNode, 6000));

100

// SC_180->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));
// SC_180->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));
SC_180->addTransition(new
TimeOutTrans (SC_Pan Pounce 2 Node,2500));
//SC_360->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));
//SC_360->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

downNode->addTransition(new
TimeOutTrans(SC_Turn_Straight Head Node,500));

SC_Turn_Straight Head Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_Turn_Straight Head Node->addTransition(new
TimeOutTrans (SC_Walk And Pan,6000));

//SC_Turn_Straight Head Node->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Turn_Straight Head Node->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

SC_Walk_And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Attacker2 Kick Node,orangeBall
YesSID, 160));

SC_Walk_And Pan->addTransition(new
VisualTargetTrans(SC_Chase Node,orangeBallYesSID));

SC_Walk_And Pan->addTransition(new
TimeOutTrans (frontNode, 3000));

//SC_Walk And Pan->addTransition(new
SC_VisualTargetCloseTrans(SC_Test Node,yellowGoalSID,
160));

//SC_Walk And Pan->addTransition(new
VisualTargetTrans(SC_Test Node,yellowGoalSID));

101

//preload the sounds so we don't pause on
tranisitions

sndman->LoadFile("cutey.wav");

sndman->LoadFile("barkmed.wav");

sndman->LoadFile("whimper.wav");

sndman->LoadFile("fart.wav");

void SC_AttackerOrangeYellow::teardown() {
//release the sounds
sndman->ReleaseFile("cutey.wav");
sndman->ReleaseFile("barkmed.wav");
sndman->ReleaseFile("whimper.wav");
sndman->ReleaseFile("fart.wav");
StateNode: :teardown();

}

private:
SC_FindOrangeYellowEvent *vrOrangeBall;

SC_AttackerOrangeYellow(const
SC_AttackerOrangeYellow&) ; //!< don't
call; just satisfies the compiler

SC_AttackerOrangeYellow operator=(const
SC_AttackerOrangeYellow&) ; //!'< don't call;just
satisfies the compiler

}i

#endif

102

