Introduction

CHAPTER 6

Snoop-based Multiprocessor Design

Morgan Kaufmann is pleased to present ntarial from a preliminary draft of Parallel Computer Architectur e; the
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distibuted for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material is a draft of forthcoming publication, and as such neither Mogan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

6.1

Introduction

The lage differences we see in the paminancecost, and scale of symmetriaiprocessas on

the maket rest not so och on the choice of the cache coherenagquol, but rather on the
design and implementation of thgamizadional stucture that supports the dgacal opestion of

the protocol.The perbrmance impact of protocol @de-ofs are well understood and most
madines use aarant of the protocols described in theapous hapter However,the laency

and bandwidth that is hieved on a protocol depend on the bus design, the cache design, and the
integrdion with memoy, as does the emggeing cost of the systenthis chapter studies the

more detailed physical design issues in snoop-based cache coherent symmetric multiprocessor:

The @stract state transition digams for coherence protocols are cgruaeally simple however,
subtle corectness and penfmance issues arise at thedwaare level. The corectness issuesise
mainly because actions that are considered atomic ab#taet level are not necesshr atomic

9/10/97

DRAFT: Parallel Computer Architecture 355

Snoop-based Multiprocessor Design

at the oganizaional level. The perbrmance issues arise mainly because we want to want to pipe-
line memory opetions and allow many opations to be outstandingising diferent compo-
nents of the memory higrchy,rather than waiting for each omtion to complete beie stating

the next oneThese pedrmance enhancements present furthereobness leallenges. Moden
communicéion assist design forggressie catie-coheent nultiprocessa presents a set of
challengps that are similar in complexity and orh to those of modern processor desighicl
allows a large number of outstanding instructions and out of order execution.

We need to peel off anothekx of the design of snoop-basedltiprocessas to understand the
practical equirments embodied by state transitiongdians.We must contend with at least
three issues.iFst, the implementation must be cect; secondit should ofer high perbrmance,
and thid, it should equire minimal &tra hadware The issues areelated For ekample,provid-
ing high perbrmance oftenaquires that multiple lav-level events be outstanding (ingmress) &

a time so that their latencies can beedapped Unfortunately,it is exactly in these situtons—
due to the nmeious complex interactions between thegenés—thé correctness is ligly to be
compromisedThe product shipping dates foveeal commercial systemsyen for micoproces-
sors that hge on-chip coherence coaliers, have been delged signiftantly because of subtle
bugs in the coherence hardware.

Our study bgins by emmerding the basic coectnessequiements on a cache coherent mem-
ory system. A base design, using singleleaches and a one transaction at a time atamsiésh
dewloped in *** and the critical vents in processing individual transactions are outlikiésl.
assumes anvalidation protocol for con@tenesshut the main issuegply directly to updae
protocols.*** expands this design to dmss nultilevel cache hierchiesshowing how potocol
ewvents popagae up and down the hi@rchy *** expands the base design to utilize a spins-
action tus, which allows multiple transactions to be peried in a pipelinedafshion,and then
brings taether nultilevel caches and split-transactionsof this design point, it is a small pte
to support multiple outstanding misses from eadtgssorsince all transactions are hég
pipelined and many take place comemtly. The fundamental undging challeng throughout is
maintaining the illusion of sequentialdar, as equired by the sequential consistency model.
Having understood theey design issues inegerl terms, we are eads to study concrete designs
in some detail. *** presents to case studies, the SGI Challenge and the Syrigtend ties
the machine peofmance back to sofave trade-ofs through a wrkload diven study of our
sample pplications. Fnally, Section *** examines a number of\ahced topics hich extend
the design techniques in functionality and scale.

6.2 Correctness Requirements

A cade-coheent memory system ust, of cousse,satisfy the equirments of coherence andpr
sene the semantics dictated by the memory consistency model. tlaupst for coherence it
should ensure that stale copies are found aralidtated/updeed on writes and it shouldquide
write sefalization. If sequential consistency is to begened by satisfying the sfi€ient condi-
tions,the design should gvide write atomicity and the ability to detect the completion dfesr
In adlition, it should hae the desalble propeties of any protocol implemerttan, including
cade coheencewhich means it should be free of deadlock aweldick,and should either elim-
inate stavation or make it ery unlikely. Fnally, it should cope with eor conditions bgond its
control (e.g., parity errors), and try to recover from them where possible.

356 DRAFT: Parallel Computer Architecture 9/10/97

Correctness Requirements

Deadlockoccurs when opetions are still outstanding but all system activity has ceaseanin g
eral, deadlock can potentially arisehefe multiple concuent entities in@mentaly obtain
shaed esouces and hold them in a noneemptilbe fashion.The potential for deadlock iaes
when there is aycle of resouce dependences. A simple anplds in traffic at an intesection,as
shawn in Figure 6-1. In the taffic exkample,the entities are cars and tlesouces are lanes. Eac
car needs to acquire two laresouces to proceed through the irgection,but each is holding
one.

Figure 6-1Deadlock at a traffic intersection.

Four cars aive at an intersection and all proceed one lane each into the intersEledpblock one anotheisince each is occy'pnﬁ
a resouce that another needs to makegsess. Even if each yields to the car on tbhtrthe intersection is deadlked To break th
deadlock, some cars must retreat to allow others to make progress, so that then they themselves can make progress too.

In computer systems, the entities are typically adietrs and the esouces are bffers. For
examplesuppose two cortdflers A and B commnicae with each other viauffers,as shown in
Figure 6-2(a). A's input luffer is full, and it refuses all incoming requests until B accepts a
request from it (thus freeing upitber space in A to accept requests from other otlats), but

B’s input luffer is full too, and it refuses all incoming requests until A accepts a request from it.
Neither controller can accept equestso deadlock sets ifio illustrate the poblem with moe

than two conwllers,a thee-contoller example is shown iRigure 6-2(b). It is essential to either
avoid such dependence cycles or break them when they occur.

f Full Buffer /74
(B / / /‘_\ :
A | Empty Buffer[]

Z

vV VA 7
V1 V1
1 :> g @__J
//
(a) (b)

Figure 6-2 Deadlok can easily occur in a system if independent adlets with finite ffering need to commmicae with eat

other.

If cycles are possible in the cormicaion graph,then each controller can be stalled waiting for the one in front to freesaprce
We'illustrate cases for two and three controllers.

The system is itivelockwhen no processor is makingrfvard progress in its computationven
though transactions are beinggeuted in the system. Continuing thaffic analgy, each of the

9/10/97 DRAFT: Parallel Computer Architecture 357

Snoop-based Multiprocessor Design

vehides might elect to back upleaiing the intesection,and then try gain to mwe forward.
However,if they all epeatedt move back anddrward at the same timehere will be a lot of
activity but they will end up in the same situati@peated} with no real pogress. In computer
systemsl|ivelod typically arises when independent caoliers compete for a commogsource,
with one sngching it avay from the other befre the other has finished with its use for theenitr
operation.

Starvationdoes not stopwerall progressbut is an gtreme brm of unfimess in vkich one or
more piocessc make no prgress while others continue to do so. In tladfit example,the live-
lock problem can be solved by a simplegrity scheme If a northbound car isigen higher g
ority than an eastbound cdne latter must pull back and let th@rher through befre trying to
mowe forward again; similaty, a southbound car mayvehigher piority than a westbound car
Unfortunately,this does not solve staation: In heavy taffic, an eastbound car mayvee pass
the intersection since there mayvays be a new northbound caad/ to go through. Ndh-
bound cars make pgresswhile eastbound cars are stedl The emed here is to place an arbi-
ter (eg. a police diicer or taffic light) to ochestrée the esouce usge in a fair manneiThe
analogy extends easily to computer systems.

In generalthe possibility of stastion is considered a lesstaatiophic poblem than velod or
deadlo&. Stawation does not cause the entire system to stop makogrgssand is usually not
a permanent sta That is, just because a processor has beewestdor some time in the past it
does not mean that it will be sted for all future time (at some point northbouradfic will ease
up, and eastbound cars will get through). dwtf stavation is much less lilely in computer sys-
tems than in this &ffic example,since it is usually timing dependent and the necessénglpg-
ical timing conditions usually do not persist. Stion often turns out to be quite easy to
eliminate in bus-based systems, by having the bus atibitrbe fair and using FIFO queues to
other hadware resourcestather than rejecting requests and having thenetreed However,in
scalalle systems that we will see in latdrapters.eliminating stavation entiely can add sub-
stantial complexity to the protocols and can slow down common-case transactions. Many sys-
tems theefore do not completely eliminate station, though almost all try to reduce the
potential for it to occur.

In the discussions of how cache coherence protocols ensure widtzatésn and can satisfy the
sufficient conditions for sequential consistgnihe assumption was made that memory aper
tions are tomic. Here this assumption is made sarhd more ealistic:there is a single \el of
cadte per processor and transactions on the bust@m@caThe cache can hold theqmessor
while it perbbrms the series of stepsvolved in a memory opation, so these opetions gppear
atomic to the pocessarThe basic issues anditteofs that arise in implementing snooping and
stae transitions are discusseddong with new issues that arise iroyiding write seialization,
detecting write completion, andgseving write gaomicity. Then, more @gressie systems ar
consideredstarting with nulti-level cache hiearchies,going on to split-transaction (pipelined)
busesand then examining the combination of the two. In split-transactisesta bus tansac-
tion is split into request and response phases thatatebfor the bus gmarately,so multiple
transactions can be outstanding at a time on the bus. In all caseba&rcaches are assumed
at least for the caches closest to the bus so they can reduce bus traffic.

358 DRAFT: Parallel Computer Architecture 9/10/97

Base Design: Single-level Caches with an Atomic Bus

6.3

Base Design: Single-level Caches with an Atomic Bus

6.3.1

Seveal design decisions must be maderefor the simple case of singlest caches and an
atomic bus. kst, how should we design the cache tags and albetrgiven that both the pces-
sor and the snoopinggent from the bus side need access to the tags? Sdhenesults of a
snoop from the cache coaliers need to be presented as part of the bus transaction; how and
when should this be doné&hird, even though the memory bus ifomic, the werall set of
actions needed to satisfy aopessos request uses othexsouces as well (such as cache con-
trollers) and is nottamic, introducing possible race conditions. How should we desigtogol
stae machines for the cache caiers gven this lack of atomicity? Do thesactoss introduce
new issues withegad to write seialization, write completion detection or write atomicitiad
wha deadlog, livelodk and stavation issues arise?ially, writebaks from the caches can
introduce interesting race conditions as welle next éw subsections afiess these issues one
by one.

Cache controller and tags

Consider fist a comentional uniprocessor dage It consists of a stage aray containing d&a
blocks, tags, and state bits, as well as a congpar, a contoller, and a bus inteatce When the
processor pedrms an opettion ggainst the cduoe, a portion of the adtess is used to access a
cade set that potentially contains thedk. The tag is comparedyainst the remaining adess
bits to determine if the adessed lock is indeed presenthen the ppropride opestion is pef
formed on the data and the state bits are tepdBor example,a write hit to a clean cachéobk
causes a ard to be updated and the state to be set to reddithe cache controller sequences
the reads and writes of the cache agpraray. If the opeation requires that a lock be tans-
ferred from the cache to memory or vieersathe cache controller initiates a bus atien. The
bus opedtion involves a sequence of steps from the bus interface; these are typically (i) asser
request for bs, (2) wait for bus gant, (3) dive adiress and comman@) wait for command to
be accepted by thelevant deice, and (5) tanskér data.The sequence of actions taken by the
cade controller is itself implemented as a finite statehim&cas is the sequencing of steps in a
bus transaction. It is important not to confuse these state machines with the trangitiam difx
the protocol followed by each cache block.

To support a snoopy coherencetpcol, the basic uniprocessor cache controller design must be
enhancedHrst, since the cache controller must monitor bus ajmrs as well as respond tcopr
cessor opations,it is simplest to view the cache as having two adlgrs,a bus-side cortler

and a pocessoiside contoller, each monitoring one kind ok&mal event. In either casavhen

an opeation occurs the controller must access the cache tagsvednbeis transaction theub-

side controller must gaure the adress from the bus and use it to peri a tag bed. If the
ched fails (a snoop miss), no action need be taken; the buatiopes irelevant to this cdoe. If

the snoop'hits,” the controller may hee to intevene in the bus transaction according to the
cade coherence protocdthis may ivolve a rad-modify-wite opegtion on the state bits and/

or trying to obtain the bus to place a block on it.

With only a single amy of tags, it is difficult to allow two conillers to access theray at the
same time. During a busatrsactionthe processor will be I&ed out from accessing the b&c
which will degrade processor penfimance If the processor isigen piority, effective bus band-
width will decrease because the snoop controller wileha delay the bus transaction until it

9/10/97

DRAFT: Parallel Computer Architecture 359

Snoop-based Multiprocessor Design

gains access to the tag® alleviate this poblem, many coherent cache designs utilizéuat
portedtag and state store or duplicate the tag and statedor ldock. The data portion of the
cade is not dupliceed If tags are duplidad,the contents of the two sets of tags asacty the
samegexcept one set is used by theopessosside controller for its lookups and the other is used
by the bus-side controller for its snoops (§égure 6-3). The two contollers can read the g¢a
and perbrm cheds sinmultaneouslyOf couse,when the tag for albck is updated (. when the
stae changes on a write or a newdzk is brought into the cache) both copies must ulifgebe
modified,so one of the cordllers may hge to be loked out for a time. Forxample,if the tus-
side tags are updated by a busactionat some point the pcessoside tags will hee to be
updded as well. Machine designs can playesal tricks to reduce the time forhich a contoller
is loked out, for example in thebave case by having thegmessosside tags be updated gnl
when the cache data are later meadifirather than immedigly when the bus-side tagsear
updatedThe frequeng of tag updates is alsouth smaller than read accesses, so the eoler
shoops are expected to have little impact on processor cache access.

Tags and state used by
the processor

Tags Cached Data | | Tags

Tags and state used by
the bus snooper

Figure 6-3Organization of single-level snoopy caches.

For single-l&el caches there is a duplicate set of tags and statiEled to reduce contention. One set is |
exclusivey by the pocessorwhile another is used by thedssnooperAny changs to cache content or
however, involves updating both sets of tags simultaneously.

Another major enhancement from a uniprocessor cache controller is that the controller now acts
not only as an initiator of busatnsactionshput also as a responder to them. Aveottional
responding déce, such as the controller for a memory bank, monitors the bus for transactions on
the fixed subset of alfesses that it contains, and respondstereint read or write opations
possiby after some number dfvait” cycles. It may gen hae to place data on the bukhe

cade controller is notasponsite for a fked subset of attessesbut must monitor the bus and
perfom a tag bedk on every transaction to determine if the transactioneakevant. For an
updde-based mitocol, many caches may need to snoop the new data off the bus as well. Most
moden microprocessa implement such enhanced cache atleis so that they arémultipro-
cessor-ready”.

6.3.2 Reporting snoop results

Snooping introduces a new element to the bus transaction as well. veattamal bus @nsac-
tion on a uniprocessor system, one device (the initiator) placedesacdn the us, all other
devices monitor the attessandonedevice (the respondemggognizs it as beingalevant. Then
daa is tansfered between the two devicekhe responder &aowledees its role by raising

<8}

360

DRAFT: Parallel Computer Architecture 9/10/97

Base Design: Single-level Caches with an Atomic Bus

wired-OR signal; if no device decides to respond within a time-out winadus enor occus.

For snooping cédees,each cache mushed the adiress gainst its tags and the collectiresult

of the snoop fronall caches must bepoted on the bus befe the transaction canqareed In
particular,the snoop result infms main memory whether it should respond to the request or
some cache is holding a modified copy of thack so an alterative action is necessarThe
questions are when the snoop result is reported on the bus, and how.

Let us focus fist on the'when” question. Obiously, it is desiade to keep this delay as small as
possible so main memory can decide quickly what tb Hoere are three major options:

1. The design could guarantee that the snoop resultyvaitebe within afixednumber of tock
cydes from the issue of the diéss on the budhis, in general requires the use of a dual set
of tags because otherwise th@gessorwhich usually has pority, could be accessing the
tags hesily when the bus transactiop@eas. Even with a dual set ofgs, one may need to
be conserative about the fied snoop leency,because both sets of tags are made inacéessib
when the processor updates the tags; for example in the E --> M state transition in the lllinois
MESI protocol.2 The adantages of this option are a simple memory system design, and dis-
advantags are tra hadware and potentially longer snoopgdacy The Pentium Pro Quads
use this pproati—with the ability to extend the snoop phase when necessargligeier8)
as do the HP Corporate Business Servers [CAH+93] and the Sun Enterprise.

2. The design could alteatively support avariable delay snoopThe main memory assumes
tha one of the caches will supply thetaauntil all the cache cordllers hare snooped and
indicated otherwiseThis option may be easier to implement since cachealtary do not
hawe to worry about tag-access conflicts inhibiting a timely lookup, and it cter bfgher
performance since the designer does neeha conseratively assume the @rst-case dela
for snoop resultsThe SGI Challenge uitiprocessas use a slightasiant of this @proach,
where the memory subsystem goes ahead etdlds the data to service tregjuestput then
stalls if the snoops have not completed by then [GaW93].

3. A third altenative is for the main memory subsystem to maintain a bit jpek that indi-
caes whether thislbck is modified in one of the caches or rbhis wey the memory sub-
system does not ia to ely on snooping to decidehat action to tak, and when contilers
retum their snoop results is a pemnance issueThe disadantag is the gtra compleity
added to the main-memory subsystem.

How should snoop results bepoted on the bus? For the MESIhstne,the requesting cae
contoller needs to know whether the requested memiaigklis in other pocessorstades,so

it can decide whether to load thiedk in exclusive (E) or shared (S) $&Also, the memory sys-
tem needs to know whether any cache has ldek in modified stée, so that memory need not

1. Note that on an atomic bus there arays/to make the system less semsitio the snoop defaSince
only one memory transaction can be outstanding at ey d¢ime the main memory can stagtéhing the
memoyk block regadless of whether it or the cache woulcetually supply the data; the main-meror
subsystem would ka sit idle otherwise. Reducing this dglaovever,is very important for a split ansac-
tion-bus,discussed tar. There,multiple bus transactions can be outstangsioghe memory subsystem can
be used in the meantime to service anotegquestfor which it (and not the cache) mayueato supply the
data.

2. ltis interesting that in the base 3-stataiidation protocol we desived, a catie-blok state is neer
updded unless a cogsponding bs-tansaction is also welved This usually gves plenty of time to upda
the tags.

9/10/97 DRAFT: Parallel Computer Architecture 361

Snoop-based Multiprocessor Design

respond One easonale option is to use three wired-or signals, two for the snoop results and one
indicating that the snoop result ighd. The first signal is asserted when any of thecgssors’
cades (&cluding the requesting processor) has a copy ofltekbTrhe second is asserted ifyan
processor has thddzk modified in its calee We don’t need to know the identity of thabpes-
sor,since it itself knows Wat action to tak. The third signal is an inhibit signal, asserted until all
process@ hare completed their snoop; when it is de-a&skthe requestor and memory can
safely examine the other two signakhe full lllinois MESI protocol is more complex because a
block can be peferentialy retrieved from another cachether than from memoryen if it is in
shaed stée. If multiple caches he a cop, a piority mechanism is needed to decidaigh
cade will supply the datalhis is one reasonhy most commercial machines that use the MESI
protocol limit cate-to-cabe tiansfes. The Silicon Gaphics Challenge and the Sun Eptése
Sener use cdte-to-cabe tansfes only for data that are potentially in modified state in the
cade (i.e. are either inxelusive or modified st&), in which case there is a single suppligne
Challeng updates memory in the process of a cache to caagfer,so it does not need a
shared-modiéid stée, while the Entgurise does not update memory and uses a shared eabdifi
state.

6.3.3 Dealing with Writebacks

Writebaks also complicate implemetitan, since they iwolve an incoming lock as well as an
outgoing one. In gneral,to allow the processor to continue as soon as possible on a cache miss
that causes a \itebadk (replacement of modified data in the bag, we would like to delay the
writebadk and instead ffst service the miss that caused his optimization imposes twequire-
ments. kst, it requires the machine to gride additional staxge,awriteback bufferwhere the
block being eplaced can be tempamily stored while the newldsck is brought into the cache and
before the bus can befacquied for a second transaction to complete thieebad. Second
before the witebadk is completedit is possible that we see a bus transaction containing the
addess of that lock. In that casethe controller must supply the data from théetrad buffer

and cancel its earlier pending request to the bus foitabadk. This requires that an attess-
compargor be added to snoop on theitebadk buffer as well.We will see in Chapter 6 tha
writebads introduce further coectness subtleties in machines witlygibally distibuted mem-

ory.

6.3.4 Base Organization

Figure 6-4 shows a lmck-diagiam for our resulting base snoopingtlidtecture Each pocessor
has a single-kel write-badk cahe The cache is dual gged,so the bus-side controller and the
processoside controller can do tadheds in parallel.The pocessosside controller initiates a
transaction by placing an dess and command on the bus. On #elbadk transactiondata is
conveyed from the wite-bad buffer. On a read &msactionit is cgtured in the dataudfer. The
bus-side controller snoops theitgrbadk tag as well as the cache tags. Bus atimin places the
requests that go on the bus in a totdleor-or each finsactionthe command and deess in the
reguest phase igle the snoop opation—in this total oder The wired-OR snoop results seras
acknavledgment to the initiator that all caches/éaeen the request and takelevant action.
This defines the opation as being completeds all subsequent reads and writes aaetl as
occuring “after” this transaction. It does not matter that the dates&r occurs adw cycles la-
ter, because all the caches know that it is coming and can defer servicing additimesispr
requests until it arrives.

362 DRAFT: Parallel Computer Architecture 9/10/97

Base Design: Single-level Caches with an Atomic Bus

Using this simple design, let us examine more subtleectiress concerns that eithequire the
stae machines and protocols to be extendecguire care in implementi@n: non-atomic sti@
transitions, serialization, deadlock, and starvation.

Proc.
Data
Tags
and
state Cache Data RAM
for
Snoop
A
: to
“@* contr.
AA
| Y
Tag WriteBack/Copyback Buffer
L to]
Comp. contr

r y

Snoop Statg Addr Cmd Data Buffer Addr Cmd

Figure 6-4Design of a snooping cache for the base machine.

We assume each processor has a sing@-leitebadk cade,an irvalidaion protocol is usedhe processor can veonly one men
ory request outstandingnd that the system bus i®mic. To keep the fgure simple we do not show theus-arbitraion logic anc
some of the la-level signals andudfers that are needeW/e also do not show the calimaion signals needed between thesisid:
controller and the processor-side controller.

6.3.5 Non-atomic State Transitions

The state transitions and their associated actions in ogradia hae so far been assumed to
happen instantaneously or at leasdraically. In fact,a request issued by a processor takes some
time to completeoften including a bus transactidihile the bus transaction itself is atomic in
our simple system, it is only one among the set of actions needed to sat@fgsspis request.
These actions include looking up the caclys farbitrating for the lus,the actions taken by other
controlless at their cages,and the action taken by the issuinggassos controller at the end of
the bus transaction fich may include actually writing data into thiotk). Taken as a Wwole,

the set is nottamic. Even with an atomicus, multiple requests from dérent pocesscs may

be outstanding in dirent parts of the system at a tinaed it is possible that while aqmessor

9/10/97 DRAFT: Parallel Computer Architecture 363

Snoop-based Multiprocessor Design

Example 6-1

Answer

(or controller) P has a request outstanding—for example waiting to obtain bus accegsesa r
from another processor may appear on the bus and need some servicepiedmp wen for

the same memonyldick as P’s outstanding requeshe types of complications that arise are best
illustrated through an example.

Suppose two prressos P1 and P2 cache the same memtogdA in shared sta,

and both simltaneous} issue a write tolbck A. Show how P1 may ka a equest
outstanding waiting for the bus while a transaction from P2 appears on the bus, and
how you might solve the complication that results.

Here is a possible scenario. P1’s write whiedk its cadie, determine that it needs
to elevate the lhock’s state from shared to modified def it can actually write e
daa into the bbock, and issue an upade bus request. In the meantjifR2 has also
issued a similar upgde or ead-exclusie transaction foA, and it may hee won
arbitraion for the bus fist. P1's snoop will see the busrisaction,and nust
downgade the state ofldick A from shared to walid in its cabe Otherwise \aen
P2's transaction iswer A will be in modified state in P2's cache and in shardd sta
in P1’s cabe, which violates the protocollo solve this ppblem,a controller mst
be @le to dedk addresses snooped from the bugaiast its own outstanding
requestand modify the latter if necesgarhus,when P1 obseges the tansaction
from P2 and deongrades its lock state to imalid, the upgade bus request it has
outstanding is no longemppropride and must beeplaced with a ead-exclusive
request. (If there are no upgade transactions in the protocol aedd-exclusives
were used een on writes to locks in shared ste, the request would not ato be
changed in this caseven though thelbck state would hee to be banged These
implement#ion requirments should be considered when assessing the cttyple
of protocol optimizations.)

A corvenient vay to deal with thé'non-atomic” naure of state @nsitions,and the consequent
need to sometimesuise requests based on ohv&el events,is to expand the protocol state dia-
gram with intemedide ortransientstaes. For gample,a s@arde state can be used to indeea
that an upgade request is outstandirfgigure 6-5 shows an expanded stategtam for a MESI
protocol. In response to a processor write afp@n the cache controller gias arbitetion for the
bus by asserting a busquestand transitions to the S->M inteedide stde. The transition out
of this state occurs when the bus arbiter asserts BusGrant for wig. d& this point the
BusUpg transaction is placed on the bus and the caldok btate is updad However,if a Bus-
RdX or BusUpgr is obseed for this bock while in the S->M sti@, the controller teds its Hock

as having been validated bebre the transaction. (We could insteatkact the bus request and
transition to the | sta, whereupon the still pending PrWr would be detectgaim) On a poces-
sor read from ivalid stde, the controller agances to an interedide state (I-->S,E); the next sta-
ble state to transition to is determined by the value of the shared line when the raated the
bus. These intanedide states are typically not encoded in the cadbeklstate bits, Wwich ae
still MESI, since it would be wasteful to expend bits\erg cache slot to indicate the onledk

in the cache that may be in a transienesihey are eflected in the combination of state bits and
contoller stae. Howvever,when we consider caches that allow multiple outstandargéctions,

it will be necessary to e an explicit epresentiion for the (multiple) bocks from a cache tha
may be in a transient state.

364

DRAFT: Parallel Computer Architecture 9/10/97

Base Design: Single-level Caches with an Atomic Bus

BusGrant / BusRd

6.3.6

PrRd
PrWr / --

/]
/

AN

\ BusRdX /Flush
BusRd / Flus\ \

Prwr / -- \ \
\
by
=~ ' \
NN
\ \
BusRd / A
Flus1h |
/ \Bust* / Flush
/ \ |
S
s /
l
BusGrant /
‘/I->M \ ~ ~BusRd (S) \BustX/FIush/’
R4 ‘I->S,E\ PrRA /- |
~_ / BusRd / Flush' | /
PrRd / AV
PrWr / BisReq BusReq /s
P

Figure 6-5 Expanded MESI protocol state diagram indicating transient states for bus acquisition

Expanding the number of states in the protocehatly increases the ditulty of poving that an
implementéion is corect, or of testing the desigihus, designers seek mechanisms thatid
transient statesThe Sun Entgrise, for example,does not use a BusUpgr transaction in the
MESI protocol, but uses the result of the snoop to eliminate unnecessary alatéetr in the
BusRdX. Recall, that on a BusRdX the caches holdingltak invalidate their cop. If a cahe
has the lock in the dirty stée, it raises the dirty lingthereby preventing the memory from sup-
plying the d#a, and flushes the data onto the bus. No use is made of the shargtdikek is

to have the processor that issues the BusRdX to snoop its own tags when the transactign actuall
goes on the bus. If thddzk is still in its cabe, it raises the shared linehich wawves off the
memory Since it alead/ has the lock, the data phase of the transaction is skipjpbé. cabe
contoller does not need a transienttsfaecauseagadless of vina happens it has one action to
take—place a BusRdX transaction on the bus.

Serialization

With the non-atomicity of an entire memory ogiion, care must be taken in theopessor-cache
handsha& to pesere the order determined by theiabration of bus transactions. For ead,
the processor needs the result of the a@jmer. To gain geaer perbrmance on wites, it is tempt-

9/10/97

DRAFT: Parallel Computer Architecture 365

Snoop-based Multiprocessor Design

ing to update the cachéolbk and allow the processor continue with useful instructions while the
cade controller acquiresxelusive owvnership of the bbck—and possily loads the rest of the
block—via a bus transactioithe poblem is that there is a window between the time tloegs-

sor gves the write to the cache and when the cache controller acquires the busdadibrctu-

sive (or upgade) transaction. Other bus transactions may occur in this wgindoich may
change the state of this or othelobks in the cale To provide write seialization and SC, these
transactions must appear to the processor asrougiebre the wite, since that is how theyar
serializd by the bus and appear to othercgissos. Conseratively, the cache controller should
not allow the processor issuing the write to proceed past the write un#éatiexclusie trans-
action occurs on the bus and makes the write visible to otheegscs. In paticular, even for
write sefalization the issuing processor should not consider the write complete until it has
appeared on the bus and thus been serialized with respect to other writes.

In fact, the cache does notveato wait until the ead-exclusie transaction istfiished—i.e other
copies hge actually been iralidated in their calstes—befoe allowing the processor to contiy

it can &en service read and write hits once the transaction is orughadsuming access to the
block in transit is handled pperly The crux of the argument for coherence and for sequential
consisteng presented in Sectidh4 was that all cache cootlers obseve the &clusive avner-
ship transactions &neraed by write opeations) in the same order and that the write ogcur
immediatey after the gclusive ovnership transaction. Once the bus transactionssthe witer
knows that all other caches willvalidae their copies befe another bus transaction occurse
position of the write in the serial bus ordec@mmitted The writer nger knows vinere eactly
the invalidation is inserted in the local pgram order of the other pcessos; it knows only that it

is bebre whateer opestion generaes the next bus transaction and that alkpssos insert the
invalidaions in the same der. Similaly, the witer’s local sequence of memory ogi@ns ony
become visible at the next bus transactibmis is what is important to maintain the necessar
ordeilings for coherence and SC, and it allows the writsutustitute commitment for actual com-
pletionin following the suficient conditions for SC. Iratt, it is the basic obsestion that maks

it possible to implement cache cobee/ and sequential consistency with pipelinedsesmul-
tilevel memory hieairchiesand write liffers. Write atomicity bllows the same argument agpr
sented before in Section 5.4.

This discussion of sization raises an imptant, but somevha subtle pointWrite sefaliza-
tion and write atomicity heae ety little to do with when the vite-bads occur or with when the
actual location in memory is upal Either a write or a read can cause @eaback,if it causes
a dirty Hock to be eplaced The wite-badks are bus &msactionshput they do not need to be
ordered On the other hana write does not necesi#grcause a wte-back,even if it misses; it
causes aead-exclusiveWhat is important to the jmgram is when the new value is bound to the
addess.The write completes, in the sense that any subsequent readtwiil the new or leer
value once the BusRdX or BusUpgr transaction takes placevalydisting the old cachelbcks,

it ensures that all reads of the old value precede the transadtmrontroller issuing theans-
action ensures that the write occurs after the ams#ictionand that no other memory oper
tions intervene.

6.3.7 Deadlock

A two-phase prtocol, such as theequest-esponse protocol of a memory ogigon, presents a
form of potocol-level deadlok, sometimes callefetch-deadlodkei*92], that is not simply a
question of bffer usge While an entity is attempting to issue iexjuest,it needs to se&ice

366 DRAFT: Parallel Computer Architecture 9/10/97

Base Design: Single-level Caches with an Atomic Bus

6.3.8

6.3.9

incoming transaction3.he place were this arises in an atomic bus based SklEhat while the
cade controller is waiting the bus @nt, it needs to continue perming snoops and handling
requests Wich may cause it to flusHdxks onto the bus. Otherwiste system may deadlock if

two contollers hare outstanding transactions that need to be responded to by eaclather
both are refusing to handle requests. kamngple,suppose a BusRd for éobk B gppeas on the

bus while a processor P1 hasad-exclusig request outstanding to anothlrda A and is vait-

ing for the bus. If P1 has a modified copy ¢ftB controller should belate to supply the data and
chang the state from modified to shared while it is waiting to acquire the bus. Otherwise the cur
rent bus transaction is waiting for P1’s catier, while P1’s controller is waiting for theub
transaction to release the bus.

Livelock and Starvation

The classic potentiaMelodk problem in an iwvalidaion-based cdee-coheent memory system is
caused by all mressos attempting to write to the same memory location. Suppose thatynitiall
no processor has a copy of the location in ithea& processor write equires the éllowing
non-dgomic set of gents:Its cache obtainsxelusive ovnership for the caresponding memegr
block—i.e invalidates other copies and obtains theck in modified state—a state machine in
the processorealizes that the lock is now present in the cache in thepeopridae stae, and the
state-mahine re-atempts the wite. Unless the mrcessor-cdte handshake is designedefatly,

it is possible that theldick is brought into the cache in modifiedtstdbut bebre the processor is
alle to complete its write theldck is invalidated by a BusRdX request from anotheogassor.
The processor missegain and this ycle can epea indefinitely. To avoid livelock, a write tha
has obtainedxlusive avnership must be allwed to complete befe the &clusive avnership is
taken away.

With multiple pocessos competing for aus, it is possible that somegessos may be manted

the bus epeatedt while others may not and may become\adr Staration can be woided ly

using frst-come-first-sem service policies at the bus and efsere These usuallyaquire adli-

tional kuffering, so sometimes heuristic techniques are used to reduce the likelihoodatictar
instead For exkample,a count can be maintained of the number of times that a request has been
denied andafter a certain tleshold,action is taken so that no other new request is serviced until
this request is serviced.

Implementing Atomic Primitives

The atomic opetions that the laove locks neegdtest&set anddtch&incrementcan be imple-
mented either as individual atomigad-modify-wite instructions or using an LL-SC pair. Let us
discuss some implementation issues for thesmitpres, before we discuss all-hdware imple-
mentdions of locks. Let usiét consider the implementation of atonkcleang or ead-modify-
write instructions first, and then LL-SC.

Consider a simple test&set instruction. It has a read component (the test) and a write componer
(the set).The frst question is whether the test&set (lockyialde should be cdwale so the
test&set can be panfmed in the processor das or it should be uncheale so the atomic oper

aion is perbrmed at main memygrThe discussiontaove has assumed dazalle lock variables.

This has the adntag of allowing locality to be exploited and hence reducitenig and taffic

when the lock isepeatedt acquired by the sameqmessorThe lock \ariabdle remains dirty in

the cache and novalidaions or misses areegeratedlt also allows pvcesscs to spin in their

9/10/97

DRAFT: Parallel Computer Architecture 367

Snoop-based Multiprocessor Design

cachesthus reducing useless busaffic when the lock is noteady However, performing the
operdions at memory can cause fastemser of a lock from one processor to anotiith
cacheale lodks, the processor that isiby-waiting will first be ivalidated,at which point it will
try to access the lock from the othepgessols cache or memprWith uncached locks the
release goes only to mempand by the time it gets there the next attempt by the waitoappr
sor is likely to be on its \ay to memory akady,so it will obtain the lock from memory withvo
latency Owerall, traffic and locality considetions tend to domirte, and lock wariades are usu-
ally cacheable so processors can busy-wait without loading the bus.

A conceptually naural way to implement a cdealle test&set that is not 8sfied in the caoe
itself is with two bus tinsactionsa read transaction for the test component and a waitedc-
tion for the set component. Oneatty to keep this sequence atomic is to lock down the bus a
the read transaction until the write completesgping other pocessos from putting accesses
(especialy to that arialde) on the bus between the read and write componafhige this can be
done quite easily with an atomiady it is much more dificult with a split-transactionus: Not
only does locking down the bus impact peniance substantigll but it can cause deadlock if
one of the transactions cannot be immediately satisfied without giving up the bus.

Fortunatelythere are betteparoates. Consider anvmlidaion-based protocol with We-back
cathesWha a processorally needs to do is obtaixausive ovnership of the cacheltck (e.g.

by issuing a singleead-exclusig bus tansaction)and then it can pesfm the read component
and the write component in the cache as long as it doesveotljg eclusive avnership of the
block in between,i.e. it simply luffers and delays other incoming accesses from the bustto tha
block until the write component is perined More complex atomic opations such asetch-
and-op must retain exclusive ownership until the operation is completed.

An atomic instruction that is more complex to implement is coezpad-swp. This requires
specifying three operands in a memory stion: the memory lodéon, the egster to compag
with, and the alue/regster to be wapped in. RISC instruction sets are usually not equipped f
this.

Implementing LL-SC equites a little special support. A typical implementation uses a so called
lock-flag and a lok-addess egster at each picessarAn LL opektion reads thelbck, but also
sets the loe-flag and puts the alless of the lock in the lok-addess egister Incoming ivali-
dation (or update) requests from the bus aréched @ainst the lok-addess egister,and a suc-
cessful mech (a conflicting write) resets the lockdl An SC tieds the lock fig as the indidar
for whether an inteening conflicting write has ocawd,; if so it &ils, and if not it succeed¥he
lock flag is also reset (and the SC will fail) if the lockriale is replaced from the céde, since
then the processor may no longer semlidaions or updates to thatkiable Finally, the lok-
flag is reset at contextdtches,since a contexigtch between an LL and its SC may inetly
cause the LL of the old process to lead to the success of an SC in the new procesgittia¢ds s
in.

Some subtle issues arise rpaling livelodk when implementing LL-SC.iFst, we should indict

not allow eplacement of the cachéolok that holds the lockarialde between the LL and the SC.
Replacement would clear the locladl, as discussedbave,and could estdish a situation Were

a processor égs trying the SC but mer succeeds due to continugplacement of the lbck
between LL and SCTo disallow eplacements due to conflicts with instructi@icheswe can

use split instruction and data caches or set-asaacianified caches. For conflicts with other
daa referencesa common solution is to simply disallow memory instructions between an LL

368

DRAFT: Parallel Computer Architecture 9/10/97

Multi-level Cache Hierarchies

and an SCTedniques to hide teng/ (e.g. out-of-order issue) can complicate ttess, since
memoy opegtions that are not between the LL and SC in thegm code may be so in the
execution. A simple solution to thisqilem is to not alloweordeimgs past LL or SC opations.

The second potentialvielod situation would occur if two processes countty fail on their
SCs,and each mrtesss failing SC iwvalidaed or updated the otherqmesss Hock thus d¢earing
the lok-flag. Neither of the two processes woulckesucceed if this paologcal situation per
sisted This is why it is important that an SC not beedted as an alinaty write, but that it not
issuing invalidations or updates when it fails.

Note that compared to implementing an atomic read-modify-write instruction, LL-SC can have a
performance disachntag since both the LL and the SC can miss in théesdeading to two
misses instead of one. For better perfance,it may be desale to obtain (or pefetd) the

block in exclusive or modified state at the LL, so the SC does not miss unless it failgveip

this reintroduces the secondvédilodk situation ®ove: Other copies are validaed to obtain
exclusive avnership,so their SCs may fail without guarantee of thisgessos SC succeeding

If this optimization is usedsome érm of ba&off should be used between failed giens to
minimize (though not completely eliminate) the probability of livelock.

6.4 Multi-level Cache Hierarchies

The simple designb®we was illustative, but it made two simplifying assumptions that are not
valid on most modern systems: It assumed singlel-leadies,and an atomic budhis section
relaxes the first assumption and examines the resulting design issues.

The trend in miavprocessor design since thelga0’s is to hae an on-chip fst-level cache and

a nmuch lamer second-ikeel cathe, either on-chip or cl'n‘chip.1 Some systems, like the DEC
Alpha, use on-chip secondary caches as well and fachgd tetiary cace Multilevel cahe
hierardies would seem to complicate coherence sihea@s made by the processor to thstfi
level cache may not be visible to the seconelleache controllerasponsite for bus opeations,
and bus transactions are notedily visible to the fist level cahe However,the basic mdwa-
nisms for cache coherence extendurelly to multi-level cache hiaarchies. Let us consider a
two-level hierarchy for concreteness; the extension to the multi-level case is straightforward.

One obvious ay to handle milti-level caches is to wa independent bus snooping daare for
ead level of the cache hiarchy This is un#éractive for seeral reasons. iFst, the frst-level
cade is usually on the processdrig, and an on-chip snooper will consume precious pins to
monitor the adresses on the shared bus. Secduoglicating the tags to allow concent access

by the snooper and the processor may consume tioh precious on-chip real egaThird, and
more impotantly, there is duplication of &frt between the secondvid and fist-level snoops,
since most of the timeldcks present in thert-level cache are also present in the seconelle
cache so the snoop of the first-level cache is unnecessary.

1. The HP PA-RISC miaprocessa are a notae exception,maintaining a lage of-chip first level catie
for many years after other vendors went to small on-chip first level caches.

9/10/97 DRAFT: Parallel Computer Architecture 369

Snoop-based Multiprocessor Design

The solution used in practice is based on this last edig®r. When using rnalti-level cades,
designers ensure that they preserve the inclusion propertindibgion propertyrequires that:

1. If a memory lock is in the fist-level cahe,then it must also be present in the secomdtle
cache In other vords,the contents of ther§it-lewvel cache must be a subset of the contents of
the second-level cache.

2. If the Hock is in a modified state (@, modified or shad-modifed) in the fist-lewel cade,
then it must also be marked modified in the second-level cache.

The frrst requiement ensures that all bus transactions thatedeeant to the L1 cache are also
relevant to L2 cahe, so having the L2 cache controller snoop the bus feciirft. The second

ensues that if a BusRd transaction requestdagibthat is in modified state in the L1 or L2
cache, then the L2 snoop can immediately respond to the bus.

o000

L2 cache L2 cache

snoop snoop

Memory I/0 Devices

Figure 6-6A bus-based machine containing processors with multi-level caches.

Coheence is maintained by ensuring the inclusiarpprty,wherely all blocks in the L1 cache are also present in the Lheaith
the inclusion property, a L2-snoop also suffices for the L1 cache.

6.4.1 Maintaining inclusion

The requirements for inclusion are noiuial to maintain.Three aspects need to be conséder
Processor éferences to the fét level cache cause it tdhang state and pesfm replacements;

these need to be handled in a manner that maintains inclusion. Bus transactions cause the second
level cache toltange stae and flush locks; these need to berfvaded to the fist level. Finally,

the modified state must be propagated out to the second level cache.

At first glance it might appear that inclusion would hésBad automtcally, since all fist level
cate misses go to the seconddecathe The poblem,hownever,is that two caches maycose
different Hocks to eplace Inclusion falls out autoni@ally only for certain combinations of
cade confgurdion. It is an interestingxercise to see heat conditions can cause inclusion to be
violated if no special care is tak,so let us do that a little here bef we look at how inclusion is
typically maintained. Consider some examples of typical cachartfigzs [Baw88]. For nota-
tional puposesassume that the L1 cache has as$witiaa;, number of sets,, block sizeb;,
and thus a total capacity 8f = a;.b;.n;, where a;, b; andn, are all pavers of two.The core-

370

DRAFT: Parallel Computer Architecture 9/10/97

Multi-level Cache Hierarchies

sponding pametes for the L2 cache am, n,, by, andS,. We also assume that all paneter
values are powers of 2.

Set-associatie L1 caches with history-basedeplacement The poblem with eplacement
polices based on the history of accesses tockjsuch as leasecenty used (LRU) eplace-
ment,is that the L1 cache sees daliént history of accesses than L2 and othehessince

all processor references look up the L1 cache but not all get to lower-level caches. Suppose
the L1 cache is two-way set-associative with LRU replacement, both L1 and L2 caches have
the same block sizé{ =b,), and L2 isk times larger than LInf = k.ry). It is easy to show

that inclusion doesot hold in this simple case. Consider three distinct memory blogks m

m,, andms that map to the same set in the L1 cache. Assume thadnn are currently in

the two &ailalde slots within that set in the L1 das and are present in the L2 cache as well.
Now consider vaa happens when the processefierences g, which happens to collide with

and replace one of yand m in the L2 cache as well. Since the L2 cache is oblivious of the
L1 cade’s access historyvich determines whether the latteplacesm, orm, it is easy to

see that the L2 cache maplace one ofm; andm, while the L1 cache mayplace the other.

This is true even if the L2 cache is two-way set associativendrashdm?2 fall into the same

set in it as well. Indct,we can gneraliz the dove example to see that inclusion can be vio-
lated if L1 is not direct-mapped and uses an LRU replacement policy, regardless of the asso-
ciativity, block size, or cache size of the L2 cache.

Multiple caches at a level A similar problem with replacements is observed when the first
level caches are split between instructions and data, even if they are direct mapped, and are
bacled up by a unified second+td cadie Suppose st that the L2 cache is direct mapped as
well. An instruction bck m1 and a datallck m2 that conflict in the L2 cache do not conflict

in the L1 caches since they go into different caches. If m2 resides in the L2 cache and m1 is
referenced, m2 will be replaced from the L2 cache but not from the L1 data cache, violating
inclusion. Set associativity in the unified L2 cache doesn't solve the problem. For example,
suppose the L1 caches areedirmaped and the L2 cache is Zynset assoctave. Consider

three distinct memorylbcks my, my, andms, where my is an instruction leck, m, andmg are

data blocks that map to the same set in the L1 data cache, and all three map to a single set i
the L2 cache. Assume that at a given timesnn the L1 instruction cache,,fis in the L1

data cache, and they occupy the two slots within a set in the L2 cache. Now when the proces
sor references git will replace m in the L1 data cache, but the L2 cache may decide to
replace m or my, depending on the past history of accesses to it, thus violating incllikien.

can be generalized to show that if there are multiple independent caches that connect to eve
a highly associative cache below, inclusion is not guaranteed.

Different cache block sizesFinally, consider caches with different block sizes. Consider a
miniature system with a direct-mapped, unified L1 and L2 cachesgga= 1), with block

sizes 1-word and 2-words respectively €01, b = 2), and number of sets 4 and 8 respec-

tively (ny = 4, p = 8). Thus, the size of L1 is 4 words, and locations 0, 4, 8,... map to set 0,
locations 1, 5, 9,... map to set 1, and so on. The size of L2 is 16 words, and locations 0&1,
16&17,32&33,... map to set-0, locations 2&3, 18&19, 34&35,... map to set-1, and so on. Itis
now easy to see that while the L1 cache can contain both locations 0 and 17 at the same tim¢
(they map to sets 0 and 1 respectively), the L2 cache can not do so because they map to the
same set (set-0) and they are not consecutive locations (so block size of 2-words does not
help). Hence inclusion can be violated. Inclusion can be shown to be violated even if the L2
cade is nuch lamger or has geaer associ@vity, and we hee alead/ seen the mblems when

the L1 cache has greater associativity.

9/10/97

DRAFT: Parallel Computer Architecture 371

Snoop-based Multiprocessor Design

In one of the most commonly encountered cases, inclisiomaintained autonteally. This is
when the L1 cache is @ict-maped (g = 1), L2 can be déct-maped or set assotiee (g >=

1) with any eplacement policy (@.,LRU, FIFO, random) as long as the neledk brought in is
put in both L1 and L2 c&es,the Hock-siz is the same (b= by), and the number of sets in the
L1 cache is equal to or smaller than in L2 cache=gn,). Arrangng this confjuraion is one
popular way to get around the inclusion problem.

However,many of the cache cogfirdions used in practice do not autdioally maintain intu-
sion on eplacements. Insteathe mechanism used forgmagaing coheeng events is gtended
to explicitly maintain inclusionwheneer a bock in the L2 cache isplacedthe adiress of tha
block is sent to the L1 cae, asking it to inalidae or flush (if dirty) the coesponding locks
(there can be multiple blocks i b by).

Now consider bus transactions seen by the Lhed8ome but not all, of the busadnsactions
relevant to the L2 cache are alsdenant to the L1 cache and must begagaed to it. For gam-
ple,if a block is irnvalidated in the L2 cache due to an olvesl bus transaction ., BusRdX),
the invalidation must also be ppagé#ed to the L1 cache if the data are present ih@d are se-
eral ways to do this. One is to iofm the L1 cache of all transactions tharevrelevant to the L2
cache,and to let it ignore the ones whosael@$ses do not neh any of its tagsThis sends a
large number of unnecessary intentions to the L1 cache and can hurt enfance by making
cache-tgs unaailade for processor accesses. A motteaative solution is for the L2 cache to
keep extra state (inclusion bits) with cachlbks,which recod whether the lbck is also pesent
in the L1 cabe It can then suitaly filter intewventions to the L1 cée, at the cost of slighyl
extra hardware and complexity.

Finally, on a L1 write hit, the modi&tion needs to be commicaed to the L2 cdwe One solu-
tion is to make the L1 cache ita-through.This has the adntag that single-gcle writes ae
simple to implement [HP95]. Keever,writes can consume a substantial fraction of the LBeac
bandwidth,and a wite-buffer is needed between the L1 and L2 cachesdil gorocessor stalls.
The equirment can also betgsfied with witebadk L1 cades,since it is not necessary that the
daa in the L2 cache be up-to-date but only that the L2 cache knows when the L1 cacheshas mor
recent dataThus,the state of the L2 cachdobks is augmented so thalobks can be m&ed
“modified-but-stalé. The Hock behaes as modified for the colegry protocol, but data is
fetched from the L1 cache on a flush. (One simgpreat is to set both the modified and
invalid bits.) Both the wte-through and witebadk solutions hae been used in many$-based
multiprocessors. More information on maintaining cache inclusion can be found in [BaWw88].

6.4.2 Propagating transactions for coherence in the hierarchy

Given that we hee inclusion and we ppagae irvalidaions and flushes up to the L1 cache as
necessanyet us see how transactions gaete up and down a pcessos cache hi@rchy The
intra-hierarcly protocol handles processor requests bggiding them davnwards (avay from

the processor) until either they encounter a cadhiehahas the requestedobk in the poper
stae (shared or modified for a reaehuestand modified for a vite/read-exclusig request) or
they read the bus. Responses to these processor requests are sent up the eachg, bjetd-

ing each cache as theyogress twards the pocessarShared responses are loaded intdheac
cade in the hiaarchy in the shared sta, while read-exclusie responses are loaded into altle
els, except the innermost (L1) in the modifi-hut-stale ste. In the innermost cae, read-exclu-
sive data are loaded in the modified state, as this will be the most up-to-date copy.

372 DRAFT: Parallel Computer Architecture 9/10/97

Multi-level Cache Hierarchies

Extemal flush,copyback,and irvalidae requests from the bus pelae upvard from the &ter-

nal interface (the us), modifying the state of the cachitks as they mgress (bandng the

stae to irvalid for flush and coghbad requestsand to shared for cgpad requests). Flush and
copyba& requests peplae upwards until they encounter the modified gppt which point a
response isaneraed for the gtemal interface For invalidations,it is not necessary for thei®
transaction to be held up until all the copies are actualglidated The lovest-lewel cache con-
troller (closest to the bus) sees the transaction whegpéas on the bs, and this semes as a
point of commitment to the requestor that thealidaion will be perbrmed in the ppropriate
order The response to thevialidation may be sent to the processor from its own bus interface as
soon as the iralidaion request is placed on thed)so no responses arergeraed within the
destingion cache hiarchies. All that is equired is that certain ders be maintained between the
incoming irvalidaions and other transactionsvling through the cache hanchy, which we

shall discuss further in the context of split transaction busses that allow many transactions to b
outstanding at a time.

Interestingly,dual tags are less critical when wevdaarulti-level cachesThe L2 cache acts as a
filter for the L1 cabe, screening out ielevant transactions from thau$, so the tags of the L1
cadte are aailabde almost volly to the pocessarSimilaty, since the L1 cache acts asleefi
for the L2 cache from the processor side (hopefully satisfying mosboéssos requests)the
L2 tags are almost holly availabe for bus snooper’'s queries (sEigure 6-7). Nonetheless,
many machines retain dual tags even in multilevel cache designs.

Tags used mainly
by processor

Cache
Tag Data r L1 Cache

Cached Datg | Tagf L2 Cache

Tagstjsed mainly
by bus snooper

Figure 6-7 Organization of two-level snoopy caches.

With only one outstanding transaction on the bus at a tilemajor caiectness issues do not
chang much by using a malti-level hieiarcty as long as inclusion is maintaindthe necessgr
transactions are ppagaed up and down the hemchy,and bus transactions may be held up until
the necessary ppagdion occurs. Of cowse,the perbrmance penalty for holding theqmessor
write until the BusRdX has beemagited is more oneus,so we are motated to try to decouple
these opattions (the penalty for holding the bus until the L1 cache is queriatideal by the
early commitment optimizationtswe). Bebre going further down this & let us emowe the
second simplifying assumption, of an atomitsfand examine a morggressivesplit-transac-
tion bus.We will first retum to assuming a singlevel processor cache for simpligignd then
incorporate multi-level cache hierarchies.

9/10/97 DRAFT: Parallel Computer Architecture 373

Snoop-based Multiprocessor Design

6.5 Split-transaction Bus

Example 6-2

Answer

An atomic bus limits the &ievable bus bandwidth substantiglkince the bus wires are idler f

the dustion between when the dekss is sent on the bus and when the memory system or
another cache supply the data esponseln a split-transactionus, transactions thaequire a
response are split into two independent sahgactionsa requesttransaction and esponse
transaction. Other transactions (or sub-transactions) aweedllto intevene between them, so
tha the bus can be used while the response to thmakrequest is beingemeratedBuffering is

used between the bus and the cache olbers to allow multiple transactions to be outstanding
on the bus waiting for snoop and/or data responses from theoltemstrThe adantage,of
course,is that by pipelining bus opations the bus is utilized morefeétively and more pces-

sors can share the same bus. The disadvantage is increased complexity.

As examples ofaquest-esponse pas; a BusRd transaction is now a request that needsaa da
responseA BusUpgr does not need a dadaponsebut it doesequire an aknovledgment indi-
cding that it has committed and hence beemakeed This aknowledgment is usually sent
down toward the processor by the requestinggassos bus controller when it iggnted the bs

for the BusUpgrequestso it does not appear on the bus asparse transaction. A BusRdX
needs a data response and dmaegledgment of commitment; typicgllthese are combined as
part of the data response. Finally, a writeback usually does not have a response.

The major complications caused by split transaction buses are:

1. A new request can appear on the busiegethe snoop and/or servicing of an earleguest
are complete. In pécular, conflictingrequests (two requests to the same memimgkbat
least one of Wich is due to a write opation) may be outstanding on the bus at the same
time, a case Wich must be handledew caefully. This is diferent from the earlier case of
non-dgomicity of overall actions using an atomic bus; teea conflicting request could be
obsered by a processor but loeé its requestwen obtained theus, so the request could be
suitably modified before being placed on the bus.

2. The number of bffers for incoming requests and potentially data responses from bu$o cac
contoller is usually fked and small, so we must eitheoa or handle bffers filling up.This
is calledflow contro| since it affects the flow of transactions through the system.

3. Since bus/snoop requests atdféred, we need toavisit the issue of when and how snoop
responses and data responses are produced on the busarfpieeare they gnerded in
order with respect to the requesppaaing on the bus or not, and are the snoop and ttze da
part of the same response transaction?

Consider the mvious example of two pcesses P1 and P2 having thdobk
caded in shared state and deciding to write it at the same time (Exéshple
Shav how a split-transaction bus may introduce complicatioh&lwwould not
arise with an atomic bus.

With a split-transactionus, P1 and P2 mayemerde BusUpgr requests thatear
granted the bus on successiycles. For @ample,P2 may get the bus lmeé it has
been &le to look up the cache for P1’s request and detect it to beatimgfl If they
both assume that theyyeacquired xclusive avnershipthe protocol breaks dm

374

DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

6.5.1

6.5.2

because both P1 and P2 now think theyehtihe thock in modified stge. On an
atomic bus this would neer happen because thesfiBusUpgr transaction auld
complete—snoopsgesponsesand all—bebre the second one got on thashand
the latter would hae beendrced to bang its request from BusUpgr to BusRdX.
(Note that gen the beakdavn on the atomic bus discussed in Exan@pleresulted
in only one processor having thietk in modified stge, and the other having it in
shared state.)

The design space for spliatisactioncade-coheent busses is lge,and a gea deal of innea-
tion is on-going in the industrSince bus opetions are pipelinecne high lgel design decision
is whether responses need to bpthkn the same order as the requebt® Intel Pentium Pro and
DEC Turbo Laser busses are examples of the “tedrapproachwhile the SGI Challenge and
Sun Enteprise busses allow responses to be out déiof he latter pproad is more tolerant of
varigions in memory access times (memory maylide & satisfy a later request gkér than an
eatier ong due to memory bank conflicts orf-gfage DRAM access), but is more compléx.
second ky decision is how many outstanding requests ammifted: few or mary. In general,a
larger number of outstanding requests allows better bus titiligdut requires more bffering
and design compkity. Perhgs the most critical issue from the viewpoint of the cache eober
protocol is how adeiing is esthlished and when snoop results agparted Are they part of the
request phase or the response phake?osition adopted on this issue determines howictnfl
ing opestions can be handled. Let ussfiexamine one concrete designyfudnd then discuss
alternatives.

An Example Split-transaction Design

The example is based loosely on the SilicoapBics Challenge bus ehitecture the RowerPath

2. It takes thedllowing positions on the three issues. Conflicting requests are dealtewth v
simply, if consevatively: the design disallows multiple requests fola@chk from being outstand-
ing on the bus at once. ladt, it allows only eight outstanding requests at a time on tkgthus
making the conflict detectionatttable Limited huffering is piovided between the bus and the
cade contollers, and fbw-contol for these bffers is implemented throughegative acknowl-
edgmenbr NACK lines on the busTha is, if a luffer is full when a request is obsed, which
can be detected as soon as the requugstass on the bis,the request is rejected and\GKed;
this rendes the request Valid, and asks the requestor try. Finally, responses are alted to
be povided in a diferent order than that inhich the oiginal requests@peaed on the buslhe
reguest phase estshes the total order on coherenansactionshowever,snoop results ém
the cache conbllers are presented on the bus as part of the response tobetieer with the da

if any.

Let us examine the highdel bus design and how responses arteimea up with request$hen,
we shall look at thedlv control and snoop result issues in more depttally, we shall @mine
the path of a request through the system, including how conflicting requestptaireik being
simultaneously outstanding on the bus.

Bus Design and Request-response Matching

The split-transaction bus design essentially consists of tparae hussesa request busof
command and abless and a response bus for date request bus gvides the type ofequest
(e.g.,BusRd BusWB) and the tget adiress. Since responses manar out of order withegard

9/10/97

DRAFT: Parallel Computer Architecture 375

Snoop-based Multiprocessor Design

to requeststhere needs to be aawto identify ietuming responses with their outstanding
requestsWhen a request (commandegess pair) is anted the bus by the arbitétr is also
assigned a unique tag (3-bits, since there are eight outstanding requests in the basé\ design).
response consists of data on the data bus as well asighmlorequest tagsthe use of tgs

means that responses do not need to use tesadlines, &eing them =ailabde for other
requestsThe adiress and the data buses can be atbdrfor sparately There are sparde hus

lines for arbitration, as well as for flow control and snoop results.

Cade Hocks are 128 bytes (1024 bits) and the data bus is 256 bits wide in this particular design,
so four gcles plus a oneycle ‘turn-around’'time are equired for the response phase. A onifi
pipeline stategy is followed, so the request phase is alseefiycles: arbitration, resolution,
addressdecode and aknowledgment. Ograll, a complete equest-esponse transaction &g

three or more of thesevi-cyde phases, as we shall s&his basic pipelining stitegy undeties

seveal of the higher feel design decision3o understand this stiegy,let’s follow a single ead
operdion through to completion, shown Figure 6-8. In the request arbétion ¢ycle a cabe
contoller presents its request for the bus. In the request resolytittadl requests are consid-
ered,a single one isrgnted,and a tag is assignethe winner dives the adress in thedllowing
addess gcle and then all condtlers have a gcle to decode it and look up the cache tags to
detemine whether there is a snoop hit (the snoop result will be presented on the bus later). At this
point, cache contillers can take the actionhich makes the opetion ‘visible’ to the pocessor.

On a BusRdan eclusive Hock is davngraded to shared; on a BusRdX or BusUpigrcks ae
invalidated In either casea controller owning thelbck as dirty knows that it will need tauh

the Bock in the response phase. If a cache controller washtetatake theequired action dur

ing theAddress phasesay if it was unble to gain access to the cachgstdt can inhibit the com-
pletion of the bus transaction in tAeack cycle. (During the ack ycle, the frst data tansfer

cyde for the pevious data arbitition ¢ycle can take plageoccupying the data lines foodr

cycles, see Figure 6-8.)

After the adiress phase it is determinedhich module should respond with thetatdhe memoy

or a cabe The responder may request the data bus durimgjawfng arbitietion ¢ycle. (Note
that in this g/cle a requestor also initiates a new request on thesslbus)The data bus arbér
tion is resohed in the nextycle and in the adress gcle the tag can behecked If the taget is
ready,the data tnskr starts on the ackyde and continues for three additiongtles. After a
single tun-amound gcle, the next data émskr (whose arbittion was proceeding in parallel) can
stat. The cache lock sharing state (snoop result) is geyed with the response phase andesta
bits are set when the data is updated in the cache.

As discussed elier, writebaks (BusWB) consist only of a request phaleey require use of

both the adress and data linesgether,and thus must arbéte for simultaneous use of both
resouces. fnally, upgades (BusUpgr) pesfmed to acquire>elusive avnership for a tock

also hae only a request part since no data response is needed on fhleebpiocessor parfm-

ing a write that gneraes the BusUpgr is sent a response by its own bus controller when the
BusUpg is actually placed on thaig,indicating that the write is committed and has beeialser

ized in the bus order.

To keep track of the outstanding requests on theseach cache controller maintains an eight-
entry buffer, called arequest tabléseeFigure 6-9), Wheneer a new request is issued on ths,b

it is added to all requestlias at the same indewhich is the three-bit tag assigned tottha
requestas part of the arbition process. A requestda entry contains theldick address associ-
ated with the equestthe request typghe state of thelbck in the local cache (if it has akdy

376

DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

IArb Rslv| Add ch AckIArb |Rslv Add ch AckIArb |Rslv| Addrl Dcd1 AckI
I [1 [1 | [T 1
Addr|Grant Addr A-ack Addr Addr A-ack
Req Req
Data D-req Data D-res
Req Reqg
DO |D1 (D2 |D3 DO

Figure 6-8Complete read transaction for a split-transaction bus

A pair of consecutie read opetions are pedrmed on consecwi phases. Each phase consist\wd fipecific gcles: arbitration,
resolution, address, decode, and acknowledgment. Transactions are split into to phases: address and data.

6.5.3

6.5.4

been detanined),and a éw other bitsThe request tae is fully associtive, so a new request can

be plysically placed apwhere in the tale; all request tale entries are examined for a teclaby

both requests issued by this processor and by other requests and respongs fobisethe bs.

A request thle entry is freed when a response to the request isvaosen the buslhe tag alue
associged with that request is reassigned by the bus arbiter only at this point, so there are no con
flicts in the request tables.

Snoop Results and Conflicting Requests

Like the SGI Challergy this base design usearialle delay snoopinglhe snoop portion of the

bus consists of the three wired-or lines discussetieeasharing dirty, and inhibit, which
extends the dution of the curent response sub-transaction. At the end of the request gthase
detemined which module is to respond with the data.wéwer,it may be manyycles bebre

tha data is ead/ and the responder gains access to the data bus. During thisttiereequests

and responses may take plade snoop results in this design are presented on the bus by all con-
trollers at the time they see the actual response to a request being put s itiee during the
response phas#é/ritebadk and upgade requests do nothea datagsponsebut then they do not
require a snoop response either.

Avoiding conflicting requests is easy: Sineerng controller has aecod of the pending reads in
its request thle, no request is issued for btk that has a response outstandiwgites are per
formed during the request phase &en though the bus is pipelined the @biens for an indi-
vidual location are sa&lized as in the atomic case. \Mever, this alone does not ensur
sequential consistency.

Flow Control

In addition to fow control for incoming requests from thashflow control may also beequired
in other parts of the systefihe cache subsystem hasudfér in which responses to itequests
can be stard, in addition to the wtebad buffer discussed el@r. If the processor or che
allows only one outstanding request at a fithés responseuffer is only one entry deepphe
number of liffer entries is usuallydot small agway, since a responseiffer entry contains not

9/10/97

DRAFT: Parallel Computer Architecture 377

Snoop-based Multiprocessor Design

Request +
Response Snoop State Data To/From
Qu*eue From Cache Cache
A Reque
| Buffer
Y " . 2 esponse
o [= 3o Issue+ | QUEU
N Bs % 5 5} 'éE - —p Merge
- © 5> \T Check
»>| 7 S
Request Table*
. I
Tag| WriteBack/CopyBack Buffe
L3
Q (2]
Yy I c
- oDy : 2
to g a
contrg 04
v | V‘ \ V}
Snoop Data Buffer T:
State Addr+Cmd| Tag ata bu Addr+Cmd | Tag

v | oDaa+TagBus

Figure 6-9Extension of the bus-interface logic shown in Figure 6-4 to accommodate a split-transaction bus.

The ley addition is an eight-entrsequest tablahat leeps tiadk of all outstanding requests on the biheneer a new request

issued on theus, it is added at the same index in abgessorstequest thle using a common assignmentaithm. The request tae

Btler\lla(s many pyoses,ncluding request mging, and ensuring that only a single request can be outstanding foivamyngemoy
ock.

only an adiress but also a cachéobk of data and is thefore lage The controller limits the
number of requests it has outstanding so that there is buffer space available for every response.

Flow control is also needed at main megdtach of the (eight) pending requests canegde a
writebad that main memory must accept. Sincéetrak transactions do notquire a esponse,
they can happen in quick succession on ths, possithy overflowing buffers in the main mem-
ory subsystemFor flow contol, the Challenge design quides sparae NACK (negative
acknavledgment) lines for the ddess and data portions afdysince the bus allows indendent
arbitraion for each portion. Befe a request or response sub-transaction ¢mdbead its ak
phase and completedny other processor or the main memory can assefGKNsignal, br
example if it finds its bffers full. The sub-transaction is then canceledrgwhere,and must be
retried One common option, used in the Challeng to hae the requestoretry peiodically
until it succeeds. B&off and piorities can be used to reduce bandwidth consumptiorafiedf
retries and to woid stawation. The Sun Entgrise uses an interesting atiative for writes tha
encounter a full bffer. In this casethe destination udfer—which could not accommodate the

378 DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

6.5.5

data from the write on therit attempt—itself initiates thetry when it has enougtulfer space
The oiginal writer simply legxs watch for the etry transaction on theus,and places the data on
the data busThe opestion of the Entgurise bus ensures that the space in the destinaifber lis

still availade when the data ave. This guarantees that writes will succeed with only ateyr
bus transaction, and does not require priority-based arbitration which can slow the bus down.

Path of a Cache Miss

Given this design, we aread/ to examine how afious requests may be handlesd the ace
conditions that might occur. Let ussti look at the casehere a processor has a read miss in the
cache,so the request part of a BusRd transaction shoulcebergtedThe request fst checks
the curently pending entries in the requedti&a If it finds one with a mahing adiressthere ag

two possible courses of action depending on the nature of the pending request:

1. The earlier request was a BusRd request for the skde Bhis is gea news for this p-
cessor,since the request needn’'t be put on the bus but can rasttlge data when the
response to the earlier requespeas on the buslo accomplish this, we add two new bits to
eat entry in the equest-tale which sg: (i) do | wish to gab the data response for this
requestand (i) am | the aginal generaor of this request. In our situation these bits will be
set to 1 and OespectivelyThe purpose of therfit bit is obvious; the purpose of the second
bit is to help determine in ich state (alid-exclusive versus shared) to signal thetaa
responself a processor is not theiginal requestorthen it must assert the sharing line on the
snoop bus when itrgbs the response data from thestso that all caches will load thitolok
in shared state and noalid-exclusive If a processors the oiginal requestorjt does not
asset the sharing line when itrgos the response from thadyand if the sharing line is not
asserted at all then it will grab the block in valid-exclusive state.

2. The earlier request was incontipe with a BusRdfor example,a BusRdX. In this cas¢éhe
contoller must hold on to the request until it sees a response todheysr request on the
bus,and only then attempt the requédte “processor-sidetontroller is typically @sponsi-
ble for this.

If the controller finds that there are notofeng entries in theequest-tableit can go ahead and
issue the request on the buswdweer,it must watch out for race conditions. Fokample,when

the controller fist examines the requesbl@a it may find that there are no conflictingguests,

and so it may request arlation for the bus. Hwever,before it is ganted the bs, a conficting
request may appear on thesband then it may bergnted the &ty next use of the bus. Since this
design does not allow conflicting requests on the, twvhen the controller sees a cactfhg
request in the slot just ket its own it should (i) issue a null request (a no-action request) on the
bus to occupy the slot it had beeragted and (ii) withdw from further arbitation until a
response to the conflicting request has been generated.

Suppose the processor does ngen issue the BusRd request on the Bisa should other
cadte contollers and the main memory controller doRe request is entered into theguest
tades of all cache contilers,including the one that issued thegjuestas soon as itpgeas on
the bus.The contollers start beding their caches for the requested memdogch The main
memoy subsystem has no idea whether thiglbis dirty in one of the mcessos cades,so it
independently starts fetching this block. There are now three different scenarios to consider:

1. One of the caches may determine that it hasltiek ldlirty, and may acquire the bus tergr-
ate a response h@k main memory carespond On seeing the response on ths,lmain

9/10/97

DRAFT: Parallel Computer Architecture 379

Snoop-based Multiprocessor Design

6.5.6

memoy simply dorts the &tch that it had initited,and the cache cowlters that are aiting

for this Hock grab the data in a state based on the value of the snooping lines. If a cache con-
troller has not finished snooping by the time the respomgeas on the bs, it will kee the

inhibit line asserted and the response transaction will be extended (i.e. will stay as)the b
Main memory alsoeceies the response since tHed was dirty in a caee If main mem-

ory does not hee the liffer space needeil asserts the ACK signal povided for flbw con-

trol, and it is the responsibility of the controller holding theck dirty to retry the iesponse
transaction later.

2. Main memory mayédtd the data and acquire the busdsefthe cache controller holding the
block dirty has finished its snoop and/or acquired the Bhs. controller holding theltick
dirty will fi rst assert the inhibit line until it has finished its snoop, and then assert the dirty line
and release the inhibit linendicating to the memory that it has the latest copy and that mem-
ory should not actually put its data on the bus. On observing the dirtyraraory cancels its
response transaction and does not actually put the data on tHénéicache with the dir
block will sometime later acquire the bus and put the data response on it.

3. The simplest scenario is that no other cache hasldck dirty. Main memory will acquig
the bus and enerde the esponseCache contllers that hae not finished their snoop will
assetr the inhibit line when they see the response from mgnhort once they de-assert it
memory can supply the data (Cache-to-cache sharing is not used for data in shared state).

Processor writes are handled sinijato reads. If the writing processor does not find the data in
its cache in a valid sf&, a BusRdX is gneratedAs bebre, it cheds the request bkde and then

goes on the bus. Ewthing is the same as for a besd,except that main memory will not sink

the data response if it comes from another cache (since it is going to beyalinfyaend no other
processor canrgb the data. If thelbck being written is valid but in shared t&ga BusUpgr is
issued This requires no response transaction (the data is known to be in main memory as well as
in the witer's cache); hoever,if any other processor was just about to issue a BusUpgr for the
same block, it will need to now convert its request to a BusRdX as in the atomic bus.

Serialization and Sequential Consistency

Consider saalization to a single location. If an omtion gopeaing on the bus is a read (miss),
no subsequent writeppeaing on the bus after the read should Ike ao dhang the walue
retumed to the@ad Despite multiple outstanding transactions on tin& fere this is easy since
conflicting requests to the same location are notatbsimultaneous} on the bus. If the opasr
tion is a BusRdX or BusUpgregeraed by a write ope&tion, the requesting cache will perfn
the write into the cacheray after the response phase; subsequent (conflicting) reads todke b
are alloved on the bus only after the response phasé¢hey will obtain the newalue (Recall
that the response phase may be gas#e action on the bus as in a BusRdX or may be impficitl
generated once the request wins arbitration as in a BusUpgr).

Now consider the s@&lization of opestions to diferent locations needed for sequential consis-
tency The Iaical total order on bus transactions is bisded by the order in kich requests ar
granted for the adtess bus. Once a BusRdX or BusUpgr has obtainedufeghe associad

write is committed. Hevever,with multiple outstanding requests on theslthe irvalidaions ae
buffered and it may be a while € they are applied to the ¢eec Commitment of a write does

not guarantee that the value produced by the write éadtlvisible to other prcesscs; only
actual completion guarantees thelte s@ardion between commitment and completion and the
need for lffering multiple outstanding transactions imply the need for further mechanisms to

380

DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

Example 6-3

Answer

ensue that the necessarydans are pesered between the bus and thegessarThe llowing
examples will help make this concrete.

Consider the two code dyments shown bele Wha results for (A,B) a&
disallowed under SC? Assuming a singledkof cache per processor andiltiple
outstanding transactions on thasband no special mechanisms tesere oders
between bus and cache oropessor,show how the disaliwed results may be
obtained Assume an walidaion-based ptocol, and that the initial values &

and B are 0.
P1 P2 P1 P2
= rd B A=1 B=1
B=1 rd A rd B rd A

In the first ekample,on the left, the result not permitted under SC is (A,B) = (0,1).
However,consider thedllowing scenario. P1's write of A commits, so it contis
with the write of B (under the digient conditions for SC)The invalidation
corresponding to B is applied to the cache of Paieethat coresponding ta,
since they getaordeed in the bffers. P2 incurs a read miss on B and obtains the
new value of 1. Haever,the irvalidaion for A is still in the liffer and not pplied

to P2's cachewen by the time P2 issues the read offAe read of A is a hit, and
completes returning the old value 0 for A from the cache.

In the example on theght, the disalleved result is (0,0). Heever, consider the
following scenario. P1 issues and commits its writd, &nd then goeofward and
completes the read of, Beading in the old value of 0. P2 then writeswBich
commits,so P2 proceeds to readPhe write of B @peas on the bus after the i

of A, so they should be salized in that order and P2 should read the new value of
A. However,the invalidaion coresponding to the write of A by P1 is sitting in £2’
incoming luffer and has not yet been applied to P2'ieae2 sees a read hit 8n

and completes returning the old value of A which is 0.

With commitment substituting for commitment and multiple outstandingabipes being hff-

ered between bus andquessorthe lkey propety that must be msened for sequential consis-
teng is the bllowing: A processor should not be alled to actually see the new value due to a
write bebre pevious writes (in bus aler, as usual) are visible to ither are two \ays to pe-

sene this poperty: by not letting certain types of incoming transactions from bus to cache be
reordeed in the incoming queues, and by allowing thesedemgs but ensuring that the neces-
sary orders are preserved when necessary. Let us examine each approach briefly.

A simple way to follow the frst goproad is to ensure that all incoming transactions from tre b
(invalidations,read misseplies,write commitment dmowledgments etc.) ppagéae to the po-
cessor in FIFO aler However,such strict adeling is not necessarConsider an walidation-
based protocol. Herthere are two ays for a new value to be brought into the cache and made
availabe to the processor to read without another busatipar One is through a read miss, and
the other is through a write by the samegassarOn the other hanavrites from other mces-

9/10/97

DRAFT: Parallel Computer Architecture 381

Snoop-based Multiprocessor Design

6.5.7

sois becomevisible to a processor yen though the values are not yet local) when theseor
sponding iralidaions are applied to the da& The irvalidations due to writes that areguious

to the read miss or local write thabpides the new value are a#d/ in the queue when thead
miss or local write ppeas on the bs, and theefore are either in the queue or applied to the
cade when theaply comes back. All we need to ensptheefore,is that a eply (read miss or
write commitment) does notertale an iwvalidaion between the bus and the cache; i.e. &l pr
vious invalidations are applied before the reply is received.

Note that incoming walidaions may be eordeed with iegad to one anothefhis is because
the new value coesponding to an \@lidation is seen only through the cesponding read miss,
and the read misgply is not allaved to be eordeed with respect to the @rious invalidaion. In
an update-basedgiocol,the new value due to a write does regjuire a read miss aneply, but
rather can be seen as soon as the incoming update hasppdied &Vrites are made visie
through updates as welllhis means that not only shouldplies not eertale updaes, but
updates should not overtake updates either.

An altemative is to allow incoming transactions from the bus todmedeed on their \ay to the
cache,but to simply ensure that all gmiouslyy committed writes are applied to the cachg (b
flushing them from the incoming queue) dref an opeation from the local processor tha
enalles it to see a new value can be completed. After alit veally matters is not the order in
which invalidations/updges are pplied, but the order in Wich the coresponding new valuesear
seen by the jicessarThere are two ntural ways to accomplish this. One is to flush the incom-
ing invalidations/updees &ery time the processor tries to complete an atjar that may ertale

it to see a newalue In an irvalidaion-based ptocol, this means flushing bafe the pocessor

is alloved to complete a read miss or a write thategdes a bus transaction; in an upethased
protocol,it means flushing ornvery read opeation as well.The other way is to flush under the
following circumstanceFlush vheneer a processor is about to access a value (completaa r
hit or miss) if it has indeed seen a new value since the Uzt ifle. if a eply or an update has
been applied to the cache since the last flubb.fact that opetions are eordeed from bus to
cate and a new value has been applied to the cache means that there malidagoins or
upddes in the queue that ¢espond to writes that areguious to that new value; thoseites
should now be applied &k the read can complete. Showing that these techniques disallow the
undesirale results in the examplédawe is left as anxercise that may help make the hetques
concrete As we will see soon, the extension of the techniquesutt-tavel cache hiearchies is
quite natural.

Regadless of vhich gpproad is usedwrite atomicity is povided naurally by the boadcast

natue of the busWrites are committed in the same order with respect to aflegsorsand a

read cannot see the value produced by a write until that write has committed with respect to all
processa. With the dowve tehniqueswe can substitute complete for commit in thigesteent,
ensumng aomicity. We will discuss deadldg livelok and stavation issues introduced by a split
transaction bus after weVealso introduced utti-level cache higrdies in this context. iFst,

let us look at some alternative approaches to organizing a protocol with a split transaction bus.

Alternative design choices

There are easonale altenative positions for all ofgquest-esponse atering,dealing with con-
flicting requestsand fbw control. For @ample,ensuring that responses aengraed in oder
with respect to requests—as cache ailetrs are inclined to do—would simplify the desigime

382

DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

fully-associatie request tae could be eplaced with a simple FIFOuffer that stores pending
reguests that @re obseved on the bus. As batfe, a request is put into the FIFO only when the
request actuallygpeas on the bs, ensuring that all entities (@cessas and memory system)
hawe eactly the same view of pending requedtse pocessas and the memory systenopess
requests in FIFO der At the time the response isegentedas in the earlier design, if otlser
hawe not completed their snoops they assert the inhibit line and extend the transaeti@m.dur
Tha is, snoops are stilepoted tayether with response$he diference is in the casehsre the
memoy generaes a responseadi ezen though a processor has thatck dirty in its catie In the
previous design, the cache controller that had thelkdxdirty released the inhibit line and adeer
the dirty line and arbitated for the busgain later when it hacetrieved the data. But now togr
sene the FIFO order this response has to be placed on the lms bry other request is ser
viced So the dirty controller does not release the inhibit, limg extends the crent hus
transaction until it hasetded the bck from its cache and supplied it on the blisis does not
depend on anyone else accessing the bus, so there is no deadlock problem.

While FIFO equest-esponse aleling is simpleyit can hae perbrmance poblems. Consider a
multiprocessor with an interaved memory system. Suppose three requést8, and C ag
issued on the bus in thatdar, and that A and B go to the same memory bank while C goes to a
different memory bank.d¥cing the system toemerae responses in order means that C wileha

to wait for both A and B to be pcessedthough data for C will bevailabe much bebre data ér

B is available because of B’s bank conflict with Ahis is the major motation for allowing out

of order responses, since caches are likely to respond to requests in order anyway.

Keeping responses in order also makes it maretatbe to allow conflicting requests to the same
block to be outstanding on the bus. Suppose two BusRdX requests are issuddckrirarapid
successionThe controller issuing the latter request willafidae its Hock, as bebre The ticky

patt with a split-transaction bus is that the controller issuing the earlier request sedtethe la
request appear on the busdrefthe data response that\taits. It cannot simply walidae its
block in reaction to the lattelequestsince the lock is in flight and its own write needs to be
performed bebre a flush or imalidate With out-of-order esponsesallowing this conitting
request may be di€ult. With in-order esponsesthe earlier requestor knows its response will
appear on the busrfi, so this is actually an opportunity for a perhance enhancing optimiza-
tion. The ealier-requesting controller responds to the latter request as usual, but notes that the
latter request is pendingvVhen its responsddzk arives, it updates the wrd to be written and
“short-cuts” the Bock back out to the us, leaving its own Iock invalid. This optimizaion
reduces the latency of ping-ponging a block under write-write false sharing.

If there is a fked delay from request to snoaggsult, conflicting requests can be alled even
without requiling data responses to be ider However,since conflicting requests to btk go

into the same queue at the desintation they themselves are usually responded to igwager an
so they can be handled using the shortcut method deschbwesl (his is done in the Sun Enter
prise systems). It is left as aregcise to think about how one might allow conflictireguests
with fixed-delay snoop results when responses to them may appear on the bus out of order.

In fact,as long as there is aelirdefined order among the requestrisactionsthey do not een
need to be issued sequentially on the same busxkorpde,the Sun SPARCcenter 2000 used
two distinct split-phase busses and they@400 used four to impwe bandwidth for lage con-
figurations. Multiple requests may be issued on a singtéecHowever,a piority is estdlished
among the busses so that a logical order is defined even among the concurrent requests.

9/10/97

DRAFT: Parallel Computer Architecture 383

Snoop-based Multiprocessor Design

6.5.8 Putting it together with multi-level caches

ResponséA

We are nowead/ to combine the two major enhancements to the basic protocol fhich we
started:multi-level caches and a split-transaction bitse base design is a (Challexlike) split-
transaction bus and a @wevel cache hierchy The issues and solutiongneraliz to deper
hierardies.We have alead/ seen the basic issues efjuestresponseand ivalidaion propaga-
tion up and down the hiarchy The key new issue we need toapple with is that it takes a con-
siderale number of gcles for a request to ppagae through the cache coaliers. During this
time, we must allow other transactions t@pagae up and down the higrchty as well.To main-
tain high bandwidth while allowing the individual units to agperat their ownates,queues &
placed between the units. Wever,this raises aaimily of questionselaed to deadlock and ser
alization.

A simple multi-level cache aganizdion is shown inFigure 6-10. Assume that a processor can
hawe only one request outstanding at a tise there are no queues between the processor and
first-level cade A read request that misses in the L1 cache is passed on to the L2 cache (1). If it
misses the, a request is placed on the bus {[@)e read request is m@ared by all other cdwe
controlless in the incoming queue (3). Assuming thech is curently in modified state in the L1

cade of another mrcessorthe request is queued for L1 service {dje L1 demotes thddxk to

shaed and flushes it to the L2 cache (5Shish places it on the bus (6)he response is ptured

by the requestor (7) and passed to the L1 (8), whereupon the word is provided to the processor.

Processor Processor
Processor Request ?
r L1 Cache r L1 Cache
L

Q’% Resd%l @DReq

i

Resp./Req

from L2 to L2

from L1 to L2

\
\ @'%‘ @ I?Iv

L2 Cache L2 Cache
t A\ L Y

Resp./Re
from bus

~a

A

A

Y } v
ff?:_® @ ™ ® @4.

v }

Bus

Figure 6-10Internal queues that may exist inside a multi-level cache hierarchy.

One of the concerns with such queuedtnes is deadlocklo avoid the Btch deadlock prblem
discussed eher, as bebre an L2 cache needs to Ha#eato kuffer incoming requests oesponses
while it has a request outstandjisg that the bus may be freed With one outstandingequest

384

DRAFT: Parallel Computer Architecture 9/10/97

Split-transaction Bus

per pocessorthe incoming queues between the bus and the L2 cache need tebertaugh to

hold a request from each other processor (plus a response to its réichaesgkes care of the

case Wherre all pocessa make a request of this cache while the processor has a request outstand
ing. If they are made smaller than this to coneegal-estte (or if there are multiple outstanding
requests per pcessor)jt is necessary to ACK bus requests when there is not room to enqueue
them.Also, one slot in the bus to L2 and in the L2 to L1 queuessisred for the response to the
processos outstanding equest,so that each processor cawajls drain its outstanding
responses. If NCKs are usedhe request bus artition needs to include a mechanism to easur
forward progress under heavy contention, such as a simple priority scheme.

In addition to &tch deadlok, buffer deadlock can occur within theuttilevel cache hierchy as
well. For xkample,suppose there is a queue in each direction between the L1 anchie2bodh
of which are witebadk cades,and each queue can hold two entries. It is possible that the L1-
> 2 queue holds two outgoing reagtjuestsyhich can be disfied in the L2 cache but willegp-
erae replies to L1, and the L2->L1 queue holds two incoming reagiestswhich can be d#s-
fied in the L1 care We now hae a classical circularuffer dgpendenceand hence deadlkc
Note that this pyblem occurs only in hi@rcies in which there is more than onevéd of write-
bad cade,i.e. in which a cache higher than the one closest to the bustebadk. Otherwise
incoming requests do noegerae replies from higher teel cades,so there is no dgulaity and
no deadlock mhlem (recall that iwalidations are aknowledged implicitly from the bus itself
and do not need acknowledgments from the caches).

One vay to deal with this bffer deadlock pblem in a nultilevel writebad cache hiearcly is to
limit the number of outstanding requests froragassos and then vide enough bffering for
incoming requests and responses at eaah. lelavever, this requires a lot of real estate and is
not scaléle (each request may need two outgoinffdr entres, one for the request and ora f
the witebad it might generate,and with a lage number of outstanding bus transactions the
incoming huffers may need to ke many entries as well) . An altetive way uses a gneral
deadlo& avoidance technique for situations with limitedffiering, which we will discuss in the
contet of systems with pysically distiibuted memory in the nexhapter,where the poblem is
more acute.The basic idea is to parae transactions (thatdlv through the hiercty) into
requests and responses. A transaction caragsified as a response if it does nengrae ary
further transactions; a request mangrde a esponsebut not transaction mayegerae another
request (although a request may lamsfered to the next kel of the hiearcty if it does not gn-
erge a eply at the oiginal level). With this dassificationwe can aoid deadlock if we mvide
separte queues for requests and responses in eaehtidit, and ensure that responseg ar
always extracted from the dffers. After we hae discussed this technique in the néwpter,we
shall apply to this particular situation with multilevel writeback caches in the exercises.

There are other potential deadlock consitiens that we may ha& to consider. Forxample,

with a limited number of outstanding transactions on tigibmay be important for aesponse

from a pocessos cache to get to the bus bef new outgoing requests from the processer ar
allowed Otherwise the existing requests mayearebe stsfied, and there will be no pgress.

The outgoing queue or queues mustlie & support responses bypassing requests when neces-
sary.

The second major concern is maintaining sequential consist&fitb multi-level catesi,it is all

the more important that the bus not wait for aralidation to read all the vay up to the fist-

level cache andetum a eply, but consider the write committed when it has been placed on the
bus and hence in the input queue to theelst-leel cahie The sparaion of commitment and

9/10/97

DRAFT: Parallel Computer Architecture 385

Snoop-based Multiprocessor Design

completion is een geder in this case. Heever,the techniques discussed for singlesleahes
extend \ery naurally to this caseWe simply g@ply them at each el of the cache hiarchy.
Thus,in an irvalidaion based protocol therdit solution extends to ensuring at eackell®f the
hierarcly that eplies are noteordeed with respect to imlidaions in the incoming queues to
that level (replies from a laver level cache to a highdevel cache are ¢égted as eplies too or
this purpose)The second solution extends to either not letting an outgoing memomtioper
proceed past avel of the hiearchy before the incoming ivalidetions to that leel are applied to
tha cade, or flushing the incoming \lidations at a leel if a reply has been applied to tha
level since the last flush.

6.5.9 Supporting Multiple Outstanding Misses from a Processor

Although we hge examined split transactionides,which have multiple transactions outstand-

ing on them at a timeso far we hae assumed that avgn processor can ¥&only one memgr

request outstanding at a tinTehis assumption is simplistic for moderropessorswhich pemit

multiple outstanding requests to tatr the ldeng/ of cache missesven on uniprocessor sys-
tems.While allowing multiple outstandingferences from a processor inopes perbrmanceijt

can complicate semantics since memory accesses from the same processor may complete in a
different order in the memory system than that in which they were issued.

One example of multiple outstandingferences is the use of a writaffer. Since we would li&

to let the processor proceed to other computation aeidl memory opetions after it issues a
write but bebre it obtains rclusive ovnership of the bck, we put the write in the writeuffer.
Until the write is sdalized, it should be visible only to the issuing processor and not to other pr
cessorssince otherwise it may violate write ggization and cohance One possibility is to
write it into the local cache but not make vadake to other ppcessos until exclusive avner-
ship is obtained (i.e. not let the cache respond to requests for it until Thenynore common
approab is to lee it in the write liffer and put it in the cache (making ¥a#dale to other po-
cessors through the bus) only when exclusive ownership is obtained.

Most piocessos use write bffers more ggressivelyissuing a sequence of writes apid suc-
cession into the writeuffer without stalling the jcessarin a uniprocessor thigpproad is
vely effective,as long as read$ied the write luffer. The poblem in the nultiprocessor case is
that, in general,the processor cannot be alled to proceed with (or at least complete) mgmor
operdions past the write until thexelusive ovnership transaction for theldrk has been placed
on the bus. Heever,there are special casebar the processor can issue a sequence itdswr
without stalling. One example is if it can be determined that the writes alecks Ithat are in
the local cache in modified staThen,they can bediffered between the processor and théneac
as long as the cache processes the writesdsérvicing a read oxelusive request from theus
side There is also an important special case ihich a sequence of writes can beffered
regadless of the cache staTha is wher the writes are all to the samedk and no other mem-
ory opegtions are integpesed between those writéhe writes may be coalesced while the con-
troller is obtaining the bus for the reaxckisive transactionWhen that transaction ocaJit
malkes the entire sequence of writes visible at ohbe.behavior is the same as if the writesev
performed after the busansactionput bebre the next one. Note that there is nokm with
sequences of writebacks, since the protocol does not require them to be ordered.

More generally,to satisfy the stiftient conditions for sequential consistgre processor ving
the ability to proceed past outstanding write avehaead opetions raises the question ohw

386 DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

should wait td‘issue” an opestion until the pevious one in psgram order completes.ofcing
the processor itself to wait can eliminate any benefits of the sophisticated processuorisnes
(such as write bffers and out-of-orderx@cution). Insteadhe huffers that hold the outstanding
operdions— such as the writeuffer and the eoder huffer in dynamicaly scheduled out-of-
order &ecution pocesss—can sere this pupose The processor can issue the next apen
right after the pavious one and the bffers take barge of not making write opetions visible to
the memory and interconnect systems (i.e. not issuing them teténaadly visible memory sys-
tem) or not allowing read opations to complete out of pgram order with respect to outstand-
ing writes @en though the processor may issue atmtete them out of der The mebanisms
needed in theWfers are often alrad/ provided to povide precise inteupts,as we will see in
later chaptes. Of couse,simpler ppcessas that do not proceed past reads or writes make it eas-
ier to maintain sequential consistgnEurther semantic implications of multiple outstandieiy r
erences for memory consistency models will be discusse@Ghipter9, when we gamine
consistency models in detail.

From a design pepective,exploiting multiple outstandingeferences most &ctively requires
tha the processor caches allow multiple cache misses to be outstanding at sottimet the
latencies of these misses can lertapped This in turn equires that either the cache or some
auxiliary data stucture ke tradk of the outstanding misseshigh can be quite complex since
they may etun out of oder Caches that allow multiple outstanding misses are chltddip-
free caches [Ko81,Lau94]as opposed tblockingcaches that allow only one outstanding miss.
We shall discuss the design of kop-free caches when we discussetay tolerance in
Chapter 11.

Finally, consider the interactions with split transaction busses aiititlevel cache hiearchies.
Given a design that supports a split-transaction bus with multiple outstanding transactions and :
multi-level cache hiarchy,the extensions needed to support multiple outstandingtapes per
processor areefv and are mostly for pesfmance We simply need to pride deeperequest
queues from the processor to the bus (the request queues poimtimgaatits inFigure 6-10),so

that the multiple outstanding requests can bffdsed and not stall the processor orteadt may

also be useful to ve deeper response queues, and moitewvadk and other types ofuffers,
since there is now more conoemg in the system. As long as deadlock is handled pgrsding
requests fromaplies,the exact length of any of these queues is not critical foectoiessThe
reason for suchefv changes is that the Idaip-free caches themselves penfi the complex task

of meging requests and magiag replies,so to the caches and the bus subsystem below it sim-
ply appeas that there are multiple requests to distinathks coming from the mressarWhile
some potential deadlock scenarios might become exposed that would@atrisan with oyl

one outstanding request peopessor—ér example,we may now see the situatiorhere the
number of requests outstanding from athgessos is more than the bus candako we hge to
ensue responses can bypass requests on #dyeowt—the support discussed earlier for split-
transaction buses makes the rest of the systpalieaof handling multiple requests from aopr
cessor without deadlock.

6.6 Case Studies: SGI Challenge and Sun Enterprise SMPs

This section places thegerl design and implementation issues discusbedeainto a conate
setting by describing two uftiprocessor systems, the SGI Challenge and the SunpEséer
6000.

9/10/97 DRAFT: Parallel Computer Architecture 387

Snoop-based Multiprocessor Design

The SGI Challenge is designed to support up to 36 MIPS R44@egsos (peak 2.7 GFLOPS)
or up to 18 MIPS R8000 pcessas (peak 5.4 GFLOPS) in theoWer Challenge model. Both
systems use the same systam,the Pwerpdh-2 hus, which provides a peak bandwidth of 1.2
Ghytes/sec and the system supports up to 16 Ghytes af &tedeaved main memar Finally,
the system supports up to dvirChannel-2 I/O Bises,each poviding a peak bandwidth of 320
Mbytes/sec Each I/O bus in turn can support multiple Ethernet connections, VME/S(G8¢,b
grephics cads, and other pépherals. The total disk st@ge on the system can beveml Ter-
abytes.The opesating system that runs on the baare is a arant of SVR4 UNIX called IRIX;

it is a symmetric naltiprocessor &mel in that any of the opating systems’ tasks can be done on
ary of the pocessas in the systemigure 6-11 shows a high-kel diagram of the SGI Chal-
lenge system.

VME-64
SCSI-2
Graphics

R4400 CPUs

— HPPI

Interleaved
Memory:
16 Gbyte max

40-bit Address Bus

256-bit Data Bus

Figure 6-11The SGI Challenge multiprocessor

With four processas per boat, the thirty-six pocessos consume nine bus slots. It can support up to 16 Gbyte
way inteleaved main memat The I/O boards mvide a spardae 320 Mbytes/sec 1/Ous, to which other standa
buses and devices intade The system bus has gosede 40-bit adress path and a 256-bit datdtpand supports
peak bandwidth of 1.2 Ghkes/secThe bus is split-transaction and up to eight requests can be outstanding g
at any given time.

The Sun Entgrise 6000 is designed to support up to 30 ABRARC processas (peak 9
GFLOPs).The GigplanéM system bus prvides a peak bandwidth of 2.67 GB/s (83.5MHz
times 32 lytes),and the system can support up to 30 GB of up to &6imtedeaved memoy.

The 16 slots in the machine can be populated with a mix of processing boards andd&akoar

long as there is a least one of each. Each processing board has two CPU modules and two (512
bit wide) memory banks of up to 1 GB éaso the memory capacity and bandwidth scales with

the number of mrcessos. Each 1/O card prides two independent 64-bit x 25 MHz SBUS 1/O
bussesso the I/O bandwidth scales with the number of I1/O cards up to more than 2TG8/s.

388 DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

total disk stoage can be tens of @&lytes. The opesating system is Solaris UNIXFigure 6-12
shows a block diagram of the Sun Enterprise system.

cpumem | S| E|E| 8| T
Cards - i @
@ Q
%) 5
| @ I/O Cards
L] 3 ;
GigaplanéM bus (256 data, 41 address, 83 MHz)

Figure 6-12The Sun Enterprise 6000 multiprocessor

6.6.1 SGI Powerpath-2 System Bus

The system busofms the core interconnect for all components in the system. Asu#t,its
design is dkcted by equirements of all other components, and design choices made for it, in
turn, affect back the design of other componeiitse design choices for buseslire: multi-
plexed \ersus non-raltiplexed adiress and datauses,wide (eg., 256 or 128-bit) grsus nar
rower (64-bit) data s, the dock rate of the bus (&écted by signalling témology used length

of bus,the number of slots orub), split-transaction ersus non-split-transaction design, thenf
contol strategy,and so onThe paverpah-2 bus is non-mitiplexed with 256-bit wide data por
tion and 40-bit wide attess pation, it is docked at 47.6 MHz, and it is split-transaction suppor
ing 8 outstanding read requestghile the \ery wide data path implies that the cost of connecting
to the bus is higher (iequires multiple bit-sliced chips to interface to it), the benefit is that the
high bandwidth of 1.2 Gbytes/sec can beiaed at aeasonale dock rate At the 50MHz tock

rate the bus supports sixteen slots, nine bfctv can be populated with 4-processor boards to
obtain a 36-processor cogdirgion. The width of the bus alsofaftts (and is &tcted by) the
cade Hock size chosen for the maice The cache lock size in the Challenge machine is 128
bytes,implying that the whole cachddek can be @nsfered in only four buslocks; a nuch
smaller lhock size would hee resulted in less fefctive use of the bus pipeline or a more comple
design.The bus width décts many other design decisions. Earaple,the individual board is
fairly large in order to support such adarconnectorThe bus interface occupiesughly 20% of

the board, in a strip along the edge, making it natural to place four processors on each board.

Let us look at the ®verpah-2 bus design in a little more detdihe bus consists of a total of 329
signals: 256 daa, 8 data paty, 40 adiress,8 command2 adiress+command pdy, 8 dda-
resouce ID, and 7 miscellaneou$he types andariaions of transactions on the bus is small,
and all transactions takeatly 5 g/cles. System widebus controller ASICsx@cute the dllow-

ing 5-state machine synmnously:arbitration, resolution,address,decode and a&nowledge.
When no transactions are ocdng, each bus controller drops into a 2-state idlehitec The 2-
stae idle machine allows new requests to aaEtimmedigely, rather than waiting for the arbi-
trate state to occur in the 5-state miae Note that 2-states arequired to pevent diferent

9/10/97

DRAFT: Parallel Computer Architecture 389

Snoop-based Multiprocessor Design

requestos from diving arbitiation lines on succes&@ o¢/cles. Figure6-13 shows the sta
machine underlying the basic bus protocol.

at least one
requestor

2. Resolution

no
requestors

1. Arbitration 3. Address

Figure 6-13Powerpath-2 bus state-transition diagram.

The bus interfaces of all boardsaahed to the system-bus symonousy cycle thr_ou_gh the ¥ie states shown in thefire; this is als
the duration of all address and data transactions on the bus. When the bus is idle, however, it only loops between states 1

Since the bus is splitansactionthe adiress and data buses must be aatgitt for sparately In
the arbitetion cycle, the 48 adress+command lines are used for agiiin. The laver 16 lines
are used for data bus arlation and the middle 16 lines are used fodrads bus arbidtion. For
transactions thatequire both adress and data busegyéther,e.g., writebacks,coresponding
bits for both buses can be set higlhe top 16 lines are used to makgentor high-prority
requests. Went requests are used imal stavation,for example,if a processor times-outai-
ing to get access to the biifie availability of urgent-type requests alked the designers consid-
erable flexibility in favoiing service of some requestgeo others for pedrmance reasons.(g,
reads are igen peference wer wiites), while still being confident that no requestor wiétg
starved.

At the end of the arbition ¢ycle, all bus-interbice ASICs gature the 48-bit state of thequest-
ors. A distibuted arbitation scheme is usedo ety bus master sees all of the baguestsand
in the resolution ycle, each one indgeendeny computes the same winn&hile distibuted
arbitraion consumes more &SIC’s gate resourcesit saves the leengy incurred by a cenglized
arbitrator of communicating winners to everybody via bus grant lines.

During the adress gcle, the adiress-lbis master dves the adress and command buses with
corresponding indrmaion. Sirrultaneouslythe dda-hus master dves thedata resouce IDline
corresponding to theesponse(The dataesouce ID coresponds to the global tag assigned to
this read request when it was originally issued on the bus. Also see Section 6.5 for details.)

During the decodeycle, no signals are dren on the adress bus. Interlly, each bis-interface
slot decides how to respond to this transaction. kamele,if the transaction is a Wweback,and
the memory system a@mtly has insuicient huffer resouces to accept the @#ain this gcle it
will decide that it must NCK (negative a&knowledge or reject) this transaction on the nextle,
so that the transaction can letied at a later time. In addition all slotsepae to supply the
proper cache-coherence information.

390

DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

During the data dmowlede o/cle, each bus interface slot responds to the recanafathiress
bus transactionThe 48 adress+command lines are used @oivs. The top 16 lines indicate if
the device in the cogsponding slot is rejecting thedadss-lis transaction due to indigfent
buffer space. Simildy, the middle 16 lines are used to pobsiteject the di&-bus tansaction.
The lavest 16 lines indicate the deestae of the lbock (present vs. not-present) beingris-
ferred on the da-bus.These lines help determine the state Imiclv the data lock will be loaded
in the requesting pressore.g., valid-exclusie versus shagd Finally, in case one of the pces-
sors has not finished its snoop by thysle, it indicates so by asserting the r@aponding inhibit
line. (The d&a-resouce ID lines during the data lawowledgment and arb#tion ¢ycles ae
called inhibit lines.) It continues to assert this line until it has finished the snoop. If the snoop
indicaes a clean cachddek, the snooping node simply drops the inhibit Jined allows the
requesting node to accept mewisrresponself the snoop indicated a dirtydek, the node e-
arbitraes for the data bus and supplies the latest copy of tagatia only then drops the inhibit
line.

For daa-hus tlansactionspnce a slot becomes the mastee 128 bytes of che-blok data is
transfered in four consecwté g/cles over the 256-bit wide data pathhis four-cyde sequence
begns with the data &mowledgment gcle and ends at the diebss gcle of the bllowing trans-

action. Since the 256-bit wide data path is used only for four ouweffcles,the maxinum
possibe eficiengy of these data lines is 80%. In some sense though, this is the best that could be
done; the signalling témology used in the 8werpdh-2 bus equites one ycle tum-amound time
between diferent masters dring the linesFigure 6-13 shows the ycles during vhich various

bus lines are driven and their semantics.

| Arb. | Resol.| Addr. Decode Ack] Arb. | Resol| Addr.| Decode Ack. |
| ! I I ! | ! I I I

Cmd. Bus (y-arb cmd a—ac
a-ar d-ack._a-arb 0 j

Addr. Bus < T addr ‘Stats < adar sy
Data Bus¢ D1 D2 D3 DO D1 D2 D3 DO

D-RS1D BUS i Gresy inhib>inhib g-resy——<inhib),

Figure 6-14Powerpath-2 bus timing diagram.

During the arbitation cycle, the 48-bits of the attess + command bus indicate requests from the 16-bus slots foratfesactior
addess tansactionand ugent transactions. Each bus interface determines the results of thatiarbitrdgpendenty following &
common algrithm. If an adlress request isgnted the adiress +command areatrsfered in the adress gcle, and the requests can
NACK’ed in the aknowedgment gcle. Similally, if a data request iggnted the tag associated with it fdaresouce-id) is tansferre
in the address cycle, it can be NACK’ed in the ack cycle, and the data Is transferred in the following DO-D3 cycles.

9/10/97 DRAFT: Parallel Computer Architecture 391

Snoop-based Multiprocessor Design

6.6.2 SGI Processor and Memory Subsystems

In the Challenge system, each board can contain 4 MIPS R4400spws. Futhermore,to
reduce the cost of interfacing to thesbmany of the bs-interfice chips are shared between the
processors. Figure 6-13 shows the high-level organization of the processor board.

L2 Cache L2 Cache L2 Cache L2 Cache

PowerPath-2 Bus
Figure 6-150rganization and chip partitioning of the SGI Challenge processor board.

To minimize number of bus slotequired to support thirty-six picessorsfour processos are put on each ba@aiTo maintain cohe
ence and to interface to thedythere is one cde-coheence chip per pcessorthere is one sharédchip that lkeeps tiadk of request
from all four processors, and to interface to the 256-bit wide data bus, there are four shared bit-sliced D-chips.

The processor board uses thredediint types of chips to interface to the bus and to stippor
cate coheence There is a singleA-chip for all four pocessas that interfaces to the digss
bus. It contains Igic for distibuted arbitation, the eight-entry eéquest-tale storing curently
outstanding transactions on the bus (see Seétifior details), and other controldiz for decid-

ing when transactions can be issued on the bus and how to respond to them. It pasgestn r
obsened on the bus to the CC-chip (one for eaaftessor)which uses a duplicate set of tags to
detemine the presence of that memotgdk in the local calee, and commnicaes the esults
bad to theA-chip. All requests from the processor alssvfthrough the CC-chip to th&-chip,
which then presents them on the blsinterface to the 256-bit wide datashfour bit-sliced D-
chips are usedl'he D-chips are quite simple and are shared among tlcegsos; they povide
limited buffering cgpability and simply pass data between the bus and the CC-chip dsdocia
with each processor.

The Challenge main memory subsystem uses high-spéfedstto fan out adresses to a 576-bit
wide DRAM bus.The 576 bits consist of 512 bits of data and 64 bits of ECC, allowing for single
bit in-line corection and double bit @r detection. Fast ga-mode access allows an entire 128
byte cache lock to be read in two memorydes,while data kffers pipeline the response to the
256-bit wide data buslwelve dock cycles (~250ns) after the debss apeas on the bs, the
response datgppeas on the data bus. @in curent tetinology,a single memory board can hold

2 Gbytes of memory and supports a @intedeaved memory system that cartigate the 1.2
Gbytes/sec system bus.

392

DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

6.6.3

Given the aw lateng/ of 250ns that the main-memory subsystenesakis instiuctive to see the
overall lateng/ expetienced by the mrtessarOn the Challenge this number is close i3 br
1000ns. It takesmproximatey 300ns for the request tadi appear on the bus; this includes time
taken for the processor tealiz that it has arft-level cache miss, a second«d cache miss,
and then to filter through the CC-chip down to Akehip. It takes pproximatey another 400ns
for the complete cachddak to be delered to the D-chips across the blikese include the 3
bus g/cles until the adress stge of the requestansaction]12 g/cles to access the main memor
and another 5ycles for the data transaction to @eli the data wer the bus. iRally, it takes
another 300ns for the data tow through the D-gips, through the CCHup, through the 64-bit
wide interface onto the processor chip (¥6les for the 128 byte cachéobk), loading the di
into the primary cache and restart of the processor pipeline.

To maintain cache colemce,by default the SGI Challenge used the lllinois MESI protocol as
discussed eber. It also supports update transactions. Interactions of the cache cohemtaee pr
col and the split-transaction bus interact are as described in Section 6.5.

SGI I/O Subsystem

To support the high computing\er piovided by multiple pocessorsin a real system, ceiul

attention needs to be dated to poviding maching I/O caability. To provide scalale I/O per

formance the SGI Challenge allows for multiple I/O cards to be placed on the systeealh

card providing a local 320 Mbytes/secqprietay I/O bus. Rrsonality ASICs are jwided to act
as an interface between the 1/0 bus and standardsmoong (eg., ethenet,VME, SCSI, HPPI)
and non-standards camming (eg., SGI Giphics) devicesrigure 6-13shows a lock-level dia-
gram of the SGI Challenge’s PowerChannel-2 1/O subsystem.

As shown in the fjure,the poprietay HIO input/output bus is at the core of the 1/0 subsystem.
It is a 64-bit wide raltiplexed adiress/dta bus that runs off the samleak as the system bus. It
suppots split ead-transactionsyith up to four outstanding transactions perice In contrast to
the main systemus, it uses cenalized arbitation as laeng is much less of a concern. M@ver,
arbitraion is pipelined so that bus bandwidth is nasted Futhermoresince the HIO bus sup-
ports seeral different transaction lengths (it does netjuire every transaction to handle a full
cadte Hock of daa), at time of request transactions agquired to indicate their lengtithe arbi-

ter uses this imfrmaion to ensure more fé€ient utilization of the busThe narower HIO kus
allows the personality ASICs to bbeger than if they wre to diectly interface to theety wide
system busAlso, common functionality needed to interface to the system bus can be shared b
the multiple personality ASICs.

1. Note that on both the outgoing amdum pahs,the memory request passes through an &sgnous
boundaryThis adds a double sylm@nizr delay in both dections,about 30ns ornverag in each diction.
The benefit of decoupling is that the CPU can run afferelift dock rate than the systerrub, thus allaving

for migration to higher tock-rae CPUs in the future whileekping the same budark rate The cost, of
course, is the extra latency.

The never generdion of processorthe MIPS R10000, allows the processordstat after only the needed
word has atived, without having to wait for the complete cacHedk to arive. This ealy restat option
reduces the miss latency.

9/10/97

DRAFT: Parallel Computer Architecture 393

Snoop-based Multiprocessor Design

bttt S99

Personality
ASICs

HIO Bus (320 MB/s)

System / HIO Bus
Interface

Address je—-] Address Mai Data Path

System Address Bus I

System Data Bus (1.2 GB/s)

Figure 6-16High-level organization of the SGI Challenge Powerchannel-2 1/0 subsystem.

Ead I/O board povides an interface to theo®erpdh-2 system bs,and an internal 64-bits widellO” 1/0 bus
with peak bandwidth of 320 Mtes/secThe narower HIO bus lavers the cost of interfacing to it, and it s
ports a number of personality ASICs which, in turn, support standard buses and peripherals.

HIO interface chips can request DM&ad/wite to system memory using the full 40-bit system
addressmake a request for dobss tansldion using the mappingesouce in the system inter
face (eg., for 32-bitVME), request inteupting the pocessorpr respond to processor I/O (PIO)
readsThe system bus interfacegpides DMA read esponsegiesults of adress tanslationand
passes on PIO reads to devices.

To the rest of the system (processor boards and main-memodghtize system bus intexfe

on the I/O board pwides a clean interface; it essentially acts like another processadr bbas,

when a DMA read makes it through the system-bus interface onto the systghbbcomes a
Powerpéh-2 read,just like one that a processor would issue. Sitgilavhen a full-cabe-block

DMA write goes out, it becomes a speciladi write transaction on the bus thatatidates cop-
ies in all ppcessorstaches. Note thaven if a processor had théobk dirty in its local cabe,

we do not want it to write it back, and hence the need for the special transaction.

To support partial lock DMA writes, special care is needgdakecause data must be gt coher
ently into main memar. To support these partial DMA vtes, the system-bus interface lndes

a fully associtive, four Hock cade, that snoops on theoRerpah-2 bus in the usuabghion.
The cache locks can be in one of only two &a: (i) invalid or (ii) modified &clusive When a
pattial DMA write is first issuedthe Bock is brought into this cache in modifiexcusive stde,
invalidaing its copy in all pocessorstaches. Subsequent partial DMA writes need not go to the
Powerp#h-2 bus if they hit in this c&e,thus increasing the system busogéncy This modifed
exclusive Hock goes to the walid state and supplies its contents on the sysigsn(ip on ary
Powerp#h-2 bus transaction accessing thischk; (i) when another partial DMA write causes
this cache lock to be eplaced; and (iii) on any HIO bus read transaction that accessektiks b
While DMA reads could ha also used thiofir-blodk cade,the designers felt that partial DMA
reads were rare, and the gains from such an optimization would have been minimal.

The mapping RAM in the system-bus interfacevjites gneral-pupose adress tansldion for
I/0O devices. Forxample,it may be used to map smalldxess spaces such as VME-24/ME-
32 into the 40-bit physical deess space of theoRerpah-2 bus.Two types of mapping are sup-

394 DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

ported:one leel and two lgel. One-l&el mappings simplyatum one of the 8K entries in the
mapping RAM, where by corention each entry maps 2 Mbytes of physical memarthe two-
level stheme,the map entry points to thegeatebles in main memgr However,each 4 KByte
page has its own entry in the secongdktable, so virtual pges can be arbarily mapped to
physical payes. Note that PIOs face a similaartsldion problem,when going down to the I/O
devices. Such &nsldion is not done using the mapping RAM, but iedtly handled by the per
sonality ASIC interface chips.

The final issue that wexplore for I/O is fbw control. All requests proceeding from the 1/O inter
faces/deices to the Bwerpah-2 system bus are implicitlyoilv contiolled. For ekample,the HIO
interface will not issue a read on theverpah-2 bus unless it hasifier spaceasened for the
responseSimilafly, the HIO arbiter will not gant the bus to a requestor unless the system inter
face has room to accept the transaction. In the othestidin,from the pocesscs to 1/0 deices,
however, PIOs can arrive unsolicited and they need to be explicitly flow controlled.

The flow control solution used in the Challenge system is to make the PIOs be sofiftiéed.
reset,HIO interface chips (g., HIO-VME, HIO-HPPI) signal theirzilade PIO luffer space to
the system-bus interface using special requests called IngR&Osystem-bus interface main-
tains this inbrmaion in a sparde counter for each HIO diee. Every time a PIO is sent to a
patticular device, the coresponding count is demmentedEwery time that deviceeatires a PI1Qit
issues another IncPIO request to increment its counter. If the system bus interéaes a PIO
for a device that has naifer space\ailable, it rejects (MCKSs) that request on theRerpath-

2 bus and it must be retried later.

6.6.4 SGI Challenge Memory System Performance

The access time foravious lesels of the SGI Challenge memory system can be determined using
the simple read miobenchmak from Chapter 3. Recall, the matxenchmdtc measures the
avera@ access time in reading elements of aayasf a gven size with a certain &le. Figure 6-
17 shows the read access time foraage of sizes and strides. Each\aishows theaerage
access time for aien size as a function of theidt: Arrays smaller than 32 KB fit enély in
the frst level cade Level two cache accessesvhaan access time obughly 75 ns, and the
inflection point shows that theatrskr size is 16 byteS.he second bump shows theddbnal
penalty of bughly 140 ns for a TLB miss, and thegassize in 8 KBWith a 2 MB aray accesses
miss in the L2 cawe,and we see that the combination of the L2 adletr, Powerpah bus poto-
col and DRAM access result in an access timewdinly 1150 nsThe minimum bus protocol of
13 g/cles at 50 MHz accounts for 260 ns of this time. TLB misses @alghly 200 nsThe sim-
ple ping-pong miasbenchmarkjn which a pair of nodes each spin on agflntil it indicaes

9/10/97 DRAFT: Parallel Computer Architecture 395

Snoop-based Multiprocessor Design

their turn and then set thedl to signal the other shows @und-tip time of 6.21s, a little less
than four memory accesses.

1500
TLB
—o—3M
MEM ——4M
—&—2M
1000 ——1M
w —8—512K
= —e—256K
£ ——128K
= —A—64K
500 —8—32K
—o—16K
L2 X
0 3
< © < © X X N4 X X s s
— © [To) - < © < © — <
N — © [Te)
N
Stride (bytes)

Figure 6-17Read microbenchmark results for the SGI Challenge.

6.6.5 Sun Gigaplane System Bus

The Sun Gigplane is a non-mitiplexed, split-phase (or p&et svitched) bus with 256-bit da

lines and 41-bit physical ddessesclocked at 83.5 MHz. It is aenterplane desigmather than a
backplaneso cards plug into both sides ofThe total length of the bus is 18", so eight lofsar

can plug into each side with 2” of cooling space between boards and 1” spacing between connec-
tors. In sharp contrast to the SGI Challengev€pdh-2 hus,the bus can support up to 112 out-
standing tansactionsincluding up to 7 from each bahrso it is designed for devices that can
sustain multiple outstandingatmsactions,such as lock-up free cacheEhe electrical and
mechanical design allows for live insertion (hot plug) of processing and 1/O modules.

Looking at the bus in more detail, it consists of 388 signals: 286 JAECC, 43 adress (with
parity), 7 id tay, 18 arbitation, and a number of cowfiraion signals.The electrical design
allows for tun-amund with no deadycles. Emphasis is placed on minimizing theetay of
operationsand the protocol (illuséed inFigure 6-18) is quite diferent from that on the SGI
Challenge A novel collision-based arbd#tion technique is used tw@id the cost of bus arbar
tion. When a requestor arbites for the adress lois, if the adiress bus is not scheduled to be in
use from the m@vious g/cle, it speculéively drives its request on the @mess bus. If there are no
other equestas in that gcle, it wins arbitetion and has adtad/ passed the adessso it can con-
tinue with the remainder of the transaction. If there is @nead collision, the requestor that wins
arbitraion simply dives the adress gain in the nextycle, as it would with coventional arbi-
tration. The 7-bit tag associated with the request is presented inltbeihg cycle. The snoop
stae is associated with the ddss phasenot the data phaseive g/cles after the adress,all

396 DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

address

arbitration

status

boads assert their snoop signals (gtkiowned, mgped,and ignore). In the meantimthe
boad responsite for the memory attess (the home board) can request the data bus tfules ¢
after the adresshefore the snoop resulthe DRAM access can be started spawdly, as vell.
When home board wins arkition, it must assert the tag twgdes lder, informing all devices
of the pproading data tansfer Three gcles after diving the tag and twoycles bebre the déa,
the home board dres a status signal,hich will indicate that the dataanskr is cancelled if
some cache owns théobk (as detected in the snoop stafé)e owner places the data on thes b
by arbitrating for the data Ws, driving the ta, and diving the dataFigure 6-18 shows a second
read tansactionwhich expeliences a collision in arbétion, so the adress is supplied in the
conventional slot, and cache ownership, so the home board cancels its data transfer.

Like the SGI Challergy invalidaions are adered by the BusRdX transactions on thdrads s
and handled in FIFO fashion by the cache subsystems, thukmmvéedgment of imalidation
completion is equired To maintain sequential consistgnes still necessary to gain arlation
for the adress bus befe allowing the writing processor to proceed with memory atjmrs
past the writ&

2 3 4 5 6 7 8 9 10 11 12 13 14

0 1

shar

_ b
45K 2) { 6) {7\
D\\/D_\A A D A D A D
tag (tag) /@\

A D

\K\»OK_/ —/

(canc‘n],!

Figure 6-18Sun Gigaplane Signal Timing for BusRd with fast address arbitration

Board 1 initiates a read transaction with fast agtitm, which is responded to by home board 2. Boards 4 and 5 collide durin?u
tion, board 4 wins, and initiates a read transaction. Home board Gtmbir the data bus and then cancelsigponseEventually
the owning cache, board 7, responds with the data. Board 5 retry is not shown.

6.6.6 Sun Processor and Memory Subsystem

In the Sun Enterrise,each processing board has twogassorseach with gtemal L2 cates,
and two banks of memory connected throughassbar,as shown irFigure 6-19. Data lines
within the UlteSFARC module are liffered to dive an internal bs, called the UPA (uniersal
port architectue) with an internal bandwidth of 1.3 GB/s. Ary wide path to memory is pf

1. The SPARC V9 specidion wealens the consistency model in this respect to allow the processor to

employ write buffers, which we discuss in more depth in Chapter 6.

9/10/97

DRAFT: Parallel Computer Architecture 397

Snoop-based Multiprocessor Design

vided so that a full 64 byte cachktk can be read in a singe memoygle, which is two tus
cydes in lengthThe adiress controller adapts the UPA protocol to thea@@ne potocol, real-
izes the cache coleng protocol, provides luffering, and tads the potentially laye number of
outstanding transactions. It maintains a set of duplicate tags (statedaadsdulit no data)dr
the L2 cabe Although the UltaSPARC implements a 5-state MOESIogpocol, the D-tags main-
tain an @proximdion to the stee: owned, shaed, invalid. It essentially combines state$iah
are handled identically at the Giglane leel. In paticular, it needs to know if the L2 cache has a
block and if that bock is the only bock in a cabe It does not need to know if thabbk is dean

or dirty. For xample,on a BusRd thelbck will need to be flushed onto the bus if it is in the L2
cate as modiéd, owned (flushed since last modifl), or exclusive (not shared when read and
not modified since), thus the D-tagspresent only'owned’. This has the adntag that the
addess controller need not bedmnfned when the UIBSRARC elevates a bock from exclusive to
modified It will be informed of a transition from valid, shaed, or owned to modiéd, because

it needs to initiate bus transaction.

. FiberChannel 10/100
Memory (16 x 72-bit SIMMS) Module (2) SBus Slots ethernet
A
L2$ [tag$ L2$ [tag$ fs""éts"l‘"de
A] | A] feps
Ultra Ultra A
™ SPARC ™ SPARC SBuUS Y -
\ \ 25 MHz \
A A
uD uD SyslO SyslO
[ﬁ QE | A
Yy — y P y
p 144¢ y576 72
D tagst{ Address Contrql Data Control / XBAR Address Contrgl Data Control / XBAR

control‘

control
'address data‘ 288 \

'address data‘ 288

/

Gigaplane Connector | | Gigaplane Connector |

Figure 6-190rganization of the Sun Enterprise Processing and I/0O Board

Processing board contains two B8S8RRC modules with L2 caches on an internas land two wide memory banks interfaced tc
system bus through two ASICBhe Address Controller adapts between the two bus protocols and implements the cactecy
protocol. The Data Controller is essentially a cross bhe 1/0O board uses the same two ASICs to interface to two I/Codlerdr Thé
SyslO asics essentially appear to the bus as alodedade On the other sidehey support independent I/O busses and interfa
FiberChannel, ethernet, and SCSI.

6.6.7 Sun I/O Subsystem

The Enteprise 1/0 board uses the same bus interface ASICS as the processohg hednter

nal bus is only half as wide and there is no memory Jdté.1/O boards only do cachéobk
transactionsjust like the processing bai,in order to simplify the design of the main bilike
Sysl/O ASICs implement a singléolbk cache on behalf of the 1/0O devic@®o independent 64-
bit 25 MHz SBus are supped One of these supports two dedicated FiberChannel modoles pr
viding a edundanthigh bandwidth interconnect to ¢gr disk stoage arays. The other povides
dedicded ethernet and fast wide SCSI connections. titiad, three SBUS interface cards can
be plugyed into the two busses to support agmtpelipherals,including a 622 Mb/&TM inter-

398

DRAFT: Parallel Computer Architecture 9/10/97

Case Studies: SGI Challenge and Sun Enterprise SMPs

6.6.8

face The I/O bandidth, the connectivity to pgherals,and the cost of the I/O subsystem scales
with the number of I/O cards.

Sun Enterprise Memory System Performance

The access time fovious level of the Sun Enterise via the read miobenchmék is shown in
Figure 6-20 Arrays of 16 KB or less fit engéy in the fist level catie Level two cache accesses
hawe an access time abughly 40 ns, and the inflection point shows that tla@ser size is 16
bytes.With a 1 MB aray accesses miss the L2 bagand we see that the combination of the L2
controller,bus protocol and DRAM access result in an access timaighl 300 ns.The mini-
mum bus protocol of 11ycles at 83.5 MHz accounts for 130 ns of this time. TLB missds ad
roughly 340 ns.The machine has a softve TLB handlerThe simple ping-pong miobench-
mark,in which a pair of nodes each spin onag funtil it indicates their turn and then set ttagyfl

to signal the other shows a round-trip time ofds7roughly five memory accesses.

700

600 —o—38M

——1M
—&x—2M
——1M
—8—512K
—e—256K
——128K
—A—64K
—&—32K
—o—16K

500

400

300

Time (ns)

200

100

256 © B
1K
4K @
16K
64K |4
256K

Stride (bytes)

Figure 6-20 Read Microbenchmark results for the Sun Enterprise.

6.6.9 Application Performance

Having understood the machines and their oilenchmat performanceet us examine the per
formance obtained on our parallg@ipdications. Absolute pedrmance for commercial mhimes
is not presented in this book; inste#tte focus is on pesfmance impovements due to paltel-
ism. Let us fist look at @plicaion speedups and then at scalinging only the SGI Challerg
for illustration.

9/10/97

DRAFT: Parallel Computer Architecture 399

Snoop-based Multiprocessor Design

Application Speedups

Figure 6-21 shows the speedups obtained on our six paraltgrams,for two data set s&s
eath. We can see that the speedups are quite good for most obtirampswith the eception of
the Radix sorting émel. Examining the leakdavn of execution time for the sortingeknel
shaws that the vast majority of the time is spent stalled on data addesshared bus simpl
gets svamped with the data and coherenedfitt due to the penutaion phase of the srand
the resulting contention desyrs perbrmance The contention also leads tovee load imbal-
ances in data access time and hence time spent waiting at glof&bkbéris unbrtunatey not
alleviated nmuch by increasing the pblem siz, since the commmicaion to computationatio in
the pemutaion phase is independent obplem siz. The results shown are for a radix value of
256, which delivers the best pesfmance ger the ange of processor counts for bothoptem
sizes. Banes-Hut,Raytrace and Radiosity speed ugrywwell even for the elatively small input
prodems used. LU does too, and the bottleneck for the smabiblepr at 16 pocessas is pi-
marily load imbalance as thadtorizdion proceeds along the mnia. Finally, the bottleneckdr
the small Ocean pblem size is both the high comumicaion to computationatio and the
imbalance this gnerdes since some partitionsveafewer neighbors than others. Botloplems
are alleviated by running larger data sets.

Speedup
@

—@—LU: n=1024

—8—LU: n=2048

—A—RayTrace: balls
Raytrace: car

—3E—Radiosity: room

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

—&__Radiosity: largeroom

—@— Galaxy: 16K particles
—M_. Galaxy: 512K particles
14 =—f—Ocean: n=130

Ocean: n=1024
12 —¥—Radix: 1M keys

e —8_ Radix: 4M keys

1 2 3 4 5 6 7 8 9 1011 1213 1415 16

Figure 6-21Speedups for the parallel applications on the SGI Challenge.

The block size for the blocked LU factorization is 32-by-32.

Scaling

Let us now examine the impact of scaling foea bf the pograms. Bllowing the discussion of
Chapter4, we look at the speedups under théedéint scaling models, as well as at how thoekwv
done and the data set size ushdnge Figure 6-22 shows the results for the Barnes-Hut and
Ocean pplications.“Naive” time-constrained (TC) or memgconstained (MC) efers to scal-
ing on the number of péeles or gid length () without dhandng the other pplication paame-
ters (accuagy or the number of time steps). It is clear that tleekwdone under realistic MC
scaling gows nmuch faster than linedy in the number of mrtessos in both aplications,so the
parllel execution time gows very quickly. The number of péicles or the gd size that can be
simulaed under TC scalingrgws much more slavly than under MC scalingand also mach
more slawly than under nae TC where n is the only aplication parameter scaled. Scaling the

400

DRAFT: Parallel Computer Architecture 9/10/97

Extending Cache Coherence

other gplicaion paametes causes themk done andxecution time to ina@asejeaving much
less room to grow n. Data set size is controlled primarilg, biyhich explains its scaling trends.

The speedups under fdifent scaling models are measured as describ&thépter4. Consider
the Barnes-Hut galaxy siumation, where the speedups are quite good for this size ohimac
under all scaling model$he diferences can be explained by examining the majoopegnce
factors. The comnunicaion to computationatio in the brce calculation phase dependga-
rily on the number of picles. Another important factor thatfe€ts perfrmance is theelative
amount of vark done in thedrce calculation phasghich speeds up &ll, to the amount done in
the tee-huilding phase wWwich does notThis tends to increase wittragter accuacy in force
computation,i.e. smaller8. However,smaller@ (and to a lesser extentegter n) increase the
working set size [SHG93], so the scaledipem that bangs8 may hae worse fist-lewvel cahe
behaior than the baseline plblem (with a smallen and lager 6) on a unipocessarThese &c-
tors can be used to explairhynaive TC scaling yields better speedups than realistic TC scaling
The working sets behsa betterand the commmicaion to computationatio is more &vorable
sincen grows more quickly whefl andAt are not scaled.

The speedups for Ocean are quitéedifint under dierent models. Here too, the major camtr
ling factoss are the commmicaion to computationatio, the working set sie, and the time spent
in different phases. Heever,all the efects are mch more stongly dependent on therig size
relative to number of mrcessas. Under MC scalingthe comnanicaion to computationatio
does not bang with the number of pcessos used so we might expect the best speedups.
However, as we scale two ffcts become visib. Frst, conflicts across riggds in the cale
increase as a pcessos partitions of the mds become furtherpat in the adress space. Sec-
ond, more time is spent in the highewéds of the mltigrid hierarcty in the soler, which hase
worse parallel pedrmance The latter diect turns out to be alleated when accay and time-
step intewval are efined as wll, so realistic MC scales a little better tharvedIC. Under naie
TC scaling the gowth in gid size is not fast enough to cause major conflicblems,but good
enough that comomicaion to computationatio diminishes signifiantly, so speedups arenry
good Realistic TC scaling has a sler gowth of gid size and hence imgvement in commni-
cdion to computationatio, and hence loer speedups. Cldgr many efects play an impdant
role in perbrmance under scalingnd vhich scaling model is mosppropridae for an aplica-
tion affects the results of evaluating a machine.

6.7 Extending Cache Coherence

The techniques for a@ving cache coherence extend in many directidhss examines aefv
important dilections:scaling down with shared daes, scaling in functionality with viually
indexed caches andansldion lookaside bffers (TLBs), and scaling up with non-bus irten-
nects.

6.7.1 Shared-Cache Designs

Grouping ppcessas tagether to share avel of the memory hiarchy (e.g., the frst or the sec-
ond-le\el cache) is a potentiallytteactive option for shad-memoy multiprocessorsespecialy
as we consider designs with multipl@pessos on a chip. Compared with each processuiniga
its own memory at that\Vel of the hiearchy,it has seeral potential benefitsthe benefs—like

9/10/97 DRAFT: Parallel Computer Architecture 401

Snoop-based Multiprocessor Design

™ 0 ~) — ™ 10
— - -

Processors

10000 600
9000
- 8000 .’;500 ;
(= o +Na|veTC
2 7000 _ 2 400 —=— Naive MC
S 5000 —@—Naive TC S TC
Z —B—Nai =
% 5000 Naive MC % 300 MC
S TC £
= 4000 MC -
<3000 £ 200
g E
2000 100
1000 M'/
_ — —o
0 o> o P v
3 5 7 9 11 13 15 “ ® v o~ o 2 ©
Processors
300 1200000
250 " 5 1000000
> MC
$ 200 i 5 800000 —=—Naive MC
E —4@—Naive TC 3 ~—@—Naive TC
— -
mlSO Naive MC Z 600000 TC
= TC 5
[=N
2 100 me S 400000
2
50 200000
X r
0 0
- [32] wn
1 3 4 5 6 7 8 9 1011 12 13 14 15 16 I R
Processors
6 16
14 14
12
12 -
—O—Na!ve TC 10 —&— Naive TC
210 —B—Naive MC S ~ll— Naive MC
E TC § 3 TC
e 8 MC o MC
o n
® —¥—PC 6 —¥=PrC
4
2 ~
- ™) ~ o ~ id i

—

Processors

— —

Figure 6-22Scaling results for Barnes-Hut (left) and Ocean (right) on the SGI Challenge.

The gaphs show the scaling ofask done data set siz, and speedups underféient scaling models. PCC, and MC efer to pob-

lem constained,time constrained and memory constrained scat@gpectivelyThe top set of

hs shows that theatk needed tc

solve the poblem gows ery quickly under realistic MC scaling for botlp@licaions. The middle set of @phs shows that the e
set size that can be rurog/s much more quikly under MC or nate TC scaling than under realistic TC scalifilge impact of scaling
model on speedup isuth lager for Ocean than for Baes-Hut,primarily because the commicaion to computationatio is much
more strongly dependent on problem size and number of processors in Ocean.

402

DRAFT: Parallel Computer Architecture

9/10/97

Extending Cache Coherence

the later dawbacks—ag encountered when sharing at anyeleof the hiearchy, but are most
extreme when it is thert-lewel cache that is shared amongq@ssas. The benefits of sharing a
cache are:

* |t eliminates the need for dae-coheence at this leel. In paticular, if the first-level cache is
shaed then there are no multiple copies of a cadbekband hence no coherencelbplem
whatsoever.

e It reduces the tang/ of comnunicaion that is sasfied within the goup. The laeng of
communicéion between mrcessas is dosely relaed to the leel in the memory hiarchy
where they meetWhen sharing therit-level cahe, communicaion lateng/ can be as low as
2-10 dock cycles. The coresponding l®eng/ when pocessas meet at the main-menyor
level is usually many times Iger (see the Challenge and Eptese case studiesYhe
reduced leeng endles finer-gained sharing of data between tasks running on tferetiit
processors.

* Once one processor misses on a piece of data and brings it into the shiaeedtcac po-
cessos in the goup that need the data may find iealty there and will not hae to miss on it
at that level. This is called pefetcing data across pcessas. With private caches each @r
cessor would hae to incur a miss garately The reduced number of misses reduces the
bandwidth requirements at the next level of the memory and interconnect hierarchy.

* It allows more dective use of long cachddzks. Spatial locality is exploitedzen when dif-
ferent words on a cacheldick are accessed by fiifent pocessas in a goup.Also, since
there is no cache coherence within @uyp at this leel there is also no false shay. For
exampleconsider a casehere two pocessas P1 and P2 read and writeegy alteinae word
of a lage aray, and think about the dérences when they share esfilevel cache and hen
they have private first-level caches.

* The working sets (code or data) of theopessas in a goup may @erlap significantly, allow-
ing the size of shared cache needed to be smaller than the combined sizeivdtthegines
if each had to hold its processor’s entire working set.

* |t increases the utilization of the cachedweaire The shared cache does not sit idle because
one processor is stalletut rather services othereferences from other pressos in the
group.

* The gouping allows us to &fctively use emeaging pakagng tedinologies,such as mlti-
chip-modules, to achieve higher computational densities (computation power per unit area).

The treme brm of cache sharing is the case ihigh all processos share a fst level cade,
belon which is a shared main memory subsyst&ins completely eliminates the cache ceher
ence poblem. Pocessas are connected to the shared cache lwitals The svitch could een
be a bus but is more &k a crossbar to allow cache accesses froferdiit pocessas to po-
ceed in parallel. Similéy, to support the high bandwidth imposed by multiplecessorsboth
the cache and the main memory system are interleaved.

An eaty example of a shad-cabe achitectue is the Alliant FX-8 mdune, designed in the
early 1980s. An Alliant FX-8 contained up to 8 custoroqessos. Each processor was a pipe-
lined implementation of the 68020 instruction set, augmented with vectardtistis,and had a
clock cycle of 170ns.The pocessas were connected using a crossbar to a 532&b4-way
interleaed cabe The cache had 32bytdooks,and was witeback,direct-mappedand lo&-up
free allowing each processor toreawo outstanding misseghe cache bandwidth was eight 64-
bit words per instructionyele. The intefeaved main memory subsystem had a peak Wwalitt

of 192 Mbytes/sec.

9/10/97

DRAFT: Parallel Computer Architecture 403

Snoop-based Multiprocessor Design

(") 00 (=)

Switch

(Interlﬁaved)

:III

! (InterlLeaved) !
| Main Memory |

I'I

Figure 6-23Generic architecture for a shared-cache multiprocessor.

The interconnect is placed between thecpsscg and the fist-level cahe Both the cache and the memory system may bdeatex
to provide high bandwidth.

A somevha different ealy use of the shad-cabe gpproat was eemplified by the Encar
Multimax, a contempary of the FX-8.The Multimax was a snoopy dae-coheent rrultipro-
cessorput each pvate cache supported twoquessos instead of one (with no need for ceher
ence within a pair)The motvation for Encore at the time was toaler the cost of snooping
hardwareand to increase the utilization of the cacheeg the ery slow, multiple-CPI poces-
sors.

Today, shared fist-level caches are beingviestigded for single-chip mltiprocessorsin which
four-to-eight multiprocessos share an on-chipréit-level cadie These can be used in themsslv
as multiprocessorspr as the bilding-blodks for lager systems that maintain coherence among
the single-chip shad-catie goups. As telsnology advances and the number camsistos on a
chip reades seeral tens or hundreds of millions, thipm@oad becomes ineasingy atractive.
Workstaions using such chips will bédle to ofer very high-perbrmance for wrkloads equir-

ing either fhe-gmain or coase-gain parallelismThe question is whether this is a morfeetive
approach or one that uses the hardware resources to build more complex processors.

However, sharing caches, particularly at first level, has several disadvantages and challenges:

e The shared cache has to satisfy the bandwidtuiements from multiple picessors,
resticting the size of arpup.The poblem is paticularly acute for sharedrét-level cahes,
which are theefore limited to ery small umbes of piocesscs. Poviding the bandidth
needed is one of the biggest challenges of the single-chip multiprocessor approach.

* The hit ldeng to a shared cache is usually higher than tavatercache at the samevés,
due to the interconnect in betwedihis too is most acute for sharexsfile\vel cahes,where
the imposition of awitch between the processor and thistfievel cache means that either
the machinelock cycle is elongted or that additional delay-slots are added for loaduastr
tions in the processor pipelinEhe slow down due to thermer is obviousWhile compiles
hawe some caability to schedule independent instructions in load delay slots, the success
depends on thepplication. Farticularly for programs that don't hze a lot of instuction-level

404

DRAFT: Parallel Computer Architecture 9/10/97

Extending Cache Coherence

6.7.2

parallelism,some slow down is im#able The increased hittang is eggravded by conten-

tion at the shared cache, and correspondingly the miss latency is also increased by sharing.

* For the above reasons, the design complexity for building an effective system is higher.

¢ Although a shared cache need not be @& las the sum of theipate caches itaplacesit is
still much larger and hence sheer than an individual prate cade For frst-level cates,this
too will either elongte the machinelock cycle or lead to multiple mcessor-cyle cade
access times.

* The cowerse of werlgpping working sets (or congictive intererence) is the pesfmance of
the shared cache being hurt due to cache conflicts across procefesmmce steams
(destructie intererence) When a shad-cabie multiprocessor is used to rurovkloads with
little data shang, for example a parallel compilation or atalaase/tnsaction pycessing
workload,the interérence in the cache between the data sets needed byf#nendipoces-
sors can hurt pedrmance substantigll In scientific computing here perbrmance is pa-
mount, many pograms try to marge their use of the pgocessor cacheew carefully, so
tha the many amys they access do not intes in the calee All this effort by the pogram-
mer or compiler can easily be undone in a shared-cache system.

* Finally, shared caches today do not meet the tremdrtbusing commaodity miaprocessor
technology to build cost-effective parallel machines, particularly shared first-level caches.

Since many mi@processa aliead/ provide snooping support forrfit-level cadhes,an dtractive
approab may be to hee piivate first-level caches and a shared seconglleache amongrgups
of processas. This will soften both the benefits andadibads of shared fst-level cahes,but
may be a good adeof overall. The shared cache will ity be lage to reduce desictive inter
ference In practice,pakagdng considegtions will also hae a \ery large impact on decisions to
share caches.

Coherence for Virtually Indexed Caches

Recall from uniprocessor chitectue the tadeofs between pysically and vitually indexed
cades.With physically indexed frst-level cahes,for cache indexing to proceed in parallel with
addess tansldion requires that the cache be eithemwsmall or ery highly associtive, so the
bits that do notltange under tansldion (og,(page_sizepits or a é&wv more if pge coloring is
used) are sfitient to index into it [HeP90]. As on-chipdt-le\el caches become g, virtually
indexed caches become mortractive However,these hee their avn, familiar problems. Frst,
different pocessos may use the same virtualdaglss to efer to unelaed data in dferent
addess spacedhis can be handled by flushing the whole cache on a comtiéghr by asso-
ciating address space identifier (ASID) tags with cachacks in addition to virtual adtess tgs.
The more serious pblem for cache coherence is sygors: distinct virtual pges,from the
same or dierent pocessespointing to the same physicalgeafor sharing purpose¥/ith virtu-
ally addressed cates,the same physical memoriobk can be étched into two distinct locks &
different indices in the cae As we knav, this is a poblem for unippcessorsbut the poblem
extends to cache coherence inltiprocessas as well. If one processor writes thedx using
one virtual adress synonym and another reads it usingfardiit synogm, then by simply put-
ting virtual adiresses on the bus and snooping them the write to the shared phygecailpaot
become visible to the latterqgoessarPutting virtual adresses on the bus also has anothewdr
back,requiiing 1/0 devices and memory to do virtual to physicah#ldion since they deal with
physical adiresses. Hwaever, putting physical adresses on the bus seems ¢guire reverse

9/10/97

DRAFT: Parallel Computer Architecture 405

Snoop-based Multiprocessor Design

transldion to look up the caches during a snoop, and this does not solve the synonyenemher
problem anyway.

There are two main softare solutions toeoiding the synonym blem:forcing synonyms to be
the same in the bits used to index the cache if these are moledh@age_size)i.e. forcing
them to hae the same g color), anddrcing processes to use the same shared virtdaéssl
when referring to the same page (as in the SPUR research project [HEL+86]).

Sophisticéed cache designsvymalso been proposed to solve the synonym cohereoldemrin
hardwae [Goo87].The idea is to use virtual desses to look up the cache orogqassor
accessesand to put physical adesses on the bus for other caches and devices to Srtusp.
requires mechanisms to begeided for the éllowing: (i) if a lookup with the virtual adress
fails, then to look up the cache with the physicalrads (vihich is by now wmailabe) as well in
case it was brought in by a synonym access, (ii) to ensure that the same plydidalri®er in
the same cache under twofdient virtual adresses at the same tijrend (iii) to conert a
shooped physical ddess to a ééctive virtual adiress to look up the snooping bacOne vay to
accomplish these goals is for caches to maintain both virtual and physical tags (andostates) f
their cached locks, indexed by virtual and physical diessesespectivelyand for the two tgs
for a Hock to point to each other (i.e. to store theresponding physical and virtual indices,
respectivelyseeFigure 6-24). The cache data iy itself is indexed using the virtual index (or
the pointer from the physical tag gntwhich is the same). Let's see at a highelehow this po-
vides the above mechanisms.

virtual age block
ASID page no. gﬁget offset
| .I virtual |aI ddres§I |

\ vtag \ vindey

p-tag

memory

1

=) U"l
Ic cache data i
o| 0 |F memory o |87
S| 5| clze
e /VE- 2
o \ o

v-tag
memory

ta inde
physical addres

hysical age block
Ba)ée no. gﬁget offset

Figure 6-240rganization of a dual-tagged virtually-addressed cache.

The v-tag memory on the left services the CPU and ix@wlby virtual adressesThe p-tag memory on the right is used fas|
snoopingand is indeed by physical adtessesThe contents of the memorjobk are stored based on the index of theg/-@orre-
sponding p-tag and v-tag entries point to each other for handling updates to cache.

A processor looks up the cache with its virtuadr@ds,and at the same time the virtual to/pi
cal transldion is done by the memory magement unit in case it is needed. If the lookup with
the virtual adress succeeds, all is well. If #@ifs, the tanslaed physical adress is used to look

406 DRAFT: Parallel Computer Architecture 9/10/97

Extending Cache Coherence

up the physical @gs, and if this hits the lbck is found through the pointer in the physical.ta
This adiewes the fist goal. A virtual miss but physical hit detects the possibility of a gynpn
since the physicallbck may hae been brought in via a tfent virtual adress. In a dect-
magpped cahe, it must hae, and let us assume a @it-maped cache for concretene3te
pointer contained in the physical tags now points tofardift dock in the cache aay (the syn-
onym virtual index) than does the virtual index of therent accesdVe need to make the cant
virtual index point to this physical taand reconcile the virtual and physical tagseimowe the
synorym. The physical tock, which is curently pointed to by the synonym virtual indés cop-

ied over to eplace the lock pointed to by the cuent virtual index (Mich is written back if nec-
essary)so eferences to the coent virtual index will hereafter hit righinay. The former cabe
block is rendeed invalid or inaccessip, so the bbck is now accessible only through the reunt
virtual index (or through the physicaldxdss via the pointer in the physicag}abut not though
the synonym. A subsequent access to the synonym will miss on its virtlraksdookup and
will have to go through this pcedureThus,a gven physical lock is valid only in one (viually
indexed) location in the cache at anyen time accomplishing the second goal. Note that if both
the virtual and physical ddess lookups fail (a true cache miss), we may need up to tite wr
bads. The new bock brought into the cache will be placed at the index determined from the vir
tual (not physical) atftessand the virtual and physical tags and states will bel8yitgpdated to
point to each other.

The adiress put on theus, if necessgy, is alvays a physical atftesswhether for a witeback,a

read miss, or eemd-exclusig or upgade Snooping with physical agesses from the bus is easy
Explicit reverse tansldion is not equired,since the indrmaion needed is aad/ there. The
physical tags are looked up tbexk for the presence of thddek, and the data are founcbfn

the pointer (caesponding virtual index) it contains. If action must beetakhe state in the \ir

tual tag pointed to by the physical tag entry is updated as well. Further details of how such &
cate system opeates can be found in [Goo87his gproath has also been extended taltin

level cates,wher it is een more #ractive:the L1 cache is Minally-tagged to speed che
access, while the L2 cache is physically tagged [WBL89].

6.7.3 Translation Lookaside Buffer Coherence

A processostranslation lookaside buffiTLB) is a cache on the gatale entries (PTES) used
for virtual to physical adfess tansldaion. A PTE can come to reside in the TLBs of multiple-pr
cessorsdue to actual sharing or process rdign. PTEs may be modéi—fr example wen
the pae is svapped out or its protection ilanged—Ileading to direct analog of the cache coher
ence problem.

A variety of solutions hae been used for TLB colace Software solutions, through the o

ing system, are populasince TLB coherence options are rach less frequent than dae
coheence opations.The exact solutions used depend on whether PTEs are loaded ifitdthe
directly by hadware or through softare, and on seeral other of the manyariabdes in hav
TLBs and opeating systems are implemented. Haare solutions are also used by some sys-
tems,patticularly when TLB opegtions are not visible to softwe This section pvides a bief
overviav of four gproaties to TLB cohemnce:virtually addressed cdtes,software TLB shoot-
down, address space identfis (ASIDs), and halware TLB coheence Further details can be
found in [TBJ+99,R0s89,Tel90] and the papers referenced therein.

9/10/97 DRAFT: Parallel Computer Architecture 407

Snoop-based Multiprocessor Design

TLBs, and hence the TLB coherenceolplem, can be woided by using viually addressed
cathes. Address tansladion is now needed only on cache misses, sticpéarly if the cache miss
rate is small we can use thegeatdles dilectly. Page teble entries are brought into thegular
daa cache when they are accessanl are thexfore kept coherent by the cache coherencelmec
anism. Hevever,when a physical e is svapped out or its protectiorhangedthis is not visi-
ble to the cache coherence dhaare,so they must be flushed from thetwally addressed cdtes
of all processos by the opetting systemAlso, the coherence pblem for virtually addressed
cathes must be sobd This gproat was e&plored in the SPUResearh project [HEL+86,
WEG+86].

A second pproad is called TLB shootdowTher are many ariants that ely on different (lut

small) amounts of hdware suppar, usually including support for interocessor inteupts and
invalidation of TLB entriesThe TLB coherence pcedue is invoked on a pwcessorcalled the
initiator, when it makesttanges to PTEs that may be cached by other TLBs. Sihaages to
PTEs must be made by the agigrg system, it knows hich PTEs are beinghanged and which

other pocessa might be caching them in their TLBs (consgively, since entries may ke
been eplaced).The OS lemel locks the PTEs beindnangd (or the elevant pae table sections,
depending on the mnulaity of locking), and sends inteupts to other prcessos that it thinks
hawe copiesThe recipients didade interupts,look at the list of pge-talbe entries being modéd

(which is in shared memory) and locallyalidate those entries from theliLB. The initigor

waits for them to fiish, perhaps by polling shared memory licas, and then unlocks the ga
tabe sections. A dferent, somavha more complex shootdown algthm is used in the Méc
operating system [BRG+89].

Some processoammilies, most notaly the MIPS &mily from Silicon Gaphics,used softare-
loaded ather than hatware-loadedTLBs, which means that the OS is/ived not only in PTE
modificaions but also in loading a PTE into the TLB on a miss [Mip91]. In these cases, the
coheence poblem for pocess-privee pajes due to process magion can be solved using a tthir
approachthat of ASIDs, which avoids interupts and TLB shootdown. Ew TLB entry has an
ASID field associated with it, used just like intuilly addressed caches to@d flushing the
entire cache on a contexwgch. ASIDs here are like tags allocatgddmicaly by the OSusing

a free pool to Wwich they are etumed when TLB entries areplaced; they are not assaeid
with processes for their fime One vay to use théSIDs, used in the Irix 5.2 opating system,

is as bllows. The OS maintains anray for each process thatitks the ASID assigned to tha
process on each of theqmessas in the systemWhen a process modifies a PTE, the ASID of
tha process for all other pcessos is set to @ro. This ensures that when the process isratégl

to another prcessorijt will find its ASID to be &ro there so and theskiel will allocate it a ne
one,thus pewventing use of stale TLB entries. TLB coherence fgegauly shared by prcesses

is performed using TLB shootdown.

Finally, some processor familiesguide hadware instructions to walidae other pocessors’
TLBs. In the PwerPC &imily [WeS94] the “TLB iwvalidate enty” (t | bi e) instruction boad-
casts the mge adiress on theus, so that the snooping ftware on other prcessas can autonta
ically invalidate the coresponding TLB entries without inteipting the pocessarThe algrithm
for handling bangs to PTEs is simple: the opting system fist makes lsanges to the pge
table,and then issuestd bi e instruction for the lsangd PTEs. If the TLB is not sofawe-
loaded (it is not in thed®verPC) then the OS does not knowigh other TLBs might be caing
the PTE so the wralidation must be broadcast to allqpessos. Broadcast is well-suited to asy
but undesiade for the more scalde systems with distouted netwrks that will be discussed in
subsequent chapters.

408

DRAFT: Parallel Computer Architecture 9/10/97

Extending Cache Coherence

6.7.4 Cache coherence on Rings

Since the scale of bus-based cache coheretipnocessas is fundamentally limited by theub,
it is naural to ask how it could be extended to other less limited interconnects. Qigatébr-
ward extension of a bus is &g. Instead of a single set of wires ontbigh all modules &
attachedeach module isteached to two neighboring modules. A ring is an interesting ¢oter
nection netwrk from the pespective of coheence,since it inheently supports bvadcast-based
communic#ion. A transaction from one node to anothavésses link by link down theimg, and
since the gerag distance of the destination node is half the length ofitigeit is simple and
natual to let the aknowledgment simply mpagde around the rest of the ring aredumn to the
senderln fact,the naural way to stucture the commnicaion in hadware is to hae the sender
place the transaction on thag, and other nodes inspect (snoop) it as it goes by to see i€k is r
evant to them. Gien this broadcast and snooping astructurewe can povide snoopy cdte
coheence on a ringven with plysically distibuted memoy. The ring is a bit more complited
than a lns,since multiple transactions may be ingress around the ring sittaneouslyand the
modules see the transactions at different times and potentially in different order.

The potential acantag of rings er busses is that the shavoint-to-point ngure of the links
allows them to be diren at \ery high dock rates. For gample,the IEEE Scalale Coherent Inter
face (SCI) [Gus92] amspot standard is based on 500 MHz 16-bit wide point-to-point lifiks.
linear, point-to-point n&ure also allows the links to batensivey pipelined that is, new bits can
be pumped onto the wire by the sourceobthe pevious bits hae readied the destinatioihis
latter featue allows the links to be made long withoufieating their throughput. A disedntage

of rings is that the comuamicaion lateng is high, typically higher than that ofibes,and gows
linearly with the number of mrtessas in the ring (on erage,p/2 hops need to beaversed
before getting to the destination on a unidirectional ring, and half that on a bidirectional ring).

Since rings are a broadcast media snooping cache coherence protocols can be implemented qu
naturally on them. An edy ring-based snoopy che-coheent machine was the KSR1 solg b
Kendall Square Resehar [FBR93]. More recent commercialfefings use rings as the second
level interconnect to connectgether nultiprocessor nodes, such as the Sequent NUMA-Q and
Convexs Exemplar dmily [Con93,TSS+96]. (Both of these systems uédir@ctory protocol”

rather than snooping on the ring intennectso we will defer discussion of them until ** Gha

ter 9**, when these protocols are imtluced Also, in the Exemplar,the interconnect within a

node is not a bus or g, but a ichly-connectedlow-lateng crossbaras discussed belo) The
University of Toronto’s Hector system [VSL+91, FVS92] is a ring-based research prototype.

Figure 6-25 illustrates the aganizdion of a ring-connected uftiprocessarTypically rings ae
used with plgsically distibuted memoy, but the memory may still be decally shaed Ead
node consists of a pcessorijts piivate cate, a portion of the global main menypand a ing
interface The interface to the ring consists of an input link from thg,a set of l&ches oga-
nized as a FIFQand an output link to theéng. At each ring lock cycle the contents of the
latches are shiftedbfward,so the whole ring acts as a circular pipelifiee main function of the
latches is to hold a passing transaction long enough so thamghimterface can decide ether

to forward the messge to the next node or not. A transaction may be taken out of theying b
stoiing the contents of thetlzh in local luffer memory and writing an empty-slot indicator into
that latch instead. If a node wants to put something onititg it waits for a an opportunity tdlfi

a passing empty slot and fills it. Of cearit is desialde to minimize the number oftzhes in
each interface, to reduce the latency of transactions going around the ring.

9/10/97 DRAFT: Parallel Computer Architecture 409

Snoop-based Multiprocessor Design

node-to-ring

interface

C in

| latches

|
Mem Ring
Partition Interfac

out
Individual Node Structure
Ring-Based Multiprocessor

Figure 6-250rganization of a single-ring multiprocessor.

The mechanism that determines when a node can insert a transactioniiog, tteled the ing
access control mbaanism,is complicated by the fact that the data path of the ring is ysuall
much narower than size of the transactions beiramsifered on it. As aesult,transactions need
multiple consecutie slots on theimg. Futhermore,transactions (mesges) on the ring can
themseles hae different sizes. Forxample,requestmessges are short and contain only the
command and ahtesswhile data reply messges contain the contents of the complete mgmor
block and are loner. The final complicating factor is that arlation for access to the ringust

be done in a distributed manner, since unlike in a bus there are no global wires.

Three main options ve been used for access control. (gbitration): token-passingimgs, reg-
ister-insetion rings, and slotted rings. Itoken-passing ringa special bit pitern, called a tokn,

is passed around thimg, and only the node crantly possessing it is alleed to transmit on the
ring. Arbitration is easybut the disadantag is that only one node may initiate a transaction at a
time even though there may be empty slots on the ring passing by another nodes, resulting in
wasted bandwidthRegister-insetion rings were chosen for the IEEE SCI standlaHere, a
bypass FIFO between the input and outpugestaof the ring is used taifier incoming tansac-
tions (with bakward flow-contol to asoid overloading),while the local node is dnsmitting.
When the local noderfishesthe contents of bypass FIFO acewarded on the output link, and
the local node is not alleed to transmit until the bypass FIFO is empty. Multiple nodes may be
transmitting at a timeand parts of the ring will stall when they axedoadedFinally, in slotted
rings, the ring is divided into transaction slots with labelled types (féerdifit sized tnsactions
sud as requests and datgplies),and these slotselp circulaing around theing. A processor
read/ to transmit a transaction waits until an empty slot of éagiired type comes by (indited

by a bit in the slot header), and then it inserts its ngesga‘slot” here eally means a sequence

of empty time slots, the length of the sequence depending on the type ofjenbstaeoy, the
slotted ring esticts the utilization of the ring bandwidth by dawiring the mixture of @ailable
slots of diferent types, Wwich may not mi&ch the actual &ffic patem for a gven workload.
However,for a gven coherence protocol the mix of magstypes iseasonatyl well known and

little bandwidth is wasted in practice [BaD93, BaD95].

While it may seem atrt that broadcast and snooping wastes bandwidth on an interconrect suc
as a ing, in reality it is not so. A broadcast takes only twice as tieeaae point-to-point mes-
sag on aing, since the latter between twandomy chosen nodes willaveise half the ring on

410 DRAFT: Parallel Computer Architecture 9/10/97

Extending Cache Coherence

averageAlso, broadcast is needed only for request ngesdead-misswrite-miss, upgade
requests) Wich are all short; dataeply messges are put on the ring by the source of the data and
stop at the requesting node.

Consider a read miss in the baclf the home of thelbck is not local, the read request is placed
on the ng. If the home is local, we must determine if theck is dirty in some other nodén
which case the local memory should not respond and a request should be placedngnAhe r
simple solution is to place all misses on ting ras on a bus-based design witlygibally distiib-
uted memoy, such as the Sun Enpeise Alternatively, a dirty bit, can be maintained for gac
block in home memar This bit is turned ON if albck is cached in dirty state in some node
other than the home. If the bit is on, the request goes omthdhe read request now dlies the
ring. It is snooped by all nodes, and either the home or the dirty node will resigand ifathe
home vere not local the home node uses the dirty bit to decide whether or not it skepbed

to the request)lhe request and response transactionseanewed from the ring when thegach
the requestarWrite miss and write upgde transactions also appear on the ring@sastsif the
local cache state avrants that an walidaion request be sent out. Other nodes snoop these
requests and walidate their bocks if necessar The retum of the request to the requesting node
senes as an &nowledgmentWhen multiple nodes attempt to write to the sameekoconcur
rently, the winner is the one thatades the cuentownerof the Bock (home node if lock is
clean,else the dirty node)rt; the other nodes are impligitbxplicitly sent ngative aknowl-
edgments (NAKSs), and they must retry.

From an implementation pgpectivea key difficulty with snoopy protocols on rings is treal-
time constraints imposedhe snooper on théng-interface must examine and react to all pass-
ing messges without &cessie delay or internal queuinghis can be dffcult for register-inser-
tion rings, since many short request magsmmay be adjacent to each other in thg. \With
rings opedating at high speeds, the requests can be too clgethtr for the snooper tespond
to in a fied time The poblem is simplified in slottedmgs, whete careful choice and placement
of short request megges and long data response mgesa(the data response megsaae
point-to-point and do not need snooping) can ensure that request-typgaaessanot toolase
together [BaD95]. Forxample,slots can berguped tgether in fames,and each frame can be
organizd to hae request slotoflowed by response slotdonethelessas with busses ultinigly
bandwidth on rings is limited by snoop bandwidth rather than raw data transfer bandwidth.

Coheence issues are handled aliofvs in snoopy ring mtocols:(a) Enough irdrmaion aout

the state in other nodes to determine whether to place a transaction on the ring is obtained fr
the location of the homend from the dirty bit in memory if thddek is locally allocated; (b)

other copies are found through broadcast; and (c) coriwaion with them happens sirta-
neousy with finding them, through the same broadcast and snooping mechanism. Consistency it
a bit tickier, since there is the possibility thabpessos at diferent points on the ring will see a

pair of transactions on the ring in féifent oders. Using ivalidetion protocols simplifies this
probdem because writes only caussd-exclusie transactions to be placed on the ring and all
nodes but the home node will respond simply bsalidating their coy. The home node can
detemine when conflicting transactions are on the ring and take special action, but this does
increase the number of transient states in the protocol substantially.

9/10/97 DRAFT: Parallel Computer Architecture 411

Snoop-based Multiprocessor Design

6.7.5 Scaling Data Bandwidth and Snoop Bandwidth

There are seeral altenative ways to increase the bandwidth of SMP designs tredeme much
of the simplicity of bus-basedproates.We hare seen that with split-transactiondsesthe
arbitration,the adiress phasend the data phase are pipelingaleach of them can go on sim
taneouslyScaling data bandwidth is the easiet,ghe real balleng is scaling the snoop band-
width.

Let's consider fst scaling data bandwidth. CacHedks are lage compared to the dokss tha
descibes themThe most stightforwad to increase the data bandwidth is simple to make the
data bus widerWe see this, for@ample,in the Sun Entgrise design Wwich uses a 128-bit wide
data busWith this gproacha 32-byte lock is transfered in only two gcles. The down side of
this goproad is cost; as the bus get wider it uses gelaconnectqroccupies more space on the
board,and dews more pwer. It cetainly pushes the limit of this style of design, since it means
that a snoop opations,which needs to be obsed by all the caches andkaowledgedmust
complete in only twoyrles. A more radical alteative is to eplace the data bus with aoss-bar,
directly connecting each pcessor-memgrmodule to gery other one. It is only the ddess por

tion of the transaction that needs to be broadcast to all the nodes in order to determine-the coher
ence opation and the data soue,i.e., memory or caoee This gproad is followed in the IBM
PowerPC based RS6000 G3WhiprocessarA bus is used for allesses and snoopsults,but a
cross-bar is used to me the actual datalhe individual paths in the cross-bar need not be
extremely wide, since multiple transfers can occur simultaneously.

A brute rce way to scale bandwidth in a bus based system is simply to use multiple busses. In
fact, this gproad offers a fundamental coiibution. In order to scale the snoop baittth
beyond one coherence result pedeabs gcle, there must be multiple simultaneous snoop -oper
ations. Once there are multipledrdss issesthe data bus issues can be handled bitiphe

daa hussescross-barspr whatever Coherence is easy. Bfent portions of the aftess space
use diferent hussestypically each bus will see specific memory banks, so wen adiress
always uses the same bus.wihver, multiple adiress busses would seem to violate thigcat
mecdanism used to ensure memory consistency ialiged arbitetion for the adress his.
Rememberhowever,that sequential consistenagyquires that there be adial total oder, not

that the adiress gents be in strict fronolodcal order A static odeiing is assigned Wically
assigned to the sequence of busses. Atread opeation i logically preceeds if it occesr
before j in time or if they happen on the sargele buti takes place on aner rumbeed hus.

This multiple bus pproadt is used in Sun SparcCenter 2008jal provided two split-phase (or
paclet svitched) XDB lussesgach identical to that used in the $j&tdion 1000, and scales to

30 piocessos. The Cay CS6400 used four such busses and scales too6égs0s. Each caute
contoller snoops all of the busses and responds according to the cache coherence phatocol.
Sun Enteprise 10000 combines the use of multiplelieds busses and data cross bars to scale to
64 pocessas. Each board consists of four 250 MHpgessorsfour banks of memory (up to 1
GB ead), and two independent SBUS I/O busses. Sixteeen of these boards are connected by a
16x16 cross bar with paths 144 bits wide well as four attess busses associated with ther f
banks on each baarCollectiely this povide 12.6 GB/s of data bandwidth and a snae of

250 MHz.

412

DRAFT: Parallel Computer Architecture 9/10/97

Concluding Remarks

6.8 Concluding Remarks

The design issues that wevhaxplored in this tigpter are fundamental, and will remain impor
tant with pogress in teknology This is not to say that the optimal design choices will not
change For example,while shaed-cabe achitectues are not cuently very popular it is possi-

ble that sharing caches at someeleof the hiearcty may become quitetiaactive when noilti-
chip-module pakagng tednology becomeslteg or when multiple prcessas appear on a sin-
gle chip, as long as destructive interference does not dominate in the workloads of interest.

A shared bus interconnedearly has bandwidth limitations as the number aigeissos or the
processor speed increas@schitects will suely continue to find inneative ways to squeez
more data bandwidth and more snoop bandwidth out of these designs, and will continue to
exploit the simplicity of a broadcast-basegpeoat. Hovever,the gneal solution in lilding
scalalle cade-coheent machines is to dighute memory pysically among nodes and use a
scalalte intelconnecttogether with coherence protocols that do mbt on snoopingThis direc-

tion is the subject of the subsequen&jotes. It is likely to find its way down to @en the small
scale as mrcesse become fasteelative to bus and snoop bandwidth. It isfidifilt to pedict

what the future holds for busses and the scalehétwthey will be usedalthough they are Iy

to have an important role for some time to comeg&sless of that wlution, the issues dis-
cussed here in the context of busses—placement of the interconnect within the meraory hier
chy, the cache coherenceoptem and the arious coherence protocols at state transitiaele

and the caectness and implementation issues that arise when dealing with manyreoncur
transactions—arall lagely independent of témology and are crucial to the design of all sae
coheent shaed-memoy architectues egadless of the interconnect used. Meover, these
designs povide the basic buildinglbck for larger scale design presented in the remainder of the
book.

6.9 References

[AdG96] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, vol. 29, no. 12, December 1996, pp. 66-76.

[AgG88] Anant Agarwal and Anoop Gupta. Memory-reference Characteristics of Multiprocessor Applica-
tions Under MACH. IrProceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systeppp. 215-225, May 1988.

[ArB86] James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a Multipro
cessor Simulation ModeACM Transactions on Computer Systed@}):273-298, November
1986.

[Baw88] Jean-Loup Baer and Wen-Hann Wang. On the Inclusion Properties for Multi-level Cache Hierar-
chies. InProceedings of the 15th Annual International Symposium on Computer Architecture
pp. 73--80, May 1988.

[BJS88] F. Baskett, T. Jermoluk, and D. Solomon, The 4D-MP graphics superworkstation: Computing +
graphics = 40 MIPS + 40 MFLOPS and 100,000 lighted polygons per sémedof the 33
IEEE Computer Society Int. Conf. - COMPCOM Bf. 468-71, Feb. 1988.

[BRG+89] David Black, Richard Rashid, David Golub, Charles Hill, Robert Baron. Translation Lookaside

Buffer Consistency: A Software Approach Rroceedings of the3rd International Conference on
Architectural Support for Programming Languages and Operating SysBoagn, April 1989.

9/10/97

DRAFT: Parallel Computer Architecture 413

Snoop-based Multiprocessor Design

[CAH+93]

[COF93]

[DSBS6]

[DSR+93]

[DuL92]

[EgK88]

[EgK89a]

[EgK89D]

[FCS+93]

[Gawo3]

[Goo83]

[Goo87]

[GSDY5]

[HeP90]
[Her91]
[HiS87]

[HEL+86]
[JeE91]

[KMR+86]

Ken Chan, et al. Multiprocessor Features of the HP Corporate Business SerRessekdings
of COMPCON pp. 330-337, Spring 1993.

Alan Cox and Robert Fowler. Adaptive Cache Coherency for Detecting Migratory Shared Data.
In Proceedings of the 20th International Symposium on Computer Architgopur@3-108, May
1993.

Michel Dubois, Christoph Scheurich and Faye A. Briggs. Memory Access Buffering in Multipro-
cessors. IrProceedings of the 13th International Symposium on Computer Architedture
1986, pp. 434-442.

Michel Dubois, Jonas Skeppstedt, Livio Ricciulli, Krishnan Ramamurthy, and Per Stenstrom. The
Detection and Elimination of Useless Misses in MultiprocessoiBrdneedings of the 20th In-
ternational Symposium on Computer Architectyme 88-97, May 1993.

C. Dubnicki and T. LeBlanc. Adjustable Block Size Coherent Cach&sobeedings of the 19th
Annual International Symposium on Computer Architectope 170-180, May 1992.

Susan Eggers and Randy Katz. A Characterization of Sharing in Parallel Programs and its Appli-
cation to Coherency Protocol Evaluation Hroceedings of the 15th Annual International Sym-
posium on Computer Architecturgp. 373-382, May 1988.

Susan Eggers and Randy Katz. The Effect of Sharing on the Cache and Bus Performance of Par-
allel Programs. IiProceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systgps257-270, May 1989.

Susan Eggers and Randy Katz. Evaluating the Performance of Four Snooping Cache Coherency
Protocols. IrProceedings of the 16th Annual International Symposium on Computer Architecture
pp. 2-15, May 1989.

Jean-Marc Frailong, et al. The Next Generation SPARC Multiprocessing System Architecture. In
Proceedings of COMPCQNp. 475-480, Spring 1993.

Mike Galles and Eric Williams. Performance Optimizations, Implementation, and Verification of
the SGI Challenge Multiprocessor. In Proceedings of 27th Annual Hawaii International Confer-
ence on Systems Sciences, January 1993.

James Goodman. Using Cache Memory to Reduce Processor-Memory Tréffiocéedings of
the 10th Annual International Symposium on Computer Architeqipre24-131, June 1983.

James Goodman. Coherency for Multiprocessor Virtual Address CacHemcdeedings of the
2nd International Conference on Architectural Support for Programming Languages and Oper-
ating SystemdPalo Alto, October 1987.

H. Grahn, P. Stenstrom, and M. Dubois, Implementation and Evaluation of Update-based Proto-
cols under Relaxed Memory Consistency Models. In Future Generation Computer Systems,
11(3): 247-271, June 1995.

John Hennessy and David Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1990.

Maurice Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages
and Systems, vol. 13, no. 1, January 1991, pp. 124-149.

Mark D. Hill and Alan Jay Smith. Evaluating Associativity in CPU Caches. IEEE Transactions on
Computers, vol. C-38, no. 12, December 1989, pp. 1612-1630.

Mark Hill et al. Design Decisions in SPURREE Computer19(10):8-22, November 1986.

Tor E. Jeremiassen and Susan J. Eggers. Eliminating False ShaRngcéedings of the 1991
International Conference on Parallel Processipg. 377-381.

A. R. Karlin, M. S. Manasse, L. Rudolph and D. D. Sleator. Competitive Snoopy Caching. In Pro-

414

DRAFT: Parallel Computer Architecture 9/10/97

References

[Kro81]
[Lam79]
[Lau94]
[Lei92]

[LLI+92]

[McC84]

[Mip91]

[PaP84]

[Ros89]

[ScD87]

[SFG+93]
[SHG93]
[Smig2]
[SwS86]
[Tawo7]
[Tel90]

[TBJ+88]

[TLS88]
[TLH94]

[WBLS9]

ceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, 1986.

D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache OrganizatioRrdneedings of 8th In-
ternational Symposium on Computer Architectyme 81-87, May 1981.

Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, vol. C-28, no. 9, September 1979, pp. 690-691.

James Laudon. Architectural and Implementation Tradeoffs for Multiple-Context Processors.
Ph.D. Thesis, Computer Systems Laboratory, Stanford University, 1994.

C. Leiserson, et al. The Network Architecture of the Connection Machine CM-5. Symposium of
Parallel Algorithms and Architectures, 1992.

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop Gupta, anc
John Hennessy. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions ol
Parallel and Distributed Systems, 4(1):41-61, January 1993.

McCreight, E. The Dragon Computer System: An Early Overview. Technical Report, Xerox Cor-
poration, September 1984.

MIPS R4000 User’s Manual. MIPS Computer Systems Inc. 1991.

Mark Papamarcos and Janak Patel. A Low Overhead Coherence Solution for Multiprocessor:
with Private Cache Memories. Proceedings of the 11th Annual International Symposium on
Computer Architecturegop. 348-354, June 1984.

Bryan Rosenburg. Low-Synchronization Translation Lookaside Buffer Consistency in Large-
Scale Shared-Memory MultiprocessorsPiroceedings of the Symposium on Operating Systems
Principles December 1989.

Christoph Scheurich and Michel Dubois. Correct Memory Operation of Cache-based Multipro-
cessors. IrProceedings of the 14th International Symposium on Computer Architedture
1987, pp. 234-243.

Pradeep Sindhu, et al. XDBus: A High-Performance, Consistent, Packet Switched VLSI Bus. In
Proceedings of COMPCQNp. 338-344, Spring 1993.

Jawinder Pal Singh, John L. Hennessy and Anoop Gupta. ScaiagdP Piograms for Multi-
processors: Methodology and Exampl&EE Computervol. 26, no. 7, July 1993.

Alan Jay Smith. Cache MemoriésCM Computing Survey$4(3):473-530, September 1982.

Paul Sweazey and Alan Jay Smith. A Class of Compatible Cache Consistency Protocols and the
Support by the IEEE Futurebus.Rnoceedings of the 13th International Symposium on Computer
Architecture pp. 414-423, May 1986.

Andrew S. Tanenbaum and Albert S. Woodhull, Operating System Design and Implementation
(Second Edition), Prentice Hall, 1997.

Patricia Teller. Translation-Lookaside Buffer ConsistedEBfeE Computer 23(6):26-36, June
1990.

M. Thompson, J. Barton, T. Jermoluk, and J. Wagner. Translation Lookaside Buffer Synchroni-
zation in a Multiprocessor System. Pnoceedings of USENIX Technical Confererieghruary
1988.

Charles Thacker, Lawrence Stewart, and Edwin Satterthwaite, Jr. Firefly: A Multiprocessor
Workstation, IEEE Transactions on Computers, vol. 37, no. 8, Aug. 1988, pp. 909-20.

Josep Torrellas, Monica S. Lam, and John L. Hennessy. False Sharing and Spatial Locality ir
Multiprocessor Cache$£EE Transactions on Computers3(6):651-663, June 1994.

Wen-Hann Wang, Jean-Loup Baer and Henry M. Levy. Organization and Performance of a Two-
Level Virtual-Real Cache Hierarchy. In Proceedings of the 16th Annual International Symposium

9/10/97

DRAFT: Parallel Computer Architecture 415

Snoop-based Multiprocessor Design

on Computer Architecture, pp. 140-148, June 1989.
[WeS94] Shlomo Weiss and James Smith. Power and PowerPC. Morgan Kaufmann Publishers Inc. 1994.

[WEG+86] David Wood, et al. An In-cache Address Translation Mechanisfrdoeedings of the 13th In-
ternational Symposium on Computer Architectyme 358-365, May 1986.

416 DRAFT: Parallel Computer Architecture 9/10/97

Exercises

6.10 Exercises

6.1 shaed cache ersus pivate caties Consider two machines M1 and M2. M1 iparfproces-
sor shaed-catie madine, while M2 is a bur-processor bus-based snoopy cachehimac
M1 has a single shared 1 Mbytectway set-assoctve cache with 64-byteldicks, while
ead processor in M2 has a 256 Kbyteetir-maped cache with 64-bytddrks. M2 uses the
Illinois MESI coherence protocol. Consider the following piece of code:

doubl e A 1024, 1024]; /* rownajor; 8-byte elens */
doubl e { 4096] ;
doubl e B[1024, 1024] ;

for (i=0; i<1024; i+=1) /* loop-1 */
for (j=nyPID j<1024; j+=nunPESs)
{
Bli,jl = (Ai+i,j] +Ai-1j] +
AL+ + AliLj-1]) 1 4.0
}
for (i=nyPID i<1024; i+=nunPES) /* |oop-2 */
for (j=0; j<1024; j+=1)
{
AL T = (Bli+ L] + Bli-1,j] +
Bli,j+1] + B[i,j-1]) / 4.0;
}

a. Assume that the array A starts at address 0x0, array C at 0x300000, and array B at
0x308000. Assume that all caches are initially empty. Assume each processies the
abowe codeand thatry Pl D varies from 0-3 for the four pcessos. Compute misses for
M1, separately for loop-1 and loop-2. Do the same for M2, stating any assumptions that
you make.

b. Briefly comment on how your answer to partvould change if the array C were not
present. State any other assumptions that you make.

c. What can be learned about advantages and disadvantages of shared-cache architecture
from this exercise?

d. Given your knavledge about the Baies-Hut,Ocean, Rgtrace,and Multipiog workloads
from pevious daptes and data in Sectidh5,comment on how each of thpmicaions
would do on a four-processor shared-cache machine with a 4 Mbyte cache versus a four
processor snoopy-bus-based machine withl Mbyte caches. It might be useful to verify
your intuition using simulation.

e. Compaed to a sharedrfit-level cahe,wha are the adantags and disathntags of ha-
ing private first-level caches, but a shared second-level cache? Comment on how modern
microprocessors, for example, MIPS R10000 and IBM/Motorola PowerPC 620, encour-
age or discourage this trend. What would be the impact of packaging technology on such
designs?
6.2 Cache inclusion

a. Using terminology in Section 6.4, assume both L1 and L2 are 2-way, and n2 > n1, and
b1=Db2,and eplacement policy is FIFO instead of URDoes inclusion hold®/hat if it is
random, or based on a ring counter.

9/10/97 DRAFT: Parallel Computer Architecture 417

Snoop-based Multiprocessor Design

b. Give an example reference stream showing inclusion violation for the following situa-
tions:

(i) L1 cache is 32 bytes, 2-way set-associative, 8-byte cache blocks, and LRU replace-
ment. L2 cache is 128 bytes, 4-way set-associative, 8-byte cache blocks, and LRU
replacement.

(ii) L1 cache is 32 bytes, 2-way set-associative, 8-byte cache blocks, and LRU replace-
ment. L2 cache is 128 bytes, 2-way set-associative, 16-byte cache blocks, and LRU
replacement.

c. For the following systems, state whether or not the caches provide for inclusion: If not,
state the problem or give an example that violates inclusion.

(i) Level 1: 8KB Direct mapped primary instruction cache, 32 byte line size
8KB Direct mapped primary data cache, write through, 32 byte line size
Level 2: 4MB 4 way set associative unified secondary cache, 32 byte line size

(ii) Level 1: 16KB Direct Mapped unified primary cache, write-through, 32 byte line size
Level 2: 4MB 4 way set associative unified secondary cache, 64 byte line size

d. The discussion of the inclusion property in Section 6.4 stated that in a common case
inclusion is s#sfied quite ntaurally. The case is when the L1 cache igdirmaped (g =
1), L2 can be diect-m@ped or set assotiee (g >= 1) with any eplacement policy (g.,
LRU, FIFO, random) as long as the nelad¢k brought in is put in both L1 and L2 dwes,
the block-size is the same; (b I,), and the number of sets in the L1 cache is equal to or
smaller than in L2 cache {w< rp). Show or argue why this is true.

6.3 Cade tag contentios> Assume that each processor hgssse instruction and data daes,
and that there are no instruction misses. Further assumenten actre, the pocessor
issues a cache requestr 3 dock cycles,the miss ae is 1%, miss k@ng/ is 30 gcles.
Assume that tag reads take otk cycle, but modifcations to the tag take twdack cycles.

a. Quantify the pedrmance lost to tag contention if a singlededata cache with only one
set of cache tags is used. Assume that the bus transactions requiring snoop occur every 5
clock cycles, and that 10% of these invalidate a block in the cache. Further assume that
snoops areigen peference @er processor accesses to tags. Déudehe-enelope cal-
culations first, and then check the accuracy of your answer by building a queuing model
or writing a simple simulator.

b. What is the performance lost to tag contention if separate sets of tags for processor and
snooping are used?

c. In general, would you decide to give priority in accessing tags to processor references or
bus snoops?

6.4 Protocol and Memory System Implementation: SGI Challenge

a. The designers of the SGI Challenge multiprocessor considered the following bus control-
ler optimization to make better use of interleaved memory and bus bandwidth. If the con-
troller finds that a request is already outstanding for a given memory bank (which can be
detemined from the requesthibe), it does not issue that request until thevimus one for
that bank is stisfied Discuss potential pblems with this optimization andhet featues
in the Challenge design allow this optimization.

b. The Challenge multiprocessor’s Powerpath-2 bus allows for eight outstanding transac-
tions. How do you think the designersieed at that decision? Iregeral how would you

418

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

EWI_Z'U

determine how many outstanding transactions should be allowed by a split-transaction
bus. State all your assumptions clearly.

. Although the Challenge supports the MESI protocol states, it does not support the cache-

to-cache transfer feature of the original lllinois MESI protocol.
(i) Discuss the possible reasons for this choice.

(ii) Extend the Challenge implementation to support cache-to-cache transfers. Discuss
extra signals needed on bus, if any, and keep in mind the issue of fairness.

. Although the Challenge MESI protocol has fouteszhe tags stored with the cache con-

troller chip leep tradk of only three states (l,, &nd E+M). Explain Wy this is still works
correctly. Why do you think that they made this optimization?

. The main memory on the Challenge speculatively initiates fetching the data for a read

requestgven bebre it is determined if it is dirty in somegmessos cade Using data in
Table 5-3 estimate the fraction of useless main memory accesses. Based on the data, are
you in favor of the optimization? Are these data methodologically adequate? Explain.

The bus interfaces on the SGI Challenge support request merging. Thus, if multiple pro-
cessos are stalled waiting for the same memdnck, then when the datppeas on the
bus,all of them can @b that data off the bu$his featue is paticularly useful for imple-
menting spin-lock based synchronization primitives. For a test-test&set lock, show the
minimum traffic on the bus with and without this optimization. Assume that there are four
processors, each acquiring lock once and then doing an unlock, and that initially no pro-
cessor had the memory block containing the lock variable in its cache.

. Discuss the cost, perfmancejmplement#ion, and scalability tdeofs between the oi-

tiple bus achitectue of the SparcCenteessus the single fast-wide bughitectue of the
SGI Challenge, as well as any implications for program semantics and deadlock.

6.5 Split Transaction Busses.
a. The SGI Challenge bus allows for eight outstanding transactions. How did the designers

arrive at that decision? To answer that, suggest a general formula to indicate how many
outstanding transactions should be supporitegigthe paametes of the bus. Use thelf
lowing parameters:

Number of processors

Number of memory banks
Average memory latency (cycles)
Cache block size (bytes)

Data bus width (bytes)

Define any other parameters you think are esselgéalp your formula simplelearly
state any assumptions, and justify your decisions.

. To improve performance of the alternative design for supporting coherence on a split-

transaction bus (discussed at the end of Section 6.5), a designer lays down the following
design objecties: (i) the snoop results aregeraed in oder, (i) the data esponsedion-

ever, may be out of order, and (iii) the@n be multiple pending requests to the same
memoy block. Discuss in detail the implementation issues for such an option, and how it
compares to the base implementation discussed in Section 6.5.

9/10/97

DRAFT: Parallel Computer Architecture 419

Snoop-based Multiprocessor Design

b.

In the split-transaction solution we have discussed in Section 6.5, depending on the pro-
cessor-to-cache interface, it is possible that an invalidation request comes immediately
after the data response, so that the block is invalidated before the processor has had a
chance to actually access that cache block and satisfy its request. Why might this be a
problem and how can you solve it?

When supporting lock-up-free caches, a designer suggests that we also add more entries
to the request-table sitting on the bus-interface of the split-transaction bus. Is this a good
idea and do you expect the benefits to be large?

<<The ways to preserve SC with multiple outstanding transactions and commit versus
completeApply them to Example 6-3 on ga381and convince gurself that they wrk.

Under what conditions is one solution better than the other? Answer: For SC, preserving
order may be better without the optimizations since need to check/flush frequently in sec-
ond case. Particularly with multi-level caches.

6.6 Computing bandwidth needs using dataovided. Assume a system bus similar to

Powerpath2as discussed in Sectiérb. Assuming 200-MIPS/200-MFLOPSquressas with
1 Mbyte caches and 64-byte caclhecks, for each of thegplicaions inTabe 5-1 compute

the bus bandwidth when using:

a. The lllinois MESI protocol.

b.
c.

The Dragon protocol.
The lllinois MESI protocol assuming 256-byte cache blocks.

For each of the above parts, compute the utilization of the address+command bus separately
from the utilization of the data bus. State all assumptions clearly.

d.

Do parts a, and b for a single SparcCenter XDBus, which has 64-bit wide multiplexed
address and data signals. Assume that the bus runs at 100MHz, and that transmitting
address information takes 2 cycles on the bus, and that 64bytes of data takes 9 cycles on
the bus.

6.7 Multi-level Caches

a. One deadlock solution proposed for multi-level caches in Section 6.5.8 is to make all

gueues 9 deep. Can the queues be smaller? If so, why? Discuss, why it may be beneficial
to have deeper queues than the size required by deadlock considerations.

[Section6.4 presents coherence protocols assumingé@-teacheswWha if there are three

or more levels in the cache hierarchy. Extend the Illinois MESI protocol for the middle
cache in a 3-level hierarchy. List any additional states or actions needed, and present the
state-transition diagram. Discuss the implementation details, including the number and
nature of intervening queues.

6.8 TLB Shootdavn. Figure 6-26 shows the details of the TLB shootdownaaitihm used in the

Mach opegting system [BRG+89]The basic data stctures are asollows. For each mtes-
sor, the bllowing data stuctures are maintained: (i) attiveflag indicating whether the pr

cessor is aotely using any pge tebles; (ii) a queue of TLB flush notices indicating thage
of virtual adlresses whose mappings are to banged; and (iii) a list indicating coently

active pae tales,i.e., processes whole PTEs may be cached irrtti2. For erery page

table, there is: (i) a spinlock that processor must hold while makitamges to that pge

table,and (ii) a set of mcessas on which this pge table is curently active. While the basic
shootdavn gpproad is simple practical implementationgquire careful sequencing of g&
and locking of data structures.

420

DRAFT: Parallel Computer Architecture 9/10/97

Exercises

Initiator

disable interrupt
active[self] =0
lock page tabldg

enqueue flush
notice to each|
responder

send IPI to respondegs—

Responder-l o ® @

flush TLB entries

busy wait until |
active[i]==0 for

all responders ile
le

change page tab

11

e

\

field interrupt

Responder-N

disable interrupts

— —] active[self] =0
- - — — — — — 1 active[self] = 0

I busy-wait until no
| active page table
| rfemains locked

unlock page tabl¢ — — »} — — — — — — —

active[self] = 1

dequeue all flush
notices and flush
TLB entries

\

field interrupt
disable interrupts

! busy-wait until no

I active page table
I remains locked

dequeue all flush
notices and flush
TLB entries

enable interrupty
active[self] = 1
enable interrupts
continue

\/ Y \

active[self] = 1
enable interrupts
continue

continue

Figure 6-26The Mach TLB shootdown algorithm.

The initiator is the processor maki

@s to the pge-tablewhile the espondes are all other rcessos tha

may have entries from that page-table cached.

a. Why are page table entries modified before sending interrupts or invalidate messages to

b.

other processors in TLB coherence?

Why must the initiator of the shootdown in Figure 6-26 mask out inter-processor-inter-
rupts (IP1s) before acquiring the page table lock, and to clear its own active flag before
acquiring the page table lock? Can you think of any deadlock conditions that exist in the
figure, and if so how would you solve them?

A problem with the Mach algorithm is that it makes all responders busy-wait while the
initiator makes changes to the page table. The reason is that it was designed for use with
microprocessors that autonomously wrote back the entire TLB entry into the correspond-
ing PTE vheneer the usge/ditty bit was setThus,for example,if other pocessos were
allowed to use the page table while the initiator was modifying it, an autonomous write-
back from those processors could overwrite the new changes. How would you design the
TLB hardware and/or algorithm so that responders do not have to busy-wait? [One solu-
tion was used in the IBM RP3 system [Ros89].

9/10/97

DRAFT: Parallel Computer Architecture 421

Snoop-based Multiprocessor Design

d. For MACH shootdown we say it would be better to update the use and dirty information
for pages in softvare (Machines based on the MIPS processchigectue actually do all
of this in software.) Lookup the operating system of a MIPS-based machine or suggest
how you would write the TLB fault handlers so that the usage and dirty information was
made available to the OS page replacement algorithms and for writeback of dirty pages.

e. Under what circumstances would it be better to flush the whole TLB versus selectively
trying to invalidate TLB entries?

422 DRAFT: Parallel Computer Architecture 9/10/97

