

Tutorial: Finding Hotspots on the Intel®
Xeon Phi™ Coprocessor
Intel® VTune™ Amplifier 2013 for Linux* OS

C++ Sample Application Code

Document Number: 327971-006

Legal Information

Contents
Legal Information.. 3
Overview..4

Chapter 1: Navigation Quick Start

Chapter 2: Finding Hotspots
Build Application ...8
Create Project and Configure Target... 10
Run Hotspots Analysis.. 12
Interpret Results..12
Analyze Code.. 14
Tune Algorithms.. 15
Compare with Previous Result..17

Chapter 3: Summary

Chapter 4: Key Terms

Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

2

Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR
ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://
www.intel.com/design/literature.htm

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD,
Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel CoFluent, Intel Core,
Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel
StrataFlash, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru
soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, Puma, skoool, the skoool logo,
SMARTi, Sound Mark, Stay With It, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro
Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in
the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2009-2013, Intel Corporation. All rights reserved.

3

Overview

 Discover how to analyze a native application running on an Intel® Xeon Phi™ coprocessor card with the
Intel® VTune™ Amplifier and identify the most performance-critical code.

About This
Tutorial

This tutorial uses the sample matrix application and guides you through basic steps
required to analyze the code for hotspots on the Intel Xeon Phi coprocessor (code
name: Knights Corner) based on Intel Many Integrated Core architecture (Intel MIC
architecture).

Estimated
Duration

10-15 minutes.

Learning
Objectives

After you complete this tutorial, you should be able to:

• Create a VTune Amplifier project.
• Use an sshscript to specify an analysis target and run it on a card.
• Configure and run Hotspots analysis for the Intel Xeon Phi coprocessor.
• Identify the modules/functions that consumed a lot of CPU time.
• Analyze the source code to locate the most critical code lines.

More
Resources

• Intel Parallel Studio XE tutorials (HTML, PDF): http://software.intel.com/en-us/
articles/intel-software-product-tutorials/

• Intel Parallel Studio XE support page: http://software.intel.com/en-us/articles/intel-
parallel-studio-xe/

• Intel VTune Amplifier support page: http://software.intel.com/en-us/intel-vtune-
amplifier-xe

 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

4

Navigation Quick Start 1
 Intel® VTune™ Amplifier provides information on code performance for users developing serial and

multithreaded applications on Windows* and Linux* operating systems. VTune Amplifier helps you analyze
algorithm choices and identify where and how your application can benefit from available hardware
resources.

VTune Amplifier Access
VTune Amplifier installation includes shell scripts that you can run in your terminal window to set up
environment variables:

1. From the installation directory, type source amplxe-vars.sh.

This script sets the PATH environment variable that specifies locations of the product graphical user
interface utility and command line utility.

The default installation directory is /opt/intel/vtune_amplifier_xe_201n.
2. Type amplxe-gui to launch the product graphical interface.

VTune Amplifier GUI

5

Configure and manage projects and results, and launch new analyses from the primary
toolbar. Click the Project Properties button on this toolbar to manage result file locations.
Newly completed and opened analysis results along with result comparisons appear in the
results tab for easy navigation.

Use the VTune Amplifier menu to control result collection, define and view project properties,
and set various options.

The Project Navigator provides an iconic representation of your projects and analysis
results. Click the Project Navigator button on the toolbar to enable/disable the Project
Navigator.

Click the (change) link to select a viewpoint, a preset configuration of windows/panes for an
analysis result. For each analysis type, you can switch among several viewpoints to focus on
particular performance metrics. Click the yellow question mark icon to read the viewpoint
description.

Switch between window tabs to explore the analysis type configuration options and collected
data provided by the selected viewpoint.

Use the Grouping drop-down menu to choose a granularity level for grouping data in the grid.

Use the filter toolbar to filter out the result data according to the selected categories.

 1 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

6

Finding Hotspots 2
 You can use the Intel® VTune™ Amplifier to identify the most performance-critical functions in an

application running on the Intel® Xeon Phi™ coprocessor (code name: Knights Corner). This tutorial guides
you through workflow steps running Hotspots analysis type on a sample application, matrix.

Step 1: Prepare
for analysis

• Build an application, copy it to the card, and set a performance baseline.
• Create a VTune Amplifier project, specify a launch script as a target application

and path to the application on the card as application parameters, and configure
search directories

Step 2: Find
hotspots

• Choose and run Hotspots analysis.
• Explore performance metrics and identify a hotspot.
• View and analyze code of the performance-critical function.

Step 3: Eliminate
hotspots

• Modify the code to resolve the detected performance issues and rebuild the code
enabling the vectorization option of the Intel compiler.

7

Step 4: Check
your work

• Re-run the analysis and compare results before and after optimization

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Build Application

 Before you start identifying hotspots in your native Intel® Xeon Phi™ coprocessor application, do the
following:

1. Get software tools.
2. Build application with full optimizations on the host.
3. Create a performance baseline.

Get Software Tools
You need the following tools to try these tutorial steps yourself using the matrix sample application:

• Intel® VTune™ Amplifier, including sample applications
• sampling driver, set up during the VTune Amplifier installation

NOTE
If, for some reason, the VTune Amplifier was not able to install the driver, you will not be able to run
the analysis and will see a warning message. See online help for additional instructions how to install
the driver manually.

• Intel Manycore Platform Software Stack. See Release Notes for more information.
• tar file extraction utility
• Intel C++ compiler installed on the host. See Release Notes for more information.

Acquire Intel VTune Amplifier

If you do not already have access to the VTune Amplifier, you can download an evaluation copy from http://
software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up VTune Amplifier Sample Applications

1. Copy the matrix_vtune_amp_xe.tgz file from the <install_dir>/samples/<locale>/C++
directory to a writable directory or share on your system. The default installation path is opt/intel/
vtune_amplifier_xe_<version>.

2. Extract the sample from the .tgz file.

• Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

8

• Samples are designed only to illustrate the VTune Amplifier features; they do not represent best
practices for creating code.

Build the Target
Build the target on the host with full optimizations, which is recommended for performance analysis.

1. Browse to the linux directory within where you extracted the sample code (for this example assume
that location is /home/sample/matrix/linux). Make sure this directory contains Makefile.

2. Set up the environment for Intel C++ compiler:

source <path_to_compiler_bin>/compilervars.sh intel64
3. Build the code using the make command:

$ make mic
The matrix application is built as matrix.mic and stored in the matrix/linux directory.

Create a Performance Baseline
To communicate with the Intel Xeon Phi coprocessor cards, you may use any of the following mechanisms:

• Mount an NFS share. See the NFS Mounting a Host Export topic in the Intel Manycore Programming
Software Stack (MPSS) help for details.

• Use existing SSH tools.

1. Ensure that the binary to analyze is copied to the Intel Xeon Phi coprocessor. You can do this by using
scp, for example:

scp matrix.mic mic0:/tmp

NOTE
You may add this command to build scripts to automate a copy action after the binary recompilation.
In this tutorial's scenario, scp command is added to the Makefile. So, the matrix application is built
and automatically copied to the Intel Xeon Phi coprocessor.

2. Run the application on the coprocessor using ssh and record the results to establish a performance
baseline:

In this tutorial's scenario, the command running the matrix application is added to the
runmatrix.bat. Edit this bat file to add a path to the private key file on your system.

3. Note the execution time displayed at the bottom. For the matrix.mic executable in the figure above,
the execution time is 72.240 seconds. Use this metric as a baseline against which you will compare
subsequent runs of the application.

Finding Hotspots 2

9

NOTE
Run the application several times, noting the execution time for each run, and use the average time.
This helps to minimize skewed results due to transient system activity.

• If you experience a problem with permissions to run the commands, use sudo or root access.
• Alternatively, you may create an ssh script to copy and launch your application on a card or use

the micnativeloadex utility. For details, see the Choosing a Target on the Intel® Xeon Phi™
Coprocessor online help topic.

Key Terms

• Target

Next Step
Create Project and Configure Target

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Create Project and Configure Target

 To start performance analysis on the Intel® Xeon Phi™ coprocessor, do the following:

1. Create a VTune Amplifier project.
2. Specify an analysis target.
3. Configure search directories for symbol resolution.

Create a VTune Amplifier Project

1. Type amplxe-gui to launch the VTune Amplifier GUI.
2. Create a new project via New > Project... menu.

The Create a Project dialog box opens.
3. Specify the project name matrix that will be used as the project directory name and click the Create

Project button.

By default, the VTune Amplifier creates a project directory under the $HOME/intel/ampl/projects
directory and opens the Project Properties: Target dialog box.

Specify an Analysis Target

1. In the Target tab of the Project Properties dialog box, select the Application to Launch target
type.

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

10

2. In the Application field, specify ssh as the application to launch. In the Application parameters
field, specify the path to the copied application on the Intel Xeon Phi coprocessor card.

If you need to use sudo to run the application on the coprocessor, filled the following way:

• Application: sudo
• Application parameters: ssh mic0 /tmp/matrix.mic

Configure Search Directories
VTune Amplifier resolves symbols for Intel Xeon Phi coprocessor-based modules on the host during collection
post-processing. For proper symbol resolution, you need to specify search paths for the application and for
Intel Xeon Phi coprocessor modules on the host before the collection:

1. In the Project Properties dialog box, switch to the Binary/Symbol Search tab.
2. In the Search Directories field, click the Browse button to add the application directory and the

directory for local Intel Xeon Phi coprocessor modules: lib/firmware/mic.
3. Click OK to save your changes.

Key Terms

• Target

Finding Hotspots 2

11

• Project

Next Step
Run Hotspots Analysis

Run Hotspots Analysis

 After building the sample application and collecting baseline performance data for it, rerun it under the
scrutiny of Intel® VTune™ Amplifier to discover what parts of the code are being most used. Hotspots
analysis collects event and IP (Instruction Pointer) information to reveal evidence of a basic set of hardware
issues induced by the application code that may be affecting its performance.

To run the analysis:

1. From the VTune Amplifier toolbar, click the New Analysis button.

The New Amplifier Result tab opens with the Analysis Type configuration window active.
2. From the analysis tree on the left, select the Knights Corner Platform Analysis > Hotspots analysis

type.

The Hotspots predefined configuration opens on the right. You may specify which cards to use for
collection using the List of Intel Xeon Phi coprocessor cards option. By default, the data is collected
on card 0.

3. Click the Start button on the right to run the analysis.

VTune Amplifier starts the ssh script that runs the matrix.mic application on the Intel Xeon Phi coprocessor
card. The application calculates a large matrix multiply before exiting. When the application exits or after a
predefined interval, depending on how the collection run was configured, collection is completed and the
VTune Amplifier enters its finalization process, where data are coalesced, symbols are reconnected to their
addresses, and certain data are cached to speed the display of results.

NOTE
To make sure the performance of the application is repeatable, go through the entire tuning process
on the same system with a minimal amount of other software executing.

Key Terms

• Finalization
• Viewpoint

Next Step
Interpret Results

Interpret Results

 When the sample application exits, the Intel® VTune™ Amplifier finalizes the results and opens the
Hotspots viewpoint where each window or pane is configured to easily identify code regions that consumed a
lot of CPU time. To interpret the data on the sample code performance, do the following:

• Analyze basic performance statistics.
• Identify most performance-critical functions

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

12

NOTE
The screenshots and execution time data provided in this tutorial are created on a system with more
than 240 logical cores. Your data may vary depending on the number and type of CPU cores on your
system.

Analyze Basic Performance Statistics

Start analysis with the Summary window. To interpret the data, hover over the question mark icons to
read the pop-up help and better understand what each performance metric means.

• Elapsed time for the matrix application is 79.174 seconds. This is wall clock time from the beginning to
the end of the collection, including data allocation and calculation. Note that Elapsed time metric provided
in the Summary window is different from the Execution time provided in the application output, which
includes calculation only.

• CPU Time is equal to 16853.340 seconds. It is the sum of CPU time for all application threads.
• Instructions Retired metric displays an estimated number of instructions executed during the collection

(captured in the INSTRUCTIONS_EXECUTED hardware event), which is an essential component of the
ratio given below.

• Clockticks per Instructions Retired (CPI) Rate is an event ratio, also known as Cycles per
Instructions, which is one of the basic performance metrics. High CPI Rate is marked in pink and signals a
possible performance issue. Potential causes are memory stalls, instruction starvation, branch
misprediction, or long-latency instruction.

For more detailed analysis, switch to the Bottom-up window to identify code sections responsible for
detected problems.

Identify Most Performance-Critical Functions
By default, the data in the grid is sorted by Function. You may change the grouping level using the
Grouping drop-down menu at the top of the grid.

Analyze the CPU Time column values. You may hover over a column name to see the formula used for the
calculation of this metric. The CPU Time column is marked with a yellow star as the Data of Interest column,
which means that the VTune Amplifier uses this type of data for some calculations (for example, filtering,
stack contribution, and others). Functions that took most CPU time to execute are listed on top.

The multiply1 function is an obvious hotspot that took the most CPU Time and the biggest count for the
Instructions Retired event. Its CPI rate is also considered as high and is marked by the VTune Amplifier as a
performance issue. You may hover over the pink cell to read a description of the issue and proposed solution.

Finding Hotspots 2

13

Key Terms

• Elapsed time
• Event-based metrics

Next Step
Analyze Code

Analyze Code

 You identified multiply1 as the hottest function. In the Bottom-up window, double-click this function
to open the Source window and view the source code and event distribution:

The table below explains some of the features available in the Source window when viewing Hotspots
analysis data.

Source pane displaying the source code of the application if the function symbol information is
available. The beginning of the function is highlighted. The source code in the Source pane is not
editable.

If the function symbol information is not available, the Assembly pane opens, displaying
assembler instructions for the selected hotspot function. To enable the Source pane, make sure to
build the target properly.

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

14

Processor time attributed to a particular code line. If the hotspot is a system function, its time, by
default, is attributed to the user function that called this system function.

Source window toolbar. Use the hotspot navigation buttons to switch between most performance-
critical code lines. Hotspot navigation is based on the metric column selected as a Data of Interest.
For the Hotspots analysis, this is CPU Time. Use the Source/Assembly buttons to toggle the
Source/Assembly panes (if both of them are available) on/off.

Heat map markers to quickly identify performance-critical code lines (hotspots). The bright blue
markers indicate hot lines for the function you selected for analysis. Light blue markers indicate
hot lines for other functions. Scroll to a marker to locate the hot code lines it identifies.

Click the hotspot navigation button to go to the code line that has the highest CPU Time. In the Source
pane for the multiply1 function, you see that VTune Amplifier highlights the code section that multiplies
matrix elements in the loop but ineffectively accesses the memory. Focus on this section and try to reduce
memory issues.

Key Terms

• Hotspot

Next Step
Tune Algorithms

Tune Algorithms

 In the Source pane, you identified the code line in the multiply1 function that accumulated the
highest CPU Time values. To solve this issue, do the following:

1. Change the multiplication algorithm and enable vectorization.
2. Re-run the analysis to verify optimization.

Change Algorithm

NOTE
The proposed solution is one of the multiple ways to optimize the memory access and is used for
demonstration purposes only.

1. Open the matrix.c file from the sample code directory (for example, /home/sample/matrix/src).

For this sample, the matrix.c file is used to initialize the functions used in the multiply.c file.

Finding Hotspots 2

15

2. Replace the #define MULTIPLY multiply1 with the #define MULTIPLY multiply2.

The new multiply2 function swaps the indices of the innermost two loops, in a method called loop
interchange. Note in the innermost loops that three of the array references use j as the second index
and the fourth reference does not use j at all. In C that last index addresses locations adjacent in
memory sequence, taking advantage of cache locality to use adjacent data all in one pass, and that
optimizes the memory access in the code by minimizing cache line thrash. Moreover, arranging
successive computations in array order this way makes them more likely to be recognized by the
compiler for vectorization.

When you build the code with the Intel® C++ Compiler, it vectorizes the computation, which means
that it uses SIMD (Single Instruction Multiple Data) style instructions that can work with several data
elements simultaneously. If only one source file is used, the Intel compiler enables vectorization
automatically. The current sample uses several source files, which is why the multiply2 function uses
#pragma ivdep to instruct the compiler to ignore assumed vector dependencies. This information lets
the compiler employ the Supplemental Streaming SIMD Extensions (SSSE).

3. Save files and rebuild the application:

$ make mic
The matrix.mic application is built and stored in the matrix/linux directory.

Verify Optimization
Re-run the application via ssh script:

You see that the Execution time has reduced significantly and you got about 56.5 seconds of optimization.

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

16

Key Terms

• Elapsed time
• Event-based metrics

Next Step
Compare with Previous Result

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Compare with Previous Result

 You optimized your code to apply a loop interchange mechanism that gave you 56.5 seconds of
improvement in the application execution time. To understand whether you got rid of the hotspot and what
kind of optimization you got per function, re-run the Hotspots analysis on the optimized code and compare
results:

1. Compare results before and after optimization.
2. Identify the performance gain.

Compare Results Before and After Optimization

1. From the File menu select New > Knights Corner Platform - Hotspots Analysis.

VTune Amplifier reruns Hotspots analysis for the updated matrix target and creates a new result (for
example, r002ah) that opens automatically.

2.
Click the Compare Results button on the Intel® VTune™ Amplifier toolbar.

The Compare Results window opens.
3. Specify the Hotspots analysis results you want to compare and click the Compare Results button.

The Summary window opens displaying application-level performance statistics for both results and
their difference values.

Finding Hotspots 2

17

Identify the Performance Gain
The Result Summary section of the Summary window shows difference information as follows: <Result 1
metric> – <Result 2 metric> = <metric Difference>.

You see that after optimization all metrics values have reduced significantly, though CPI Rate is still an issue
(>1).

Switch to the Bottom-up window to view the CPU time usage per function for each result and their
differences side by side.

Since for the second run you removed the multiply1 function, its time shows up in the Difference column
as a performance gain.

Click the CPU Time:r002ah column to sort the data in the grid by this column.

The multiply2 function shows up on top as the biggest CPU Time hotspot for the result r002ah, though it
performs much better than multiply1. You may try to optimize the code further using more advanced
algorithms, for example, block-structuring access to matrix data to maximize cache reuse.

Key Terms

• Elapsed time
• Event-based metrics

 2 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

18

Summary 3
 You have completed the Finding Hotspots on the Intel® Xeon Phi™ Coprocessor tutorial. Here are some

important things to remember when using the Intel® VTune™ Amplifier to analyze your code for hotspots:
Step Tutorial Recap Key Tutorial Take-aways

1. Prepare for
analysis

• You made the build script to
copy the matrix application to
the card after each
recompilation.

• You built the target application
with the Intel C++ compiler,
ran it on the card via ssh, and
recorded a performance
baseline.

• You created a VTune Amplifier
project, specified the ssh
script as an application to
launch and specified the path
to the application on the card
as application parameters.

• You configured search
directories to resolve symbol
information for Intel Xeon Phi
coprocessor-based modules
and application modules.

• Create a VTune Amplifier project and use
the Project Properties: Target tab to
choose and configure your analysis target.

• VTune Amplifier starts target applications
from the host. It is not able to start an
application directly on Intel Xeon Phi
coprocessor architecture cards.

• To copy the target application to the card,
you may either add the copy action to the
build script or mount the host directory so
that the binary is visible on the Intel MIC
architecture target.

• To run applications on the Intel Xeon Phi
coprocessor card, use ssh tools. See the
Choosing a Target on Intel® Xeon Phi™
Coprocessor online help topic for other
options.

• Use the Analysis Type configuration
window to choose, configure, and run the
analysis. You may choose between a
predefined analysis type like the Hotspots
type used in this tutorial, or create a new
custom analysis type and add events of
your choice. For more details on the
custom collection, see the Creating a New
Analysis Type topic in the product online
help.

• See the Details section of an analysis
configuration pane to get the list of
processor events used for this analysis
type.

2. Find hotspots You launched Hotspots analysis
that analyzes CPU time spent in
each program unit of your
application and identified the
following hotspots:

• Identified a function that took
the most CPU time, the highest
event count and CPI Rate. This
function is a good candidate for
algorithm tuning.

• Identified the code section that
took the most CPU time to
execute.

• Start analyzing the performance of your
application from the Summary window to
explore the event-based performance
metrics for the whole application. Mouse
over help icons to read metric descriptions.
Use the Elapsed time value as your
performance baseline.

• Move to the Bottom-up window and
analyze the performance per function.
Focus on the hotspots - functions that
consumed the most CPU Time. In the
initial sort, they are located at the top of
the table. Use the CPU Rate metric to
understand the efficiency of your code. If

19

Step Tutorial Recap Key Tutorial Take-aways

the metric value exceeds a threshold, the
VTune Amplifier highlights it in pink as a
performance issue. Mouse over a
highlighted value to read the issue
description and see the threshold formula.

• Double-click the hotspot function in the
Bottom-up pane to open its source code
and identify the code line that took the
most CPU Time and accumulated events.

3. Eliminate
hotspots

You solved the memory access
issue for the sample application
by interchanging the loops and
sped up the execution time. You
also used the Intel compiler to
enable instruction vectorization.

Consider using the Intel compiler to vectorize
instructions. Explore the compiler
documentation for more details.

4. Check your
work

You ran Hotspots analysis on the
optimized code and compared the
results before and after
optimization

Perform regular regression testing by
comparing analysis results before and after

optimization. From GUI, click the
Compare Results button on the VTune
Amplifier toolbar. From command line, use
the amplxe-cl command.

Next step: Prepare your own application(s) for analysis. Then use the VTune Amplifier to find and
eliminate hotspots.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

 3 Tutorial: Finding Hotspots on the Intel® Xeon Phi™ Coprocessor

20

Key Terms 4
baseline: A performance metric used as a basis for comparison of the application versions before and after
optimization. Baseline should be measurable and reproducible.

Elapsed time: The total time your target ran, calculated as follows: Wall clock time at end of application
– Wall clock time at start of application.

event-based metrics: Event ratios with their own threshold values. VTune Amplifier collects event data,
calculates the ratios, and provides the results in the corresponding columns of the Bottom-up/Top-down
Tree windows and in the Summary window. As soon as the performance of a program unit per metric
exceeds the threshold, the VTune Amplifier marks this value as a performance issue (in pink) and provides
recommendations how to fix it. For the full list of metrics used by the VTune Amplifier, see the Hardware
Event-based Metrics topic in the online help.

event skid: An event detected not exactly on the code line that caused the event. Event skids may even
result in a caller function event being recorded in the callee function. See the online help for more details.

finalization: A process during which the Intel® VTune™ Amplifier converts the collected data to a database,
resolves symbol information, and pre-computes data to make further analysis more efficient and responsive.

hotspot: A section of code that the processors spend a lot of time executing. Some hotspots may indicate
bottlenecks and can be removed, while other hotspots inevitably take a long time to execute due to their
nature.

project: A container for an analysis target configuration and data collection results.

target: A target is an executable file you analyze using the Intel® VTune™ Amplifier .

viewpoint: A preset result tab configuration that filters out the data collected during a performance analysis
and enables you to focus on specific performance problems. When you select a viewpoint, you select a set of
performance metrics the VTune Amplifier shows in the windows/panes of the result tab. To select the
required viewpoint, click the (change) link and use the drop-down menu at the top of the result tab.

21

	Tutorial: Finding Hotspots on the Intel®
Xeon Phi™ Coprocessor
	Legal Information
	Contents
	Overview
	Navigation Quick Start
	Finding Hotspots
	Build Application
	Create Project and Configure Target
	Run Hotspots Analysis
	Interpret Results
	Analyze Code
	Tune Algorithms
	Compare with Previous Result

	Summary
	Key Terms

