
JOURNAL OF LATEX CLASS FILES 1

Performance Evaluation of a Distributed Telerobotic
Framework

Mayez A. Al-Mouhamed1, Onur Toker2, and Asif Iqbal3

Abstract— In this paper we present the performance evalu-
ation of a Distributed Component based Telerobotic Framework
that implements a real-time interaction between a telrobotic
client and server. The objective is to optimize delays in multi-
streaming of force feedback, stereo data and master-slave com-
mands. Different scenarios are considered and statistically ana-
lyzed to relate the effect of thread manipulation to time delays.
Telerobotic components communicate with each other using
.NET Remoting and SOAP (Simple Object Access Protocol) that
automatically handle the network resources and data transfer.
This approach significantly reduces the delays over a LAN as we
are able to attain a rate of 17-18 stereo frames per second from
camera(server) to remote client over the same LAN. To the best
of our knowledge, this is the highest rate achieved over a 100
Mbps LAN.
Keywords: DCOM, Distributed Framework, Force Feedback,
Multi-Threading, Performance, Telerobotics.

I. INTRODUCTION
Telerobotics uses highly demanding media data such

as tactile, proprioceptive (musle tension), kinesthetic (joint
angle and velocity) information, and stereo vision [1].
These have ever increasing sampling rates with a tradeoff
between quality and sampling frequency.

Internet and LANs produces random transmission delays
due to the lack of quality of service which causes real-time
processes to go unstable when the delay exceeds a certain
limit. The delays cause proportional degradation in operator
performance and jitter disturbs the velocity due to time varying
intervals. Real-time streaming of force feedback [2] and stereo
vision are needed.

An Internet based DCOM design for telerobotics is proposed
by [3]. Internet reliable TCP/IP sockets [4] produce delay
jitter in the arrival rate of originally synchronous packets. An
average delay for a small packet from 50 ms to 100 ms is
common (US) leading to a 10Hz sampling rate. The real-
time multitasking system allow spawning of many tasks and
prioritizing them so that to control the order of task execution
and the amount of CPU time allocated to each task.

In this paper we present the performance evaluation of
a reliable real-time telerobotic system connecting a master
station to a slave station using a .NET Components based

(1) Department of Computer Engineering, College of Computer Science
and Engineering (CCSE) King Fahd University of Petroleum and Minerals
(KFUPM), Dhahran 31261, Saudi Arabia. mayez@ccse.kfupm.edu.sa

(2) Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261,
Saudi Arabia. onur@ccse.kfupm.edu.sa

(3) Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261,
Saudi Arabia. iqbal@ccse.kfupm.edu.sa

Robot VisionServer LANDecisionServerServer UIPUMAComponentUnimationControllerForce Component
DigitalCameras Horizontal disparity = 6 cm

Fig. 1. Server side of the distributed framework

Distributed Telerobotic Framework. We study the real-time
delays experienced during data streaming from slave to master
of (1) force feedback, (2) stereo vision, and ((3) commands
flowing in the opposite direction.

The organization of this paper is as follows. In Section 2
we present a brief overview of our distributed framework.
In Section 3 we evaluate our approach followed by the
comparison in Section 4.

II. DISTRIBUTED TELROBOTIC FRAMEWORK
Distributed application programming is one of the schemes

to establish a reliable connection between master and slave
arms. This includes modules that are implemented as soft-
ware components that communicate with each other using
distributed paradigm. The framework takes care of Network
protocol issues, network resources, and data transfer over the
network. All of these components are created using Microsoft
.NET Technologies using Visual C# as programming language.
In the following we shortly describe client and server compo-
nents.

A. The server components

The server components are: (1) PUMA Component, (2)
Force Sensor Component, and (3) Decision Server Component.

PUMA component acts as a software proxy of the robot for
which commands are issued. The PUMA component reads
current robot joint θP (t) as a 6 × 1 vector. A command for
an incremental joint motion ∆θ is sent directly to robot. A
command for an incremental cartesian motion is specified in
hand frame translation ∆X (3×1) and orientation matrix ∆M
(3×3). PUMA computes the new robot hand position Xnew =
G(θP )+∆X and orientation Mnew = MP .∆M , where G() is



JOURNAL OF LATEX CLASS FILES 2

the direct kinematic model of slave arm and MP is the current
robot hand orientation matrix. PUMA computes the inverse
kinematics for Xnew and Mnew and finds the corresponding
joint vector ∆θ which is sent to robot.LAN VisionClientDecision ServerInterface Client UserInterface MasterArmComponent MasterArmStereoDisplay Eye-Shuttering Glasses
Fig. 2. Client side of the distributed framework

The force sensing component (FSC), implemented in a
separate thread, reads the robot wrist force sensor and create
a stream of reflected force feedback directed to the master
station.

The DecisionServer is a component that provides an au-
tonomous loop on the server to support supervisory telerobotic
control.

B. Client components

The client contains the IDecisionServer interface to refer-
ence the server side component through .NET Remoting.

The Decision Server interface contains all the definitions
to execute public methods on PUMA and FSC. It allows the
client side to access the server side instance of DecisionServer
as a local component through IDecisionServer interface.

.NET Remoting provides reliable binding between
client and server over a LAN. The multi-threaded
distributed telerobotic system (Fig. 1 and 2) allows
simultaneous activation of many threads like grabbing
of stereo video data, reading force sensors, sending and
receiving robot control signals over the LAN to one or more
clients.

Two digital cameras generate stereo video data. Both the
stereo data and the distributed components share the same
LAN connection using different ports for data transfer. The
client uses the GUI as well as a 6 dof master arm to issue
commands to the slave arm on remote site. The vision client
receives the synchronized stereo data from the LAN through
windows sockets.

III. PERFORMANCE EVALUATION
Performance evaluation experiments under different condi-

tions were carried out on the distributed framework described
in section II. The bandwidth of the LAN is 100 Mbps and
both the client and server PCs are 2.0 GHZ P-IV machines
with 1 GB DRAM. Each force data packet contains 6 double
values which equal 6 × 8 = 48 bytes. The experiments are
explained in the following sections.

A. Force Only

In this setup, only force information is transferred from
the server to client. There is no video transfer neither any
command signal present during the experiment. A histogram
of inter-arrival times of force packets is shown in Figure 3.

Packet inter-arrival time (Milliseconds)
Fig. 3. Histogram of inter-arrival times of force packets

Packet inter-arrival time (Milliseconds)

Histogram of 97% force packet population in presence of video signal

Fig. 4. Histogram of inter-arrival times of force packets with video

This data fits to an Inverse Gaussian distribution with a mean
value of 0.679 ms and 90% of the data lying between 0.59 to
0.92 ms.

B. Force and Video

In this case force thread alongside video thread is running
on the server. A histogram of the the inter-arrival times of
force packets in the presence of video transfer is shown in
Figure 4. This is an Inverse Gaussian distribution with a mean
value of 1.08 ms and 90% of the data lying between 0.5 and
3.9 ms. Clearly the presence of the video has pushed the mean
value from 0.68 to 1.08 ms.

A magnified plot of the inter-arrival times of force packets in
presence of video thread is shown in Figure 5. The pulse below
the actual plot shows the interval during which the transfer of
a stereo video frame was in progress. On the x-axis is the
force packet number while on y-axis we have milliseconds.

A histogram of the inter-arrival times of only those packets
that were received during the transfer of a stereo video frame is
shown in Figure 6. The data best fits to a Logistic distribution



JOURNAL OF LATEX CLASS FILES 3

Time (Seconds)0 2 4 6 8 10 12 14 16 18
Fig. 5. A Magnified plot of inter-arrival times of force packets with video

Packet inter-arrival time (Milliseconds)Fig. 6. Histogram of inter-arrival times of force packets during the transfer
of a video frame

with a mean value of 5.41 ms and 90% confidence interval
lying between 0.5 and 13.0 ms. Clearly we can see a large
difference between the inter-arrival times of force packets
without video which is 0.679 ms and here the packets during
the transfer of a stereo video frame have a mean inter-arrival
time of 5.41 ms. The shows the loading of network with the
transfer of large video data.

The mean value of the inter-arrival times of stereo video
frames is 87.57 ms with a 90% confidence interval falling
between 72 and 107 ms. A histogram of the data is shown in
Figure 7.

C. Force, Command and Video

When all of the three force, command and video threads
are invoked simultaneously, for the force packets we get a
mean inter-arrival rate of 1.1 ms while 100% of the population
remains under 8 ms. A magnified plot of the data against the
force packet arrivals is given in Figure 8. Clearly the peaks in

Packet inter-arrival time (Milliseconds)
Fig. 7. Histogram of inter-arrival times of video packets in the presence of
force thread

the plot show the effect of the transfer of video frames on the
inter-arrival times of force packets.

Force packet inter-arrival time (Milliseconds)
Fig. 8. Magnified plot of inter-arrival times of force packets in the presence
of video and command threads

IV. COMPARISON
A client-server framework using VB 6.0 and TCP ActiveX

controls, implemented by Al-Harthy[5], takes 55 ms for a
command signal (48 bytes) to reach from client to server. In
our case a force packet consisting of 6 double values (6 × 8
bytes = 48 bytes, same size) took about 0.7 ms in the absence
of stereo video data and 1.1 ms in the presence of video stream.
This difference is achieved by using the distributed component
based approach in place of TCP based custom protocols.

The video transfer rate achieved by Teresa[6] is 1 frame
every 3 seconds for a single image of 16 bit color depth over
the internet. The Java-based frame grabbing software takes
one second for an image to move from camera to DRAM as
compared to a mean value of 24 ms obtained by our approach
using DirectShow.



JOURNAL OF LATEX CLASS FILES 4

Stereo frame inter-arrival time (Milliseconds)
Fig. 9. Optimized transfer of stereo video

In a LAN setup, Huosheng et. al. [7] quote a transfer rate
of 9-12 fps with time delays less than 200 ms for a single
image of size 200 × 150 pixels. This is to be noted that
the images are not bitmap but are compressed using JPEG
compression technique. In comparison to this, our stereo video
client-server transfers two uncompressed images (stereo frame)
of size 288× 360 pixels at a rate of 11.74 fps with a delay of
around 87 ms only.

It is also worth noting that if the serialization of capturing
and transferring-over-LAN operations is removed by thread
manipulation on the server, an inter-arrival delay of around
55 ms can be achieved while utilizing nearly 90% of the
bandwidth of a 100 Mbps LAN. After some experiments in
this direction, we are able to obtain a mean inter-arrival time
of 58.57 ms. A histogram of inter-arrival times of stereo video
frames is shown in Figure 9.

V. ACKNOWLEDGEMENT
This work is supported by King Abdulaziz City for

Science and Technology (KACST) under research project
grant AR-20-80. We also acknowledge computing support
from KFUPM.

VI. CONCLUSION
A distributed component based telerobotic framework is

evaluated under various conditions for performance. The
framework is developed using most advanced software author-
ing tools available for component development. Very signifi-
cant reduction in network delays is observed. Over a 100Mbps
LAN, our approach can transfer two images (stereo frame) of
size 288 × 360 pixels at a rate of 17-18 fps with a delay of
around 58 ms only. Thanks to multi-threading for the graceful
degradation of real-time signals as a force-stream packet of
48 bytes takes about 0.7 ms (no video) and only 1.1 ms in the
presence of video stream.

REFERENCES

[1] F. Paolucci; M. Andrenucci. Teleoperation using computer networks: Pro-
totype realization and performance analysis. Electrotechnical Conference,
MELECON ’96., 8th Mediterranean, 2:1156–1159, 1996.

[2] S. E. Salcudean; N. M. Wong; R. L. Hollis. Design and control of a force-
reflecting teleoperation system with magnetically levitated master and
wrist. IEEE Transactions on Robotics and Automation, 11, No. 6:844–
858, December 1995.

[3] Y. E. Ho; H. Masuda; H. Oda; L. W. Stark. Distributed control for tele-
operations. IEEE/ASME Transactions On Mechatronics, 5(2):100–109,
June 2000.

[4] W. J. Book; H. Lane; L. J. Love; D. P. Magee; K. Obergfell. A novel
teleoperated long-reach manipulator testbed and its remote capabilities via
the internet. Proc. of the IEEE Inter. Conf. on Robotics and Automation,
3, No. 6:1036–1041, 1997.

[5] A. Al-Harthy. Design of a telerobotic system over a local area network.
M.Sc. Thesis, King Fahd University of Petroeum and Minerals, January
2002.

[6] T. Ho. System architecture for internet-based teleoperation systems using
java. Master’s thesis, Department of Computing Science, University of
Alberta, Canada, 1999.

[7] H. Hu; L. Yu; P. W. Tsui; Q. Zhou. Internet-based robotic systems for
teleoperation. International Journal of Assembly Automation, 21(2), 2001.


