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Abstract—Graphic processing Units (GPUs) are gaining 
ground in high-performance computing. CUDA (an extension 
to C) is most widely used parallel programming framework 
for general purpose GPU computations. However, the task of 
writing optimized CUDA program is complex even for 
experts. We present a method for restructuring loops into an 
optimized CUDA kernels based on a 3-step algorithm which 
are loop tiling, coalesced memory access, and resource 
optimization. For this we identify the GPU constraints for 
maximum performance such that the memory usage (global 
memory and shared memory), number of blocks, and number 
of threads per block. In addition we identify the condition for 
maximizing utilization of the GPU resources. We also 
establish the relationships between the influencing parameters 
and propose a method for finding possible tiling solutions with 
coalesced memory access that best meets the identified 
constraints. We also present a simplified algorithm for 
restructuring loops and rewrite them as an efficient CUDA 
Kernel. The execution model of synthesized kernel consists of 
uniformly distributing the kernel threads to keep all cores 
busy while transferring a tailored data locality which is 
accessed using coalesced pattern to amortize the long latency 
of the secondary memory. In the evaluation, we implement 
some simple applications using the proposed restructuring 
strategy and evaluate the performance in terms of execution 
time and GPU throughput.  

Keywords: CUDA, GPU, Parallel Programming, Compiler 
Transformations, directive-based language, source-to-source 
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I. INTRODUCTION 

Massively parallel computing has obtained prominence 
through advances in implementing massive multithreading 
and recent improvements in its programming [1, 2, 3]. 
Recent development in Graphic Processing Units (GPUs) 
has opened a new challenge in harnessing their computing 
power as a new general purpose computing paradigm. 
Strong implications are expected on computational science 
and engineering, especially in the area of discrete numerical 
simulation [4].  

Modern GPUs use multiple streaming multiprocessors 
(SMs) with potentially hundreds of cores, fast context 
switching, and high memory bandwidth to tolerate ever-
increasing latencies to main memory by overlapping long-
latency loads in stalled threads with useful computation in 
other threads [5]. The Compute Unified Device Architecture 
(CUDA) is a simple C-like interface proposed for 
programming NVIDIA GPUs. However, porting 
applications to CUDA remains a challenge to average 
programmers. CUDA places on the programmer the burden 
of packaging GPU code in separate functions, of explicitly 
managing data transfer between the host and GPU 

memories, and of manually optimizing the utilization of the 
GPU memory [3]. 

Performance study of general-purpose GPU 
programming have been reported [6] for applications such 
as SRAD structured grid, back-propagation unstructured 
grid, data encryptions standard, Needleman – Wunsch 
dynamic programming, and k-means data mining. 
Impressive speedups ranging from 2.9 to 35 for the above 
applications have been achieved over single threaded 
programs. Some limitations have also been reported when 
the available parallelism is semi-static. A CUDA 
implementation for the gravitational N-body simulations 
using GPU is reported [7]. The GPU performs force 
calculation and updating, while the host CPU performs the 
predictor, corrector, and integration steps. Implementation is 
based on two direct N-body integration codes, using the 4th 
order predictor-corrector Hermite integrator with block 
time-steps, and one Barnes-Hut tree-code, which uses a 
second order leapfrog integration. The above 
implementation merely maps the computation of pair-wise 
particle interactions onto the GPU which makes the time-
consuming updating of the neighbor lists on the CPU a 
bottleneck since synchronization and frequent data transfer 
between host CPU and GPU.   

CUDA programming requires an expert level 
understanding of the memory hierarchy and execution 
model to reach peak performance. Even for experts, 
rewriting a program to exploit the architecture in achieving 
high speedups can be tedious and error prone. Several high-
level interfaces [1, 2, 3] has been proposed to perform 
source-to-source translation based on programmer defined 
“pragmas” or annotations to generate CUDA programs 
with less burden to the programmers. Most execution of a 
scientific program is spent on loops. Compiler analysis and 
compiler optimizations have been proposed to make the 
execution of loops faster.  CUDA-lite [1] is an 
experimental enhancement to CUDA that allows 
programmers to deal only with global memory with 
transformations to leverage the complex memory 
hierarchy. A set of annotations describing certain properties 
of the data structures and code regions designated for GPU 
execution are proposed. The tool analyze the code along 
with these annotations and determine if the memory 
bandwidth can be conserved and latency can be reduced by 
utilizing any special memory types and/or by massaging 
memory access patterns. Upon detection of an opportunity, 
CUDA-lite performs the transformations and code 
insertions needed. Authors claim the tool produces code 
with performance comparable to hand-coded versions. 

A framework for source-to-source translation of 
standard OpenMP applications into CUDA-based code is 
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proposed [2]. It has two phases: (1) a compile-time 
optimization techniques which applied parallel loop-swap 
and loop-collapsing, and (2) an OpenMP to GPGPU 
translation system. In the later step, partitioning and data 
mapping are used to convert work-sharing OpenMP 
constructs into kernel with default block size and number of 
blocks. Shared data are mapped to global memory. Thread 
private data are replicated and allocated on global memory 
for each thread. Private data are mapped to register banks 
assigned for each thread. Evaluation uses Jacobi, and 
SPMUL, and two NAS OpenMP Parallel Benchmarks (EP 
and CG). It is reported a performance improvements of up 
to 50x over the un-optimized translation (up to 328x over 
serial on a CPU. 

A high-level directive-based compiler (hiCUDA) [3] is 
proposed to ease the task of writing CUDA programs. The 
compiler translates a hiCUDA program to a CUDA 
program using a computation model and a data model in 
which programmers allocate and de-allocate memory on the 
GPU and move data between the host memory and the GPU 
memory. Evaluation of five CUDA benchmarks (MM, CP, 
SAD, TPACF, RPES) shows that the provided simplicity 
and flexibility come at no expense to performance as 
execution times is within 2% of that of the hand-written 
CUDA version. 

A source-to-source compiler transformation (CUDA-
CHiLL) [8] aims at alleviating the need for understanding 
memory hierarchy and execution model in writing 
optimized CUDA programs. It proposes a source-to-source 
transformation based on the polyhedral program 
transformation and ChiLL framework which is capable of 
composing transformations while preserving the correctness 
of the program at each step. The authors claims that 
optimizing the BLAS library routines yields results 
comparable to hand-tuned versions in some cases and 
outperforming hand-tuned in other cases. 

In this paper we present a method for restructuring loops 
into an optimized CUDA kernels based on a 3-step 
algorithm which are loop tiling, coalesced memory access, 
and resource optimization. For this we identify the GPU 
constraints for maximum performance such that the 
memory usage (global memory and shared memory), 
number of blocks, and number of threads per block. In 
addition we identify the condition for maximizing 
utilization of the GPU resources. We also establish the 
relationships between the influencing parameters and 
propose a method for finding possible tiling solutions with 
coalesced memory access that best meets the identified 
constraints. The execution model of synthesized kernel 
consists of uniformly distributing the kernel threads to keep 
all cores busy while transferring a tailored data locality 
which is accessed using coalesced pattern to amortize the 
long latency of the secondary memory. In the evaluation, 
we implement some simple applications using the proposed 
restructuring strategy and evaluate the performance in terms 
of execution time and GPU throughput.  

This paper is organized as follows. Section II presents 
some analysis of GPU that is critical for performance 
tuning. Section III presents a proposed approach for 
restructuring algorithm for CUDA. Section IV presents an 

example of applying the proposed strategy to develop and 
optimized kernel for matrix multiplication. Section V 
presents the evaluation of applications and comments on 
execution times and throughput. Section VI presents the 
comparison of proposed strategy with other approaches. 
Finally, Section VII concludes about this work.    

II. BACKGROUND 

Ideal GPU applications have large data sets, high 
parallelism (data parallelism), and minimal dependency 
between data elements [9]. 

A. GPU Architecture 

It is organized into an array of highly threaded 
Streaming Multiprocessors (SMs). Each SM has a number 
of Streaming Processors (SPs) that share control logic and 
instruction cache. Each GPU currently comes with up to 4 
GB of graphics double data rate (GDDR) DRAM referred to 
as global memory (GM) that is visible to all threads in all 
blocks. Each SM has a shared memory (ShM) which is on-
chip, readable and writable, and visible to all threads 
running within SM and as fast as register access. However, 
ShM is very small in size compared to GM. Table 1 shows 
some published features of some popular GPUs.   

 

GM is linked to the GPU device through a very large 
data path of 512-bits wide. Through such a bus width, 
sixteen consecutive 32-bits (4 bytes) words can be fetched 
from global memory in a single cycle. The on-chip memory 
resource includes register files (16K or more per SM, see 
Table 1), shared memory (16KB or more per SM). To hide 
the long off-chip memory access latency, a high number of 
threads are supported to run concurrently. The threads are 
grouped in blocks which will be scheduled to SMs 
dynamically on the availability of each SM. These threads 
follow the single-program multiple-data (SPMD) program 

GPU 
Features 

Quadro 
FX 5800 

Quadro 
FX 7000 

Tesla 
C2070 

Tesla 
C2075 

GM 4 GB 6 GB 1.5 GB 6 GB 

Total SM 30 16 14 14 

SP per SM 8 32 32 32 

Total 
Cores 

30 * 8 = 
240 

16 * 32 = 
512 

14 * 32 = 
448 

14 * 32 = 
448 

ShM/B 16 KB 48 KB 48 KB 48 KB 

Reg/SM 214 215 215 215 

Warp Size 32 32 32 32 

Max th/B 29 210 210 210 

Max B dim 29x 29x26 210x 210x26 210x 210x26 210x 210x26 

Max grid 
dim 

216x 216x1 216x 216x216 216x 216x216 216x 216x216 

Clock Rate  1.3 GHz 1.3 GHz   1.15 GHz  1.15 GHz 

Warps/SM  32  48  48  48 

Max. 
Th/SM 

1024  1536  1536  1536 

B/SM  8  8  8  8 

L2 Cache No Yes No  Yes 

 
Table 1: Some features for some NVIDIA GPUs.
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execution model. Within a block, threads are grouped in 32-
threads instruction called warps, where each warp is being 
executed in the single-instruction multiple-data (SIMD) 
manner. A warp takes multiple cycles for computation 
instructions due to the limited number of functional units 
(SPs) within SM.  

B. CUDA Execution Model 

A CUDA program is a unified source code 
encompassing both the host and the device code. It consists 
of one or more phases that are executed on either the host 
(CPU) or a device that is a GPU. The phases that exhibit 
rich amount of data parallelism are implemented in the 
device code. The device code is written using ANSI C 
extended with keywords for labeling data-parallel 
functions, called kernels, and their associated data 
structures [10]. 

Fig. 1 shows the execution hierarchy of a typical CUDA 
kernel function on a device. Each kernel initiates a set of 
blocks defined by the programmer as grid dimension with 
number of threads to be executed within each block while 
invoking the device kernel function. Now, the block 
scheduler dynamically schedules each thread block to one 
SM based on the availability of resources within SM [1] 
while individual threads will be distributed among multiple 
SPs within the SM. An SM can handle at most 8 blocks at a 
time. Also, the possible number of concurrent blocks per 
SM depends on the number of warps per block, number of 
registers per block, and the shared memory usage per 
block. These constraints will be developed in Section III. 
For many GPUs (Table 1), each SM can handle 32 warps at 
a time. In Tesla C2070, each SM has 32K registers and 
48KB of shared memory. 

 
Figure 1: CUDA Kernel Execution Hierarchy 

 

SM manages thread ids and threads execution. Threads 
within a block cooperate using ShM while threads in 
different blocks cannot cooperate, not even using GM since 
the blocks are scheduled to different SMs dynamically by 
the scheduler. The data transfer between different blocks 
can be done by separate invocation of the kernel which will 
be serialized. So, in case of recurrence in application space, 
the whole recurrence must be contained in each single 
thread because serialization is controlled only by defining 
different kernels. Thus in the case of a recurrence, we may 
end up with a few very coarse threads, a situation that 

might lead to low GPU utilization which is discussed in 
details in Section III. 

Each SM schedules one warp at a time with zero 
overhead warp scheduling. The warp is the unit of thread 
scheduling in SMs. Each warp consists of 32 threads of 
consecutive thread ids. In the case of higher dimensional 
kernels, warps will be retrieved from blocks according to 
the row major numbering. As warps executes in SIMD 
fashion, if there is a high latency exception such as loading 
data from GM or storing results to GM then the whole 
warp must be suspended and its context if preserved. A 
DMA operation is initiated by the SM whenever it finds 
one or more threads within a warp to perform such a long 
latency memory transfer operations (accessing global 
memory) and schedule another warp (ready to execute) to 
the SPs [10]. 

GM is partitioned into segments of size equal to 32, 64 
or 128 bytes and aligned to this size. The elements in one 
segment can be accessed by a single memory transaction. 
By considering the largest segment size of 128 bytes and 
also the data path of 512 bits, the compiler issues a single 
load/store instruction for 16 consecutive elements accessed 
by 16-threads (half warp) to reduce the number of memory 
transactions of global memory. So, the performance of 
memory transfers can incredibly be improved through the 
use of coalesced global memory accesses that is accessing 
a regular pattern of consecutive elements by a half warp 
(16 threads) based on some conditions [1]. Therefore, if 
SPs are kept busy executing through warp switching then 
the whole transfer between GM and ShM is hidden by 
some execution which implies that the parallel program 
time does not account for such an expensive memory 
transfer. Since, shared memory is very small in size so we 
have to perform some loop transformation such as loop 
tiling, a mechanism to adjust loop execution to match with 
underlying machine or memory system, to make the 
availability of enough data for the active warp per SM. 

III. A RESTRUCTURING ALGORITHM FOR CUDA 

In this section we proposed a CUDA kernel 
restructuring algorithm, a general strategy to achieve 
maximum possible performance by better utilization of the 
machine. In CUDA, the worker threads are identified by 
thread ID and being organized by blocks which are 
identified by block ID. This identification is used in a kernel 
to define a mapping of computations to threads (workers). 
An array of any dimension is accessed as a linear memory 
which is allocated in a row-major order. The objective of 
having multi-dimensional blocks of threads is to ease the 
mapping of computation results to the worker threads.   

The proposed restructuring algorithm aimed at 
generating efficient CUDA kernels. It is based on 
following guidelines: 

 
1. Tiling the code so that the aggregate data locality of a 

tile (block of threads) is fetched, and being small 
enough to fit, onto ShM prior to computations instead 
of direct load form GM, no matter whether using 
coalesced access or non-coalesced access.   

 

SP1  SP2 

SP3  SP4 

SP5  SP6 

Kernel 

Block 1  Block 2  Block 3  Block 4  Block 5  Block 6  Block 7  Block N ………

SM 1  SM 2  SM 3  SM 4  SM 30 ………

warp 

Execute individual threads 
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2. Exploring different ways of mapping computations to 
threads to favor coalesced global memory access while 
loading from and/or storing into GM.  

3. Increase thread granularity to amortize the ratio of data 
transfer per computation without having some SM 
being idle, i.e. low utilization of the available SMs and 
the SPs within each SM.  

4. Reduce (1) the number of local variables (register use) 
and (2) block size, to avoid reducing the number of 
blocks that can handled by SM at a time which may 
affect overall GPU utilization. 

5. Use kernel block size less than or equal to tile size 
such that each thread in a block loads one or more 
elements of a tile into ShM. This reduces instruction 
fetch and processing overhead of load instruction since 
the device perform one instruction fetch for a block of 
threads which is in SIMT manner.  

The proposed algorithm is based on the three key 
concepts that are explained in detail in following 
subsections. 

A. Tiling 

In CUDA the programmer has to explicitly transfer data 
from slow low-level GM which is visible by all SMs to a 
fast high-level shared memory ShM within each SM. Tiling 
the code is to account for the small ShM capacity. The 
execution style is based on transferring small amount of 
data followed by data processing. While transforming the 
code, it is required to perform proper calculation of 
effective address of array elements (results) based on the 
workers identifiers which are the block ID and thread ID. It 
is required to design an algorithm/mechanism that can be 
used to apply loop tiling on any CUDA program with 
proper memory hierarchy optimizations. Tiling is guided by 
the following steps:   

1. Identification of proper tile size to be stored in shared 
memory based on the limited capacity of ShM per 
CUDA kernel block based on determining the tile size 
and matching overall tile data locality with ShM 
capacity.  

2. Loop transformations and proper identification of range 
of outer and inner loops. 

3. Effective address calculations of the array elements to 
be accessed within the loop iterations (see coalesced 
access). 

4. Boundary check for avoiding the out of bound array 
index access. 

5. Synchronization among loading of data into ShM, 
execution of operations, and storing the results back 
into GM.  

B. Coalesced Global Memory Access 

In this section, the objective is to restructure the code so 
that at execution warps access to GM is done according to 
a coalesced access pattern to amortize the excessive access 
cost. Fetching a group of data elements which are stored in 
distinct memories (coalesced access) is critical to amortize 

the high cost of accessing GM compared to the speed of the 
logic.  The key idea is to determine all possible mapping   

In CUDA a 1-D kernel having NW threads is 
represented as a set of N blocks each has W elements. To 
assign some work to each individual thread, each kernel 
thread is identified by the block b to which it belongs to 
and some offset t, i.e.  thid = b.W + t or as a vector thid = ( b, 
t)N,W ,where 0 bN-1 and 0 tW-1. Suppose we have 
a 2-D array of U.V computation results which are stored 
using row-major scheme as U rows and V columns, the 
address of the element in row r and column c is EA= 
(r,c)U,V = r. U + c, where 0  r  U-1 and 0  c  V-1. 
Assigning a thread (worker) to compute a result requires 
defining a mapping from the thread IDs onto the results so 
that when the SPMD program is run, each thread uses its 
own ID in the code to determine the result that it must 
compute. The mapping of threads IDs onto the result 
address admits a few possible mapping solutions for EA = 
(r,c)u,v  as computes:  
 
1. EA = (( b, t)N,W ,

 c)U,V | N.W=U,  each thread has one 
loop to compute V results, no coalesced access, 
 

2. EA = (r, ( b, t)N,W )U,V  | N.W=V, each thread has one 
compute U results, coalesced access, 

 
3. EA =  (( b, t’)N,W ,

 ( b’, t)N,W )U,V  | N.W’=U and 
N’.W=V, each thread has two loops (denoted by ’) to 
computes (U.V)/(N.W) results, coalesced access, 

 
4. EA =  (( b’, t)N’,W ,

 ( b, t’)N,W )U,V | N’.W=U and 
N.W’=V, each thread has two loops (denoted by ’) to 
computes (U.V)/(W.N) results, coalesced access. 

 
Note that a coalesced access takes place only when the 

offset, or second component of EA, is mapped to the thread 
index, i.e. identified by offset t. The reason is that warps 
are formed by successive thread IDs for any dimension, i.e. 
according to row major organization. Table 2 shows the 
possible mappings of CUDA for 1-D and 2-D kernels 
(blocks and threads) to a 2-D array of results of size space 
N.W with corresponding tile size (upper parameter) and 
coalesced (Yes) or non-coalesced (No) accesses. Similar 
approach is used for higher dimension kernels. 

 

 
Table 2: Possible 1-D and 2-D Kernel mapping to a 2-D Array of results  
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For example, assume a 2-D(U,U) array res() of results, 
and TxT as being the tile size. Let’s use a 1D kernel defined 
by thid = (b, t)N,W . For 1-D kernel, we may use the solution 
shown in the third row of Table 2.  The corresponding 
constraints leads to N=U/T blocks and each block has each 
W=T threads. The effective address of a result res() is EA = 
(b*T+t’)*U + b’*T+t.  Each kernel thread consists of a 
double nested loop, where the outer loop (t’: U/T iterations) 
and inner loop (b’: T iterations). It is clear that access is 
coalesced because t is in the least significant position.  This 
solution is also implemented and evaluated in the 
performance evaluation (Section IV, Fig. 5).  

C. Resource Optimization 

Within each SM, ShM is partitioned among active 
blocks which are assigned to SM for simultaneous 
execution. Therefore the tile sizes must be selected such that 
the tile data locality that must be loaded into ShM does not 
constrain the maximum number of active blocks which can 
be assigned to an SM at a time. 

The block size must be chosen less than or equal to tile 
size such that each thread in a block loads one or more 
elements of a tile into ShM. This will reduce instruction 
fetch and processing overhead of load instruction since the 
device perform one instruction fetch for a block of threads 
which is in SIMT manner. On the other hand, too large 
block sizes must be avoided limiting the number of active 
blocks per SM due to large number of warps per block. The 
number of active warps must be no less than the maximum 
warps per SM (for full occupancy) in any given SM to 
avoid limiting the number of active threads per SM. Active 
Blocks can be calculated using equation (1). 
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For example, if Threads per Block is 256, Tile Size is 
256, Data Element Size is 4 bytes, and Number of Data 
Elements to load for one result is 2, then the Active Blocks 
is 4. Suppose Warps Per SM is 32, Shared Memory Per SM 
is 16384, and Max. Blocks Per SM is 8. Therefore the 
number of active blocks that can be handled by an SM at a 
given time can be calculated using eq. (1).  

To expose to peak performance, the application threads 
must be massively and uniformly spread over the SMs so 
that the only performance saturation comes from mapping 
the application to the GPU. Furthermore, peak performance 
will be expected because all the SM and SPs are involved 
in the execution. To identify the conditions for peak 
performance, one can analyze the repetition cycles occurs 
during the kernel execution. Since, there are two levels of 
kernel block and threads scheduling in the device. The 
blocks are first scheduled to be executed on each SM and 
then each SM schedules the individual threads within a 
block to multiple SPs within the SM based on selecting one 
warp at a time. The repetitions (or serialization affect) due 
to first scheduling can be analyzed as average kernel blocks 
per SM and the repetitions due to second scheduling as 
small cycles (S-Cycles) which occurs due to limited 
number of SPs (Thread Processors) that can execute one 
thread at a time.  

 
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These repetitions should satisfy the following 

conditions to achieve peak performance: 
1. Both AKBPSM and S-Cycles should be greater 

than or equal to 1. 
2. S-Cycles should be an integer value to balance the 

threads among multiple SPs. 
3. S-Cycles should be as large as possible. 
4. AKBPSM should be the least possible to minimize 

serialization. 
In our experiments for Matrix Multiply, we found the 

following repetitions (Table 3) at their peak performance. 
Here, TPB = Threads Per Block, TS = Tile Size, AB = 
Active Blocks, TKB = Total Kernel Blocks, Exec. Time = 
Execution Time in seconds. 

Tesla C2070 Machine (N = 2048 x 2048) 

TPB TS AB TKB S-Cycles AKBPSM 
Exec. 
Time 

512 2048 3 2048 48 146.28 2.45 

512 1024 3 4096 48 292.57 2.47 
256 1024 6 4096 48 292.57 2.51 
512 512 3 8192 48 585.14 2.53 
256 512 6 8192 48 585.14 2.55 
256 256 6 16384 48 1170.28 2.62 

 
Table 3: Repetitions Analysis of Matrix Multiplication for Resource 

Optimization 
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We performed similar analysis on other applications 
including different implementations of Matrix Transpose 
available with CUDA SDK, Matrix Scaling and found 
similar trend of execution time. 

D. Proposed CUDA Restructuring Algorithm 

The proposed restructuring algorithm is based on the 
following steps: 
Step 1: Analyze the granule size in the loop body and the 
data locality needed and determine thread granule size: 
 

a. Thread Granule Size: carry out loop 
distribution/fusion or statement distribution/fusion 
to control the thread granule: the number of 
load/store, number of arithmetic operations, and  
the needed data locality 

b. Carry out statement distribution if statement has 
too many arithmetic operations or requiring too 
many locality 

c. Might carry out the opposite of the above steps in 
the case of too fine granule size of very limited 
locality 

 
Step 2: Tile the resulting loop (or loops) by generating all 
possible tiled loop arrangements and select one or more 
tiled arrangements with coalesced memory access. 
 
Step 3: Determine the best possible combination of 
Threads per block (TPB) and the Tile Size(TS) to get the 
optimal distribution of blocks and threads among SMs and 
SPs respectively. We need to generate all possible TPB and 
TS, and their respective Warps Per Block (WPB) and 
Shared Memory Per Block (ShMPB) using the equation 
(1.1 and 1.2). 
 

a. Identify Active Blocks using equation (1) for each 
of the combination of TPB and TS 

b. Calculate S-Cycles for each of the combinations 
using equation (3) and select the combinations 
that have the maximum value. 

c. Calculate AKBPSM for the selected combinations 
and the one that has the minimum value of 
AKBPSM will give the best performance. 

IV. EXAMPLE 

In this section, we will show the working steps of 
writing a matrix multiplication application from the 
sequential code (Code Listing 1, for N x N matrices) to 
optimized CUDA kernel.  

 

Step 1: due to the limited data locality and few arithmetic 
operations in the statement, each thread can simply focus 
on calculating one resultant element that is thread granule 
size = 1. 
 

 
 
Step 2: Code Listing 2(a) shows the tiled version of Code 
Listing 1 by using general strategy of loop tiling for 
uniprocessors that is split each loop of a nested loop-set 
into a pair of adjacent loops in the loop nest, with the outer 
loop (tiling loop) traversing tiles (blocks), and the inner 
loop (intra-tile loop) covering the iteration points within the 

void tiled_matrix_multiply(float **C, float **B, float **A, int N) 
{ 
    for(int by=0; by < N; by+=TILE_Y) 
        for(int bx=0; bx < N; bx+=TILE_X) 
            for(int ty=0; ty < TILE_Y; ty++) 
                for(int tx=0; tx < TILE_X; tx++) 
 for(int bk=0; bk < N; bk+=TILE_X) 
        for(int k=0; k < TILE_X; k++) 
      C[by+ty][bx+tx] = A[by+ty][bk+k] * B[bk+k][bx+tx]; 
} 
 

Code Listing 2(a): Matrix Multiplication Tiled Version 
 
__global__ void  
tiled_matrix_multiply(float *C, float *B, float *A, int N) 
{ 
    int by = blockIdx.y * TILE_Y; 
    int bx = blockIdx.x * TILE_X; 
    int ty = threadIdx.y; 
    int tx = threadIdx.x; 
 
    for(int bk=0; bk < N; bk+=TILE_X) 
        for(int k=0; k < TILE_X; k++) 
            C[(by + ty) * N + bx + tx] = A[(by + ty) * N + bk + k]  
            * B[(bk + k) * N + bx + tx]; 
} 
 

Code Listing 2(b): Matrix Multiplication CUDA kernel 
 
__global__ void  
coalesced_matrix_multiply(float *C, float *B, float *A, int N) 
{ 
    int by = blockIdx.y * TILE_Y; 
    int bx = blockIdx.x * TILE_X; 
    int ty = threadIdx.y; 
    int tx = threadIdx.x; 
 
    float Csub=0; 
    __shared__ float As[TILE_Y][TILE_X]; 
    __shared__ float Bs[TILE_X][TILE_X]; 
  
    for(int bk=0; bk < N; bk+=TILE_X){ 
        As[ty][tx] = A[(by + ty) * N + bk + tx]; 
        Bs[ty][tx] = B[(bk + ty) * N + bx + tx]; 
   
        __syncthreads(); 
   
        for(int k=0; k < TILE_X; k++) 
            Csub += As[ty][k] * Bs[k][tx]; 
    } 
  
    __syncthreads(); 
  
    C[(by + ty) * N + bx + tx] = Csub; 
} 
 

Code Listing 3: CUDA kernel with coalesced memory accesses 

void matrix_multiply(float **C, float **B, float **A, int N) 
{ 
    for(int ty=0; ty < N; ty++) 
        for(int tx=0; tx < N; tx++){ 
            C[i][j] = 0; 
                for(int k=0; k < N; k++) 
 C[i][j] += A[i][k] * B[k][j]; 
        } 
} 
 

Code Listing 1: Matrix Multiplication Sequential Code 
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tile. Code Listing 2(b) shows the corresponding CUDA 
kernel implementation using 2D blocks and threads that 
maps the outer four loops of Code Listing 2(a) to the 
blocks and threads dimensions in Code Listing 2(b). At this 
stage, accessing to matrix C and B are satisfying the 
mappings of coalesced memory access as shows in second 
row of 2D kernel mappings in Table 2 while access to 
matrix A is not coalesced.  

Code Listing 3 shows the modified kernel to perform 
coalesced loads of matrix A and B using shared memory 
and coalesced stores to the resultant matrix C. Here, we are 
assuming the same dimensions for thread blocks and matrix 
tiles. We also need to add barrier synchronization among 
threads of the same block using __syncthreads() between 
tiles load and compute statement within the traversal of all 
tiles of matrices A and B. Also a barrier is required before 
storing the resultant tile of matrix C due to difference in the 
traversal order of load/store and computation statements. 
 
Step 3: For Tesla C2070 using the resource optimization 
strategy as explained in section III.C, we found optimal 
values for threads per block and tile sizes as TPB = 32 * 16 
512 and TS = 32 * 64 = 2048. Code Listing 4 shows the 
modified kernel of Code Listing 3 to handle the case of 
TPB < TS, for this we need to add loop for each load, 
compute and store statement to correctly load the whole 
tile, compute the results, and store the whole resultant tile 
to the destination. 

 

V. PERFORMANCE EVALUATION 

A. Non-Coalesced Vs Coalesced Global Memory Access 

Fig. 2 shows the GPU throughput (GFLOPS) of two 2D 
kernel mapping solutions for the matrix multiply. These 
solutions correspond to a tiled loop with and without 
coalesced GM access which are illustrated in the 2nd 
columns of Table 2 at the 2nd (No) and 3rd (Yes) rows, 
respectively. According to the solution (3rd row), a tile is 
first loaded into ShM from GM using a coalesced access 
and do the computations while data is in ShM. As in 
coalesced global memory access, threads in half warp (16 
threads) access consecutive memory locations in one cycle 
so reducing the memory accesses by an ideal factor of 94%. 
The above solution allows reducing the program execution 
time by 87.87%. 

 

 
Even with no coalesced GM memory access, copying a 

tile from GM onto ShM before execution is faster (about 
22%) than loading the SM registers directly from GM. Fig. 
3 shows the corresponding throughput (GFLOPS): 

 
 
Figure 3: Matrix Multiplication using Computations with (a) Global 
Memory and (b) Shared Memory

 
 
Figure 2: Matrix Multiplication using Shared Memory with (a) Non-
Coalesced Global Memory Access and (b) Coalesced Global 
Memory Access.

__global__ void  
gen_coalesced_matrix_multiply(float *C, float *B, float *A, int N) 
{ 
    int by = blockIdx.y * TILE_Y; 
    int bx = blockIdx.x * TILE_X; 
    int ty = threadIdx.y; 
    int tx = threadIdx.x; 
 
    float Csub[TILE_Y/BLOCK_Y]; 
    __shared__ float As[TILE_Y][TILE_X]; 
    __shared__ float Bs[TILE_X][TILE_X]; 
  
    for(int bk=0; bk < N; bk+=TILE_X){ 
        for(int i=0; i < TILE_Y/BLOCK_Y; i++){ 
           As[ty + i * BLOCK_Y][tx] = A[(by + ty + i * BLOCK_Y)  

* N + bk + tx]; 
        } 
        for(int i=0; i < TILE_X/BLOCK_Y; i++){ 
          Bs[ty + i * BLOCK_Y][tx] = B[(bk + ty + i * BLOCK_Y)  

* N + bx + tx]; 
        } 
   
        __syncthreads(); 
 
        for(int i=0; i < TILE_Y/BLOCK_Y; i++) 
           for(int k=0; k < TILE_X; k++) 
 Csub[i] += As[ty + i * BLOCK_Y][k] * Bs[k][tx]; 
    } 
  
    __syncthreads(); 
 
   for(int i=0; i < TILE_Y/BLOCK_Y; i++) 
       C[(by + ty + i * BLOCK_Y) * N + bx + tx] = Csub[i]; 
} 
 

Code Listing 4: Optimized CUDA Kernel 
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gisterstoMemorySharedfromLatencyLoadingDataShMRL

MemorySharedtoMemoryGlobalfromLatencyLoadingDataGMShML

gisterstoMemoryGlobalfromLatencyLoadingDataGMRL



Re:

:

Re:

 B. Block Sizes Comparison 

We refer to Resource Optimization described in Section 
III. Increasing the number of threads per block may 
decrease the performance due to restriction in the 
concurrent number of blocks per SM which reduces SM 
capacity utilization.  

A 256-thread block (option 1) has 8 warps each has 32 
threads. Thus each SM will be assigned 4 blocks at a time. 
While a 484-thread block (option 2) has 16 warps leading 
each SM to be assigned 2 blocks at a time. Comparing the 
above two options, it is clear that option 1 provides larger 
S-cycles and smaller AKBPSM. Here, option 1 represents a 
case for the best possible resource utilization.  Fig. 4 shows 
the GPU throughput (GFLOPS) for both options in which 
the solution corresponding to option 1 is more than 5 times 
faster than that corresponding to option 2. 

 

C. Memory Usage per Block 

We refer to ShM allocation that was described in 
Resource Utilization of Section II. Here we use different 
tile size to be loaded into shared memory and use different 
ShM allocation per block. Run-time profiling indicates the 
existence of some compiler overhead associated to each 
ShM allocation. ShM is allocated in multiples of basic 512 
bytes.  

A 16x16 tile leads to load a source tile and a result tile 
requires the allocation of 2080 bytes into ShM including 
the overhead.  The actual ShM allocation is 2560.  

Since the shared memory is partitioned among the 
blocks per SM so in the case of Quadro FX 5800, the 
concurrent blocks per SM is 16384/2560 = 6.4 implies 6 

blocks per SM. As only 32 warps are assigned to SM, only 
4 blocks will be scheduled to one SM at a time.  

 
A 32x32 tile requires ShM allocation per block that is 

8224 bytes which implies that the actual ShM allocation is 
8704 bytes. In this case the concurrent blocks per SM are 
1.88. Thus only 1 block per SM will be scheduled at a time. 
This reduces the SM capacity utilization which in response 
reduces the overall performance of the application. Fig. 5 
shows the throughput of matrix scaling using different size 
of shared memory per block. The computation using shared 
memory saturates the device at number of blocks = 512 in 
the application that is throughput decreases after this 
threshold. Here, the peak throughput achieved at N = 8192 
and TPB=16 that is 512 blocks. We may have the same 
pattern for TPB=32 if we use larger space size (N) but we 
could not run our experiments for N > 16384 due to GM 
limitation to 4 GB. For N = 16384, the load of two matrices 
requires 2 GB while 8 GB for N = 32768.  

VI. APPLICATION RESULTS COMPARISON 

A. Matrix Multiplication 

 
We have analyzed the structure of matrix multiplication 

kernels using CUDALite [1] approach and NVIDIA SDK 
approach [10]. Both of these implementations used 
arbitrary values for defining threads per block (TPB) and 
tile size (TS) which are not optimal values in terms of 

 
 
Figure 5: Matrix Scaling using different size of shared memory per 
block (a) TPB = 32, 32 x 32 x 2 x 4 = 8KB and (b) TPB = 16, 16 x 

16 x 2 x 4 = 2 KB 

 
 

Figure 4: Matrix Multiplication using only global memory with 
different number of threads per block (a) 16 x 16 = 256 

threads/block and (b) 22 x 22 = 484 threads /block 

Tesla C2070 (N = 2048 x 2048) 

 TPB TS AB TKB 
S-

Cycles 
AKBPSM 

Exec. 
Time 

Restructuring 
Algorithm 

512 2048 3 2048 48 146.2857143 2.4486 

NVIDIA SDK 256 256 6 16384 48 1170.285714 2.6268 

CUDALite 32 1024 1 4096 1 292.5714286 21.2396 

 
Table 4: Parameters comparison of different implementations of 

Matrix Multiplication 



[9] 
 

resource utilization as we have explained in section III.C. 
In CUDALite, each thread work on the entire row of the 
tile resulting in very few threads per block (TPB = 32 as 
shown in Table 4 that only 1 warp per block) which is not 
sufficient to hide latency of the global memory transfers. 
Also, in CUDALite, a tile allocation is also done for results 
which causes large shared memory usage per thread block 
that restricts the number of Active Blocks (AB = 1, see 
Table 4, can be calculated using eq. (1)) that highly reduces 
the S-Cycles to 1. In NVIDIA SDK approach, 2D thread 
blocks of 16 x 16 dimensions is defined with same tile 
sizes so each thread work on one element of each tile but 
these values produces large number of average kernel 
blocks per SM which causes increased overhead of blocks 
allocation and thus limited performance. The optimal value 
of TPB and TS for Tesla C2070 GPU are 512 and 2048 
respectively as proposed by our restructuring algorithm 
(see Table 4) and gives the minimum execution time in 
comparison of the other approaches. 

B. Matrix Scaling 

 

 
We have also analyzed the matrix scaling kernel shown 

as an example in CUDALite [1] paper. We have found 
similar problems of limited number of active blocks due to 
large shared memory usage and also large number of 
average kernel blocks per SM due to small number of 
threads per blocks as explained in the previous section V.A 
in the case of matrix multiplication. The optimal value of 
TPB and TS for Tesla C2070 GPU are 512 and 4096 
respectively as proposed by our restructuring algorithm 
(see Table 5) and gives the minimum execution time in 
comparison of the CUDALite approach. 

C. Matrix Transpose 

NVIDIA provides optimized kernels of matrix 
transpose by analyzing the architectures of shared memory 
and global memory. In these optimizations, tiles are 
allocated in shared memory in such a way that the access to 
the shared memory by different threads at the same time 
should be free from shared memory bank conflicts. 
Furthermore, access to global memory by concurrent thread 
blocks will be done in different partitions of global 
memory to load the tile from the source matrix and store 
the tile into transposed matrix. We have applied our 
resource optimization strategy to two different matrix 
transpose kernels as provided in NVIDIA SDK. TPB = 512 
is obtained as an optimal value for threads per block that 
maximize S-Cycles (see Table 6 and 7) and hence 

minimize the execution time in comparison of the defined 
parameters in NVIDIA documentation. 

 

 
 

 
 

VII. CONCULSION  

We presented a restructuring algorithm to optimize a 
CUDA program based on three key concepts: (1) tiling, (2) 
coalesced global memory access, and (3) resource 
optimization. The execution model of synthesized kernel 
consists of uniformly distributing the kernel threads to keep 
all cores busy while transferring a tailored data locality 
which is accessed using coalesced pattern to amortize the 
long latency of the secondary memory. In the evaluation, 
we implement some simple applications to outline some 
features of the proposed restructuring strategy and 
evaluated the performance in terms of execution time and 
GPU throughput. Obtained results were analyzed in view 
of proposed optimization parameters which reinforces the 
proposed restructuring and alleviate the tedious task of 
finding an optimized solution based manually optimizing 
many parameters. We have also compared our strategy 
with other implemented approaches of matrix 
multiplication, matrix scaling, and matrix transpose kernels 
mentioned in CUDALite and NVIDIA SDK. We found that 
none of the approach defines a strategy for defining 
optimal number of threads per block and tile size while our 
resource optimization strategy helps to determine the 
optimal values of these parameters that maximize the 
performance in comparison of the other approaches. 
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Quadro FX 7000 (N = 2048 x 2048) 

 TPB TS AB TKB 
S-

Cycles 
AKBPSM 

Exec. 
Time 

Restructuring 
Algorithm 

512 1024 3 4096 48 256 0.0776 

NVIDIA SDK 256 1024 5 4096 40 256 0.1084 

 
Table 6: Parameters comparison of Matrix Transpose kernels with no  

shared memory bank conflicts 

Quadro FX 7000 (N = 2048 x 2048) 

 
TPB TS AB TKB 

S-
Cycles 

AKBPSM 
Exec. 
Time 

Restructuring 
Algorithm 

512 1024 3 4096 48 256 0.0800 

NVIDIA SDK 256 1024 5 4096 40 256 0.1234 

 
Table 7: Parameters comparison of Matrix Transpose kernels with 

diagonal tiles mapping to blocks to avoid partition camping Tesla C2070 (N = 2048 x 2048) 

 TPB TS AB TKB 
S-

Cycles 
AKBPSM 

Exec. 
Time 

Restructuring 
Algorithm 

512 4096 3 1024 48 73.14285714 0.0014 

CUDALite 32 1024 1 4096 1 292.5714286 0.0096 

 
Table 5: Parameters comparison of different implementations of 

Matrix Scaling 



[10] 
 

REFERENCES 
[1] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-lite: 

Reducing GPU programming complexity. International Workshop 
on Languages and Compilers for Parallel Computing (LCPC), 2008.  

[2] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to 
GPGPU: A Compiler Framework for Automatic Translation and 
Optimization, Proc. 14th ACM SIGPLAN Symp. on Prin. and Prac. 
of Parallel Programming, 2009.  

[3] Tianyi David Han and Tarek S. Abdelrahman, “hiCuda: A high-level 
Directive-based Language for GPU Programming”, GPGPU’09, 
March 8, 2009. 

[4]  J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr uger, A. 
Lefohn, and T. Purcell. A survey of general-purpose computation on 
graphics hardware. Computer Graphics Forum, 26(1):80-113, March 
2007.  

[5] K. Mueller, F. Xu, and N. Neophytou. Why do commodity graphics 
hardware boards (GPUs) work so well for acceleration of computed 
tomography? SPIE Electronic Imaging 2007, Computational 
Imaging , Keynote, 2007.  

[6] Shuai Che, Michael Boyer,  Jiayuan Meng, David Tarjan, Jeremy W. 
Sheaffer, Kevin Skadron, “A Performance Study of General-Purpose 
Applications on Graphics Processors Using CUDA”, in The First 
Workshop on General Purpose Processing on Graphics Processing 
Units,  2007. 

[7] R. Belleman, J. Bedorf, S.P. Zwart, High performance direct 
gravitational N-body simulations on graphics processing units – II: 
an implementation in CUDA, New Astronomy 13 (2) (2008) 103–
112. 

[8] Gabe Rudy, “CUDA-CHiLL: A Programming Language Interface 
for GPGPU Optimizations And Code Generation”, MS Thesis, 
School of Computing, University of Utah, USA, August 2010. 

[9] Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K., 
Kubiatowicz J., Morgan N., Patterson D., Sen K., Wawrzynek J., 
Wessel D., Yelick K.: “A View of Parallel Computing Landscape”, 
Communications of ACM 52(10) (2009) 56-67. 

[10] David B. Kirk and Wen-mei W. Hwu, “Programming Massively 
Parallel Processors: A Hands-on Approach”, Published by Elsevier 
Inc. ISBN: 978-0-12-381472-2, 2011. 

 


