A Restructuring Algorithm for CUDA

M. A. Al-Mouhamed and A. H. Khan

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
{mayez, ahkhan}@kfupm.edu.sa

Abstract—Graphic processing Units (GPUs) are gaining
ground in high-performance computing. CUDA (an extension
to C) is most widely used parallel programming framework
for general purpose GPU computations. However, the task of
writing optimized CUDA program is complex even for
experts. We present a method for restructuring loops into an
optimized CUDA kernels based on a 3-step algorithm which
are loop tiling, coalesced memory access, and resource
optimization. For this we identify the GPU constraints for
maximum performance such that the memory usage (global
memory and shared memory), number of blocks, and number
of threads per block. In addition we identify the condition for
maximizing utilization of the GPU resources. We also
establish the relationships between the influencing parameters
and propose a method for finding possible tiling solutions with
coalesced memory access that best meets the identified
constraints. We also present a simplified algorithm for
restructuring loops and rewrite them as an efficient CUDA
Kernel. The execution model of synthesized kernel consists of
uniformly distributing the kernel threads to keep all cores
busy while transferring a tailored data locality which is
accessed using coalesced pattern to amortize the long latency
of the secondary memory. In the evaluation, we implement
some simple applications using the proposed restructuring
strategy and evaluate the performance in terms of execution
time and GPU throughput.

Keywords: CUDA, GPU, Parallel Programming, Compiler
Transformations, directive-based language, source-to-source
compiler, GPGPU

. INTRODUCTION

Massively parallel computing has obtained prominence
through advances in implementing massive multithreading
and recent improvements in its programming [1, 2, 3].
Recent development in Graphic Processing Units (GPUs)
has opened a new challenge in harnessing their computing
power as a new general purpose computing paradigm.
Strong implications are expected on computational science
and engineering, especially in the area of discrete numerical
simulation [4].

Modern GPUs use multiple streaming multiprocessors
(SMs) with potentially hundreds of cores, fast context
switching, and high memory bandwidth to tolerate ever-
increasing latencies to main memory by overlapping long-
latency loads in stalled threads with useful computation in
other threads [5]. The Compute Unified Device Architecture
(CUDA) is a simple C-like interface proposed for
programming NVIDIA GPUs. However, porting
applications to CUDA remains a challenge to average
programmers. CUDA places on the programmer the burden
of packaging GPU code in separate functions, of explicitly
managing data transfer between the host and GPU

[1]

memories, and of manually optimizing the utilization of the
GPU memory [3].

Performance study of general-purpose GPU
programming have been reported [6] for applications such
as SRAD structured grid, back-propagation unstructured
grid, data encryptions standard, Needleman - Wunsch
dynamic programming, and k-means data mining.
Impressive speedups ranging from 2.9 to 35 for the above
applications have been achieved over single threaded
programs. Some limitations have also been reported when
the available parallelism is semi-static. A CUDA
implementation for the gravitational N-body simulations
using GPU is reported [7]. The GPU performs force
calculation and updating, while the host CPU performs the
predictor, corrector, and integration steps. Implementation is
based on two direct N-body integration codes, using the 4th
order predictor-corrector Hermite integrator with block
time-steps, and one Barnes-Hut tree-code, which uses a
second order leapfrog integration. The above
implementation merely maps the computation of pair-wise
particle interactions onto the GPU which makes the time-
consuming updating of the neighbor lists on the CPU a
bottleneck since synchronization and frequent data transfer
between host CPU and GPU.

CUDA programming requires an expert level
understanding of the memory hierarchy and execution
model to reach peak performance. Even for experts,
rewriting a program to exploit the architecture in achieving
high speedups can be tedious and error prone. Several high-
level interfaces [1, 2, 3] has been proposed to perform
source-to-source translation based on programmer defined
“pragmas” or annotations to generate CUDA programs
with less burden to the programmers. Most execution of a
scientific program is spent on loops. Compiler analysis and
compiler optimizations have been proposed to make the
execution of loops faster. CUDA-lite [1] is an
experimental enhancement to CUDA that allows
programmers to deal only with global memory with
transformations to leverage the complex memory
hierarchy. A set of annotations describing certain properties
of the data structures and code regions designated for GPU
execution are proposed. The tool analyze the code along
with these annotations and determine if the memory
bandwidth can be conserved and latency can be reduced by
utilizing any special memory types and/or by massaging
memory access patterns. Upon detection of an opportunity,
CUDA-lite performs the transformations and code
insertions needed. Authors claim the tool produces code
with performance comparable to hand-coded versions.

A framework for source-to-source translation of
standard OpenMP applications into CUDA-based code is

proposed [2]. It has two phases: (1) a compile-time
optimization techniques which applied parallel loop-swap
and loop-collapsing, and (2) an OpenMP to GPGPU
translation system. In the later step, partitioning and data
mapping are used to convert work-sharing OpenMP
constructs into kernel with default block size and number of
blocks. Shared data are mapped to global memory. Thread
private data are replicated and allocated on global memory
for each thread. Private data are mapped to register banks
assigned for each thread. Evaluation uses Jacobi, and
SPMUL, and two NAS OpenMP Parallel Benchmarks (EP
and CG). It is reported a performance improvements of up
to 50x over the un-optimized translation (up to 328x over
serial on a CPU.

A high-level directive-based compiler (hiCUDA) [3] is
proposed to ease the task of writing CUDA programs. The
compiler translates a hiCUDA program to a CUDA
program using a computation model and a data model in
which programmers allocate and de-allocate memory on the
GPU and move data between the host memory and the GPU
memory. Evaluation of five CUDA benchmarks (MM, CP,
SAD, TPACF, RPES) shows that the provided simplicity
and flexibility come at no expense to performance as
execution times is within 2% of that of the hand-written
CUDA version.

A source-to-source compiler transformation (CUDA-
CHILL) [8] aims at alleviating the need for understanding
memory hierarchy and execution model in writing
optimized CUDA programs. It proposes a source-to-source
transformation based on the polyhedral program
transformation and ChiLL framework which is capable of
composing transformations while preserving the correctness
of the program at each step. The authors claims that
optimizing the BLAS library routines yields results
comparable to hand-tuned versions in some cases and
outperforming hand-tuned in other cases.

In this paper we present a method for restructuring loops
into an optimized CUDA kernels based on a 3-step
algorithm which are loop tiling, coalesced memory access,
and resource optimization. For this we identify the GPU
constraints for maximum performance such that the
memory usage (global memory and shared memory),
number of blocks, and number of threads per block. In
addition we identify the condition for maximizing
utilization of the GPU resources. We also establish the
relationships between the influencing parameters and
propose a method for finding possible tiling solutions with
coalesced memory access that best meets the identified
constraints. The execution model of synthesized kernel
consists of uniformly distributing the kernel threads to keep
all cores busy while transferring a tailored data locality
which is accessed using coalesced pattern to amortize the
long latency of the secondary memory. In the evaluation,
we implement some simple applications using the proposed
restructuring strategy and evaluate the performance in terms
of execution time and GPU throughput.

This paper is organized as follows. Section Il presents
some analysis of GPU that is critical for performance
tuning. Section 11l presents a proposed approach for
restructuring algorithm for CUDA. Section IV presents an

(2]

example of applying the proposed strategy to develop and
optimized kernel for matrix multiplication. Section V
presents the evaluation of applications and comments on
execution times and throughput. Section VI presents the
comparison of proposed strategy with other approaches.
Finally, Section VII concludes about this work.

Il. BACKGROUND

Ideal GPU applications have large data sets, high
parallelism (data parallelism), and minimal dependency
between data elements [9].

A. GPU Architecture

It is organized into an array of highly threaded
Streaming Multiprocessors (SMs). Each SM has a humber
of Streaming Processors (SPs) that share control logic and
instruction cache. Each GPU currently comes with up to 4
GB of graphics double data rate (GDDR) DRAM referred to
as global memory (GM) that is visible to all threads in all
blocks. Each SM has a shared memory (ShM) which is on-
chip, readable and writable, and visible to all threads
running within SM and as fast as register access. However,
ShM is very small in size compared to GM. Table 1 shows
some published features of some popular GPUs.

GPU Quadro Quadro Tesla Tesla
Features FX 5800 FX 7000 C2070 C2075
GM 4GB 6 GB 15GB 6 GB
Total SM 30 16 14 14
SP per SM 8 32 32 32
Total 30*8= 16*32= 14*32 = 14*32 =
Cores 240 512 448 448
Shm/B 16 KB 48 KB 48 KB 48 KB
Reg/SM 21 21 21 218
Warp Size 32 32 32 32
Max th/B 2° 210 210 210
Max B dim | 2°%x2%2° | 2% 2'%2° 210 21028 210x 210x28
M%"igid 2y 2lx1 | 21x M6kl | 2l 2loyple | ploy plexols
Clock Rate 1.3 GHz 1.3 GHz 1.15 GHz 1.15 GHz
Warps/SM 32 48 48 48
T'}ffsxm 1024 1536 1536 1536
B/SM 8 8 8 8
L2 Cache No Yes No Yes

Table 1: Some features for some NVIDIA GPUs.

GM s linked to the GPU device through a very large
data path of 512-bits wide. Through such a bus width,
sixteen consecutive 32-bits (4 bytes) words can be fetched
from global memory in a single cycle. The on-chip memory
resource includes register files (16K or more per SM, see
Table 1), shared memory (16KB or more per SM). To hide
the long off-chip memory access latency, a high number of
threads are supported to run concurrently. The threads are
grouped in blocks which will be scheduled to SMs
dynamically on the availability of each SM. These threads
follow the single-program multiple-data (SPMD) program

execution model. Within a block, threads are grouped in 32-
threads instruction called warps, where each warp is being
executed in the single-instruction multiple-data (SIMD)
manner. A warp takes multiple cycles for computation
instructions due to the limited number of functional units
(SPs) within SM.

B. CUDA Execution Model

A CUDA program is a unified source code
encompassing both the host and the device code. It consists
of one or more phases that are executed on either the host
(CPU) or a device that is a GPU. The phases that exhibit
rich amount of data parallelism are implemented in the
device code. The device code is written using ANSI C
extended with keywords for labeling data-parallel
functions, called kernels, and their associated data
structures [10].

Fig. 1 shows the execution hierarchy of a typical CUDA
kernel function on a device. Each kernel initiates a set of
blocks defined by the programmer as grid dimension with
number of threads to be executed within each block while
invoking the device kernel function. Now, the block
scheduler dynamically schedules each thread block to one
SM based on the availability of resources within SM [1]
while individual threads will be distributed among multiple
SPs within the SM. An SM can handle at most 8 blocks at a
time. Also, the possible number of concurrent blocks per
SM depends on the number of warps per block, number of
registers per block, and the shared memory usage per
block. These constraints will be developed in Section Ill.
For many GPUs (Table 1), each SM can handle 32 warps at
a time. In Tesla C2070, each SM has 32K registers and
48KB of shared memory.

Kernel

(oot | [sockz | [ocs] [locks | [ocks | [ocke | [mser |

Block N

‘SMl‘ ‘SMZ‘ ‘SM3‘ ~~~~~~~~~

warp

SP1 SP2

SP3 SPa

Execute individual threads

SP5 SP6

Figure 1: CUDA Kernel Execution Hierarchy

SM manages thread ids and threads execution. Threads
within a block cooperate using ShM while threads in
different blocks cannot cooperate, not even using GM since
the blocks are scheduled to different SMs dynamically by
the scheduler. The data transfer between different blocks
can be done by separate invocation of the kernel which will
be serialized. So, in case of recurrence in application space,
the whole recurrence must be contained in each single
thread because serialization is controlled only by defining
different kernels. Thus in the case of a recurrence, we may
end up with a few very coarse threads, a situation that

(3]

might lead to low GPU utilization which is discussed in
details in Section I1I.

Each SM schedules one warp at a time with zero
overhead warp scheduling. The warp is the unit of thread
scheduling in SMs. Each warp consists of 32 threads of
consecutive thread ids. In the case of higher dimensional
kernels, warps will be retrieved from blocks according to
the row major numbering. As warps executes in SIMD
fashion, if there is a high latency exception such as loading
data from GM or storing results to GM then the whole
warp must be suspended and its context if preserved. A
DMA operation is initiated by the SM whenever it finds
one or more threads within a warp to perform such a long
latency memory transfer operations (accessing global
memory) and schedule another warp (ready to execute) to
the SPs [10].

GM is partitioned into segments of size equal to 32, 64
or 128 bytes and aligned to this size. The elements in one
segment can be accessed by a single memory transaction.
By considering the largest segment size of 128 bytes and
also the data path of 512 bits, the compiler issues a single
load/store instruction for 16 consecutive elements accessed
by 16-threads (half warp) to reduce the number of memory
transactions of global memory. So, the performance of
memory transfers can incredibly be improved through the
use of coalesced global memory accesses that is accessing
a regular pattern of consecutive elements by a half warp
(16 threads) based on some conditions [1]. Therefore, if
SPs are kept busy executing through warp switching then
the whole transfer between GM and ShM is hidden by
some execution which implies that the parallel program
time does not account for such an expensive memory
transfer. Since, shared memory is very small in size so we
have to perform some loop transformation such as loop
tiling, a mechanism to adjust loop execution to match with
underlying machine or memory system, to make the
availability of enough data for the active warp per SM.

I1l. A RESTRUCTURING ALGORITHM FOR CUDA

In this section we proposed a CUDA Kkernel
restructuring algorithm, a general strategy to achieve
maximum possible performance by better utilization of the
machine. In CUDA, the worker threads are identified by
thread ID and being organized by blocks which are
identified by block ID. This identification is used in a kernel
to define a mapping of computations to threads (workers).
An array of any dimension is accessed as a linear memory
which is allocated in a row-major order. The objective of
having multi-dimensional blocks of threads is to ease the
mapping of computation results to the worker threads.

The proposed
generating efficient CUDA Kkernels.
following guidelines:

restructuring algorithm aimed at
It is based on

1. Tiling the code so that the aggregate data locality of a
tile (block of threads) is fetched, and being small
enough to fit, onto ShM prior to computations instead
of direct load form GM, no matter whether using

coalesced access or non-coalesced access.

2. Exploring different ways of mapping computations to
threads to favor coalesced global memory access while
loading from and/or storing into GM.

3. Increase thread granularity to amortize the ratio of data
transfer per computation without having some SM
being idle, i.e. low utilization of the available SMs and
the SPs within each SM.

4. Reduce (1) the number of local variables (register use)
and (2) block size, to avoid reducing the number of
blocks that can handled by SM at a time which may
affect overall GPU utilization.

5. Use kernel block size less than or equal to tile size
such that each thread in a block loads one or more
elements of a tile into ShM. This reduces instruction
fetch and processing overhead of load instruction since
the device perform one instruction fetch for a block of
threads which is in SIMT manner.

The proposed algorithm is based on the three key
concepts that are explained in detail in following
subsections.

A. Tiling

In CUDA the programmer has to explicitly transfer data
from slow low-level GM which is visible by all SMs to a
fast high-level shared memory ShM within each SM. Tiling
the code is to account for the small ShM capacity. The
execution style is based on transferring small amount of
data followed by data processing. While transforming the
code, it is required to perform proper calculation of
effective address of array elements (results) based on the
workers identifiers which are the block ID and thread ID. It
is required to design an algorithm/mechanism that can be
used to apply loop tiling on any CUDA program with
proper memory hierarchy optimizations. Tiling is guided by
the following steps:

1. Identification of proper tile size to be stored in shared
memory based on the limited capacity of ShM per
CUDA kernel block based on determining the tile size
and matching overall tile data locality with ShM
capacity.

2. Loop transformations and proper identification of range
of outer and inner loops.

3. Effective address calculations of the array elements to
be accessed within the loop iterations (see coalesced
access).

4. Boundary check for avoiding the out of bound array
index access.

5. Synchronization among loading of data into ShM,
execution of operations, and storing the results back
into GM.

B. Coalesced Global Memory Access

In this section, the objective is to restructure the code so
that at execution warps access to GM is done according to
a coalesced access pattern to amortize the excessive access
cost. Fetching a group of data elements which are stored in
distinct memories (coalesced access) is critical to amortize

the high cost of accessing GM compared to the speed of the
logic. The key idea is to determine all possible mapping

In CUDA a 1-D kernel having NW threads is
represented as a set of N blocks each has W elements. To
assign some work to each individual thread, each kernel
thread is identified by the block b to which it belongs to
and some offset t, i.e. thjy=b.W + t or as a vector th;y= (b,
nw where 0<b<N-1 and 0<t<W-1. Suppose we have
a 2-D array of U.V computation results which are stored
using row-major scheme as U rows and V columns, the
address of the element in row r and column c¢ is EA=
(rCuy =r. U+ c, where 0<r<U-1and 0<c<V-1.
Assigning a thread (worker) to compute a result requires
defining a mapping from the thread IDs onto the results so
that when the SPMD program is run, each thread uses its
own ID in the code to determine the result that it must
compute. The mapping of threads IDs onto the result
address admits a few possible mapping solutions for EA =
(r,c)yv as computes:

1. EA=((Db, nw,Cuyv | N.W=U, each thread has one
loop to compute V results, no coalesced access,

2. EA=(r, (b, t)nw)uv | N\W=V, each thread has one
compute U results, coalesced access,

3. EA= ((b, t’)N,Wx (b, t)N,W)U,V | N.W’=U and
N’.W=V, each thread has two loops (denoted by) to
computes (U.V)/(N.W) results, coalesced access,

4. EA= (b, Onvw, (b,)nw)uyv| N W=U and
N.W’=V, each thread has two loops (denoted by) to
computes (U.V)/(W.N) results, coalesced access.

Note that a coalesced access takes place only when the
offset, or second component of EA, is mapped to the thread
index, i.e. identified by offset t. The reason is that warps
are formed by successive thread IDs for any dimension, i.e.
according to row major organization. Table 2 shows the
possible mappings of CUDA for 1-D and 2-D kernels
(blocks and threads) to a 2-D array of results of size space
N.W with corresponding tile size (upper parameter) and
coalesced (Yes) or non-coalesced (No) accesses. Similar
approach is used for higher dimension kernels.

1D Kernel 2D Kernel
thig=b.W +t= (b,)yw | 0<b<N-1 l_h"‘T ".fh:'_“" ! “'lh?":\."' e
and 0< t< W-1 = ((bx, tx)xywy » (by,))__\,_\)
A e 0<bx<Nx-1,0< by < Ny-1
LA= (re)py =T, 'y < < Wie < < Whaes
0<r<U-1and 0<c< V-1 0525 Wadl, 05ty S Wyl
Note: X° is a local | ithin the EA=(re)yv=r.U+g,
ote: 1S a loca ﬂll])\‘l m € Dsrsl-_l andﬂicﬁ\'—l
thread
((by Oxws oy u ((b, txX)nawy o (By vy) 1
N.w=U No Nx.Wx=U, Ny.Wy=V No
(ry (by Bw oy | ‘i ((bys t¥)nywy » (C DX, EX)nwn) 1
NW=V Yes Nx.Wx=U, Ny.Wy=V Yes
((hy)x s (D™ xw oy | (UNVVINWY | ((Cby, tx)xy0ws 5 (DX, 6)newy) 1
N.W'=U Yes Ny.Wx=U, Nx.Wy=V No
(D" O o by Ol Juy | (UVVINWY L ((bx, t¥)newy o (DY 005, 00) 1
N.W=U No Nx.Wy=U, Ny.Wx=V Yes

Table 2: Possible 1-D and 2-D Kernel mapping to a 2-D Array of results

For example, assume a 2-D(U,U) array res() of results,
and TXT as being the tile size. Let’s use a 1D kernel defined
by thig= (b, t)nw .- For 1-D kernel, we may use the solution
shown in the third row of Table 2. The corresponding
constraints leads to N=U/T blocks and each block has each
W=T threads. The effective address of a result res() is EA =
(b*T+t’)*U + b’*T+t. Each kernel thread consists of a
double nested loop, where the outer loop (t’: U/T iterations)
and inner loop (b’: T iterations). It is clear that access is
coalesced because t is in the least significant position. This
solution is also implemented and evaluated in the
performance evaluation (Section IV, Fig. 5).

C. Resource Optimization

Within each SM, ShM is partitioned among active
blocks which are assigned to SM for simultaneous
execution. Therefore the tile sizes must be selected such that
the tile data locality that must be loaded into ShM does not
constrain the maximum number of active blocks which can
be assigned to an SM at a time.

The block size must be chosen less than or equal to tile
size such that each thread in a block loads one or more
elements of a tile into ShM. This will reduce instruction
fetch and processing overhead of load instruction since the
device perform one instruction fetch for a block of threads
which is in SIMT manner. On the other hand, too large
block sizes must be avoided limiting the number of active
blocks per SM due to large number of warps per block. The
number of active warps must be no less than the maximum
warps per SM (for full occupancy) in any given SM to
avoid limiting the number of active threads per SM. Active
Blocks can be calculated using equation (1).

. Warp per SM
min| | ——— |, Max. Blocks per SM
Warp per Block

Active Blocks=min|

in Shared Memory per SM
i
Shared Memory per Block

—‘, Max. Blocks per SM]

Here,

Threads Per Block

Warps Per Block=—————
Threads PerWarp

- 1)

Shared Memory Per Block =Tile Size x Data Element Size

x Number of Data Elementstoload for oneresult — (1.2)

256
Warps Per Block =——=

32
Shared Memory Per Block = 256 x 4 x 2 = 2048

32
min| | — |,8
8
16384
minf | — [,8
2048
min|4,8

=min|
min|8.8

Active Blocks = min

| 4
=min =4

-

(5]

For example, if Threads per Block is 256, Tile Size is
256, Data Element Size is 4 bytes, and Number of Data
Elements to load for one result is 2, then the Active Blocks
is 4. Suppose Warps Per SM is 32, Shared Memory Per SM
is 16384, and Max. Blocks Per SM is 8. Therefore the
number of active blocks that can be handled by an SM at a
given time can be calculated using eq. (1).

To expose to peak performance, the application threads
must be massively and uniformly spread over the SMs so
that the only performance saturation comes from mapping
the application to the GPU. Furthermore, peak performance
will be expected because all the SM and SPs are involved
in the execution. To identify the conditions for peak
performance, one can analyze the repetition cycles occurs
during the kernel execution. Since, there are two levels of
kernel block and threads scheduling in the device. The
blocks are first scheduled to be executed on each SM and
then each SM schedules the individual threads within a
block to multiple SPs within the SM based on selecting one
warp at a time. The repetitions (or serialization affect) due
to first scheduling can be analyzed as average kernel blocks
per SM and the repetitions due to second scheduling as
small cycles (S-Cycles) which occurs due to limited
number of SPs (Thread Processors) that can execute one
thread at a time.

Total Kernel Blocks

Average Kernel Blocks per SM (AKBPSM) = —(2)
Total SMs
Here, Total Kernel Blocks = Application SpaceSize / Tile Size
(Active Blocks x Threads Per Block)
S — Cycles = — (3)
SPs per SM
These repetitions should satisfy the following

conditions to achieve peak performance:

1. Both AKBPSM and S-Cycles should be greater
than or equal to 1.

2. S-Cycles should be an integer value to balance the
threads among multiple SPs.

3. S-Cycles should be as large as possible.

4. AKBPSM should be the least possible to minimize

serialization.

In our experiments for Matrix Multiply, we found the
following repetitions (Table 3) at their peak performance.
Here, TPB = Threads Per Block, TS = Tile Size, AB =
Active Blocks, TKB = Total Kernel Blocks, Exec. Time =
Execution Time in seconds.

Tesla C2070 Machine (N = 2048 x 2048)

Exec.
TPB TS AB TKB S-Cycles AKBPSM Time
512 2048 3 2048 48 146.28 245
512 1024 3 4096 48 292.57 2.47
256 1024 6 4096 48 292.57 2.51
512 512 3 8192 48 585.14 2.53
256 512 6 8192 48 585.14 2.55
256 256 6 16384 48 1170.28 2.62

Table 3: Repetitions Analysis of Matrix Multiplication for Resource
Optimization

We performed similar analysis on other applications
including different implementations of Matrix Transpose
available with CUDA SDK, Matrix Scaling and found
similar trend of execution time.

D. Proposed CUDA Restructuring Algorithm

The proposed restructuring algorithm is based on the
following steps:
Step 1: Analyze the granule size in the loop body and the
data locality needed and determine thread granule size:

a. Thread Granule Size: carry out loop
distribution/fusion or statement distribution/fusion
to control the thread granule: the number of
load/store, number of arithmetic operations, and
the needed data locality
Carry out statement distribution if statement has
too many arithmetic operations or requiring too
many locality
c. Might carry out the opposite of the above steps in

the case of too fine granule size of very limited

locality

Step 2: Tile the resulting loop (or loops) by generating all
possible tiled loop arrangements and select one or more
tiled arrangements with coalesced memory access.

Step 3: Determine the best possible combination of
Threads per block (TPB) and the Tile Size(TS) to get the
optimal distribution of blocks and threads among SMs and
SPs respectively. We need to generate all possible TPB and
TS, and their respective Warps Per Block (WPB) and
Shared Memory Per Block (ShMPB) using the equation
(1.1and 1.2).

a. ldentify Active Blocks using equation (1) for each
of the combination of TPB and TS
b. Calculate S-Cycles for each of the combinations

using equation (3) and select the combinations
that have the maximum value.

c. Calculate AKBPSM for the selected combinations
and the one that has the minimum value of
AKBPSM will give the best performance.

IV. EXAMPLE

In this section, we will show the working steps of
writing a matrix multiplication application from the
sequential code (Code Listing 1, for N x N matrices) to
optimized CUDA kernel.

void matrix_multiply(float **C, float **B, float **A, int N)

for(int ty=0; ty < N; ty++)
for(int tx=0; tx < N; tx++){
i = o;
for(int k=0; k < N; k++)
CliI0] += Ali[k] * BIKILI:

Code Listing 1: Matrix Multiplication Sequential Code

(6]

Step 1: due to the limited data locality and few arithmetic
operations in the statement, each thread can simply focus
on calculating one resultant element that is thread granule
size = 1.

void tiled_matrix_multiply(float **C, float **B, float **A, int N)

for(int by=0; by < N; by+=TILE_Y)
for(int bx=0; bx < N; bx+=TILE_X)
for(int ty=0; ty < TILE_Y; ty++)
for(int tx=0; tx < TILE_X; tx++)
for(int bk=0; bk < N; bk+=TILE_X)
for(int k=0; k < TILE_X; k++)
Clby+ty][bx+tx] = A[by+ty][bk+K] * B[bk+k][bx+tx];

Code Listing 2(a): Matrix Multiplication Tiled Version

__global__ void
tiled_matrix_multiply(float *C, float *B, float *A, int N)
{

int by = blockldx.y * TILE_Y;

int bx = blockldx.x * TILE_X;

int ty = threadldx.y;

int tx = threadldx.x;

for(int bk=0; bk < N; bk+=TILE_X)
for(int k=0; k < TILE_X; k++)
C[(by +ty) * N + bx + tx] = A[(by + ty) * N + bk + K]
* B[(bk + k) * N + bx + tx];

Code Listing 2(b): Matrix Multiplication CUDA kernel

__global__ void
coalesced_matrix_multiply(float *C, float *B, float *A, int N)

{
int by = blockldx.y * TILE_Y;
int bx = blockldx.x * TILE_X;
int ty = threadldx.y;
int tx = threadldx.x;

float Csub=0;
__shared__float AS[TILE_Y][TILE_X];
__shared__ float BS[TILE_X][TILE_X];
for(int bk=0; bk < N; bk+=TILE_X){
As[ty][tx] = A[(by + ty) * N + bk + tx];
Bs[ty][tx] = B[(bk + ty) * N + bx + tx];
__syncthreads();
for(int k=0; k < TILE_X; k++)
Csub += As[ty][k] * Bs[K][tx];
}
__syncthreads();

C[(by + ty) * N + bx + tx] = Csub;

Code Listing 3: CUDA kernel with coalesced memory accesses

Step 2: Code Listing 2(a) shows the tiled version of Code
Listing 1 by using general strategy of loop tiling for
uniprocessors that is split each loop of a nested loop-set
into a pair of adjacent loops in the loop nest, with the outer
loop (tiling loop) traversing tiles (blocks), and the inner
loop (intra-tile loop) covering the iteration points within the

tile. Code Listing 2(b) shows the corresponding CUDA
kernel implementation using 2D blocks and threads that
maps the outer four loops of Code Listing 2(a) to the
blocks and threads dimensions in Code Listing 2(b). At this
stage, accessing to matrix C and B are satisfying the
mappings of coalesced memory access as shows in second
row of 2D kernel mappings in Table 2 while access to
matrix A is not coalesced.

Code Listing 3 shows the modified kernel to perform
coalesced loads of matrix A and B using shared memory
and coalesced stores to the resultant matrix C. Here, we are
assuming the same dimensions for thread blocks and matrix
tiles. We also need to add barrier synchronization among
threads of the same block using __syncthreads() between
tiles load and compute statement within the traversal of all
tiles of matrices A and B. Also a barrier is required before
storing the resultant tile of matrix C due to difference in the
traversal order of load/store and computation statements.

Step 3: For Tesla C2070 using the resource optimization
strategy as explained in section II1.C, we found optimal
values for threads per block and tile sizes as TPB =32 * 16
512 and TS = 32 * 64 = 2048. Code Listing 4 shows the
modified kernel of Code Listing 3 to handle the case of
TPB < TS, for this we need to add loop for each load,
compute and store statement to correctly load the whole
tile, compute the results, and store the whole resultant tile
to the destination.

__global__ void
gen_coalesced_matrix_multiply(float *C, float *B, float *A, int N)
{

int by = blockldx.y * TILE_Y;

int bx = blockldx.x * TILE_X;

int ty = threadldx.y;

int tx = threadldx.x;

float Csub[TILE_Y/BLOCK_YT;
_ shared__ float AS[TILE_Y][TILE_X];
_ shared__ float BS[TILE_X][TILE_X];

for(int bk=0; bk < N; bk+=TILE_X){
for(int i=0; i < TILE_Y/BLOCK_Y; i++){
As[ty +i* BLOCK_Y][tx] = A[(by + ty + i * BLOCK_Y)
*N + bk + tx];

}
for(int i=0; i < TILE_X/BLOCK_Y; i++){
Bs[ty + i * BLOCK_Y][tx] = B[(bk + ty + i * BLOCK_Y)
*N + bx + tx];
}
__syncthreads();
for(int i=0; i < TILE_Y/BLOCK_Y; i++)
for(int k=0; k < TILE_X; k++)
Csub[i] += As[ty + i * BLOCK_Y][k] * Bs[k][tx];
}
__syncthreads();
for(int i=0; i < TILE_Y/BLOCK_Y; i++)
C[(by +ty +i* BLOCK_Y) * N + bx + tx] = Csubli];

Code Listing 4: Optimized CUDA Kernel

V. PERFORMANCE EVALUATION

A. Non-Coalesced Vs Coalesced Global Memory Access

Fig. 2 shows the GPU throughput (GFLOPS) of two 2D
kernel mapping solutions for the matrix multiply. These
solutions correspond to a tiled loop with and without
coalesced GM access which are illustrated in the 2nd
columns of Table 2 at the 2nd (No) and 3rd (Yes) rows,
respectively. According to the solution (3" row), a tile is
first loaded into ShM from GM using a coalesced access
and do the computations while data is in ShM. As in
coalesced global memory access, threads in half warp (16
threads) access consecutive memory locations in one cycle
so reducing the memory accesses by an ideal factor of 94%.
The above solution allows reducing the program execution
time by 87.87%.

200 —s— Mon-Coalesced Global Memory Access
—m— Coalesced Global Memory Access

§ 120 /
(3

Number of Blocks [N}, Space Size =N * 256

Figure 2: Matrix Multiplication using Shared Memory with (a) Non-
Coalesced Global Memory Access and (b) Coalesced Global

Memory Access.
35 -+ . L
—&— Computation using Global Memory
30 —m— Computation using Shared Memory
w25 //-‘
o
o {
fre
o 20
-
=2
o
5 15
3
4
10
5

16384

Number of Blocks (M), Space Size = N * 256

Figure 3: Matrix Multiplication using Computations with (a) Global
Memory and (b) Shared Memory
Even with no coalesced GM memory access, copying a
tile from GM onto ShM before execution is faster (about
22%) than loading the SM registers directly from GM. Fig.
3 shows the corresponding throughput (GFLOPS):

[7]

LgMR : Data Loading Latency from Global Memoryto Re gisters
Lgmshm : Data Loading Latency from Global Memoryto Shared Memory
LspmR - Data Loading Latency from Shared Memoryto Re gisters

LoMR > Lemshm + Lshmr

B. Block Sizes Comparison

We refer to Resource Optimization described in Section
I1l. Increasing the number of threads per block may
decrease the performance due to restriction in the
concurrent number of blocks per SM which reduces SM
capacity utilization.

A 256-thread block (option 1) has 8 warps each has 32
threads. Thus each SM will be assigned 4 blocks at a time.
While a 484-thread block (option 2) has 16 warps leading
each SM to be assigned 2 blocks at a time. Comparing the
above two options, it is clear that option 1 provides larger
S-cycles and smaller AKBPSM. Here, option 1 represents a
case for the best possible resource utilization. Fig. 4 shows
the GPU throughput (GFLOPS) for both options in which
the solution corresponding to option 1 is more than 5 times
faster than that corresponding to option 2.

30 —+—TileSize=16x 16
—m—TileSize=22x22
25
2
g 20
4
w
2]
515
j= 5
-=
)
3
£10 /
=
5
0 - — T T T
[0 I S o B U AN TS N = o B o B U = T = R o I
A m o N Wn NS o 80
— NN oS S = om
— ™~ < o0 S
Number of Blocks [N}, Space Size =N * 256

Figure 4: Matrix Multiplication using only global memory with
different number of threads per block (a) 16 x 16 = 256
threads/block and (b) 22 x 22 = 484 threads /block

C. Memory Usage per Block

We refer to ShM allocation that was described in
Resource Utilization of Section Il. Here we use different
tile size to be loaded into shared memory and use different
ShM allocation per block. Run-time profiling indicates the
existence of some compiler overhead associated to each
ShM allocation. ShM is allocated in multiples of basic 512
bytes.

A 16x16 tile leads to load a source tile and a result tile
requires the allocation of 2080 bytes into ShM including
the overhead. The actual ShM allocation is 2560.

Since the shared memory is partitioned among the
blocks per SM so in the case of Quadro FX 5800, the
concurrent blocks per SM is 16384/2560 = 6.4 implies 6

(8]

blocks per SM. As only 32 warps are assigned to SM, only
4 blocks will be scheduled to one SM at a time.

35 T ——TPB=32 —m—TPB=16
3 ﬂ\
w 2.5
o
: a
-
5 2
5 /
£15
» ﬁ
g
£ 1 //
0.5 —t—0
O | T T T T T T T 1
Vo> A 0 N A D o L o
B 0N AN S O 9 9
YV R @@
Space Size (N}

Figure 5: Matrix Scaling using different size of shared memory per
block (a) TPB = 32,32 x32x2 x4 =8KB and (b) TPB = 16, 16 X
16x2x4=2KB

A 32x32 tile requires ShM allocation per block that is
8224 bytes which implies that the actual ShM allocation is
8704 bytes. In this case the concurrent blocks per SM are
1.88. Thus only 1 block per SM will be scheduled at a time.
This reduces the SM capacity utilization which in response
reduces the overall performance of the application. Fig. 5
shows the throughput of matrix scaling using different size
of shared memory per block. The computation using shared
memory saturates the device at number of blocks = 512 in
the application that is throughput decreases after this
threshold. Here, the peak throughput achieved at N = 8192
and TPB=16 that is 512 blocks. We may have the same
pattern for TPB=32 if we use larger space size (N) but we
could not run our experiments for N > 16384 due to GM
limitation to 4 GB. For N = 16384, the load of two matrices

requires 2 GB while 8 GB for N = 32768.
VI. APPLICATION RESULTS COMPARISON

A. Matrix Multiplication

Tesla C2070 (N = 2048 x 2048)
TPB | TS | AB | TKB s AKBPSM Exec.
Cycles Time
Restructuring | 55 | 048 | 3 | 2048 48 1462857143 | 2.4486
Algorithm
NVIDIASDK | 256 | 256 | 6 | 16384 48 1170.285714 | 2.6268
CUDALite 32 | 1024 | 1 | 4096 1 2925714286 | 21.2396

Table 4: Parameters comparison of different implementations of
Matrix Multiplication
We have analyzed the structure of matrix multiplication
kernels using CUDAL.te [1] approach and NVIDIA SDK
approach [10]. Both of these implementations used
arbitrary values for defining threads per block (TPB) and
tile size (TS) which are not optimal values in terms of

resource utilization as we have explained in section 111.C.
In CUDALIte, each thread work on the entire row of the
tile resulting in very few threads per block (TPB = 32 as
shown in Table 4 that only 1 warp per block) which is not
sufficient to hide latency of the global memory transfers.
Also, in CUDAL.te, a tile allocation is also done for results
which causes large shared memory usage per thread block
that restricts the number of Active Blocks (AB = 1, see
Table 4, can be calculated using eg. (1)) that highly reduces
the S-Cycles to 1. In NVIDIA SDK approach, 2D thread
blocks of 16 x 16 dimensions is defined with same tile
sizes so each thread work on one element of each tile but
these values produces large number of average kernel
blocks per SM which causes increased overhead of blocks
allocation and thus limited performance. The optimal value
of TPB and TS for Tesla C2070 GPU are 512 and 2048
respectively as proposed by our restructuring algorithm
(see Table 4) and gives the minimum execution time in
comparison of the other approaches.

B. Matrix Scaling

Tesla C2070 (N = 2048 x 2048)

TPB | TS | AB | TKB s AKBPSM Exec.

Cycles Time

Restructuring | 515 | 495 | 3 1024 48 7314285714 | 0.0014
Algorithm

CUDALite 32 | 1024 | 1 | 4096 1 2925714286 | 0.0096

Table 5: Parameters comparison of different implementations of
Matrix Scaling

We have also analyzed the matrix scaling kernel shown
as an example in CUDALite [1] paper. We have found
similar problems of limited number of active blocks due to
large shared memory usage and also large number of
average kernel blocks per SM due to small number of
threads per blocks as explained in the previous section V.A
in the case of matrix multiplication. The optimal value of
TPB and TS for Tesla C2070 GPU are 512 and 4096
respectively as proposed by our restructuring algorithm
(see Table 5) and gives the minimum execution time in
comparison of the CUDAL.te approach.

C. Matrix Transpose

NVIDIA provides optimized kernels of matrix
transpose by analyzing the architectures of shared memory
and global memory. In these optimizations, tiles are
allocated in shared memory in such a way that the access to
the shared memory by different threads at the same time
should be free from shared memory bank conflicts.
Furthermore, access to global memory by concurrent thread
blocks will be done in different partitions of global
memory to load the tile from the source matrix and store
the tile into transposed matrix. We have applied our
resource optimization strategy to two different matrix
transpose kernels as provided in NVIDIA SDK. TPB = 512
is obtained as an optimal value for threads per block that
maximize S-Cycles (see Table 6 and 7) and hence

[9]

minimize the execution time in comparison of the defined
parameters in NVIDIA documentation.

Quadro FX 7000 (N = 2048 x 2048)

S Exec.

TPB Cycles AKBPSM Time

TS AB TKB

Restructuring

Algorithm 512

1024 3 4096 48 256 0.0776

NVIDIA SDK 256 1024 5 4096 40 256 0.1084

Table 6: Parameters comparison of Matrix Transpose kernels with no
shared memory bank conflicts

Quadro FX 7000 (N = 2048 x 2048)

TPB | TS | AB | TKB s AKBPSM Exec.

Cycles Time

Restructuring | 595 | 1004 | 3 | 4096 48 256 0.0800
Algorithm

NVIDIASDK | 256 | 1024 | 5 | 4096 40 256 0.1234

Table 7: Parameters comparison of Matrix Transpose kernels with
diagonal tiles mapping to blocks to avoid partition camping

VII.

We presented a restructuring algorithm to optimize a
CUDA program based on three key concepts: (1) tiling, (2)
coalesced global memory access, and (3) resource
optimization. The execution model of synthesized kernel
consists of uniformly distributing the kernel threads to keep
all cores busy while transferring a tailored data locality
which is accessed using coalesced pattern to amortize the
long latency of the secondary memory. In the evaluation,
we implement some simple applications to outline some
features of the proposed restructuring strategy and
evaluated the performance in terms of execution time and
GPU throughput. Obtained results were analyzed in view
of proposed optimization parameters which reinforces the
proposed restructuring and alleviate the tedious task of
finding an optimized solution based manually optimizing
many parameters. We have also compared our strategy
with other implemented approaches of matrix
multiplication, matrix scaling, and matrix transpose kernels
mentioned in CUDAL.ite and NVIDIA SDK. We found that
none of the approach defines a strategy for defining
optimal number of threads per block and tile size while our
resource optimization strategy helps to determine the
optimal values of these parameters that maximize the
performance in comparison of the other approaches.

CONCULSION

ACKNOWLEDGMENT

We thank King Fahd University of Petroleum and
Minerals and the Department of Information and Computer
Science for access to its GPU computers. We also thank
King Abdullah University of Science and Technology for
access to its GPU workstation.

(1]

[2]

(3]

[4]

[5]

REFERENCES

S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu. CUDA-lite:
Reducing GPU programming complexity. International Workshop
on Languages and Compilers for Parallel Computing (LCPC), 2008.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and
Optimization, Proc. 14th ACM SIGPLAN Symp. on Prin. and Prac.
of Parallel Programming, 2009.

Tianyi David Han and Tarek S. Abdelrahman, “hiCuda: A high-level
Directive-based Language for GPU Programming”, GPGPU’09,
March 8, 2009.

J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr uger, A.
Lefohn, and T. Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80-113, March
2007.

K. Mueller, F. Xu, and N. Neophytou. Why do commaodity graphics
hardware boards (GPUs) work so well for acceleration of computed
tomography? SPIE Electronic Imaging 2007, Computational
Imaging , Keynote, 2007.

[10]

[6]

[71

(8]

[9]

[10]

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Kevin Skadron, “A Performance Study of General-Purpose
Applications on Graphics Processors Using CUDA”, in The First
Workshop on General Purpose Processing on Graphics Processing
Units, 2007.

R. Belleman, J. Bedorf, S.P. Zwart, High performance direct
gravitational N-body simulations on graphics processing units — Il:
an implementation in CUDA, New Astronomy 13 (2) (2008) 103-
112.

Gabe Rudy, “CUDA-CHILL: A Programming Language Interface
for GPGPU Optimizations And Code Generation”, MS Thesis,
School of Computing, University of Utah, USA, August 2010.

Asanovic K., Bodik R., Demmel J., Keaveny T., Keutzer K.,
Kubiatowicz J., Morgan N., Patterson D., Sen K., Wawrzynek J.,
Wessel D., Yelick K.: “A View of Parallel Computing Landscape”,
Communications of ACM 52(10) (2009) 56-67.

David B. Kirk and Wen-mei W. Hwu, “Programming Massively

Parallel Processors: A Hands-on Approach”, Published by Elsevier
Inc. ISBN: 978-0-12-381472-2, 2011.

