King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3) Term 121 (Fall 2012) Major Exam II Thursday Nov. 22, 2012

Time: 150 minutes, Total Pages: 9

Name:	KEY	J	D:	Section:	

Notes:

- Do not open the exam book until instructed
- **Calculators are not allowed** (*basic, advanced, cell phones, etc.*)
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	15	
2	14	
3	9	
4	15	
5	11	
6	13	
7	8	
Total	85	

Q1.

The logic function F(W,X,Y,Z) is plotted on the K-map shown below. Z is the LSB.

(15 Points)

a. The function F can be expressed in the <u>canonical form</u> as a product of maxterms as follows: (2 points)

b. Indicate whether each of the following is True or False: (2 Points)

- $W\overline{X}Z$ is a prime implicant for the function T
- $\overline{W}XY$ is an essential prime implicant for the function

 c. The function F can be minimized to an <u>optimal algebraic sum of products</u> as: (3 points)

$$F(W,X,Y,Z) = YZ + \overline{W} \times \overline{Z} + WX \overline{Y}$$

d. The function F can be minimized to an <u>optimal algebraic product of sums</u> as: One optimal Solution; (5 points)

$$F = \overline{W} \times \overline{Y} + \overline{W} \overline{Y} \overline{Z} + \overline{W} \overline{Y} \overline{Z} + \overline{W} \overline{X} \overline{Z}$$

$$F = \overline{F} = \overline{W} \times \overline{y} \cdot \overline{W} \overline{y} \overline{Z} \cdot \overline{W} \overline{y} \overline{Z} \cdot \overline{W} \overline{y} \overline{Z} \cdot \overline{W} \overline{x} \overline{Z}$$

$$F(W,X,Y,Z) = (\overline{W} + \overline{X} + Y) \cdot (\overline{W} + \overline{Y} + Z) \cdot (W + Y + \overline{Z}) \cdot (W + X + Z)$$

e. If we are told that we should not care about the output of the circuit implementing F for the input combination WXYZ = 1010. (3 Points)

i) Indicate this condition on the K-map

ii) If this information leads to a more optimal expression for F than that obtained in part (b) above, then give that more optimal expression.

Question 2.

(14 Points)

(8 Points)

We would like to design a combinational circuit that multiples two unsigned integers X and Y and produces the product as output Z, i.e. Z = XY. Each of the two integers X and Y is 2 bits. The binary representations of the input and output numbers are $X_1 X_0$ for X (X_0 is the LSB), $Y_1 Y_0$ for Y (Y_0 is the LSB), $Z_n \dots Z_2 Z_1 Z_0$ for Z (Z_0 is the LSB).

a. Fill in all the required information in the table below.

	Circuit Input X1 X0 Y1 Y0	Circuit Zn Z	Output 2Z1Z0
[(Binary)	(Binary)	(Decimal)
0	0000	0000	0
1	0001	0000	0
2	0010	0000	0
3	0011	0000	0
4	0100	0000	0
5	0101	0001	1
6	0110	0010	2
7	0111	0011	3
8	1000	0000	0
9	1001	0010	2
10	1010	0100	4
-11	1011	0110	6
12	1100	0000	0
13	1101	0011	3
14	11 10	0110	6
15	1111	1001	9
- L			
1			

b. Use a K-map of the appropriate size to minimize the binary output Z1 and express the minimized function as a sum of products in terms of the binary inputs X1, X0, Y1, and Y0. Show all your work. (6 Points)

ZI=XITIY0+XIX0%+X1X1+X0Y1万

Question 3.

(a) (**5 points**) Draw the multi-level **NAND** logic diagram for the following Boolean expression, *don't simplify*:

 $(\overline{AB} + \overline{CD})E + A\overline{D}(B + C)$ $\overline{A} = D$ $\overline{C} = D$ $\overline{C} = D$ $\overline{C} = D$ $\overline{C} = D$ $\overline{D} = D$ $\overline{C} = D$

(b) (**4 points**) Using the <u>minimum number of logic gates</u>, draw the <u>2-level</u> **NOR** logic diagram for the following Boolean expression:

$$F(A,B,C) = \Sigma m(0, 3, 5, 6)$$

$$F(A,B,C) = TTM(1, 2, 4, 7)$$

(**15** points)

Question 4:

a) (6 points) Determine the decimal value of the 7-bit binary number (1001100) when interpreted as:

Unsigned number	Signed-magnitude number	Signed-1's complement number	Signed-2's complement number
<mark>76</mark>	<mark>-12</mark>	<mark>-51</mark>	<mark>-52</mark>

b) (3 points) Find the <u>smallest 7-bit signed-2's complement number</u> that can be added to the 7-bit signed-2's complement number (1001100) <u>without causing an overflow</u>. Note that negative numbers are considered to be smaller than positive numbers.

From part (a), 1001100 = -52

Smallest decimal number represented using signed-2's complement with 7 bits = $-2^6 = -64$

- \Rightarrow Smallest number that can be added to -52 without causing an overflow = -64 (-52) = -12
- \Rightarrow Smallest 7-bit signed-2's complement number that can be added to (1001100) without causing an overflow = **1110100**

Alternative Solution:

Smallest signed-2's complement number using 7 bits = 1000000

- $\Rightarrow \text{ Smallest 7-bit signed-2's complement number that can be added to (1001100) without causing an overflow = 100000 1001100 = 1000000 + 0110100 =$ **1110100**
- c) (6 points) Perform the following signed-2's complement arithmetic operations in binary using 5 bits. All numbers given are represented in the signed-2's complement notation. Indicate clearly the carry values out of the last two stages. For each of the two operations, check and indicate whether an overflow occurred or not.

Operation	Carry value out of the 4 th bit	Carry value out of the 5 th bit	Overflow occurred? (Yes/No)
a. 01011 \Rightarrow (+11) $\frac{+11110}{01001}$ $\frac{+(-2)}{(+9)}$	1	1	No
b. 01001 \Rightarrow 01001 \Rightarrow (+ 9) -10010 $+01110$ $+(+14)$ 10111 (- 9)	1	<mark>0</mark>	<mark>Yes</mark>

Question 5.

(a) (6 points) You are given one 3-to-8 decoder, one NOR gate and one OR gate to implement the two functions given below.

 $F_1 (A,B,C) = \Pi M (0, 1, 4, 5, 6)$ $F_2 (A,B,C) = \sum m (0, 4, 6) + \sum d(1, 3)$

Draw the circuit and properly <u>label</u> all input and output lines.

Solution:

Complement of $F_1 = \sum m (0, 1, 4, 5, 6)$; Connect the outputs D0, D1, D4, D5, D6 to the input of NOR gate. For F_2 , use a three input OR gate, and connect D0, D4, and D6 to its input. Treat the don't cares are zeros (ignore them).

(b) (5 points) Given the truth table below for a function with four inputs (A, B, C and D) and one output F, implement F using a 4-to-1 MUX (with 2 select lines) and additional logic. Show how you obtained your solution, and properly <u>label</u> all input and output lines. Apply A and B to the select inputs.

А	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Solution: Since AB inputs are given to select lines, we can group the truth table into 4 parts, when AB=00, AB=01, AB=10, and AB=11.

When AB=00, note that F=D;

When AB=01, note that F=1;

When AB=10, note that F=C'

When AB=11, note that F=0.

Connect, D, 1, C' and 0 to the four inputs of the MUX.

Question 6.

Assume that the delay of a 2-input XOR gate is 3ns while the delay of other gates is equal to the gate's number of inputs, i.e. the delay of an inverter is 1ns, the delay of a 2-input AND gate is 2ns, the delay of a 3-input OR is 2ns, the delay of a 3-input AND gate is 3ns, the delay of a 3-input OR gate is 3ns, etc.

Determine and compute the longest delay in the 4-bit Ripple Carry Adder (RCA).

The longest delay is **19 ns** which is along the path from {A0 B0} across the propagate XOR gate until the Cout signal.

(b) (4 points) Show the design of a <u>2-bit</u> Carry Look-Ahead Adder (CLA) by drawing its logic diagram.

(c) (**3 points**) Using the delay assumptions given in the beginning of the question, determine and compute the <u>longest delay</u> in the **2-bit Carry Look-Ahead Adder** (CLA).

The longest delay is **10 ns** which is along the path from {A0 B0} across the propagate XOR gate until the S1 signal.

(8 points)

Question 7.

Using a <u>minimal</u> number of MSI components such as: decoders, encoders, multiplexers, adders, magnitude comparators and other necessary logic gates, design a circuit that takes two 4-bit binary numbers $A=A_3A_2A_1A_0$ and $B=B_3B_2B_1B_0$ and a 2-bit user selection input $S=S_1S_0$. The circuit should produce a 5-bit output $O=O_4O_3O_2O_1O_0$ according to the following table:

S 1 S 0	O is equal to
00	A+B
01	A-B
10	A+1
11	2*A

