
J. SYSTEMS SOFIWARE 163
1993; 20~163-167

Functional Languages: A Performance Study

S. Mansoor Sarwar
Department of Electrical Engineeting, Multnomah School of Engineering, University of Portland, Portland, Oregon

Marwan H. Abu-Amara
Department of Electrical Engineering, Texas A h M University College Station, Texas

This article describes a study evaluating the run time
behavior of two functional languages, combin-
ator-based SASL and environment-based Franz LISP,
for a set of algorithms. The idea was to measure the
effectiveness of the instruction set of a conventional
processor and Turner’s combinators as the instruction
set for a processor that runs functional languages.
The study shows that, statistically, the com-
binator-based implementation of SASL is better than
the environment-based implementation of Franz LISP
in space and time for at least small to medium-size
input data sets.

INTRODUCTION AND PROBLEM STATEMENT

An implementation technique for functional lan-
guages that has received considerable attention in
recent years is combinator-based graph reduction
[l-5]. This technique was first introduced by Turner
131 in his implementation of a purely applicative
language called SASL. In the SASL environment,
the bound variables are abstracted (removed) from
expressions and replaced by a number of constants
called combinators. The resulting variable-free ex-
pression is then complied into a general digraph
which is progressively reduced at run time until it is
no longer reducible, and is called the normal form
(answer> of the given expression.

The main focus of this article is to describe a
study which was conducted to find out how environ-
ment-based implementation of functional Franz
LISP [6-S] and combinator-based implementation of
SASL compare with each other for a set of algo-

Address correspondence to Professor S. Mansoor Sarwar, Dept. of
Electrical Engineeting, Multnomah School of Engineering University
of Portland, 5000 N. Willamette Bled., Portland, OR 97203.

0 Elsevier Science Publishing Co., Inc.

655 Avenue of the Americas, New York, NY 10010

rithms. Our study primarily focused on collecting the
following statistics:

l The static code sizes, i.e., the number of memory
words needed to store the compiled codes for a set
of abstract data types (ADTs) and small to
medium-size programs for SASL and Franz LISP.

l The ratio of the number of memory references
made by SASL and LISP versions of the programs
for small to medium-size input data sets.

These statistics established the space and time be-
haviors of environment- and combinator-based graph
reduction models for a set of representative algo-
rithms. They can be used to design a processor
instruction set that efficiently supports the execution
of functional languages.

In this study, Turner’s combinators were assumed
to comprise the instruction set of a hypothetical
processor. The number of memory references made
for SASL programs was based on the assumption
that SASL programs are executed on such a proces-
sor. This assumption is realistic because, for our test
programs, the average number of arguments needed
for a VAX 8350 instruction and a Turner combina-
tor came out to be about 1.67 and 2.65, respectively.
Also, the number of arguments for the Turner com-
binators used in the SASL environment varies be-
tween 1 and 4, which is very similar to the range of
arguments needed by the instructions for a typical
conventional processor. To make our analysis as fair
as possible, we implemented the same algorithms in
both language environments. We tried to use similar
language constructs and functions (primitive as well
as nonprimitive) in both languages. In addition, the
overhead code generated as part of the compiled

Olh4-1212/93/$6.00

164 J. SYSTEMS SOFTWARE
1993; 20:163-167

S. M. Sarwar and M. H. Abu-Amara

version of a LISP program was not considered while the relative performance of various sorting and
calculating the number of memory references made searching algorithms in SASL and Franz LISP envi-
by the program during its execution. ronments.

PERFORMANCE EVALUATION METHODOLOGY

To obtain the required statistics, the SASL run time
system was tailored to get execution time data for a
set of representative ADTs and small to medium-size
programs. Our modified system lets us view the
initial combinatory graph, the combinatory graph
after every reduction step, the initial combinatory
string, the combinatory string after each reduction
step, the contents of a range of graph nodes, and
total and percent usage of each combinator for a
given program execution.

To collect statistics for the LISP counterparts of
the SASL programs, the Franz LISP compiler Liszt
was used to generate assembly versions of source
programs. The assembly code for each program was
then passed through a filter that gave its static code
size as output. Since we did not have the source
code for Liszt, a set of counters were placed at
appropriate places in a LISP program to calculate
the frequency of execution of each function in the
program. These instruction frequencies were then
processed to calculate the number of assembly lan-
guage instructions executed and the number of
memory references made for the given program.

RESULTS AND DISCUSSION

In this section, we analyze the statistics obtained for
a few of our benchmark programs, including sym-
bolic differentiation, matrix multiply, and various
searching and sorting algorithms. We also describe

Table 1. Static Code Sizes For SASL And Franz
LISP Programs

Program

LISP SASL Ratio
(VAX 8350 (Turner
Instructions) Combinators) (LISP/SASL)

Symbolic
differentiation

Matrix multiply
Sorting

Insertion
Quick
Tree

Searching
Sequential
Binary
Tree

Maketree
Tree traversal

Inorder
Preorder
Postorder

6629 2382 2.783
628 67 9.373

170 54 3.148
324 59 5.492
406 134 3.030

110 31 3.548
517 95 5.442
221 63 3.508
155 88 1.761

63 30 2.100
65 31 2.097
73 34 2.147

The statistics taken for the benchmark programs
have shown that the static code sizes for SASL
programs are always smaller than their LISP coun-
terparts. Table 1 shows the static code sizes for the
various benchmark programs and ADTs we ana-
lyzed. The table clearly shows that the amount of
memory needed to store the combinatory code ver-
sion of a program is always smaller than the amount
of memory needed to store the assembly code ver-
sion of the same program. The ratio of the static
code sizes for the matrix multiply program is outside
the normal range. The primary reason for this ab-
normality is that SASL has a more powerful library
function “map” (the most heavily used function in
our matrix multiply algorithm) than its Franz LISP
counterpart. Therefore, we wrote our own map func-
tion to ensure that we used the same algorithm.
However, this increased the static (hence dynamic)
code size of the LISP version of matrix multiply.

As for the average number of memory references
made during the execution of different programs,
the LISP version of the symbolic differentiation
program made about 15% more memory references
for differentiation of various functions than its SASL
counterpart. That is, on the average, the combina-
tor-based version of the symbolic differentiation
program ran 15% faster than the environment-based
(standard assembly code) version. For matrix multi-
ply, the speedup is indicated by the curve shown in
Figure 1. This curve shows that speedup decreased
with increase in size of the input matrices and that
the speedup became almost constant for large matri-
ces. In fact, the speedup became almost a constant
1.4 for matrices of size r 10.

Figures 2 and 3 show the speedup comparisons for
various sorting and searching algorithms in worst-
case scenarios. The curves in Figure 2 show that the
combinatory code executed faster than the normal
assembly code for all three sorting algorithms. Al-
though speedups decreased quickly with increase in
the size of input list, they seemed to become con-
stant for list lengths of > 80. The curves also show
that speedup was largest for insertion sort, followed
by tree sort and Quick sort, respectively.

The curves in Figure 3 show that among all the
searching algorithms we analyzed, the combinatoty
version of sequential search gave the highest speedup
over its assembly code counterpart. In addition, this
speedup remained a constant two, whereas the
speedup for binary and tree search algorithms de-
creased with increase in input list size. Analysis also

Functional Languages: A Performance Study J. SYSTEMS SOFTWARE 165
1993; 20:163-167

Matrix Dlmenslon

Figure 1. Performance of matrix multiply.

showed that the speedup ratio for tree sort de-
creased by about 0.01 for every lOO-element increase
in the size of the input list. Furthermore, among the
searching algorithms, sequential search was the most
efficient, both in space and time, in combinatory as
well as assembly versions.

For searching and sorting algorithms, the number
of memory references needed to execute the recur-
sive portions in the assembly versions was a little
larger than the number of memory references
needed to execute the corresponding portions in the
combinatory codes. Furthermore, for binary search
and all sorting algorithms, the nonrecursive portions
of assembly codes were a little larger than the corre-
sponding combinatory codes. Therefore, as the size
of the input list increased, the relative significance

1.0:. , . I.. I.. I,. I.. 1

0 20 40 60 60 100 120

Length of Input List

Figure 2. Performance of sort algorithms.

--Q- Sequential Search

----+-- Binary Search

- - U- - Tree Search

1.01.. , . . I., I.. I. * I.
0 20 40 60 60 100 1

Length of Input List

Figure 3. Performance of search algorithms.

!O

of the nonrecursive portions decreased, thereby lev-
eling the speedup curves. For sequential search and
tree search, however, the ratio of memory refer-
ences was almost constant, both for recursive as well
as nonrecursive portions of the codes. Therefore,
the speedup remained almost constant for these
algorithms.

The theoretical complexities of sequential, tree,
and binary search algorithms are O(n), O(log n),
and O(log n), respectively. However, actual imple-
mentation of these searching algorithms has shown
that binary search is the worst in time behavior,
followed by tree search and sequential search. Fig-
ures 4 and 5 further show that sequential search was

ET?
1.6

E 1.4

; 1.2

5 1.0
i

,*--p--
~__L+__p__p’-P-~

I’
b’

u

0 20 40 60 60 100 120

Length of Input Llst

Figure 4. Performance of SASL search.

V Blnary/Saquential

----•--- Tree/Sequential
- - (I-- Tree/Binary

166 J. SYSTEMS SOFTWARE
1993; 20~163-167

S. M. Sarwar and M. H. Abu-Amara

.,.”

2.8

2.6 :

E 2.4 :

i 2.2 y

B

B

2.0 -j

1.8:

e 1.6 -

B 1.4

f 1.2

‘;j 1.0

0
J

0.8

2 0.6

--P Binary/Sequential
----•---’ Tree/Sequential
--_-(I--_ TrwBinaw I

fj . , , , . , . . , , . , . . , ~ , /

0 20 40 80 80 100 120
Length of Input List

Figure 5. Performance of LISP search.

about 2.5 and 2 times faster than tree search in
SASL and Franz LISP environments, respectively.
Similarly, sequential search behaved better than bi-
nary search for list sizes of < 100 elements in Franz
LISP. In SASL, sequential search continued to be-
have much better than binary search for lists of
> 100 elements. Tree search performed better than
binary search for list sizes of I 17. For lists of
> 17 elements, binary search behaved better than
tree search.

Among the sorting algorithms we analyzed, inser-
tion sort performed about twice as well as quick sort
and about 1.6 times as good as tree sort (Figures 6
and 7). Pe~o~ance was a little better in the SASL

3.0 9

2.8 -
- tMck/lnsertion
----•---’ CiukluTree
- - n- - Tree/Insertion

0 2.6

B
s 2.4-

5
8 2.2-

$ 2.0-
E
i 1.6-

5
1.6-

0
% rr 1.4-

,

0..
-0-*--g__ p_-_~__-p_*---p_-_II

1.2- l ---‘
._..-___.____*_*_~.__.~....~....~.....

1.0 ..,..,‘.,..,..I.*
0 20 40 60 80 100 120

Lenglh of Input List

Figure 6. Performance of SASL sort.

2.8 - QuicWlnseftion

2.6
----•--- Quidulree

- -a- - Tree/Insertion
2.4 4

2.2

2.0

1.8
~--5--p--lt--*__p__*-~

0 20 40 80 60 100 120
Length of input List

Figure 7. Performance of LISP sort.

environment. Tree sort performed about 1.2 times as
well as quick sort in both environments for the
range of list sizes that we considered.

CONCLUSIONS AND FINAL REMARKS

The study shows that for small to medium-size pro-
grams and input data sets, compiled functional lan-
guages will execute faster on a processor whose
instruction set is the combinators Turner used for
implementing SASL, as opposed to a conventional
processor. The behavior of a wide range of regular,
irregular, symbolic, and nonsymbolic programs in
combinator-based SASL and environment-based
Franz LISP (on VAX 8350) has clearly demon-
strated this. Furthermore, among searching algo-
rithms, sequential search behaved the best, followed
by binary and tree search. Among sorting algo-
rithms, insertion sort performed the best, followed
by tree and quick sort.

The study further shows that the behavior of an
algorithm in a given programming language depends
on the data domains available in the language and
their implementation. If data domains are sequen-
tial, then sequential algorithms perform better than
nonsequential (tree, divide-and-conquer, etc.) algo-
rithms. If data domains are nonsequential, then non-
sequential algorithms behave better than sequential
algorithms. Since SASL and Franz LISP have list as
one of their heavily used data domains, sequential
algorithms perform better than nonsequential algo-
rithms if list is used as the fundamental data struc-
ture. This behavior is clearly reflected by the curves

Functional Languages: A Performance Study

illustrated in Figures 4-7 for a number of searching
and sorting algorithms.

To further the research described here, a set of
benchmarks are being analyzed to find out most
often used Turner combinators and combinator
strings. These statistics can be used to design a
processor with most heavily used Turner combina-
tors as its instruction set. Also, some of the most
often used combinator strings will be substituted by
equivalent but smaller combinatory strings or new
families of combinators. The main focus with respect
to the new combinator families will be on list-mani-
pulation combinators, because our preliminary study
has shown that list manipulation is the major bottle-
neck in functional languages. The reason for this
bottleneck is that most functional languages have
list as one of their most heavily used compound data
domains, but use such primitive list-manipulation
combinators as cons, car, and cdr. We will focus on
designing a set of combinator families to efficiently
support higher level list operations, along with a new
representation of list to support these combinator
families. In so doing, we hope to be able to speed up
vector- and array-like operations by allowing ran-

J. SYSTEMS SOFTWARE 167
1993; 20:163-167

dom access within a list as well as concurrent opera-
tions on subsets of list elements.

REFERENCES

1.

2.

3.

7.

8.

S. K. Abdali, An Abstraction Algorithm for Combina-
tory Logic, J. Symbol. Log. 41, 222-224 (1976).
R. J. M. Hughes, Super-Combinators: A New Imple-
mentation Method for Applicative Languages, Pro-
ceedings of the ACM Symposium on LISP and Func-
tional Programming, Pittsburgh, Pennsylvania, 1982,
pp. l-10.
D. A. Turner, A New Implementation Technique for
Applicative Languages, Software-Practice and Experi-
ence 9, 31-49 (1979).
D. A. Turner, Another Algorithm for Bracket Ab-
straction, J. Symbol. Log. 44, 267-270 (1979).
D. A. Turner, SASL Language Manual, University of
Kent, Canterbury, U.K., 1983.
J. F. Foderaro, K. L. Sklower, and K. Layer, The Franz
LISP Manual, University of California, Berkeley, Cali-
fornia, 1983.
J. F. Foderaro, The Franz LISP System, University of
California, Berkeley, California, 1983.
R. Wilensky, LISPcraft, W. W. Norton, New York,
1986.

