
Distrib Comput (1995) 9:147 156

(�9 Springer-Verlag 1995

Optimal asynchronous agreement and leader election algorithm
for complete networks with Byzantine faulty links
Hasan M. Sayeed 1, Marwan Abu-Amara 2, Hosame Abu-Amara 3

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
2Bell-Northern Research, P.O. Box 833871, Mail Stop D208, Richardson, TX 75083, USA
3Department of Electrical and Computer Engineering, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154, USA

Received: May 1994 / Accepted: July 1995

Summary. We consider agreement and leader election on
asynchronous complete networks when the processors
are reliable, but some of the channels are subject to
failure. Fischer, Lynch, and Paterson have already
shown that no deterministic algorithm can solve the
agreement problem on asynchronous networks if any
processor fails during the execution of the algorithm.
Therefore, we consider only channel failures. The type of
channel failure we consider in this paper is Byzantine
failure, that is, channels fail by altering messages, send-
ing false information, forging messages, losing messages
at will, and so on. There are no restrictions on the behavior
of a faulty channel. Therefore, a faulty channel may act
as an adversary who forges messages on purpose to pre-
vent the successful completion of the algorithm. Because
we assume an asynchronous network, the channel delays
are arbitrary. Thus, the faulty channels may not be detect-
able unless, for example, the faulty channels cause garbage
to be sent. We present the first known agreement and
leader election algorithm for asynchronous complete net-
works in which the processors are reliable but some chan-
nels may be Byzantine faulty. The algorithm can tolerate

up to [~ - ~] faulty channels, where n is the number of

processors in the network. We show that the bound on the
number of faulty channels is optimal. When the processors
terminate their corresponding algorithms, all the proces-
sors in the network will have the same correct vector,
where the vector contains the private values of all the
processors.

Key words: Distributed algorithms Byzantine agreement
- Faulty channels - Asynchronous networks - Fault-toler-
ant computing

Correspondence to: H. Abu-Amara
e-mail: amara@eesunl.tamu.edu

1 Introduction and literature survey

1.1 Introduction

Reaching agreement among remote processors in a distri-
buted system is one of the most fundamental problems in
distributed computing and is at the core of many algo-
rithms for distributed data processing, distributed file
management, and fault-tolerant distributed applications
[13]. Consider a distributed system of n processors, where
each processor u is running a process that computes some
private value ID(u). By exchanging messages, each proces-
sor u can obtain a vector of the private values computed by
all n processors. Processor u can then apply some aver-
aging function on the vector to obtain a number VAL that
all processors agree on. All processors then can use VAL to
update a common variable. This is useful, for instance, in
distributed database systems where several processors
may wish to make different alterations in the same file. In
order to avoid inconsistencies in the file, the processors
exchange messages to agree on which alteration to incor-
porate in the file. Other applications of agreement include
concurrency control, regeneration of a lost (unique) token,
recovery by electing a new coordinator after a crash of
a coordinator in a distributed database system, and replac-
ing a primary site in a replicated distributed file system
[1, 4, 21, 22].

A network is complete if every processor has a direct
communication channel to every other processor. We con-
sider the agreement problem on asynchronous complete
networks when the processors are reliable, but some of the
channels are subject to failure. We wish to construct an
algorithm such that all n processors will have the same
correct vector when the processors terminate their corres-
ponding algorithm. (This is also called achieving interac-
tive consistency among the processors [24]). Thus, the
processors can use the correct vector to compute a value.
Fischer, Lynch, and Paterson [13] have already shown
that no algorithm can solve the agreement problem on
asynchronous networks if any processor fails during the
execution of the algorithm. Fischer, Lynch, and Paterson's
impossibility result holds even for fail-stop failure, the

148

most benign of all faults. Therefore, we consider only
channel failures.

The type of channel failure we consider in this paper is
Byzant ine failure, that is, channels fail by altering mess-
ages, sending false information, forging messages, losing
messages at will, and so on [18, 23, 24]. There are no
restrictions on the behavior of a faulty channel. Therefore,
Byzantine faulty channels act as malicious agents who
inject faulty messages in the network to prevent the suc-
cessful completion of algorithms. Because we assume an
asynchronous network, all channel delays are arbitrary.
Thus, the faulty channels may not be detectable unless, for
example, the faulty channels cause garbage to be sent.
Note that a channel can fail at any time during the execu-
tion of the algorithm.

In this paper, we present the first known agreement
and leader election algorithm for asynchronous complete
networks in which the processors are reliable but some
channels may be Byzantine faulty. The algorithm can

tolerate up to [~ 2 J f a u l t y channels, where n is the

number of processors in the network. Throughout the
paper, we assume that there are t faulty channels, and that
the total number n of processors in the network is at least
2t + 2. As we show in Theorem 1, if a network may have
up to t Byzantine faulty links, then all the faulty links may
be incident on one node, and, therefore, agreement will be
possible only when the connectivity of the network is at
least 2t + 1. Hence, the bound on the number of proces-
sors and faulty channels in our algorithm is optimal. The
total number of bits that the nodes send is O(n a S) bits,
while the amount of storage that the algorithm uses in
each node is O(n 2 S) bits, where S is the maximum number
of bits needed to specify the node private values.

1.2 Literature survey

In the literature, three different, but related, problems were
addressed: consensus [6, 9, 11, 12, 13, 19], agreement or
interactive consistency [7, 10, 24], and leader election
[2, 3, 5, 8, 15, 16, 17, 20, 25]. In the consensus problem, all
of the non-faulty processors in the network want to agree
on a single bit, a 0 or a 1. In the ayreement problem, each
processor in the network has a private value that should be
communicated to the other nodes in the network. Thus, at
the end of an execution of an algorithm that solves the
agreement problem, each non-faulty processor computes
a vector with an element for each processor in the network,
where the vector computed by all non-faulty processors
must be the same, and each vector element that corres-
ponds to a non-faulty processor is the private value of that
processor. In the leader election problem, all of the proces-
sors in the network want to choose a unique processor to
be the leader. To solve the election problem, deterministic
leader election algorithms assume that there exists at least
one unique private value. Note that if a processor, say x,
has a Byzantine failure, then the leader election problem
cannot be solved simply because x can become the leader,
or x can force the other processors to elect a non existent
processor. We think of the agreement problem as a gener-
alization of the consensus problem because, after comput-

ing the vector in the agreement problem, the non-faulty
processors can agree on a particular value. Also, in the
agreement problem, if the private value of some processor
u is unique, then the leader election problem can be solved,
provided that there are no Byzantine faulty processors in
the network, simply by having each processor choose the
processor with the largest unique private value as the
leader.

2 Formal model and definitions

2.1 Formal model

This section discusses the model of the distributed net-
work. Our model follows Goldreich and Shrira's model
[16]. Consider a network of n processors. We model the
network as a graph of n nodes, in which each node repres-
ents a processor, and each link represents a bidirectional
communication channel. We will use the term node to
indicate a processor, and the term link to indicate a com-
munication channel. We assume that the network is com-
plete, that is, every node is connected to every other node
by a bidirectional communication channel. We also as-
sume that the network is asynchronous, that is, there is no
global clock in the system, and each node may have its
own clock. The nodes do not have shared memory; they
communicate by sending messages to each other on the
communication channels between them.

All the nodes are identical except that each node u has
a private unique value (identifier) ID(u) chosen from a
totally ordered set. Initially, no node knows the identifier
of any other node. Each node u knows the number of
nodes in the distributed system.

A distributed algorithm on a network is a set of n deter-
ministic local programs, each assigned to a node. Each
local program consists of computation statements and com-
munication statements. The computation statements control
the internal operations of a node. The communication
statements are of the form "send message M on link I'" or
"receive message M* on l ink/". Each node u has a Send-
Buffer(u, l) and a Receive-Buffer(u, l) associated with each
link I incident on u, where the buffers are not necessarily
first-in-first-out. Let I be the link that connects nodes u and
v. When u wishes to send a message M on link I, node
u places M in Send-Buffer(u,/). We call this event a send
event. To capture the asynchronous nature of our network,
messages may remain in the send-buffers for arbitrary
lengths of time. A transmission event in l occurs when
I places M in Receive-Buffer(v, l). We assume that u cannot
inspect Send-Buffer(u, l) to check whether M was removed
from the buffer. Hence, M is in transit from u to v if M is in
Send-Buffer(u, l). If u wishes to process a message M* on l,
the u removes M* from Receive-Buffer(u, l). We call this
event a receive event. If M* is not in Receive-Buffer(u,/),
then u either waits for M*, or u receives some other
message depending on u's local program. When we say
that node u receives a message, we mean that u removes the
message from a Receive-Buffer and processes the message.
A failure event in a link l is the event of l spontaneously
discarding a message, generating a message that was not
created by a processor, or changing the contents of a

149

message that passes through the link. We model each
processor u as an automaton. Upon receiving a message
M, processor u either accepts or discards M, depending on
u's local program. If u accepts M, then u atomically up-
dates the variables and counters associated with the pro-
cessor and changes u's state. If u discards M, then u does
not change u's state and does not update any variable or
counter. Node u always discards damaged messages that
arrive at u.

In keeping with current assumptions in the literature
[1, 5, 8], a link I is faul ty during a particular execution E of
the algorithm if I experiences at least one failure event in E.
If a link l is not faulty, then it is reliable. Once a link has
been labeled 'faulty', the link continues to be called faulty
even if the link is repaired. In other words, a reliable link is
a link that never experiences a failure event [1, 5, 8]. A bi-
directional link is considered faulty even if the link is faulty
in only one direction. In other words, if a link l connects
nodes u and v, and 1 experiences failure events when
messages traverse from u to v, but not from v to u, we still
consider I to be faulty in both directions. We assume that,
in any execution of the algorithm, there can be no more
than t faulty links, and n > 2t + 2.

Consider a particular execution E of a distributed
algorithm. For convenience, we assume the existence of
a global clock that gives the time at which each event in
E occurs. Although this clock is available to an observer of
the network, the nodes do not know of its existence. We
will assume that each event in E occurs at some discrete
unit of time starting from zero. Let Events(u) be the multi-
set of u's send and receive events in E. The local program in
u induces a total ordering on Events(u). Two events, each
in a distinct node, may occur at the same time. However,
two events cannot occur at the same time in the same node.

We assume that, when a node receives a message, then
the node knows on which link the message was received.
The delay on a reliable link is arbitrary but finite. Thus,
messages sent on reliable links must be eventually de-
livered. Because of the asynchronous nature of the net-
work, a node cannot distinguish between a slow link and
a faulty link. Therefore, the faulty links may not be detect-
able unless, for example, the faulty links cause garbage to
be sent. Links may fail at any time before or during the
execution of the algorithm. All the nodes in the network
are reliable. It is not necessary that all nodes start the
execution of the algorithm simultaneously; some node may
be initially dormant. We assume that, if a dormant node
receives a message from some other node, then the dor-
mant node wakes up and starts executing the algorithm.

2.2 Definitions

- A processor k receives a correct message M from another
processor r if M is an exact copy of the original message
sent by r. Otherwise, the message M is.faulty.
- Consider a network of n processors, where each proces-
sor has some private value. Consider some processor k in
the network. Let Vector(k) be a vector formed by k from
the n values V k, V k, ... ,vk,, that k receives from all the
processors in the network (including k). Thus, we write
Vector(k) (V], V k , k ,V,,). We say that Vector(k) is
correct if, for all l _< i _< n, the value V k is equal to the

Node Z Node Z

Receives Receives Receives Receives

Network G 1 Network G 2

(a) (b)

Fig. la, b. Two complete networks, where a bold line denotes
a faulty link

private value held by processor i. Otherwise, Vector(k) is
said to be.faulty.
- Consider any two processors, say r and s, in a network
on n processors. Let the two vectors formed by r and s be
Vector(r) (V•, V~, .,V~) and Vector(s) (V1,V2,~ s . . . ,
V]), respectively. Then, the two vectors Vector(r) and
Vector(s) are said to be identical if V~ = V~, for all
1 _ < i N n. Furthermore, if Vector(r) and Vector(s) are
identical and correct, then we say that r and s have com-
puted the same correct vector.

3 Lower bound for connectivity

The lower bound proof presented below is similar to the
connectivity lower bound proof for synchronous networks
with Byzantine faulty processors shown in Lemma 5 of
[10]. We assume that the algorithms are "full information"
algorithms [14].

Theorem 1. Byzantine a#reement is not possible in complete
networks that hat'e t faul ty links and a connectivity of at
most 2t.

Proof. Consider the two networks, G1 and G2, shown in
Fig. 1. Let the IDs of all the nodes of networks G1 and G2
be identical except for node Z, as shown in Fig. 1. Assume,
contrary to the theorem, there exists an algorithm H that
ensures Byzantine agreement in complete networks that
have t faulty links and a connectivity of 2t. Thus , / / so lv e s
Byzantine agreement on both G1 and G2. In Fig. la, sub-
network A receives ~ as the ID of node Z, whereas subnet-
work B receives fl as the ID of node Z because B is
connected to Z through t faulty links. In Fig. la, the faulty
links follow the doctrine [-10]: substitute the value ~ for
fl in every message that passes from B to Z, and substitute
the value fl for ~ in the messages passing back from Z to B.
Similarly, in Fig. lb, subnetwork A receives ~ as the ID of
node Z because A is connected to Z through t faulty links,
whereas subnetwork B receives fl as the ID of node Z. In
Fig. lb, the faulty links follow the doctrine: substitute the
value fl for ~ in every message that passes from A to Z, and
substitute the value ~ for fl in the messages passing back
from Z to A. Hence, subnetworks A and B of both G 1 and
G2 have the same inputs to H. Thus, the final vector
computed by the nodes in subnetworks A and B of both G1

150

and G2 after running H will be identical. However, accord-
ing to the definition of Byzantine agreement, and since G1
has ~ as the ID for node Z and G2 has/~ as the ID for node
Z, the nodes in subnetworks A and B of G1 should com-
pute a final vector that differs from the final vector
computed by the nodes in subnetworks A and B of G2.
A contradiction. []

4 Algorithm

4.1 Intuition and description of the algorithm

Appendix A has a detailed description of our algorithm.
We say that an ID 7 is faulty if 7 was fabricated by a faulty
link and is not the ID of a node. A node broadcasts
a message if the node sends the message to all its neigh-
bors. In a nutshell, the algorithm consists of two parts: In
the first part, each node u broadcasts ID(u) in an
"Announce-ID" message, and upon receiving such a mess-
age M, u forwards M to u's neighbors in a "Verify-ID"
message. In the second part, each node that computes
a vector V consisting of the correct identifiers of all nodes
broadcasts a "Correct-Final, V" message, and each node
that receives two "Correct-Final, V" messages (from two
distinct nodes) broadcasts a "Verify-Final, V" message.
A node decides on a vector V if the node computes directly
that V is the correct vector or if the node receives t + 1
"Correct-Final, V" and "Verify-Final, V" messages.

Our algorithm has three properties:

liveness: At least two nodes broadcast "Correct-Final, V"
messages, where V is the correct vector of identifiers,
resiliency: a node broadcasts a "Correct-Final, V" mess-
age only when V is the correct vector of IDs, and
progression: if a node receives two "Verify-Final, V" mess-
ages on some two distinct links l and l*, and in addition the
node receives "Verify-Final, V" or "Correct-Final, V"
messages on at least t - 1 distinct links different from I and
l*, then V is the correct vector of IDs.

We first explain how the algorithm ensures that the
progression property is true. Assume that the resiliency
property holds for the algorithm. Since there are at most
t faulty links in the network, and there are at least 2t + 2
nodes in the network, there are at least two nodes P and
Q that are not adjacent to any faulty links. Our algorithm
ensures that nodes P and Q compute the correct final
vector V. Nodes P and Q, then, broadcast the message
"Correct-Final, V" to all other nodes, and P and Q stop
executing the algorithm. Since all nodes are connected to
P and Q via non-faulty links, all nodes receive the Correct-
Final messages from P and Q.

Since nodes do not initially know which links are
faulty, and faulty links may fabricate Correct-Final mess-
ages that contain faulty vectors, each node Y, upon receiv-
ing two "Correct-Final, V" messages on some two distinct
links 1" and r*, broadcasts the message, "Verify-Final, V" to
all other nodes. A node that receives a message "Verify-
Final, V" does not relay it to other nodes. Suppose that
Y receives two "Correct-Final, V*" messages from two
distinct links I and/*, for some vector V* of IDs. Then, we
claim that at least t - 1 links in addition to I and I* deliver

Fig. 2. Nodes Y and W and the adjacent faulty links

"Correct-Final, V*" or "Verify-Final, V*" messages to Y if,
and only if, V* is the correct final vector. Hence, when
Y receives "Correct-Final, V" or "Verify-Final, V" from at
least t - 1 links in addition to r and r*, node Y concludes
that "Correct-Final, V" is an authentic message, takes V as
the correct final vector, broadcasts "Correct-Final, V", and
stops executing the algorithm.

To see why at least t - 1 links in addition to l and l*
deliver "Correct-Final, V*" or "Verify-Final, V*" messages
to Y if V* is the correct final vector, recall that P and
Q broadcast the message "Correct-Final, V" with V = V*.
Hence, all nodes, other than P, Q, and Y, will broadcast
"Correct-Final, V*" or "Verify-Final, V*" messages. Some
of these messages may be lost in faulty links that may be
adjacent to Y. Nevertheless, Y will receive such messages
on at least (number of nodes without P, Q, and
Y) - t = (n - 3) - t > (2 t + 2 - 3) - t = t 1 links.

On the other hand, we claim at most t - 2 links in
addition to 1 and I* deliver "Correct-Final, V*" or "Verify-
Final, V*" messages to Y if V* is not the correct final
vector. If V* is not the correct final vector, and Y receives
"Correct-Final, V*" on some link k*, then k* must be
faulty, by the resiliency property of our algorithm. Hence,
I and I* are both faulty. On the other hand, if Y receives
"Verify-Final, V*" on some link k, then k can be non-
faulty. This can happen, for example, in the situation
illustrated in Fig. 2, where the bold lines indicate faulty
links. The non-faulty link k connects Y to node W, and

there are two faulty links lw and/,,, incident on W. If Iw and

fabricate the faulty message "Correct-Final, V*", then
W may send the message "Verify-Final, V*" on link k.
Hence, let Final-naive(Y) be the set of nodes that are
connected to Y via non-faulty links and send "Verify-
Final, V*" to Y. Then W is a member of Final-naive(Y),
and each member of Final-naive(Y) is adjacent to at least
two faulty links. Suppose that there are f faulty links
incident on Y (including / and I*). Since there are at most
t faulty links in the network, then Final-naive(Y) contains
at most t - f n o d e s , as shown in Fig. 2, where the nodes in

151

Final-naive(Y) are contained in the polygon. Hence, at
most f - 2 faulty links incident on Y (other than l and l*)
deliver "Correct-Final, V*" or "Verify-Final, V*" messages
to Y, and at most t - f non-faulty links that connect
Final-naive(Y) nodes to Y deliver "Verify-Final, V*" mess-
ages to Y. Hence, at most f - 2 + t - f = t - 2 links in
addition to I and l* deliver "Correct-Final, V*" or "Verify-
Final, V*" messages to Y.

The difficult part in the design of our algorithm is
ensuring the resiliency property. In the algorithm, some
nodes broadcast Correct-Final messages because the
nodes correctly collect all the n node IDs, while other
nodes, e.g. Y above, broadcast a Correct-Final message
because they received Correct-Final and Verify-Final
messages. We call the former type of nodes pr ime nodes ,
while we call the latter type s e c o n d a r y nodes. From our
previous description of how Y responds to Correct-Final
messages, we see that if prime nodes maintain the resil-
iency property, then secondary nodes will also maintain
the resiliency property. To maintain the resiliency prop-
erty for prime nodes, our algorithm uses two types of
messages: Announce-ID and Verify-ID, as follows. When
a node W starts executing the algorithm, W broadcasts the
message "Announce-ID, ID(W)" to all nodes. Because
faulty links may fabricate Announce-ID messages, each
node X that receives "Announce-lD, ID(W)" on some link
lx does one of the following, depending on the sequence of
messages that X accepted prior to "Announce ID, ID(W)".
(Recall that X accep t s a message if X does not discard the
message.)

If X has already accepted an Announce-ID message on
lx, then X concludes that Ix is faulty, discards the message
"Announce-ID, ID(W)" that arrived on lx, and discards
all subsequent messages that arrive on Ix. When we
say that X discards a message, we mean that X behaves
as if X never received the message. Hence, discarded
messages never change the internal variables and
counters contained in X. In other words, X accepts at
most one Announce-ID message from each link incident
on X.

If X has already accepted a message "Announce-ID,

ID(W)" on some link ~ different from l~, then X does not
know which o f ~ and lx is faulty, Further, X does not know

whether W is connected to X by l_~ or by l~. We observe,
however, that the problem definition does not require X to
know which ID belongs to what node. The problem defini-
tion requires X to know only the vector of all node IDs.
Hence, X in our algorithm arbitrarily assumes that W is

connected to X via link Ix and not via link lx, simply
because X accepted the message "Announce-ID, ID(W)"

on Ix before X received the similar message on Ix. This
assumption may be incorrect, but it does not affect the
correctness of the algorithm, as we show in the proof of
correctness. Hence, X discards the message "Announce-
ID, ID(W)" that X received on l~, but X continues to
receive subsequent messages from l~.

Finally, if the message "Announce-ID, ID(W)" that
X received on Ix is the first Announce-ID message that
X received on l,, and X never previously accepted a mess-
age "Announce-ID, ID(W)" on any link incident on X,
then X tries to verify whether there indeed exists a node

\ V _ ~

Fig. 3. Node P

with an identifier ID(W). It is this verification that ensures
resiliency for prime nodes, and it forms the central part of
our algorithm. Once X has verified n IDs, then X becomes
a prime node, broadcasts a Correct-Final message that
contains all the n verified IDs, and stops executing the
algorithm. Node X verifies that there indeed exists a node
with identifier ID(W), as follows.

Node X broadcasts the message "Verify-ID, ID(W)" to
all other nodes. A node that receives a message "Verify-ID,
ID(W)" does not relay it to other nodes. (By default and for
completeness, after W broadcasts the "Announce-ID,
ID(W)" message, W immediately broadcasts a "Verify-ID,
ID(W)" message to all nodes). Node X considers as cert i -

.fled the IDs in the Announce-ID messages accepted by X.
Hence, X considers ID(W) certified. Note that a certified
ID can be a faulty ID because a faulty link may fabricate
an Announce-ID message. Nevertheless, X can certify at
most n IDs because X accepts at most one Announce-ID
message from each link incident on X. (By default, X con-
siders ID(X) as certified.) To determine whether ID(W) is
faulty, X maintains a counter CNT Sum(X) that counts
the number of all Announce-ID and Verify-ID messages
that X accepted for all certified IDs at X. Node X discards
a message M that arrives from some link ~ if X previously
received an identical message to M on ~. Hence, X in-
crements CNT Sum(X) for each "Verify-ID, ID(W)" mess-
age that X accepts. Node X waits until X certifies n IDs
and CNT_Sum(X) becomes at least n 2 - 2t. This waiting
does not lead to a deadlock in the network because there
exists at least two nodes P and Q that are not adjacent to
any faulty links. Hence, P and Q will certify n IDs, (which
will be the node IDs). As in Fig. 3, and Lemma 4, each of
P and Q receives and accepts at least n(n - 1) - 2 t Verify-
ID messages for the n certified IDs, where t faulty links
may or may not deliver Announce-ID messages. Hence,
CNT Sum(P) and CNT Sum(Q) will be at least
n(n - 1) - 2t + n = n 2 - 2t, and the waiting does not
cause a deadlock. Thus, suppose that X certifies n IDs and
CNT Sum(X) becomes at least n 2 - 2t. It is difficult for
X to determine which of the n certified IDs is faulty. Node
X, however, can determine whether no certified ID in X is
faulty, as follows.

First, X uses the messages that X has accepted so far to
attempt to compute the number Suspect~Count(X) of

152

faulty links in the network, as follows. For each certified
ID 7 in X, let link(),) be the link from which X accepted
"Announce-ID, 7". For each two certified IDs 71 and 72,
node X assumes that there is a possibly faulty link between
71 and)'2 if X does not receive "Verify-ID, 72" from
link(71) or if X does not receive "Verify-ID, 71" from
link(72). Second X compares Suspect_Count(X) with the
value t. By using a counting argument, Lemma 2 proves
that, if Suspect_Count(X) is smaller than or equal to t, then
none of the n certified IDs in X is faulty. In this case,
X forms the final vector V from the n certified IDs in X,
broadcasts the message "Correct-Final, V" to all other
nodes, and stops executing the algorithm. On the other
hand, X may compute a Suspect_Count(X) that is greater
than t.

Lemma 2 shows that one reason for this is that one of
the certified IDs in X is faulty. Asynchrony and unpredict-
able message delays is another reason that may cause X to
compute a Suspect-Count(X) that is greater than t. Con-
sider, for example, the situation where X assumes that
there is a possibly faulty link between 71 and 72 because
X did not receive "Verify-ID, 72" from link(';1). The link
between 71 and 72 may in fact be reliable, but link(Tx) may
be very slow, and link(),1) did not yet deliver the message
"Verify-ID, 72" to X when X computed Suspect_Count(X).
This can cause Suspect-Count(X) to be greater than t.
Since X does not know why Suspect_Count(X) is greater
than t, node X simply continues to receive and respond to
messages. Whenever CNT Sum(X) increases, X recom-
putes Suspect_Count(X) and compares it against t. This
procedure continues until Suspect_Count(X) becomes at
most t, or until X becomes a secondary node.

The algorithm ensures that the liveness property is true
as follows. Lemma 4 shows that, if no two nodes other
than P and Q become prime nodes, then, since nodes
P and Q are not adjacent to any faulty links, there
exists a time after which Suspect_Count(P) and
Suspect-Count(Q) will be at most t, and P and Q will
become prime nodes.

There is one minor technical detail in the description of
the algorithm that may cause confusion. Recall that, after
a node X in our algorithm announces the ID of X by
broadcasting the "Announce-ID, ID(X)" message, node
X also broadcasts the "Verify-ID, ID(X)" message. This
detail was included to ensure that the various counters are
set properly. On the other hand, after a node broadcasts
a Correct-Final message, the node does not broadcast any
more messages of any kind.

To reduce the communication complexity, our algo-
rithm allows each node to broadcast at most one
Verify-Final message. Lemma 5 will show that this restric-
tion on the nodes will not affect the correctness of the
algorithm.

4.2 Counters in the algorithm

In our description of the algorithm, some of the messages
contain only one ID, while others contain a vector ofn IDs.
The messages that contain only one ID are of type
Announce-ID or type Verify-ID. For each link ! incident
on Y, Y creates a list IDMessage-List(Y,/) of all
Announce-ID and Verify-ID messages that Y accepted

1

Fig. 4. Counters and lists in node Y

from 1. Since there are exactly n - 1 links incident on Y,
node Y creates at most n - 1 IDMessage-Lists. For each
ID fl in an Announce-ID or Verify-ID message accepted
by Y, Y associates a counter CNT(Y, fl) with fl, where the
initial value of the counter is one. Node Y increments
CNT(Y,[3) by one for each subsequent Announce-ID or
Verify-ID message containing /3 and accepted by Y. By
default, Y creates a counter CNT(Y, ID(Y)) after Y broad-
casts the message "Announce-ID, ID(Y)", where the initial
value of the counter is one.

On the other hand, the messages that contain a vector
ofn IDs are of type Correct-Final or type Verify-Final. For
each link l incident on Y, Y creates a list VecMessage-
List(Y,I) of all Correct-Final and Verify-Final messages
that Y accepted from I. Hence, node Y creates at most
n - 1 VecMessage-Lists. For each vector V of IDs in
a Correct-Final or Verify-Final message accepted by Y,
Y associates a counter VecCNT(Y, V) with V, where the
initial value of the counter is one. Node Y increments
VecCNT(Y, V) by one for each subsequent Correct-Final
or Verify-Final message containing V and accepted by Y.
Figure 4 shows the counters and lists in node Y. As we
argue in Theorem 4, Y creates at most n 2 CNT and (n - 1)
VecCNT counters.

In the algorithm, Y discards a message M that arrives
from some link ~ if Y previously received an identical
message to M on ~. Also, if IDMessage-List(Y,I) con-
tains exactly n + 1 messages for some link I incident
on Y, then Y discards all subsequent Announce-ID and
Verify-ID messages that arrive on I. Similarly, if VecMess-
age-List(Y,k) contains exactly one message, say M,
for some link k incident on Y, then Y discards all
subsequent Correct-Final and Verify-Final messages that
arrive on k.

153

5 Proof of correctness

Lemma 1. The value of each CNT and each VecCNT
counter in each node never exceeds the value n.

Proof By the algorithm, for each CNT(Y,?) in each node
Y, Y accepts only one "Announce-ID, 7" message. Also, for
each link incident on Y, Y accepts only one "Verify-ID, 7"
message. Hence, the lemma will be true.

By the algorithm, for each VecCNT(Y, V) in each node
Y, each link incident on Y contributes at most one message
towards incrementing VecCNT(Y, V). Hence, the lemma is
true. []

Suppose that a node Y certifies the n IDs contained in
the set CERTIFY(Y). Let CNT Sum(Y) be at least n 2 - 2t
at some time To. The following lemma shows that the
algorithm ensures that the resiliency property is true for
prime nodes. Lemma 3 will then show that the resiliency
property is true for all nodes.

Lemma 2. I f CERTIFY(Y) contains a faulty ID, then
Suspect~Count(Y) at time T is greater than t,for every time
T > T o .

Proof Suppose that CERTIFY(Y) contains the faulty
ID 6. Then there is some correct ID 7 that is not in
CERTIFY(Y). Let Z be the node whose ID is 7. The proof
of the lemma proceeds as follows:

Let ID-naive(Y, T, 6) be the set of nodes {Xlthe set
of IDs received by Y at or before time T on the link
(X, Y) in Announce-ID or Verify-ID messages is exactly
CERTIFY(Y)}. Then, for each X in ID-naive(Y, T, 6), at
least one of the links (X, Y) or (X, Z) is faulty. (Otherwise,
the message "Verify-ID, 7" must be among the n Verify-ID
messages received by Y on link (X, Y)).

Let ID-robust(Y, T, 6) be the set of nodes {X IX r Y
and the ID 6 was not received by Y at or before time T on
the link (X, Y) in Announce-ID or Verify-ID messages).
Also, let Additional-naive(Y, T, 6) be the complement of
liD-naive(Y, T, 6)uID-robust(Y, T, 6)u ~ / tYs].

Suppose that N = size of ID-naive(Y,T, 6)= lID-
naive(Y, T, 6)1, A = IAdditional-naive(Y, T, 6)1, and R =
liD-robust(Y, T, 6)1. Then, N + A + R = n - 1.

For each Additional-naive(Y, T, f) node W, there
exists at least one certified ID [3 in Y such that IDMess-
age-List(Y,k) does not contain "Verify-ID, /3",
where k connects W to Y. In the worst case, /3
can be the ID of another Additional-naive(Y,T, 6).

A
Hence, Y computes at least ~ possibly faulty links

incident on the Additional-navie(Y, T, 6) nodes.
Also, since Y does not receive the ID 6 from the
nodes in ID-robust(Y,T, 6), Y computes at least R
possibly faulty links incident on the ID-robust(Y,T, 6)

A
nodes. Thus, Suspect_Count(Y) > R + ~ = R +

n - I - R - N n - 1 + R + N

2 2
Note that 1D-robust(Y, T, 6) includes all the nodes

that are not adjacent to any faulty links, and the num-
ber of these nodes is at least n N - 1 - 2 (t - N) .

Thus, R > n + N - 1 - 2t. Hence, Suspect_Count(Y) >
n - I + R - N

> n 1 - t > t b e c a u s e n > 2 t + 2 . []
2

Lemma 3. Suppose that V is an ID vector that con-
rains a.faulty ID. Then no node broadcasts the message
"Correct-Final, V".

Proof By Lemma 2, no prime node generates the message
"Correct-Final, V". Some faulty links may create V and
Correct-Final messages that contain V. Suppose that, con-
trary to the lemma, there are secondary nodes that broad-
cast the message "Correct-Final, V". Hence, there exists
a node Y and a time T with the two properties that: (1) Y
broadcasts at time T the message "Correct-Final, V", and
(2) no node broadcasts the message "Correct-Final, V"
before time T.

By the algorithm, Y must be adjacent to at least two
faulty links I1 and 12 that deliver "Correct-Final, V" mess-
ages to Y. Suppose that, in addition to 11 and 12, Y is
adjacent to at most f - 2 faulty links. In the worst case, the
f - 2 faulty links may deliver Correct-Final and Verify-
Final messages that contain V to Y.

As we explained in the general description of the algo-
rithm, the Final-naive(Y) nodes may send "Verify-Final,
V" messages to Y. In other words, the Final-naive(Y) may
contribute to VecCNT(Y, V). As we discussed in the gen-
eral description of the algorithm, Final-naive(Y) contains
at most t - f nodes.

By the algorithm, each link incident on Y con-
tributes at most one message towards incrementing
VecCNT(Y, V). Hence, VecCNT(Y, V) is at most [number
of faulty links incident on Y + [number of nodes in
Final-naive(Y)] < f + (t - f) = t. Hence, the secondary
node Y does not broadcast the message "Correct-Final,
V", a contradiction. []

Since there are at most t faulty links in the network, and
there are at least 2t + 2 nodes in the network, there are at
least two nodes P and Q that are not adjacent to any faulty
links. The following lemma shows that the algorithm has
the liveness property.

Lemma 4. Let P and Q be two nodes that are not adjacent
to any Jhulty links, and let V be a vector that contains
the sorted IDs of the network nodes. Then, there exists a
time qfier which nodes P and Q broadcast the message
"Correct-Final, ~r

Proo/i Since P and Q are not adjacent to any faulty links,
then P and Q receive copies of each Announce-ID,
Verify-ID, Correct-Final, and Verify-Final message broad-
cast by each node. Consider the node P. The argument for
Q is similar to that for P.

Suppose that, contrary to the lemma, P does not
broadcast the message "Correct-Final, ~r By Lemma 3,
and since P is not adjacent to any faulty link, P never
terminates P's algorithm. Hence P continues to receive
Announce-lD and Verify-ID messages from all the nodes
in the network. Ergo, there will be a time T after which
P certifies all the n node IDs.

Since there are t faulty links in the network, there can
be at most 2t nodes adjacent to faulty links. Hence, there
can be at most 2t Announce-lD messages that are lost in

154

the network, and P will not receive the corresponding
Verify-ID messages. See Fig. 3. Thus, there will be a time
T* after which P receives and accepts at least n(n - 1) - 2t
Verify-ID messages that contain all the node IDs. Hence,
CNT Sum(P) after time max(T,T*) will be at least
[number of Announce-ID messages in P] + [number of
Verify-ID messages in P] > In] + [n (n - 1) - 2t] =
n 2 - 2 t . Hence, P will compute at most t faulty links
among the node IDs, and P will broadcast the message
"Correct-Final, 9", a contradiction. �89

The following lemma shows that the algorithm has the
progression property.

Lemma 5. Suppose that 9 is an ID vector that contains
the sorted IDs of the network nodes. Then there exists a
time after which each node Y broadcasts the message
"Correct-Final, 9".

Proof. If Y broadcasts any Correct-Final message, then,
by Lemma 3, the message must contain 9. Hence, suppose
that Y has not yet broadcast a Correct-Final message. As
we explained, there are at least two nodes P and Q that are
not adjacent to any faulty links. By Lemma 4, P and Q send
"Correct-Final, 9" messages to Y and all other nodes.

Our algorithm allows each node to broadcast at most
one Verify-Final message. Hence, some nodes W that
receive "Correct-Final, 9 " messages from P and Q will not
broadcast "Verify-Final, 9 " because W is a Final-naive(Y)
node. As in Lemma 3, the number of Final-naive(Y) nodes
is at most t - f By the execution of the algorithm, the
nodes that are not Final-naive(Y) nodes and that receive
"Correct-Final, 9" messages from P and Q will broadcast
"Verify-Final, 9 " or "Correct-Final, V" messages. Some of
these messages may be lost in faulty links that may be
adjacent to Y. Hence, VecCNT(Y, 9) will be at least [two
messages from P and Q] + [(maximum number of mess-
ages from nodes other than P, Q, and Y) - (messages lost
in faulty links) - (size of Final-naive(Y))] > [2] +
[(n - 3) - (./) - (t - f)] > [2] + [(2t + 2 - 3) - t] = t + 1.
By the algorithm, Y broadcasts the message "Correct-
Final, 9", and the lemma is true. []

Theorem 2. The algorithm solves the a qreement and leader
election problems for asynchronous complete networks in
which the processors are reliable but some channels may be
Byzantine faulty. The alyorithm can tolerate up to t faulty
channels, provided that the total number of processors in the
network is at least 2t + 2. When the processors terminate
their correspondin9 algorithm, all the processors in the net-
work will have the same correct vector, where the vector
contains the private values of all the processors.

Proof Lemma 5 shows that there exists a time after which
each node Y broadcasts a Correct-Final message that
contains the vector 9 of the node IDs. By the algorithm,
Y broadcasts the message only after Y chooses V as the
final vector. []

6 Communication and storage complexity

Let S be the maximum number of bits needed to specify the
node identifiers. For non-triviality, S is at least log2 n bits.

Theorem 3. The total number of bits that the nodes send is
O(n 3 S) bits.

Proof Each node Y broadcasts one Announce-ID mess-
age that contains ID(Y). Node Y broadcasts one Verify-ID
message that contains ID(Y). Also, Y broadcasts one
Verify-ID message for each Announce-ID message that Y
accepts. Since the algorithm allows Y to accept at most
one Announce-ID message per link incident on Y,
Y broadcasts a total of n different Verify-ID messages. By
the algorithm, Y can broadcast at most one Verify-Final
message and one Correct-Final message.

Recall that each Announce-ID or Verify-ID message
has one ID, while each Correct-Final or Verify-Final has
n IDs. Each broadcast requires that a message be sent on
each link incident on Y. Hence, the total number of bits
that Y sends = (# of links incident on Y)[(# of broad-
casts)(size of the messages)] = (n - 1) [(1)*O(S)+
(n)*O(S) + (1)*O(nS) + (1)*O(nS)] = O(n 2 S) bits. Since
there are n nodes in the network, the theorem follows. []

Theorem 4. The amount of storage that the algorithm uses
in each node is O(n 2 S) bits.

Proof Each node Y use the following storage: IDMess-
age-List(Y, l) and VecMessage-List(Y, I) for each link I in-
cident on Y, and CNT(Y, 7) for each message containing
7 that Y accepted.

By the algorithm, IDMessage-List(Y,I) contains at
most n + 1 Announce-ID and Verify-ID messages. Hence,
there can be at most (n + 1) CNT counters created in Y for
the IDs contained in IDMessage-List(Y,/). Since Y is
adjacent to exactly n - 1 links, and Y creates a CNT
counter for ID(Y), there are at most (n + 1)(n - 1) +
1 = n 2 CNT counters for IDs in Y.

By the algorithm, VecMessage-List(Y, I) contains at
most one message. Hence, there can be at most one
VecCNT counter created in Y for the vectors contained in
VecMessage-List(Y,/). Since Y is adjacent to exactly n - 1
links, there are at most n - 1 VecCNT counters for vectors
in Y.

By Lemma 1, each CNT or VecCNT counter requires
at most log2 n bits. Hence, the total amount of storage
that the algorithm uses in Y is at most (storage for
IDMessage-Lists + storage for VecMessage-Lists +
storage for CNT and VecCNT) = (n - 1)(n + 1)*O(S) +
(n 1)(1)* O(nS) + [17 2 + (n - 1)]*log2 n = O(n 2 S) bits. []

7 Conclusions

We presented the first known agreement and leader elec-
tion algorithm for asynchronous complete networks in
which the processors are reliable but some channels may
be Byzantine faulty. When the processors terminate their
corresponding algorithms, all the processors in the net-
work will have the same correct vector, where the vector
contains the private values of all the processors. In Byzan-
tine failure, channels fail by altering messages, sending
false information, forging messages, losing messages at
will, and so on. There are no restrictions on the behavior of
a faulty channel. We considered only channel failures
because Fischer, Lynch, and Paterson have already shown

155

that no algori thm can solve the agreement problem on
asynchronous networks if any processor fails dur ing the
execution of the algorithm. Our asynchronous algori thm

tolerates up to] ~ - ~ 1 faulty channels, where n is the
L ~ . . I

n u m b e r of processors in the network. The bound on the
number of faulty channels is optimal. The a m o u n t of
commun ica t i on and storage that our a lgori thm requires
match the values for the Byzant ine algori thms designed for
synchronous networks.

Acknowled.qements. We are indebted to the anonymous referees for
their extensive comments and their help in revising the paper. In
particular, we sincerely thank an anonymous referee for suggesting
the proof of Lemma 2, which considerably simplified the original
correctness proof and helped to shorten the paper. It is indeed
a privilege to have such dedicated referees for one's papers.

References

1. Abu-Amara HH: Fault-tolerant distributed algorithm for elec-
tion in complete networks. IEEE Trans Comput 37(4): 449 453
(1988)

2. Abu-Amara HH, Lokre J: Election in asynchronous complete
networks with intermittent link failures. IEEE Trans Comput
43(7): 778--788 (1994)

3. Afek Y, Gafni E: Time and message bounds for election in
synchronous and asynchronous complete networks. SIAM
J Comput 20:376 394 (1991)

4. Alsberg PA, Day JD: A principle for resilient sharing of distrib-
uted resources. Proc 2nd International Conference on Software
Engineering, San Francisco, CA, pp 562 570, October 1976

5. Bar-Yehuda R, Kutten S: Fault-tolerant distributed majority
commitment. J Algorithms 9:569 582 (1988)

6. Ben-Or M: Another advantage of free choice: completely asyn-
chronous agreement protocols. Proc 2nd ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec,
Canada, pp 27 30, August 1983

7. Cristian F, Aghili H, Strong R, Dolev D: Atomic broadcasts from
simple message diffusion to Byzantine agreement. Proc 15th
International Symposium on Fault-Tolerant Computing, Ann
Arbor, Michigan, pp 200 206, June 1985. A revised version
appears as IBM Tech Rep RJ5244

8. Cimet IA, Kumar PRS: A resilient distributed protocol for net-
work synchronization. ACM SIGCOMM Symposium on Com-
munications, Architecture, and Protocols, Stowe, VT, August
1986, pp 358 376

9. Coan BA, Welch JL: Modular construction of a Byzantine-
agreement protocol with optimal message bit complexity. Inf
Computation 97(1): 61-85 (1992)

10. Dolev D: The Byzantine generals strike again. J Algorithms 3 (1):
14-30 (1982)

I 1. Dolev D, Dwork C, Stoekmeyer L: On the minimal synchronism
needed for distributed consensus. J Assoc Comput Machinery
34:77 97 (1987)

12. Fischer M J, Lynch NA, Merritt M: Easy impossibility proofs for
distributed consensus problems. Distrib Comput 1:26 39 (1986)

13. Fischer MJ, Lynch NA, Paterson MS: Impossibility of distrib-
uted consensus with one faulty process. J Assoc Comput
Machinery 32:374 382 (1985)

14. Frederickson GN, Lynch NA: Electing a leader in a synchronous
ring. J Assoc Comput Machinery 34:98 115 (1987)

15. Gafni E: Improvements in the complexity of two message-opti-
mal election algorithms. Proc 4th ACM Symposium on Prin-
ciples of Distributed Computing, Minacki, Ontario, Canada,
August 1985, pp 175 185

16. Goldreich O, Shrira L: Electing a leader in a ring with link
failures. Acta lnf 24:79 91 (1987)

17. Korach E, Moran S, Zaks S: Tighter lower and upper bounds for
some distributed algorithms for a complete networks of proces-
sors. Proc 3rd ACM Symposium on Principles of Distributed
Computing, Vancouver, B.C., Canada, August 1984, pp 199 207

18. Lamport L, Shostak R, Pease M: The Byzantine generals prob-
lem. ACM Trans Program Lang Syst 4(3): 382 401 (1982)

19. Lynch N, Fischer M, Fowler R: A simple and efficient Byzantine
Generals algorithm. Proc IEEE 2nd Symposium on Reliability
in Distributed Software and Database Systems, Pittsburgh, PA,
pp 46 52, July 1982

20. Masuzawa T, Nishikawa N, Hagihara K, Tokura N: Optimal
fault-tolerant distributed algorithms for election in complete
networks with a global sense of direction. Proc 3rd International
Workshop on Distributed Algorithms, Nice, France, September
1989. Also in: Distributed algorithms Lect Notes Comput Sci,
Vol 392, pp 171-182. Berlin Heidelberg New York: Springer,
1989

21. Mattern F: Message complexity of simple ring-based election
algorithms an empirical analysis (extended abstract). Proc
IEEE 9th International Conference On Distributed Computing
Systems, pp 94 100, 1989

22. Menasce DA, Popek GJ, Muntz RR: A locking protocol for
resource coordination in distributed databases. ACM Trans
Database Syst 5:103 138 (1980)

23. Mohan C, Strong R, Finkelstein S: Method for distributed com-
mit and recovery using Byzantine agreement within clusters of
processors. Proc 2rid ACM Symposium on Principles of Distrib-
uted Computing, Montreal, Quebec, Canada, pp 89 103, August
1983

24. Pease M, Shostak R, Lamport L: Reaching agreement in the
presence of faults. J Assoc Comput Machinery 27:228 234
(1980)

25. Singh G: Efficient distributed algorithms for leader election in
complete networks. Proc l lth IEEE International Conference
on Distributed Computing Systems, pp 472-479, 1991

Appendix A: Detailed description of the algorithm

Each node Y executes the following five steps of the algorithm:
In Step 1, Y announces to all other nodes the identifier ID(Y).
In Step 2, Y parses the messages that Y receives. Depending on

the type of messages, Y either executes Steps 3 and 4, or Step 5. Upon
accepting an Announce-ID or Verify-ID message, Y executes Steps
3 and 4, Upon accepting a Correct-Final or Verify-Final message,
Y executes Step 5.

In Steps 3 and 4, Y checks whether Y is a prime node.
In Step 5, Y checks whether Y is a secondary node.

Step 1. Each node Y sends the message "Announce-ID, ID(Y)" to all
other nodes. In addition, each node Y sends the message "Verify-ID,
ID(Y)" to all other nodes. Also, Y sets a counter CNT(Y, ID(Y)) with
value 1, and Y labels ID(Y) as certified.

Step 2. Node Y waits until Y receives messages from at least one of
the links incident on Y. Suppose that Y receives a message M on
some link ~. Depending on the type of message M, Y does one of the
following:

(2.1) If M is an Announce-lD message, then Y extracts the ID
"/contained in M and examines all the IDMessage-Lists in Y to check
if Y previously accepted from any link the message "Announce-ID,
7", or if Y previously accepted from ~ any Announce-ID message. If
the answer to either of these checks in yes, then Y discards M and
executes Step 2 again. If the answer is no to both checks, then Y adds
M to IDMessage-List(Y, ~), labels the ID "/ as certified, increments
CNT(Y, ~,), broadcasts the message "Verify-ID, ~," to all other nodes
including the node from which Y received M, and executes Step 3.

(2.2) If M is a Verify-ID message, then Y adds M to IDMessage-
List(Y, ~), extracts the ID 7 contained in M, increments CNT(Y, 7),
and executes Step 3.

156

(2.3) If M is a Correct-Final message, then Y extracts the vector
V contained in M and examines VecMessage-List(Y, :0 to check if
Y previously accepted from :~ any Correct-Final or Verify-Final
message that contains a vector different from V. If yes, then Y dis-
cards M because M is useless, waits to receive more messages on the
links incident on Y, and executes Step 2 again. If no, then Y executes
the following two sub-steps:

(2.3.1) Node Y examines VecMessage-List(Y,:0 to check if
Y previously accepted from :~ the message "Verify-Final, V". Y per-
forms this check because our algorithm requires that each link
incident on Y contributes at most one message towards incrementing
VecCNT(Y, V). Hence, if Y previously accepted from :~ the message
"Verify-Final, V", then Y replaces "Verify-Final, V" in VecMessage-
List(Y, :0 with M, and Y exectltes sub-step 2.3.2 without increment-
ing VecCNT(Y, V). IfY did not previously accept from ~. the message
"Verify-Final, V", then Y adds M to VecMessage-List(Y, :0, in-
crements VecCNT(Y, V), and executes sub-step 2.3.2.

(2.3.2) Node Y checks to see whether Y should broadcast the
message "Verify-Final, V". Hence, Y checks if Y has already broad-
cast any Verify-Final message. Y performs this check because our
algorithm requires that each node broadcasts at most one Verify-
Final message.

If yes, the Y skips what follows and executes Step 5.
If no, then Y examines all VecMessage-Lists in Y to check if

Y previously accepted a "Correct-Final, V'" message from any link
other than ~..

If no, then Y can not yet broadcast the message "Verify-Final, V'"
because Y didnot yet accept two "Correct-Vector, V" on two differ-
ent links. Hence, Y waits to receive more messages on the links
incident on Y and executes Step 2 again.

If yes, then Y broadcasts the message "Verify-Final, V" on all
links incident on Y. Node Y then executes Step 5.

(2.4) If M is a Verify-Final message, then Y extracts the vector
V contained in M and examines VecMessage-List(Y, :0 to check if
Y previously accepted from :~ any Correct-Final or Verify-Final
message. If the answer is yes to either of the two checks, then
Y discards M because M is useless to Y, waits to receive more
messages on the links incident on Y, and executes Step 2 again. If the
answer is no to both checks, then Y adds M to VecMessage-
List(Y, :~), increments VecCNT(Y, V), and executes Step 5.

Step 3. (Y checks ifY has n certified IDs a,ad CNT Sum(Y) is at least
n 2 2t.)

If the total number of certified IDs in Y is smaller than n, then
Y waits to receive more messages on the links incident on Y and
executes Step 2 again. Else, let CNT Sum(Y) be ~,'i' i CNT(Y, ill),
where fll, fl2 fl,, are the n certified IDs. Node Y checks if
CNT Sum(Y) is at least n-' 2t.

If yes, then Y executes Step 4.
If no, then Y can not be yet a prime node, and, hence, waits to

receive more messages on the links incident on Y and executes Step
2 again.

Step 4. (Y checks if Y is a prime node)
For each two certified IDs 71 and 7,_, node Y assumes that there is

a possibly faulty link between ;'~ and 72 if Y does not have "Verify-

ID, 72" in IDMessage-List(Y, link(71)) or if Y does not have "Verify-
ID, 71" in IDMessage-List(Y, link(72)). Next, Y checks if the number
Suspect Count(Y) of possibly faulty links computed by Y is smaller
than or equal to t.

If no, then Y can not be yet a prime node, and, hence, waits to
receive more messages on the links incident on Y and executes Step
2 again.

If yes, then Y is a prime node. Hence, Y sorts the IDs
ill, f12 ft, in a vector V, where ill, f12 ft, are the n certified IDs
in Y. Node Y sets Y's Final Vector to V, broadcasts the message
"Correct-Final, V" to all other nodes, and stops executing the alqo-
rithm.

Step 5. (Y checks if Y is a secondary node)
Node Y checks if VecCNT(Y, V) is at least t + 1 and if there exists

at least two VecMessage-Lists in Y that contain "Correct-Vector, V".
If the answer is no to either of the two checks, then Y can not be

yet a secondary node, and, hence, waits to receive more messages on
the links incident on Y and executes Step 2 again.

If the answer is yes to both checks, then Y is a secondary node.
Node Y sets Y's Final Vector to V, broadcasts the message "Correct-
Final, V" to all other nodes, and stops executiny the algorithm.

H a s a n M. Sayeed received his B.S. (December 19891 degree in
electrical engineering from the Bangladesh University of Engineering
and Technology, Bangladesh, and the M.S. (August 1992) degree
in electrical engineering from Texas A&M University, College
Station, Texas. He is a Ph.D. student in the Department of Electrical
Engineering at Texas A&M University. Hasan M. Sayeed's
research interest are in distributed computing, secure and secret
communication in computer networks, and fault-tolerant computer
networks.

M a r w a n A b u - A m a r a received the B.S. (May 1988) degree in com-
puter engineering from Kuwait University, Kuwait, and the M.S.
(December 1991) and Ph.D. (May 1995) degrees in electrical engin-
eering from Texas A&M University, College Station, Texas. He is
a member of the scientific staffat Bell-Northern Research in Richard-
son, Texas. His research interests are in wireless communicatio,a,
distributed computing, computer networks, microprocessor-based
system design, and fault-tolerant and testable design.

H o s a m e A b u - A m a r a received the B.S. (March 1983) degree in
electrical engineering from the University of California, Berkeley,
and the M.S. (May 1985) and Ph.D. (October 1988) degrees in
electrical engineering from the University of Illinois at Urbana-
Champaign. He is an Assistant Professor with the Department of
Electrical and Computer Engineering at the University of Newtda in
kas Vegas. His research interests are in fault-tolerant distributed
computing, secure and secret communication in computer networks,
fiber-optic networks, and implementation of communication proto-
cols in hardware.

