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Summary. We consider agreement and leader election on 
asynchronous complete networks when the processors 
are reliable, but some of the channels are subject to 
failure. Fischer, Lynch, and Paterson have already 
shown that no deterministic algorithm can solve the 
agreement problem on asynchronous networks if any 
processor fails during the execution of the algorithm. 
Therefore, we consider only channel failures. The type of 
channel failure we consider in this paper is Byzantine 
failure, that is, channels fail by altering messages, send- 
ing false information, forging messages, losing messages 
at will, and so on. There are no restrictions on the behavior 
of a faulty channel. Therefore, a faulty channel may act 
as an adversary who forges messages on purpose to pre- 
vent the successful completion of the algorithm. Because 
we assume an asynchronous network, the channel delays 
are arbitrary. Thus, the faulty channels may not be detect- 
able unless, for example, the faulty channels cause garbage 
to be sent. We present the first known agreement and 
leader election algorithm for asynchronous complete net- 
works in which the processors are reliable but some chan- 
nels may be Byzantine faulty. The algorithm can tolerate 

up to [ ~ - ~ ]  faulty channels, where n is the number of 

processors in the network. We show that the bound on the 
number of faulty channels is optimal. When the processors 
terminate their corresponding algorithms, all the proces- 
sors in the network will have the same correct vector, 
where the vector contains the private values of all the 
processors. 
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1 Introduction and literature survey 

1.1 Introduction 

Reaching agreement among remote processors in a distri- 
buted system is one of the most fundamental problems in 
distributed computing and is at the core of many algo- 
rithms for distributed data processing, distributed file 
management, and fault-tolerant distributed applications 
[13]. Consider a distributed system of n processors, where 
each processor u is running a process that computes some 
private value ID(u). By exchanging messages, each proces- 
sor u can obtain a vector of the private values computed by 
all n processors. Processor u can then apply some aver- 
aging function on the vector to obtain a number VAL that 
all processors agree on. All processors then can use VAL to 
update a common variable. This is useful, for instance, in 
distributed database systems where several processors 
may wish to make different alterations in the same file. In 
order to avoid inconsistencies in the file, the processors 
exchange messages to agree on which alteration to incor- 
porate in the file. Other applications of agreement include 
concurrency control, regeneration of a lost (unique) token, 
recovery by electing a new coordinator after a crash of 
a coordinator in a distributed database system, and replac- 
ing a primary site in a replicated distributed file system 
[1, 4, 21, 22]. 

A network is complete if every processor has a direct 
communication channel to every other processor. We con- 
sider the agreement problem on asynchronous complete 
networks when the processors are reliable, but some of the 
channels are subject to failure. We wish to construct an 
algorithm such that all n processors will have the same 
correct vector when the processors terminate their corres- 
ponding algorithm. (This is also called achieving interac- 
tive consistency among the processors [24]). Thus, the 
processors can use the correct vector to compute a value. 
Fischer, Lynch, and Paterson [13] have already shown 
that no algorithm can solve the agreement problem on 
asynchronous networks if any processor fails during the 
execution of the algorithm. Fischer, Lynch, and Paterson's 
impossibility result holds even for fail-stop failure, the 
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most benign of all faults. Therefore, we consider only 
channel failures. 

The type of channel failure we consider in this paper is 
Byzant ine  failure, that is, channels fail by altering mess- 
ages, sending false information, forging messages, losing 
messages at will, and so on [18, 23, 24]. There are no 
restrictions on the behavior of a faulty channel. Therefore, 
Byzantine faulty channels act as malicious agents who 
inject faulty messages in the network to prevent the suc- 
cessful completion of algorithms. Because we assume an 
asynchronous network, all channel delays are arbitrary. 
Thus, the faulty channels may not be detectable unless, for 
example, the faulty channels cause garbage to be sent. 
Note that a channel can fail at any time during the execu- 
tion of the algorithm. 

In this paper, we present the first known agreement 
and leader election algorithm for asynchronous complete 
networks in which the processors are reliable but some 
channels may be Byzantine faulty. The algorithm can 

tolerate up to [ ~ 2 J f a u l t y  channels, where n is the 

number of processors in the network. Throughout  the 
paper, we assume that there are t faulty channels, and that 
the total number n of processors in the network is at least 
2t + 2. As we show in Theorem 1, if a network may have 
up to t Byzantine faulty links, then all the faulty links may 
be incident on one node, and, therefore, agreement will be 
possible only when the connectivity of the network is at 
least 2t + 1. Hence, the bound on the number of proces- 
sors and faulty channels in our algorithm is optimal. The 
total number of bits that the nodes send is O(n a S) bits, 
while the amount of storage that the algorithm uses in 
each node is O(n 2 S) bits, where S is the maximum number 
of bits needed to specify the node private values. 

1.2 Literature survey 

In the literature, three different, but related, problems were 
addressed: consensus [6, 9, 11, 12, 13, 19], agreement or 
interactive consistency [7, 10, 24], and leader election 
[2, 3, 5, 8, 15, 16, 17, 20, 25]. In the consensus problem, all 
of the non-faulty processors in the network want to agree 
on a single bit, a 0 or a 1. In the ayreement problem, each 
processor in the network has a private value that should be 
communicated to the other nodes in the network. Thus, at 
the end of an execution of an algorithm that solves the 
agreement problem, each non-faulty processor computes 
a vector with an element for each processor in the network, 
where the vector computed by all non-faulty processors 
must be the same, and each vector element that corres- 
ponds to a non-faulty processor is the private value of that 
processor. In the leader election problem, all of the proces- 
sors in the network want to choose a unique processor to 
be the leader. To solve the election problem, deterministic 
leader election algorithms assume that there exists at least 
one unique private value. Note that if a processor, say x, 
has a Byzantine failure, then the leader election problem 
cannot be solved simply because x can become the leader, 
or x can force the other processors to elect a non existent 
processor. We think of the agreement problem as a gener- 
alization of the consensus problem because, after comput- 

ing the vector in the agreement problem, the non-faulty 
processors can agree on a particular value. Also, in the 
agreement problem, if the private value of some processor 
u is unique, then the leader election problem can be solved, 
provided that there are no Byzantine faulty processors in 
the network, simply by having each processor choose the 
processor with the largest unique private value as the 
leader. 

2 Formal model and definitions 

2.1 Formal model 

This section discusses the model of the distributed net- 
work. Our model follows Goldreich and Shrira's model 
[16]. Consider a network of n processors. We model the 
network as a graph of n nodes, in which each node repres- 
ents a processor, and each link represents a bidirectional 
communication channel. We will use the term node to 
indicate a processor, and the term link to indicate a com- 
munication channel. We assume that the network is com- 
plete, that is, every node is connected to every other node 
by a bidirectional communication channel. We also as- 
sume that the network is asynchronous, that is, there is no 
global clock in the system, and each node may have its 
own clock. The nodes do not have shared memory; they 
communicate by sending messages to each other on the 
communication channels between them. 

All the nodes are identical except that each node u has 
a private unique value (identifier) ID(u) chosen from a 
totally ordered set. Initially, no node knows the identifier 
of any other node. Each node u knows the number of 
nodes in the distributed system. 

A distributed algorithm on a network is a set of n deter- 
ministic local programs, each assigned to a node. Each 
local program consists of computation statements and com- 
munication statements. The computation statements control 
the internal operations of a node. The communication 
statements are of the form "send message M on link I'" or 
"receive message M* on l ink/".  Each node u has a Send- 
Buffer(u, l) and a Receive-Buffer(u, l) associated with each 
link I incident on u, where the buffers are not necessarily 
first-in-first-out. Let I be the link that connects nodes u and 
v. When u wishes to send a message M on link I, node 
u places M in Send-Buffer(u,/). We call this event a send 
event. To capture the asynchronous nature of our network, 
messages may remain in the send-buffers for arbitrary 
lengths of time. A transmission event in l occurs when 
I places M in Receive-Buffer(v, l). We assume that u cannot 
inspect Send-Buffer(u, l) to check whether M was removed 
from the buffer. Hence, M is in transit from u to v if M is in 
Send-Buffer(u, l). If u wishes to process a message M* on l, 
the u removes M* from Receive-Buffer(u, l). We call this 
event a receive event. If M* is not in Receive-Buffer(u,/), 
then u either waits for M*, or u receives some other 
message depending on u's local program. When we say 
that node u receives a message, we mean that u removes the 
message from a Receive-Buffer and processes the message. 
A failure event in a link l is the event of l spontaneously 
discarding a message, generating a message that was not 
created by a processor, or changing the contents of a 
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message that passes through the link. We model each 
processor u as an automaton.  Upon receiving a message 
M, processor u either accepts or discards M, depending on 
u's local program. If u accepts M, then u atomically up- 
dates the variables and counters associated with the pro- 
cessor and changes u's state. If u discards M, then u does 
not change u's state and does not update any variable or 
counter. Node u always discards damaged messages that 
arrive at u. 

In keeping with current assumptions in the literature 
[1, 5, 8], a link I is faul ty  during a particular execution E of 
the algorithm if I experiences at least one failure event in E. 
If a link l is not faulty, then it is reliable. Once a link has 
been labeled 'faulty', the link continues to be called faulty 
even if the link is repaired. In other words, a reliable link is 
a link that never experiences a failure event [1, 5, 8]. A bi- 
directional link is considered faulty even if the link is faulty 
in only one direction. In other words, if a link l connects 
nodes u and v, and 1 experiences failure events when 
messages traverse from u to v, but not from v to u, we still 
consider I to be faulty in both directions. We assume that, 
in any execution of the algorithm, there can be no more 
than t faulty links, and n > 2t + 2. 

Consider a particular execution E of a distributed 
algorithm. For convenience, we assume the existence of 
a global clock that gives the time at which each event in 
E occurs. Although this clock is available to an observer of 
the network, the nodes do not know of its existence. We 
will assume that each event in E occurs at some discrete 
unit of time starting from zero. Let Events(u) be the multi- 
set of u's send and receive events in E. The local program in 
u induces a total ordering on Events(u). Two events, each 
in a distinct node, may occur at the same time. However, 
two events cannot occur at the same time in the same node. 

We assume that, when a node receives a message, then 
the node knows on which link the message was received. 
The delay on a reliable link is arbitrary but finite. Thus, 
messages sent on reliable links must be eventually de- 
livered. Because of the asynchronous nature of the net- 
work, a node cannot distinguish between a slow link and 
a faulty link. Therefore, the faulty links may not be detect- 
able unless, for example, the faulty links cause garbage to 
be sent. Links may fail at any time before or during the 
execution of the algorithm. All the nodes in the network 
are reliable. It is not necessary that all nodes start the 
execution of the algorithm simultaneously; some node may 
be initially dormant.  We assume that, if a dormant  node 
receives a message from some other node, then the dor- 
mant  node wakes up and starts executing the algorithm. 

2.2 Definitions 

- A processor k receives a correct message M from another 
processor r if M is an exact copy of the original message 
sent by r. Otherwise, the message M is.faulty. 
- Consider a network of n processors, where each proces- 
sor has some private value. Consider some processor k in 
the network. Let Vector(k) be a vector formed by k from 
the n values V k, V k, ... ,vk,, that k receives from all the 
processors in the network (including k). Thus, we write 
Vector(k) (V ], V k ,  k . . . .  ,V,,). We say that Vector(k) is 
correct if, for all l _< i _< n, the value V k is equal to the 

Node Z Node Z 

Receives Receives Receives Receives 

Network G 1 Network G 2 

(a) (b) 

Fig. la, b. Two complete networks, where a bold line denotes 
a faulty link 

private value held by processor i. Otherwise, Vector(k) is 
said to be.faulty. 
- Consider any two processors, say r and s, in a network 
on n processors. Let the two vectors formed by r and s be 
Vector(r) . . . .  (V•, V~, .,V~) and Vector(s) (V1,V2,~ s . . . ,  
V]), respectively. Then, the two vectors Vector(r) and 
Vector(s) are said to be identical if V~ = V~, for all 
1 _ < i N  n. Furthermore,  if Vector(r) and Vector(s) are 
identical and correct, then we say that r and s have com- 
puted the same correct vector. 

3 Lower bound for connectivity 

The lower bound proof presented below is similar to the 
connectivity lower bound proof for synchronous networks 
with Byzantine faulty processors shown in Lemma 5 of 
[10]. We assume that the algorithms are "full information" 
algorithms [14]. 

Theorem 1. Byzantine a#reement is not possible in complete 
networks that hat'e t faul ty  links and a connectivity of  at 
most 2t. 

Proof. Consider the two networks, G1 and G2, shown in 
Fig. 1. Let the IDs of all the nodes of networks G1 and G2 
be identical except for node Z, as shown in Fig. 1. Assume, 
contrary to the theorem, there exists an algorithm H that 
ensures Byzantine agreement in complete networks that 
have t faulty links and a connectivity of 2t. Thus , / / so lv e s  
Byzantine agreement on both G1 and G2. In Fig. la, sub- 
network A receives ~ as the ID of node Z, whereas subnet- 
work B receives fl as the ID of node Z because B is 
connected to Z through t faulty links. In Fig. la, the faulty 
links follow the doctrine [-10]: substitute the value ~ for 
fl in every message that passes from B to Z, and substitute 
the value fl for ~ in the messages passing back from Z to B. 
Similarly, in Fig. lb, subnetwork A receives ~ as the ID of 
node Z because A is connected to Z through t faulty links, 
whereas subnetwork B receives fl as the ID of node Z. In 
Fig. lb, the faulty links follow the doctrine: substitute the 
value fl for ~ in every message that passes from A to Z, and 
substitute the value ~ for fl in the messages passing back 
from Z to A. Hence, subnetworks A and B of both G 1 and 
G2 have the same inputs to H. Thus, the final vector 
computed by the nodes in subnetworks A and B of both G1 
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and G2 after running H will be identical. However, accord- 
ing to the definition of Byzantine agreement, and since G1 
has ~ as the ID for node Z and G2 has/~ as the ID for node 
Z, the nodes in subnetworks A and B of G1 should com- 
pute a final vector that differs from the final vector 
computed by the nodes in subnetworks A and B of G2. 
A contradiction. [] 

4 Algorithm 

4.1 Intuition and description of the algorithm 

Appendix A has a detailed description of our algorithm. 
We say that an ID 7 is faulty if 7 was fabricated by a faulty 
link and is not the ID of a node. A node broadcasts 
a message if the node sends the message to all its neigh- 
bors. In a nutshell, the algorithm consists of two parts: In 
the first part, each node u broadcasts ID(u) in an 
"Announce-ID" message, and upon receiving such a mess- 
age M, u forwards M to u's neighbors in a "Verify-ID" 
message. In the second part, each node that computes 
a vector V consisting of the correct identifiers of all nodes 
broadcasts a "Correct-Final, V" message, and each node 
that receives two "Correct-Final, V" messages (from two 
distinct nodes) broadcasts a "Verify-Final, V" message. 
A node decides on a vector V if the node computes directly 
that V is the correct vector or if the node receives t + 1 
"Correct-Final, V" and "Verify-Final, V" messages. 

Our algorithm has three properties: 

liveness: At least two nodes broadcast "Correct-Final, V" 
messages, where V is the correct vector of identifiers, 
resiliency: a node broadcasts a "Correct-Final, V" mess- 
age only when V is the correct vector of IDs, and 
progression: if a node receives two "Verify-Final, V" mess- 
ages on some two distinct links l and l*, and in addition the 
node receives "Verify-Final, V" or "Correct-Final, V" 
messages on at least t - 1 distinct links different from I and 
l*, then V is the correct vector of IDs. 

We first explain how the algorithm ensures that the 
progression property is true. Assume that the resiliency 
property holds for the algorithm. Since there are at most 
t faulty links in the network, and there are at least 2t + 2 
nodes in the network, there are at least two nodes P and 
Q that are not adjacent to any faulty links. Our algorithm 
ensures that nodes P and Q compute the correct final 
vector V. Nodes P and Q, then, broadcast the message 
"Correct-Final, V" to all other nodes, and P and Q stop 
executing the algorithm. Since all nodes are connected to 
P and Q via non-faulty links, all nodes receive the Correct- 
Final messages from P and Q. 

Since nodes do not initially know which links are 
faulty, and faulty links may fabricate Correct-Final mess- 
ages that contain faulty vectors, each node Y, upon receiv- 
ing two "Correct-Final, V" messages on some two distinct 
links 1" and r*, broadcasts the message, "Verify-Final, V" to 
all other nodes. A node that receives a message "Verify- 
Final, V" does not relay it to other nodes. Suppose that 
Y receives two "Correct-Final, V*" messages from two 
distinct links I and/*,  for some vector V* of IDs. Then, we 
claim that at least t - 1 links in addition to I and I* deliver 

Fig. 2. Nodes Y and W and the adjacent faulty links 

"Correct-Final, V*" or "Verify-Final, V*" messages to Y if, 
and only if, V* is the correct final vector. Hence, when 
Y receives "Correct-Final, V" or "Verify-Final, V" from at 
least t - 1 links in addition to r and r*, node Y concludes 
that "Correct-Final, V" is an authentic message, takes V as 
the correct final vector, broadcasts "Correct-Final, V", and 
stops executing the algorithm. 

To see why at least t - 1 links in addition to l and l* 
deliver "Correct-Final, V*" or "Verify-Final, V*" messages 
to Y if V* is the correct final vector, recall that P and 
Q broadcast the message "Correct-Final, V" with V = V*. 
Hence, all nodes, other than P, Q, and Y, will broadcast 
"Correct-Final, V*" or "Verify-Final, V*" messages. Some 
of these messages may be lost in faulty links that may be 
adjacent to Y. Nevertheless, Y will receive such messages 
on at least (number of nodes without P, Q, and 
Y ) - t = ( n - 3 ) - t > ( 2 t + 2 - 3 ) - t = t  1 links. 

On the other hand, we claim at most t -  2 links in 
addition to 1 and I* deliver "Correct-Final, V*" or "Verify- 
Final, V*" messages to Y if V* is not the correct final 
vector. If V* is not the correct final vector, and Y receives 
"Correct-Final, V*" on some link k*, then k* must be 
faulty, by the resiliency property of our algorithm. Hence, 
I and I* are both faulty. On the other hand, if Y receives 
"Verify-Final, V*" on some link k, then k can be non- 
faulty. This can happen, for example, in the situation 
illustrated in Fig. 2, where the bold lines indicate faulty 
links. The non-faulty link k connects Y to node W, and 

there are two faulty links lw and/,,, incident on W. If Iw and 

fabricate the faulty message "Correct-Final, V*", then 
W may send the message "Verify-Final, V*" on link k. 
Hence, let Final-naive(Y) be the set of nodes that are 
connected to Y via non-faulty links and send "Verify- 
Final, V*" to Y. Then W is a member of Final-naive(Y), 
and each member of Final-naive(Y) is adjacent to at least 
two faulty links. Suppose that there are f faulty links 
incident on Y (including / and I*). Since there are at most 
t faulty links in the network, then Final-naive(Y) contains 
at most t - f n o d e s ,  as shown in Fig. 2, where the nodes in 
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Final-naive(Y) are contained in the polygon. Hence, at 
most f -  2 faulty links incident on Y (other than l and l*) 
deliver "Correct-Final, V*" or "Verify-Final, V*" messages 
to Y, and at most t - f  non-faulty links that connect 
Final-naive(Y) nodes to Y deliver "Verify-Final, V*" mess- 
ages to Y. Hence, at most f -  2 + t - f =  t - 2 links in 
addition to I and l* deliver "Correct-Final, V*" or "Verify- 
Final, V*" messages to Y. 

The difficult part in the design of our algorithm is 
ensuring the resiliency property. In the algorithm, some 
nodes broadcast Correct-Final messages because the 
nodes correctly collect all the n node IDs, while other 
nodes, e.g. Y above, broadcast a Correct-Final message 
because they received Correct-Final and Verify-Final 
messages. We call the former type of nodes pr ime  nodes ,  
while we call the latter type s e c o n d a r y  nodes.  From our 
previous description of how Y responds to Correct-Final 
messages, we see that if prime nodes maintain the resil- 
iency property, then secondary nodes will also maintain 
the resiliency property. To maintain the resiliency prop- 
erty for prime nodes, our algorithm uses two types of 
messages: Announce-ID and Verify-ID, as follows. When 
a node W starts executing the algorithm, W broadcasts the 
message "Announce-ID, ID(W)" to all nodes. Because 
faulty links may fabricate Announce-ID messages, each 
node X that receives "Announce-lD, ID(W)" on some link 
lx does one of the following, depending on the sequence of 
messages that X accepted prior to "Announce ID, ID(W)". 
(Recall that X accep t s  a message if X does not discard the 
message.) 

If X has already accepted an Announce-ID message on 
lx, then X concludes that Ix is faulty, discards the message 
"Announce-ID, ID(W)" that arrived on lx, and discards 
all subsequent messages that arrive on Ix. When we 
say that X discards a message, we mean that X behaves 
as if X never received the message. Hence, discarded 
messages never change the internal variables and 
counters contained in X. In other words, X accepts at 
most one Announce-ID message from each link incident 
on X. 

If X has already accepted a message "Announce-ID, 

ID(W)" on some link ~ different from l~, then X does not 
know which o f ~  and lx is faulty, Further, X does not know 

whether W is connected to X by l_~ or by l~. We observe, 
however, that the problem definition does not require X to 
know which ID belongs to what node. The problem defini- 
tion requires X to know only the vector of all node IDs. 
Hence, X in our algorithm arbitrarily assumes that W is 

connected to X via link Ix and not via link lx, simply 
because X accepted the message "Announce-ID, ID(W)" 

on Ix before X received the similar message on Ix. This 
assumption may be incorrect, but it does not affect the 
correctness of the algorithm, as we show in the proof of 
correctness. Hence, X discards the message "Announce- 
ID, ID(W)" that X received on l~, but X continues to 
receive subsequent messages from l~. 

Finally, if the message "Announce-ID, ID(W)" that 
X received on Ix is the first Announce-ID message that 
X received on l,, and X never previously accepted a mess- 
age "Announce-ID, ID(W)" on any link incident on X, 
then X tries to verify whether there indeed exists a node 

\ V _  ~ 

Fig. 3. Node P 

with an identifier ID(W). It is this verification that ensures 
resiliency for prime nodes, and it forms the central part of 
our algorithm. Once X has verified n IDs, then X becomes 
a prime node, broadcasts a Correct-Final message that 
contains all the n verified IDs, and stops executing the 
algorithm. Node X verifies that there indeed exists a node 
with identifier ID(W), as follows. 

Node X broadcasts the message "Verify-ID, ID(W)" to 
all other nodes. A node that receives a message "Verify-ID, 
ID(W)" does not relay it to other nodes. (By default and for 
completeness, after W broadcasts the "Announce-ID, 
ID(W)" message, W immediately broadcasts a "Verify-ID, 
ID(W)" message to all nodes). Node X considers as cert i -  

.fled the IDs in the Announce-ID messages accepted by X. 
Hence, X considers ID(W) certified. Note that a certified 
ID can be a faulty ID because a faulty link may fabricate 
an Announce-ID message. Nevertheless, X can certify at 
most n IDs because X accepts at most one Announce-ID 
message from each link incident on X. (By default, X con- 
siders ID(X) as certified.) To determine whether ID(W) is 
faulty, X maintains a counter CNT Sum(X) that counts 
the number of all Announce-ID and Verify-ID messages 
that X accepted for all certified IDs at X. Node X discards 
a message M that arrives from some link ~ if X previously 
received an identical message to M on ~. Hence, X in- 
crements CNT Sum(X) for each "Verify-ID, ID(W)" mess- 
age that X accepts. Node X waits until X certifies n IDs 
and CNT_Sum(X) becomes at least n 2 - 2t. This waiting 
does not lead to a deadlock in the network because there 
exists at least two nodes P and Q that are not adjacent to 
any faulty links. Hence, P and Q will certify n IDs, (which 
will be the node IDs). As in Fig. 3, and Lemma 4, each of 
P and Q receives and accepts at least n(n - 1) - 2 t  Verify- 
ID messages for the n certified IDs, where t faulty links 
may or may not deliver Announce-ID messages. Hence, 
CNT Sum(P) and CNT Sum(Q) will be at least 
n(n - 1) - 2t + n = n 2 - 2t, and the waiting does not 
cause a deadlock. Thus, suppose that X certifies n IDs and 
CNT Sum(X) becomes at least n 2 - 2t. It is difficult for 
X to determine which of the n certified IDs is faulty. Node 
X, however, can determine whether no certified ID in X is 
faulty, as follows. 

First, X uses the messages that X has accepted so far to 
attempt to compute the number Suspect~Count(X) of 
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faulty links in the network, as follows. For each certified 
ID 7 in X, let link(),) be the link from which X accepted 
"Announce-ID, 7". For each two certified IDs 71 and 72, 
node X assumes that there is a possibly faulty link between 
71 and )'2 if X does not receive "Verify-ID, 72" from 
link(71 ) or if X does not receive "Verify-ID, 71" from 
link(72). Second X compares Suspect_Count(X) with the 
value t. By using a counting argument, Lemma 2 proves 
that, if Suspect_Count(X) is smaller than or equal to t, then 
none of the n certified IDs in X is faulty. In this case, 
X forms the final vector V from the n certified IDs in X, 
broadcasts the message "Correct-Final, V" to all other 
nodes, and stops executing the algorithm. On the other 
hand, X may compute a Suspect_Count(X) that is greater 
than t. 

Lemma 2 shows that one reason for this is that one of 
the certified IDs in X is faulty. Asynchrony and unpredict- 
able message delays is another reason that may cause X to 
compute a Suspect-Count(X) that is greater than t. Con- 
sider, for example, the situation where X assumes that 
there is a possibly faulty link between 71 and 72 because 
X did not receive "Verify-ID, 72" from link(';1). The link 
between 71 and 72 may in fact be reliable, but link(Tx) may 
be very slow, and link(),1) did not yet deliver the message 
"Verify-ID, 72" to X when X computed Suspect_Count(X). 
This can cause Suspect-Count(X) to be greater than t. 
Since X does not know why Suspect_Count(X) is greater 
than t, node X simply continues to receive and respond to 
messages. Whenever CNT Sum(X) increases, X recom- 
putes Suspect_Count(X) and compares it against t. This 
procedure continues until Suspect_Count(X) becomes at 
most t, or until X becomes a secondary node. 

The algorithm ensures that the liveness property is true 
as follows. Lemma 4 shows that, if no two nodes other 
than P and Q become prime nodes, then, since nodes 
P and Q are not adjacent to any faulty links, there 
exists a time after which Suspect_Count(P) and 
Suspect-Count(Q) will be at most t, and P and Q will 
become prime nodes. 

There is one minor technical detail in the description of 
the algorithm that may cause confusion. Recall that, after 
a node X in our algorithm announces the ID of X by 
broadcasting the "Announce-ID, ID(X)" message, node 
X also broadcasts the "Verify-ID, ID(X)" message. This 
detail was included to ensure that the various counters are 
set properly. On the other hand, after a node broadcasts 
a Correct-Final message, the node does not broadcast any 
more messages of any kind. 

To reduce the communication complexity, our algo- 
rithm allows each node to broadcast at most one 
Verify-Final message. Lemma 5 will show that this restric- 
tion on the nodes will not affect the correctness of the 
algorithm. 

4.2 Counters in the algorithm 

In our description of the algorithm, some of the messages 
contain only one ID, while others contain a vector ofn IDs. 
The messages that contain only one ID are of type 
Announce-ID or type Verify-ID. For each link ! incident 
on Y, Y creates a list IDMessage-List(Y,/) of all 
Announce-ID and Verify-ID messages that Y accepted 

1 

Fig. 4. Counters and lists in node Y 

from 1. Since there are exactly n - 1 links incident on Y, 
node Y creates at most n - 1 IDMessage-Lists. For each 
ID fl in an Announce-ID or Verify-ID message accepted 
by Y, Y associates a counter CNT(Y, fl) with fl, where the 
initial value of the counter is one. Node Y increments 
CNT(Y,[3) by one for each subsequent Announce-ID or 
Verify-ID message containing /3 and accepted by Y. By 
default, Y creates a counter CNT(Y, ID(Y)) after Y broad- 
casts the message "Announce-ID, ID(Y)", where the initial 
value of the counter is one. 

On the other hand, the messages that contain a vector 
ofn IDs are of type Correct-Final or type Verify-Final. For 
each link l incident on Y, Y creates a list VecMessage- 
List(Y,I) of all Correct-Final and Verify-Final messages 
that Y accepted from I. Hence, node Y creates at most 
n -  1 VecMessage-Lists. For each vector V of IDs in 
a Correct-Final or Verify-Final message accepted by Y, 
Y associates a counter VecCNT(Y, V) with V, where the 
initial value of the counter is one. Node Y increments 
VecCNT(Y, V) by one for each subsequent Correct-Final 
or Verify-Final message containing V and accepted by Y. 
Figure 4 shows the counters and lists in node Y. As we 
argue in Theorem 4, Y creates at most n 2 CNT and (n - 1) 
VecCNT counters. 

In the algorithm, Y discards a message M that arrives 
from some link ~ if Y previously received an identical 
message to M on ~. Also, if IDMessage-List(Y,I) con- 
tains exactly n + 1 messages for some link I incident 
on Y, then Y discards all subsequent Announce-ID and 
Verify-ID messages that arrive on I. Similarly, if VecMess- 
age-List(Y,k) contains exactly one message, say M, 
for some link k incident on Y, then Y discards all 
subsequent Correct-Final and Verify-Final messages that 
arrive on k. 
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5 Proof of correctness 

Lemma 1. The value of each CNT and each VecCNT 
counter in each node never exceeds the value n. 

Proof By the algorithm, for each CNT(Y,?) in each node 
Y, Y accepts only one "Announce-ID, 7" message. Also, for 
each link incident on Y, Y accepts only one "Verify-ID, 7" 
message. Hence, the lemma will be true. 

By the algorithm, for each VecCNT(Y, V) in each node 
Y, each link incident on Y contributes at most one message 
towards incrementing VecCNT(Y, V). Hence, the lemma is 
true. [] 

Suppose that a node Y certifies the n IDs contained in 
the set CERTIFY(Y). Let CNT Sum(Y) be at least n 2 - 2t 
at some time To. The following lemma shows that the 
algorithm ensures that the resiliency property is true for 
prime nodes. Lemma 3 will then show that the resiliency 
property is true for all nodes. 

Lemma 2. I f  CERTIFY(Y) contains a faulty ID, then 
Suspect~Count(Y) at time T is greater than t,for every time 
T > T o .  

Proof Suppose that CERTIFY(Y) contains the faulty 
ID 6. Then there is some correct ID 7 that is not in 
CERTIFY(Y). Let Z be the node whose ID is 7. The proof 
of the lemma proceeds as follows: 

Let ID-naive(Y, T, 6) be the set of nodes {Xlthe set 
of IDs received by Y at or before time T on the link 
(X, Y) in Announce-ID or Verify-ID messages is exactly 
CERTIFY(Y)}. Then, for each X in ID-naive(Y, T, 6), at 
least one of the links (X, Y) or (X, Z) is faulty. (Otherwise, 
the message "Verify-ID, 7" must be among the n Verify-ID 
messages received by Y on link (X, Y)). 

Let ID-robust(Y, T, 6) be the set of nodes {X IX r Y 
and the ID 6 was not received by Y at or before time T on 
the link (X, Y) in Announce-ID or Verify-ID messages). 
Also, let Additional-naive(Y, T, 6) be the complement of 
liD-naive(Y, T, 6)uID-robust(Y, T, 6)u ~ / tYs]. 

Suppose that N = size of ID-naive(Y,T, 6 )=  lID- 
naive(Y, T, 6)1, A = IAdditional-naive(Y, T, 6)1, and R = 
liD-robust(Y, T, 6)1. Then, N + A + R = n - 1. 

For each Additional-naive(Y, T, f) node W, there 
exists at least one certified ID [3 in Y such that IDMess- 
age-List(Y,k) does not contain "Verify-ID, /3", 
where k connects W to Y. In the worst case, /3 
can be the ID of another Additional-naive(Y,T, 6). 

A 
Hence, Y computes at least ~ possibly faulty links 

incident on the Additional-navie(Y, T, 6) nodes. 
Also, since Y does not receive the ID 6 from the 
nodes in ID-robust(Y,T, 6), Y computes at least R 
possibly faulty links incident on the ID-robust(Y,T, 6) 

A 
nodes. Thus, Suspect_Count(Y) > R + ~ = R + 

n - I - R - N  n - 1  + R + N  

2 2 
Note that 1D-robust(Y, T, 6) includes all the nodes 

that are not adjacent to any faulty links, and the num- 
ber of these nodes is at least n N - 1 - 2 ( t - N ) .  

Thus, R > n + N - 1 - 2t. Hence, Suspect_Count(Y) > 
n - I + R - N  

> n  1 - t > t b e c a u s e n > 2 t + 2 .  [] 
2 

Lemma 3. Suppose that V is an ID vector that con- 
rains a.faulty ID. Then no node broadcasts the message 
"Correct-Final, V". 

Proof By Lemma 2, no prime node generates the message 
"Correct-Final, V". Some faulty links may create V and 
Correct-Final messages that contain V. Suppose that, con- 
trary to the lemma, there are secondary nodes that broad- 
cast the message "Correct-Final, V". Hence, there exists 
a node Y and a time T with the two properties that: (1) Y 
broadcasts at time T the message "Correct-Final, V", and 
(2) no node broadcasts the message "Correct-Final, V" 
before time T. 

By the algorithm, Y must be adjacent to at least two 
faulty links I1 and 12 that deliver "Correct-Final, V" mess- 
ages to Y. Suppose that, in addition to 11 and 12, Y is 
adjacent to at most f -  2 faulty links. In the worst case, the 
f - 2  faulty links may deliver Correct-Final and Verify- 
Final messages that contain V to Y. 

As we explained in the general description of the algo- 
rithm, the Final-naive(Y) nodes may send "Verify-Final, 
V" messages to Y. In other words, the Final-naive(Y) may 
contribute to VecCNT(Y, V). As we discussed in the gen- 
eral description of the algorithm, Final-naive(Y) contains 
at most t - f  nodes. 

By the algorithm, each link incident on Y con- 
tributes at most one message towards incrementing 
VecCNT(Y, V). Hence, VecCNT(Y, V) is at most [number 
of faulty links incident on Y + [number of nodes in 
Final-naive(Y)] < f + (t - f )  = t. Hence, the secondary 
node Y does not broadcast the message "Correct-Final, 
V", a contradiction. [] 

Since there are at most t faulty links in the network, and 
there are at least 2t + 2 nodes in the network, there are at 
least two nodes P and Q that are not adjacent to any faulty 
links. The following lemma shows that the algorithm has 
the liveness property. 

Lemma 4. Let P and Q be two nodes that are not adjacent 
to any Jhulty links, and let V be a vector that contains 
the sorted IDs of the network nodes. Then, there exists a 
time qfier which nodes P and Q broadcast the message 
"Correct-Final, ~r 

Proo/i Since P and Q are not adjacent to any faulty links, 
then P and Q receive copies of each Announce-ID, 
Verify-ID, Correct-Final, and Verify-Final message broad- 
cast by each node. Consider the node P. The argument for 
Q is similar to that for P. 

Suppose that, contrary to the lemma, P does not 
broadcast the message "Correct-Final, ~r By Lemma 3, 
and since P is not adjacent to any faulty link, P never 
terminates P's algorithm. Hence P continues to receive 
Announce-lD and Verify-ID messages from all the nodes 
in the network. Ergo, there will be a time T after which 
P certifies all the n node IDs. 

Since there are t faulty links in the network, there can 
be at most 2t nodes adjacent to faulty links. Hence, there 
can be at most 2t Announce-lD messages that are lost in 
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the network, and P will not receive the corresponding 
Verify-ID messages. See Fig. 3. Thus, there will be a time 
T* after which P receives and accepts at least n(n - 1) - 2t 
Verify-ID messages that contain all the node IDs. Hence, 
CNT Sum(P) after time max(T,T*) will be at least 
[number of Announce-ID messages in P] + [number of 
Verify-ID messages in P] > In] + [ n ( n -  1 ) -  2t] = 
n 2 - 2 t .  Hence, P will compute at most t faulty links 
among the node IDs, and P will broadcast the message 
"Correct-Final, 9",  a contradiction. �89 

The following lemma shows that the algorithm has the 
progression property. 

Lemma 5. Suppose that 9 is an ID vector that contains 
the sorted IDs of the network nodes. Then there exists a 
time after which each node Y broadcasts the message 
"Correct-Final, 9". 

Proof. If Y broadcasts any Correct-Final message, then, 
by Lemma 3, the message must contain 9. Hence, suppose 
that Y has not yet broadcast a Correct-Final message. As 
we explained, there are at least two nodes P and Q that are 
not adjacent to any faulty links. By Lemma 4, P and Q send 
"Correct-Final, 9"  messages to Y and all other nodes. 

Our algorithm allows each node to broadcast at most 
one Verify-Final message. Hence, some nodes W that 
receive "Correct-Final, 9 "  messages from P and Q will not 
broadcast "Verify-Final, 9 "  because W is a Final-naive(Y) 
node. As in Lemma 3, the number of Final-naive(Y) nodes 
is at most t - f  By the execution of the algorithm, the 
nodes that are not Final-naive(Y) nodes and that receive 
"Correct-Final, 9"  messages from P and Q will broadcast 
"Verify-Final, 9 "  or "Correct-Final, V" messages. Some of 
these messages may be lost in faulty links that may be 
adjacent to Y. Hence, VecCNT(Y, 9) will be at least [two 
messages from P and Q] + [(maximum number of mess- 
ages from nodes other than P, Q, and Y) - (messages lost 
in faulty links) - (size of Final-naive(Y))] > [ 2 ]  + 
[(n - 3) - (./) - (t - f ) ]  > [2] + [(2t + 2 - 3) - t] = t + 1. 
By the algorithm, Y broadcasts the message "Correct- 
Final, 9", and the lemma is true. [] 

Theorem 2. The algorithm solves the a qreement and leader 
election problems for asynchronous complete networks in 
which the processors are reliable but some channels may be 
Byzantine faulty. The alyorithm can tolerate up to t faulty 
channels, provided that the total number of processors in the 
network is at least 2t + 2. When the processors terminate 
their correspondin9 algorithm, all the processors in the net- 
work will have the same correct vector, where the vector 
contains the private values of all the processors. 

Proof Lemma 5 shows that there exists a time after which 
each node Y broadcasts a Correct-Final message that 
contains the vector 9 of the node IDs. By the algorithm, 
Y broadcasts the message only after Y chooses V as the 
final vector. [] 

6 Communication and storage complexity 

Let S be the maximum number of bits needed to specify the 
node identifiers. For  non-triviality, S is at least log2 n bits. 

Theorem 3. The total number of bits that the nodes send is 
O(n 3 S) bits. 

Proof Each node Y broadcasts one Announce-ID mess- 
age that contains ID(Y). Node Y broadcasts one Verify-ID 
message that contains ID(Y). Also, Y broadcasts one 
Verify-ID message for each Announce-ID message that Y 
accepts. Since the algorithm allows Y to accept at most 
one Announce-ID message per link incident on Y, 
Y broadcasts a total of n different Verify-ID messages. By 
the algorithm, Y can broadcast at most one Verify-Final 
message and one Correct-Final message. 

Recall that each Announce-ID or Verify-ID message 
has one ID, while each Correct-Final or Verify-Final has 
n IDs. Each broadcast requires that a message be sent on 
each link incident on Y. Hence, the total number of bits 
that Y sends = ( #  of links incident on Y)[ (#  of broad- 
casts)(size of the messages)] = (n - 1 )  [(1)*O(S)+ 
(n)*O(S) + (1)*O(nS) + (1)*O(nS)] = O(n 2 S) bits. Since 
there are n nodes in the network, the theorem follows. [] 

Theorem 4. The amount of storage that the algorithm uses 
in each node is O(n 2 S) bits. 

Proof Each node Y use the following storage: IDMess- 
age-List(Y, l) and VecMessage-List(Y, I) for each link I in- 
cident on Y, and CNT(Y, 7) for each message containing 
7 that Y accepted. 

By the algorithm, IDMessage-List(Y,I) contains at 
most n + 1 Announce-ID and Verify-ID messages. Hence, 
there can be at most (n + 1) CNT counters created in Y for 
the IDs contained in IDMessage-List(Y,/). Since Y is 
adjacent to exactly n -  1 links, and Y creates a CNT 
counter for ID(Y), there are at most (n + 1)(n - 1) + 
1 = n 2 CNT counters for IDs in Y. 

By the algorithm, VecMessage-List(Y, I) contains at 
most one message. Hence, there can be at most one 
VecCNT counter created in Y for the vectors contained in 
VecMessage-List(Y,/). Since Y is adjacent to exactly n - 1 
links, there are at most n - 1 VecCNT counters for vectors 
in Y. 

By Lemma 1, each CNT or VecCNT counter requires 
at most log2 n bits. Hence, the total amount of storage 
that the algorithm uses in Y is at most (storage for 
IDMessage-Lists + storage for VecMessage-Lists + 
storage for CNT and VecCNT) = (n - 1)(n + 1)*O(S) + 
(n 1)(1)* O(nS) + [17 2 + (n - 1)]*log2 n = O(n 2 S) bits. [] 

7 Conclusions 

We presented the first known agreement and leader elec- 
tion algorithm for asynchronous complete networks in 
which the processors are reliable but some channels may 
be Byzantine faulty. When the processors terminate their 
corresponding algorithms, all the processors in the net- 
work will have the same correct vector, where the vector 
contains the private values of all the processors. In Byzan- 
tine failure, channels fail by altering messages, sending 
false information, forging messages, losing messages at 
will, and so on. There are no restrictions on the behavior of 
a faulty channel. We considered only channel failures 
because Fischer, Lynch, and Paterson have already shown 
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that no algori thm can solve the agreement  problem on 
asynchronous  networks if any processor fails dur ing  the 
execution of the algorithm. Our  asynchronous  algori thm 

tolerates up to ] ~ - ~ 1  faulty channels,  where n is the 
L ~ . . I  

n u m b e r  of processors in the network.  The bound  on the 
number  of faulty channels  is optimal.  The a m o u n t  of 
commun ica t i on  and storage that  our  a lgori thm requires 
match the values for the Byzant ine algori thms designed for 
synchronous networks.  
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Appendix A: Detailed description of the algorithm 

Each node Y executes the following five steps of the algorithm: 
In Step 1, Y announces to all other nodes the identifier ID(Y). 
In Step 2, Y parses the messages that Y receives. Depending on 

the type of messages, Y either executes Steps 3 and 4, or Step 5. Upon 
accepting an Announce-ID or Verify-ID message, Y executes Steps 
3 and 4, Upon accepting a Correct-Final or Verify-Final message, 
Y executes Step 5. 

In Steps 3 and 4, Y checks whether Y is a prime node. 
In Step 5, Y checks whether Y is a secondary node. 

Step 1. Each node Y sends the message "Announce-ID, ID(Y)" to all 
other nodes. In addition, each node Y sends the message "Verify-ID, 
ID(Y)" to all other nodes. Also, Y sets a counter CNT(Y, ID(Y)) with 
value 1, and Y labels ID(Y) as certified. 

Step 2. Node Y waits until Y receives messages from at least one of 
the links incident on Y. Suppose that Y receives a message M on 
some link ~. Depending on the type of message M, Y does one of the 
following: 

(2.1) If M is an Announce-lD message, then Y extracts the ID 
"/contained in M and examines all the IDMessage-Lists in Y to check 
if Y previously accepted from any link the message "Announce-ID, 
7", or if Y previously accepted from ~ any Announce-ID message. If 
the answer to either of these checks in yes, then Y discards M and 
executes Step 2 again. If the answer is no to both checks, then Y adds 
M to IDMessage-List(Y, ~), labels the ID "/ as certified, increments 
CNT(Y, ~,), broadcasts the message "Verify-ID, ~," to all other nodes 
including the node from which Y received M, and executes Step 3. 

(2.2) If M is a Verify-ID message, then Y adds M to IDMessage- 
List(Y, ~), extracts the ID 7 contained in M, increments CNT(Y, 7), 
and executes Step 3. 
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(2.3) If M is a Correct-Final message, then Y extracts the vector 
V contained in M and examines VecMessage-List(Y, :0 to check if 
Y previously accepted from :~ any Correct-Final or Verify-Final 
message that contains a vector different from V. If yes, then Y dis- 
cards M because M is useless, waits to receive more messages on the 
links incident on Y, and executes Step 2 again. If no, then Y executes 
the following two sub-steps: 

(2.3.1) Node Y examines VecMessage-List(Y,:0 to check if 
Y previously accepted from :~ the message "Verify-Final, V". Y per- 
forms this check because our algorithm requires that each link 
incident on Y contributes at most one message towards incrementing 
VecCNT(Y, V). Hence, if Y previously accepted from :~ the message 
"Verify-Final, V", then Y replaces "Verify-Final, V" in VecMessage- 
List(Y, :0 with M, and Y exectltes sub-step 2.3.2 without increment- 
ing VecCNT(Y, V). IfY did not previously accept from ~. the message 
"Verify-Final, V", then Y adds M to VecMessage-List(Y, :0, in- 
crements VecCNT(Y, V), and executes sub-step 2.3.2. 

(2.3.2) Node Y checks to see whether Y should broadcast the 
message "Verify-Final, V". Hence, Y checks if Y has already broad- 
cast any Verify-Final message. Y performs this check because our 
algorithm requires that each node broadcasts at most one Verify- 
Final message. 

If yes, the Y skips what follows and executes Step 5. 
If no, then Y examines all VecMessage-Lists in Y to check if 

Y previously accepted a "Correct-Final, V'" message from any link 
other than ~.. 

If no, then Y can not yet broadcast the message "Verify-Final, V'" 
because Y didnot yet accept two "Correct-Vector, V" on two differ- 
ent links. Hence, Y waits to receive more messages on the links 
incident on Y and executes Step 2 again. 

If yes, then Y broadcasts the message "Verify-Final, V" on all 
links incident on Y. Node Y then executes Step 5. 

(2.4) If M is a Verify-Final message, then Y extracts the vector 
V contained in M and examines VecMessage-List(Y, :0 to check if 
Y previously accepted from :~ any Correct-Final or Verify-Final 
message. If the answer is yes to either of the two checks, then 
Y discards M because M is useless to Y, waits to receive more 
messages on the links incident on Y, and executes Step 2 again. If the 
answer is no to both checks, then Y adds M to VecMessage- 
List(Y, :~), increments VecCNT(Y, V), and executes Step 5. 

Step 3. (Y checks ifY has n certified IDs a,ad CNT Sum(Y) is at least 
n 2 2t.) 

If the total number of certified IDs in Y is smaller than n, then 
Y waits to receive more messages on the links incident on Y and 
executes Step 2 again. Else, let CNT Sum(Y) be ~,'i' i CNT(Y, ill), 
where fll, fl2 . . . . .  fl,, are the n certified IDs. Node Y checks if 
CNT Sum(Y) is at least n-' 2t. 

If yes, then Y executes Step 4. 
If no, then Y can not be yet a prime node, and, hence, waits to 

receive more messages on the links incident on Y and executes Step 
2 again. 

Step 4. (Y checks if Y is a prime node) 
For each two certified IDs 71 and 7,_, node Y assumes that there is 

a possibly faulty link between ;'~ and 72 if Y does not have "Verify- 

ID, 72" in IDMessage-List(Y, link(71)) or if Y does not have "Verify- 
ID, 71" in IDMessage-List(Y, link(72)). Next, Y checks if the number  
Suspect Count(Y) of possibly faulty links computed by Y is smaller 
than or equal to t. 

If no, then Y can not be yet a prime node, and, hence, waits to 
receive more messages on the links incident on Y and executes Step 
2 again. 

If yes, then Y is a prime node. Hence, Y sorts the IDs 
ill, f12 . . . . .  ft, in a vector V, where ill, f12 . . . . .  ft, are the n certified IDs 
in Y. Node Y sets Y's Final Vector to V, broadcasts the message 
"Correct-Final, V" to all other nodes, and stops executing the alqo- 
rithm. 

Step 5. (Y checks if Y is a secondary node) 
Node Y checks if VecCNT(Y, V) is at least t + 1 and if there exists 

at least two VecMessage-Lists in Y that contain "Correct-Vector, V". 
If the answer is no to either of the two checks, then Y can not be 

yet a secondary node, and, hence, waits to receive more messages on 
the links incident on Y and executes Step 2 again. 

If the answer is yes to both checks, then Y is a secondary node. 
Node Y sets Y's Final Vector to V, broadcasts the message "Correct- 
Final, V" to all other nodes, and stops executiny the algorithm. 
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