King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

ICS 555 – Data Security and Encryption (T162)

Homework # 03 (due date & time: Wednesday 10/05/2017 during class period)

Problem # 1 – 20 points: Given the RSA signature scheme with the public key (N = 9797, e = 131), which of the following signatures are valid?

- 1. (M = 123, sig(M) = 6292)
- 2. (M = 4333, sig(M) = 4768)

Problem # 2 – 20 points: The parameters of DSA are given by p = 59, q = 29, g = 3, and Bob's private key is d = 23:

- 1. Show the process of signing (Bob) and verification (Alice) for h(M) = 17 and r = 25.
- 2. If instead of Alice receiving h(M) = 17 she receives h(M) = 15, show that Alice detects that the signature is invalid.

Problem # 3 – 10 points: Find the number of collisions you would expect to find if a hash function generates an *n*-bit output and you hash *m* randomly selected messages.

Problem # 4 – 20 points: Consider a "2 out of 3" secret sharing scheme.

- 1. (8 points) Suppose that Alice's share of the secret S is (1, 0), Bob's share is (2, 2), and Charlie's share is (3, 4). What is the secret S? What is the equation of the line?
- 2. (12 points) Suppose that the arithmetic is taken modulo 13, that is, the equation of the line is of the form $(ax + by = c) \mod 13$. Suppose that Alice's share of the secret *S* is (1, 7), Bob's share is (2, 3), and Charlie's share is (3, 12). What is the secret *S*? What is the equation of the line, mod 13?

Problem # 5 – 10 points: Consider the 1 out of 2 OT protocol presented in class. Suppose Alice's public key is (N = 55, e = 7), and Alice's private value d = 23. Also, suppose Alice has the messages $m_0 = 35$ and $m_1 = 12$. Assume that Alice sends $x_0 = 4$ and $x_1 = 40$ in the first message, and Bob is interested in obtaining m_0 and chooses k = 30. Show that Bob will successfully obtain m_0 but fails to successfully obtain m_1 .

Problem # 6 – 20 points: Consider the Fiat-Shamir protocol presented in class. Suppose the public values are N = 55 and v = 5. Suppose Alice sends x = 4 in the first message, Bob sends e = 1 in the second message, and Alice sends y = 30 in the third message.

- 1. Show that Bob will verify Alice's response in this case.
- 2. Find Alice's secret, *S*.