
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

IEEE IOT 1

FPGA-BASED SYMMETRIC RE-
ENCRYPTION SCHEME TO SECURE DATA
PROCESSING FOR CLOUD-INTEGRATED

INTERNET OF THINGS
M. Al-Asli, M. E. S. Elrabaa, and M. Abu-Amara

Abstract— A new scheme using Field Programmable Gate Arrays (FPGAs) to secure IoT data processing in public clouds against
various attacks (including attacks from insiders) is proposed. The proposed scheme supports various business models involving
multiple parties and allow the data owner to give temporary access to IoT data to specific clients at a public market place (the
cloud). The scheme achieves perfect forward secrecy, provides FPGA authentication, a secure way to establish a symmetric
session key between the on-cloud FPGA, the IoT device and the client, and allows user’s configuration integrity check while
running in the cloud FPGA. A symmetric proxy re-encryption (PRE) scheme is used to support the publish/subscribe mode of
operation of IoTs. A complete prototype has been implemented to show the feasibility of the proposed scheme. Formal verification
of the proposed protocol verified that it does not have any vulnerabilities. Experimental results showed that an FPGA
implementation of the proposed PRE was 6x faster than the SW implementation in transforming a ciphertext of size 1 Gb.

Keywords— Cryptographic protocols and algorithms, Hardware Security, Cloud Computing Security, FPGAs, Internet of Things
Security

——————————  ——————————

1 INTRODUCTION

nternet of things (IoT) is penetrating all physical
fields, including homes, manufacturing and urban

spaces, and is expected to continue to grow dramatically in
the future, reaching around 21 billion by 2020 [1]. The mas-
sive amount of data that is generated by these devices need
to be stored, aggregated, and processed if any value is to
be made of these data. Data has proven to be the most val-
uable commodity of our times. As such, many business
models have emerged and will continue to emerge to mon-
etize the enormous volumes of data generated every in-
stance. Within these business models several sovereign en-
tities are involved; data generators (IoT devices), data
owners, carriers, keepers, one time/regular users, etc. Re-
searchers have already identified many security challenges
with IoT data security [2], but this new multifaceted data
usage and handling introduces many new ones.

The cloud has emerged as the natural place for storing
and processing IoT-collected data. Leading cloud vendors
already offer IoT platforms [3]-[4]. To this end, public
clouds have become marketplaces for many services that
share and handle data. As such, cloud operators/vendors
need to provide adequate infrastructure for securing the
data and maintain its integrity and privacy when it is

stored or traded with other entities for different purposes.
This includes protecting the data from insiders’ attacks,
something that is not fully achievable with current tech-
niques. In addition to conventional encryption and key
management techniques, the major thrust in data protec-
tion in public clouds is in developing trusted execution en-
vironments or processors. However, so far there exist no
processor that can really provide a truly isolated execution
environment for users’ applications such that no infor-
mation can leak. Field-programmable Gate Arrays
(FPGAs) on the other hand can provide such an environ-
ment. FPGAs are pre-fabricated integrated circuits that
contains up to millions of general logic blocks, interconnect
primitives, static RAM blocks (BRAMs), clock generators,
DSP blocks, etc. that can be configured by the user to per-
form any function (i.e. to realize a custom computing ma-
chine). FPGA configuration (the equivalent of a context
switch in conventional processor-based computing ma-
chines) does not require the involvement of operating sys-
tems, drivers or compilers, nor any other system software.
This reduces the FPGAs’ attack surface substantially al-
lowing the use of more robust attack models and stronger
security guarantees. FPGAs can be integrated with other
cloud resources to form flexible, scalable, independent and
secure compute resources within the cloud infrastructure .
Clients can use them to perform fast and secure computa-
tions on their sensitive IoT data while utilizing the other
benefits of the cloud. FPGAs can also be used to build more
sophisticated solutions for modern machine-to-machine
communications and big data applications [16].

I

————————————————

All authors are with the Computer Engineering Dept, King Fahd University
of Petroleum and Minerals, Dhahran, 31261 Saudi Arabia.
E-mails: g200464120,elrabaa,marwan@kfupm.edu.sa

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must
be obtained from the IEEE by sending a request to pubs-permis-
sions@ieee.org.

mailto:pubs-permissions@ieee.org
mailto:pubs-permissions@ieee.org

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

2 IEEE IOT

IoT-based systems usually follow the publish/sub-
scribe model with data coming from multiple IoT devices
(publishers), and is read and processed by one or more cli-
ents (subscribers). To secure such data processing in the
on-cloud FPGAs even from the cloud providers, a symmet-
ric proxy re-encryption is needed to convert a publisher’s
ciphertext to another ciphertext that can be decrypted by
the subscriber(s) without revealing the original key to the
subscriber. Thus, the re-encryption proxy acts like an on-
cloud broker allowing data owners to give subscribers ac-
cess to encrypted data without revealing their master keys.
Symmetric proxy re-encryption allows the use of symmet-
ric encryption, which is more efficient when implemented
on FPGAs compared to asymmetric encryption [21].

There is a need for new schemes for securing IoT data
that can support different business models with multiple
entities in different premises involved in data generation,
storage, distribution, and processing. In this work, such a
scheme is proposed. Utilizing FPGAs and standard secu-
rity primitives, it guarantees IoT data privacy and integrity
against various types of attacks and provides the standard
overall protection as outlined in [34] under different use
scenarios. It also provides FPGA authentication and en-
sures the integrity of the user’s on-FPGA application, data
confidentiality and configuration integrity. The proposed
scheme utilizes a specially adapted form of symmetric
proxy re-encryption to: 1) allow processing IoT data in the
cloud without the need for encrypting the IoT data to spe-
cific on-cloud FPGAs, 2) avoid decrypt-then-encrypt pro-
cess in the cloud which exposes the IoT data to cloud pro-
vider, and 3) to enable data sharing among the cloud re-
sources, which allows our scheme to be suitable also for
Map-Reduce applications. A complete prototype of the
proposed scheme with the proxy re-encryption have been
materialized with FPGAs and its performance has been
evaluated. The confidentiality and integrity security prop-
erties of our proposed protocols was verified using the
ProVerif automatic cryptographic protocol verifier. The
proposed FPGA structure was verified to be secure against
man-in-the-middle attacks and FPGA impersonation.

Next, related works are reviewed in Section 2. In Section
3 an overview of the proposed scheme is introduced, in-
cluding the protocol, its security analysis, the related
framework (HW and SW components), and the proposed
symmetric proxy re-encryption. Experimental results are
presented in Section 4. This includes the complete imple-
mentation of the proposed scheme and the symmetric
proxy re-encryption in FPGAs and the details of all com-
ponents, their implementation details and performance
figures. It also provides performance comparisons be-
tween our FPGA-based proxy re-encryption and a soft-
ware version of it implemented in python. Finally, conclu-
sions are presented in Section 5.

2 RELATED WORK

Intel’s Software Guard Extensions (SGX) [5] utilizes a

set of micro-coded instructions that extend Intel architec-
ture to provide secure execution enclaves. It provides se-
curity-sensitive computations with integrity and confiden-
tiality guarantees even from privileged software such as
the operating system (OS), the kernel and hypervisors.
This is accomplished by allowing the user-level code to al-
locate private regions of memory, called enclaves, which
are protected from other processes (including those run-
ning at higher privilege levels). It also provides software
attestation to assure the user that their code (and the data
it uses) is running in the intended trusted enclave. SGX
does not prevent Cache-timing attacks, Physical attacks
and Microcode attacks [6]–[9]. Furthermore, using these
enclaves to receive the code from one party (e.g. the client)
and receive the data from another party (e.g. the IoT de-
vice) is not directly supported by SGX; eliminating the ben-
efits of SGX for the IoT data protection.

Other secure processors have been proposed such as
Aegis [10], Bastion [11], Sanctum [12], Ascend [13], and
Phantom [14]. Again, they provide isolated memory con-
tainers for users’ applications and address translation
mechanisms. To protect against malicious OS that can
learn the memory access patterns of the container and tim-
ing cache attacks, Sanctum [12] flushes a container’s RAM
on context switches and makes containers manage their
own page tables and handle their page faults, hence the OS
cannot learn the virtual address causing the page fault.
Still, Sanctum design does not protect against any physical
attacks nor does it prevent fault-injection attacks and tim-
ing attacks. Ascend [13] and Phantom [14] secure proces-
sors make use of oblivious RAMs (RAMs that hide the op-
eration being performed and shuffles their contents peri-
odically to obscure memory access patterns). This however
resulted in huge slowdown compared to other processors.

Unlike SGX, which uses the Enhanced Privacy ID
(EPID) [15] to preserve the privacy of users using SGX in
remote hosts, these secure processors did not guarantee
the privacy of the user. Users can be tracked by the identity
of the processor they are using.

FPGA-based schemes for securing clients’ data in the
cloud were proposed in [17,18]. In [17] an FPGA-based se-
curity approach for cloud computing that makes use of
RSA and its private key to form a root of trust (ROT) inside
the FPGA was proposed. Augmenting the cloud’s servers
with two types of chips that are paired cryptographically
by the manufacturer was proposed in [18]. The FPGA
would be the processing chip and a custom chip that holds
the state between power cycles using none-volatile
memory. These solutions however cannot support data ag-
gregated from multiple resources, hence are not suitable
for IoT data protection in the cloud. A framework for users’
data privacy for Map-Reduce applications in the cloud us-
ing the security features of current FPGAs and proxy re-
encryption was proposed in [19]. Public/private keys are
used for encrypting/decrypting a symmetric key to be
shared between the user and the FPGAs in the cloud for
data encryption/decryption. The proxy re-encryption

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 3

scheme allows multiple access to the encrypted data from
different users with different assigned keys. In addition,
they propose using the FPGA’s embedded symmetric keys
for protecting the configuration bit stream. These embed-
ded keys however are not only unavailable for general us-
ers, but were proven to be insecure against known
plaintext attacks (KPA) [20]. The proposed scheme also re-
quires a certificate authority (CA) to certify the FPGA’s
public keys as well as a proxy server to manage key re-en-
cryption. The scheme assumes full trust in the cloud user
who will get access to the FPGA’s symmetric keys and
semi-trust in the proxy and cloud operator.

Research on IoT security mainly falls into efficiently au-
thenticating and securing the IoT devices themselves
and/or securing the end-to-end communication between
these devices and the cloud. Lightweight authentication
methods were proposed to cope with IoT devices’ limita-
tions. These methods include homomorphism [22], Elliptic
Curve Cryptography (ECC) [23] and Datagram Transport
Layer Security (DTLS) protocol based authentication [24].
Commercial cloud-based IoT platforms use industry-
standard protocols, such as Transport Layer Security (TLS)
and X.509, to secure communication between the IoT de-
vices and the cloud [25]. In addition, several lightweight
communication protocols were proposed based on public
key infrastructure [26], IPv6/ Low-Power Wireless Per-
sonal Area Networks [27], integrated DTLS and Con-
strained Application Protocol (CoAP) [28] and Secure
Sockets Layer (SSL) [29]. Researchers have also proposed
various secure architectures and supporting technologies
for IoT devices security. Layered security architectures
were proposed [30-31] for IoT security and verification,
conceptually covering various attacks and mitigation tech-
niques in each layer. Layers cover various techniques re-
lated to IoT security such as key management, encryption
oracles and access control. A middleware was proposed in
[32] to meet the scalability and the high number of hetero-
geneous devices of the IoT system. The middleware mainly
targeted developing a security algorithm to tackle packet
sniffing, man-in-the-middle attack and identity spoofing in
the IoT environment. An architecture on lightweight iden-
tity-based cryptography (LIBC) with ECC was proposed in
[33] to solve security issues related to cloud-integrated IoT
environment. A dynamic permutation method for obfus-
cating data encryption in a data processing unit connected
to multiple sensors/actuators was proposed in [35]. In [36],
an FPGA-based secure architecture for IoT devices is pro-
posed. It utilizes a PUF-based true random number gener-
ator and cryptographic cores to protect the IoT device
against Trojans/tampering in the field and provide safe
communications with other (pre-defined) modules. An-
other effort for securing FPGA-based IoT devices was re-
ported in [37]. Using a platform FPGA (with an embedded
CPU), both the boot image and the configuration bit stream
are encrypted and authenticated to protect the design and
avoid spoofing and Trojan attacks.

All the above techniques either are concerned with se-
curing the IoT device itself, as a stand-alone or part of a
network, or its communication with another entity (the
owner of the data). They do not support emerging cloud-
based business models that involve multiple entities ac-
cessing, analyzing, processing, and using data in public
clouds that came from multiple IoT devices. In addition,
they neither provide secure and safe methods for IoT own-
ers to license their devices’ data, nor did they consider at-
tacks from cloud insiders. I.e. none provided a complete
solution that can be practically applied within a public
cloud environment. Fig. 1 illustrates a typical application
of our proposed scheme in the context of smart cities. IoT
devices installed by some entity(s) in many locations col-
lect various information (traffic, pollution, noise, etc.), en-
crypt it with their private keys and send it for storage in a
public cloud. Clients pay the data owners to get temporary
re-encryption keys to use this data to obtain useful infor-
mation for their customers. The re-encryption proxy (PRE)
re-encrypt the data with the key established with the FPGA
in the cloud, which in turn decrypt the data and process it
using the clients’ applications and send them the results.

Fig. 1. A typical use case of the proposed scheme in smart cities IoT

applications.

3 OVERVIEW OF THE PROPOSED SCHEME

3.1 The In-Cloud FPGA

The in-cloud FPGA devices in the proposed scheme
should have the following capabilities (most of which al-
ready exist in current FPGAs):

– A unique identification number; a nonvolatile, un-
changeable and permanently programmed value that
can be used to authenticate the FPGA similar to that
found in Xilinx FPGAs [38]. This identifier alone, how-
ever is not enough for device authentication as it is il-
lustrated in [39].

– Internal Configuration Access Port (ICAP) such as in
Xilinx devices [40]. A specially developed circuitry on
the FPGA (dubbed Static Logic) would configure the
FPGA through the ICAP. External reconfiguration and
readback ports should be disabled [40].

– Have partial reconfiguration capabilities; i.e. parts of
the FPGA can be reconfigured while other parts remain
the same.

– Supports the readback of static configuration contents
only (Look-Up-Tables, interconnects, and I/Os only),
but cannot readback dynamic data such as RAM or

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

4 IEEE IOT

Flip-Flop contents.
Fig. 2 shows the proposed on-FPGA infrastructure to

implement secure IoT data processing in clouds or data-
centers. Many of the components of the static or fixed logic
blocks (blocks that remain fixed and are not re-configured)
already exist in many FPGAs as hard macros (custom cir-
cuits pre-fabricated on the FPGA with optimized perfor-
mance/area/power). The proposed fixed logic includes:

 Key generation circuitry that consists of a PUF (Physi-
cally Unclonable Function) and a b-generation cir-
cuitry to generate random numbers that are used by
the modular exponentiation circuit (mexp),

 Enc/Dec block for Encryption/Decryption,

 A hash function such as SHA3 [46],

 Controllers to coordinate the different activities be-
tween the static logic blocks and to control the Ether-
net communication etc.

PUFs are functions that make use of the manufacturing
process variations to generate different (and unique) long
random numbers in response to different input stimuli
[41]. These responses are not only stable per device, but
they are also unique and unpredictable since manufactur-
ing variations cannot be controlled. Hence, PUFs can be
used to authenticate devices (such as FPGAs) and provide
long random numbers that can be used for key generation.
Some of Altera’s FPGA are already equipped with SRAM-
based PUFs [42]. We believe that in the near future all
FPGA devices will be equipped with many standard secu-
rity primitives (as hardware macros) such as PUFs, Hash,
RSA, etc. Even with current FPGAs, the Static Logic, can be
provided by the FPGA or board manufacturer as pre-con-
figured circuitry on the FPGAs on tamper-proof boards
and packages. Boards will have to be shipped with batter-
ies and be powered constantly to maintain the Static Logic’s
configuration. The entity that does this will be the Trusted
Party (TP) in the proposed scheme. Users’ circuits are
placed into specific FPGA regions via partial reconfigura-
tion. Only the input/output of the Encryption/Decryption
are available to the users.

Fig. 2. The proposed structure of on-cloud FPGAs (control signals are

not shown).

Notation

RND_1 is the on-FPGA, m-bit, PUF-generated random
number that is read once by the TP (at the FPGA/board

manufacturing time) and cannot be read again or altered.
The mask number RND_2, is also an m-bit random number
generated by the TP. RND_2 is used to generate an n-bit
random number b from the FPGA-RND. RND is a secure
random number generated by the client. The parameter
config represents the partial bit stream of a client’s design.
Config_RB is the actual FPGA configuration read back us-
ing ICAP. Encryption of a data using a key k is denoted as
CT := E(data,k) and the corresponding decryption as PT:
=D(CT,k). An FPGA device F is identified by the unique
identifier, denoted as ID(F).

We use the term ‘IoT devices’ to refer to constrained in-
ternet-enabled devices (directly or through gateways). Cli-
ent application and client are used interchangeably.

The b-generation circuitry can be implemented as in Fig.
3. This simple implementation utilizes differential circuitry
to protect against differential power attacks during the b-
generation phase. It consists of two m-bit shift (rotate) reg-
isters (RND_1 and RND_2) and an n-bit register for the
produced b. The n-bits of the RND_1 with corresponding
1s (i.e. high bits) in RND_2 are shifted into the b register in
m or less cycles.

Fig. 3. The b-generation circuitry that generates b used for the session
key. To protect against differential power attacks, differential
circuitry is used for the RND_1 and b registers. The RND_2
register’s value is already known and needs no protection.

Involved parties

Fig. 4 shows the parties that are involved in our proposed
scheme. The client, who is not necessarily the IoT device or
data owner, requests an FPGA to process the IoT devices’
data from the Cloud Provider (CP) who is providing
FPGA-based processing as a service. The FPGA Vendor
(FV) sells FPGA devices to the CP and acts as a Trusted
Party (TP). FV could be the FPGA manufacturer or the
board manufacturer. The cloud is used for IoT data storage
and processing. The cloud is also used for forwarding the
control commands as we consider that there is no direct
communication between the client application and the IoT
devices (similarly to the cloud-based IoT business models
of Microsoft [43] and IBM [4]). Therefore, IoT devices re-
ceive control commands from the cloud and send their
data to the cloud to be stored and processed. The TP facil-
itates authentication and secret sharing among the differ-
ent entities involved.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 5

Fig. 5. The proposed symmetric proxy re-encryption.

3.2 The Proposed Symmetric Proxy Re-Encryption

Data collected from different IoT devices are usually ag-
gregated and stored in the cloud before clients process it.
Different IoT devices use different keys, which means that
the on-cloud FPGAs need to use different keys for each
data they processes, and similarly, the IoT device needs to
send the encrypted data to a specific FPGA. This does not
suit the publish/subscribe model used in such scenarios.
Therefore, we propose a symmetric proxy re-encryption
(PRE) that would securely transform data encrypted by the
IoT devices to a data encrypted by the session key estab-
lished between the IoT device(s) and the on-cloud FPGA.
This would make it possible for any IoT device’s data to be
processed by any authenticated FPGA in the cloud.

Fig. 4. Overall framework of the proposed scheme.

The symmetric proxy re-encryption scheme is illus-

trated in Fig. 5. The IoT device authorizes an FPGA to de-
crypt the data that is stored or going to be stored in the
cloud in the format (data * K mod pi), where K = gr mod p, is
the IoT device’s private key. The parameters p and pi are
primes, data are chunks of data, both data and K must be ≥
1 Kbits long, and data cannot be larger than pi (to be able to
recover the data with an inverse modular multiplication).
With operands larger than 1 Kb long, there is no known
efficient, non-quantum algorithm that solves the integer
factorization required to break such a secret [57]. Initially,
the IoT device and the FPGA share a session key (gab mod
p) using Diffie-Hellman (DH) key exchange [44]. The IoT
device then sends the re-encryption key (rK) to a proxy re-
siding in the cloud. The rK is computed by multiplying the
session key by the multiplicative modular inverse of the
IoT device private key (gr mod p). The proxy converts the
data by modular multipilication by rK and sends the result
to the FPGA. The data is now converted to the format data
* gab mod p and the FPGA can decrypt the data by inverse
modular multiplication by the shared session key (gab mod
p). Proof of the security of this scheme is straight forward
and follows directly the proof of [45].

It is assumed that the proxy and the FPGA are in the
same location to make the transformation fast. The only
operations that need communication outside the cloud are
the FPGA authentication by the IoT device and the sharing

of a session key with it. Using a shared key to authenticate
the FPGA and allow the FPGA to decrypt the data is only
made possible in this case due to the use of symmetric PRE.
Had the PRE not being symmetric, public key cryptog-
raphy would have been required, which requires a certifi-
cate authority to certify the public keys for every FPGA in
the cloud and limits the scalability of the publish/sub-
scribe system [21].

3.3 Proposed Security Protocol

The proposed protocol for securing the communication
between the clients’ applications, the IoT devices, and the
on-cloud FPGAs is illustrated using the sequence diagram
in Fig. 6. The client application is responsible for authenti-
cating the FPGA, securely sharing keys with the FPGA, se-
curely sending configuration bitstream and checking the
configuration integrity while the configuration bitstream is
running in the FPGA. On the IoT device side, the IoT de-
vice also needs to authenticate the FPGA and share a key
with it. The IoT data is stored in the cloud using the IoT
device’s private key (gr mod p) and the IoT device gives del-
egation for the authenticated FPGA to decrypt and process
the data:

– A client sends a request for a physical resource (i.e. the
FPGA) to the CP. An FPGA is assigned to the client. It
can receive data from multiple IoT devices. The CP
sends the FPGA’s identifier (ID(Fi)) to the client (step 1
and step 2 in Fig. 6).

– The client forwards the ID(Fi) to the TP which responds
with FPGA authentication credentials; an m-bit random
number RND_2 that has exactly n number of high bits
(used for the b-generation as in Fig. 3), hash of the cor-
responding n-bit number b concatenated with ID(Fi),
and the FPGA’s session key portion (gb mod p) (step 3
and step 4 in Fig. 6). Both g and p are public values with
g usually being a small integer such as 2 and p being a
prime number satisfying the condition gb ≥ p. Similarly,
ga must be ≥ p.

– The client forwards RND_2 and its own portion of the
session key, ga mod p, to the CP and requests the FPGA’s
authentication credentials. The FPGA uses RND_2 to
generate b using the b-generation circuitry (step 5 in
Fig. 6), then uses it to generate its portion of the session
key (gb mod p), computes Hash(b+ID(Fi)), and sends the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

6 IEEE IOT

result back to the client (step 6 in Fig. 6). The client can
now authenticate the FPGA by comparing the values of
Hash (b+ID(Fi)) and (gb mod p) that have been received
from the TP and CP. Both parties now share the sym-
metric session key (gab mod p), completing the Ephem-
eral Diffie–Hellman key exchange [46]. At this point, a
and b are destroyed by the client and the FPGA, respec-
tively. In addition, the session key will be destroyed at
the end of the session to achieve Perfect Forward Se-
crecy (PFS).

– The client sends his/her circuit’s configuration bit-
stream config encrypted using gab mod p. The static logic
on the FPGA will then decrypt it and use it to configure
the FPGA through the ICAP (step 7 in Fig. 6).

– The CP broadcasts the ID of the FPGA to the client-
specified IoT devices. The IoT device then sends the
FPGA ID to the TP and the TP responds with a new ran-
dom number (RND_2_1) along with the hash and the
key portion of the Diffie-Hellman key exchange (gb1 mod
p). The IoT device requests FPGA authentication by
sending RND_2_1 and its Diffie-Hellman key exchange

portion (ga1 mod p) to the FPGA. The FPGA responds by
providing the hash and the gb1 mod p. The IoT device can
then compare the hashes and keys portions that it had
received from both the TP and the FPGA (steps 8-12 in
Fig. 6). If there is a match, the session will be estab-
lished. Otherwise, it will be terminated.

– The FPGA hashes the key (b1), which is generated by
the PUF circuitry, and encrypt it using the established
session key (ga1b1 mod p) and sends the encrypted hash
(Enc(b1h , ga1b1 mod p)) to the IoT device (step 13 in Fig. 5)
The hash of b1 is used instead of b1 to avoid exposing it
outside the FPGA and to satisfy the PFS. The IoT device
sends the re-encryption key (rK1 = b1h /gr mod p) mod pi
to the on-cloud proxy which in turn transforms the IoT
device data as discussed by the scheme in Fig. 4 and
sends the re-encrypted data to the FPGA for processing
(step 14 and step 15 in Fig. 6). The FPGA decrypts the
data, run the application, and sends the result to the cli-
ent after encrypting it using the session key (gab mod p).
The same circuit could process data from different IoT
devices, each with its own rK.

Fig. 6 The protocol sequence diagram. The dotted box indicates the steps of performing integrity check to the configuration
running in the FPGA.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 7

– To protect against any circuit tampering (e.g. HW Tro-
jans or sniffing circuitry inserted on the FPGA), the client
chooses a secure random value RND, encrypts it with the
gab mod p and sends it to the FPGA requesting configura-
tion readback. The Static Logic decrypts RND, reads back
the FPGA configuration, hashes it with RND, encrypts
with the session key, and sends it back to the client (step
16 and step 17 in Fig. 6). The client can use this to validate
the integrity of the FPGA. This check can be repeated any
number of times (with a new RND every time to prevent
replay attacks), during the operation of the client’s cir-
cuit on the FPGA.
The steps above are repeated for every session and

RND_2 is never repeated. It should be noted that this
scheme also supports 3rd-party provided circuit IPs (i.e.
the circuit is provided by an IP vendor). In this case, to pro-
tect the circuit IPs, the IP vendor will encrypt the circuit
IP(s) using a different Mask and a key obtained through
similar steps, and performs the integrity checks.

3.4 Security Analysis

The proposed protocol illustrated in Fig. 5 provides
FPGA authentication, configuration integrity check and
data confidentiality in the cloud environment. It provides
one-way authentication of the FPGA to both, the client’s
application in the cloud and the IoT device. I.e. the protocol
does not authenticate the client’s application and the IoT
device in the other direction (to the FPGA). The CP usually
does that. It also minimizes communication between the
client application or the IoT device and the TP.

Table 1 provides a detailed security analysis of the pro-
posed scheme against relevant types of attacks. The attacks
are classified as cryptographic, network, and physical at-
tacks. Cryptographic attacks include Known-plaintext at-
tack (KPA), Chosen-plaintext attack (CPA), Ciphertext-
only attack (COA), Chosen-ciphertext attack (CCA) and
open key attack model, which includes Related-key and
Known-key distinguishing attacks. Network attacks in-
clude man-in-the-middle (MiM), impersonation and re-
play attacks [46].

Physical attacks can be invasive, non-invasive, or semi-
invasive. The most relevant of such attacks to an FPGA-
based secure computing is the side-channel attack; an at-
tack that uses information leaked about the operation be-
ing performed. Information leaks out as timing, power,
and/or electromagnetic radiation (e.g. differences ob-
served when processing binary 1s and 0s). These attacks
are mitigated as shown in Table 1 by using the differential
circuitry for generating b (Fig. 2) to prevent leaking RND_1
out and similar techniques for other components such as
the RSA [47]. Other non-invasive attacks that are particu-
lar to FPGAs include Reverse Engineering and Tampering,
Cloning, and Counterfeiting attacks. In Reverse Engineer-
ing attacks, an adversary studies the configuration blocks
and replaces (or tamper with) the security components by
his own malicious components (e.g. Trojans) in order to

disclose secrets and sensitive data [48]. Cloning attack oc-
curs when an adversary creates an exact copy of the FPGA
configuration. Counterfeiting attack is an extension to the
cloning attack and it occurs when identical FPGAs are
used. Hence, a configuration made for one device can be
used with another. The details of the design do not need to
be known by the attacker and the configuration is treated
as a black box. Compromising the FPGA would only re-
quire inserting a snooping circuitry to disclose FPGA se-
crets and consequently, the users’ data. These attacks are
prevented as described in Table 1.

Verification

ProVerif [49] was used for the formal verification of the
security of the proposed protocol and to ensure that the
protocol does not suffer from any vulnerabilities. ProVerif
can verify the secrecy (the attacker cannot obtain the se-
cret), authentication and strong secrecy (the attacker can-
not learn the changes made to the secret) of security proto-
cols. Fig. 7 illustrates the formal verification process with
ProVerif to test each security poperty.

Fig. 7 The formal verification process of the proposed protocol with
ProVerif [49].

The following assumptions were made:

– We modeled the interactions between the IoT-device
and the FPGA as this also models the interactions be-
tween the client and the FPGA.

– The attacker has access to all communication channels
except for private channels.

– To verify the match of the hash values received from
the TP and the FPGA in the IoT device side, these val-
ues are sent to the IoT device and the FPGA. The FPGA
then send the value received from the TP to the IoT de-
vice to emulate the operations of the b-generation and
its corresponding hash value.

– The channels between the IoT device/FPGA and the TP
are set as private. For the case of the FPGA this is to
model the initial process of installing the FPGA secrets
by the TP. After the FPGA installation in the cloud, it
does not communicate with the TP.

– All communications between entities that go through
the cloud are not considered private. Communications
between the IoT device and the clients, on one side, and
the TP on the other side (i.e. steps 3, 4, 9, and 10 in Fig.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

8 IEEE IOT

6) take place outside the cloud and are considered pri-
vate (i.e. secured via SSL/TLS).

– The attacker is active which means that the attacker has
full access to all messages and can send or replay mes-
sages in the communication channels.

The ProVerif code of the proposed protocol is provided
in the appendix. It consists of the following parts:

– Channels involved and adversary model (lines 3-8),

– Encryption/decryption and hash functions models
(lines 9-16).

– The TP’s, the IoT-device’s, and the FPGA’s operations

(lines 19-22, 23-29, 30-34, respectively).

The results of running the ProVerif code shows that the
query is true indicating that the protocol is free from vul-
nerabilities (all the required security properties are met).

Table 1: Summary of the attacks prevented by the proposed scheme.

Attack category Attacker Countermeasures

Cryptographic
attacks

Assumed to be a malicious
insider who tries to break
the cryptographic oracle and
obtains the session key es-
tablished between the cli-
ent/IoT device and the
FPGA.

Any data outside the FPGA is encrypted. Open key attack model
[46] is prevented by producing random uncorrelated numbers us-
ing the PUF.

Network attacks

Assumed to be a malicious
insider/outsider attempting
to impersonate the FPGA
and/or obtain sensitive
data.

Impersonation

The TP sends the hash Hash(b(RND_2) + ID(Fi))
to the client which has to match the hash re-
ceived from attacker. The attacker can send
Hash(b(RND_2)* + ID(Fi)) and gt mod p which do
not equal Hash(b(RND_2) + ID(Fi) and gb mod p.
Replaying the hash to be sent by the Fi is also
prevented because RND_2 is never repeated.

MiM

MiM is unable to re-compute the hash sent by the
FPGA while providing the correct gb mod p. Ex-
changes between the client and the TP outside
the cloud (messages 3 and 4 in Fig. 6) can be pro-
tected by standard protocols such as SSL,TLS etc.

Replay

Replaying the values to be sent by the FPGA is
prevented because RND_2 is never repeated. In-
tegrity checking replay is prevented using the
newly client-generated random number (RND).

Physical and
FPGA attacks

Assumed to be a malicious
insider that has access to the
FPGA devices in the data-
center and is trying to obtain
the device secrets and the
IoT sensitive data.

Invasive
Damage the FPGA and any divulged secrets
such as the RND_1 are useless because it is only
unique to that FPGA.

Non-invasive

All blocks of the static logic have constant pro-
cessing time (cycles). Similarly, Power and Elec-
tromagnetic Radiation analysis attacks are miti-
gated due to the use of differential RND_1 cir-
cuitry and similar techniques for the security
components such as the RSA [47]; the
power/electromagnetic profiles do not depend
on the value of b or the shared key.

Semi-invasive
The required knowledge and equipment are be-
yond a malicious insider.

Reverse Engi-
neering and
Tampering

Static Logic is installed by the TA and cannot be
read back. Furthermore, repeated integrity
checks would expose any changes made to the
FPGA Configuration.

Cloning and
counterfeiting

The PUF produces a unique RND_1 for every
FPGA.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 9

4 EXPERIMENTAL RESULTS

4.1 Static Logic Implementation

To evaluate the practicality and performance of the pro-
posed scheme, a complete proof-of-concept prototype of
an FPGA system has been implemented. A Xilinx Virtex-6
LX 550T FPGA [38] prototyping board (with 1 Gbps Ether-
net ports) was used for the prototype. For prototyping pur-
poses, the Static Logic blocks were implemented using the
FPGA’s reconfigurable logic blocks. The Static Logic is
made of the following components:

– A 256-bit SHA3 hashing block based on the Keccak
sponge function [50]. The design required major
changes to make it routable and to pipeline it (mainly
the rounds steps).

– A 1 Kb modular multiplier based on the interleaved
modular multiplication algorithm [51].

– A modular exponentiation block (mexp) based on the
Square-and-Multiply algorithm [52]. To protect
against Differential Power Analysis (DPA) attacks, the
implemented modexp performs the multiplication at
each step but the result will not be written to the ap-
propriate register except when the corresponding ex-
ponent bit is 1 (in case the bit is 0, the result is written
to a dummy register). This masks the power depend-
ency on the exponent bits.

– The PUF as 2 Kb differential registers containing a ran-
dom number, and the b-generation circuitry (as shown
in Fig. 3).

– An Ethernet controller and a state machine to handle
the data flow between the components.

The FPGA’s logic and memory utilization of the different
Static Logic blocks are shown in Table 2 along with their
maximum possible frequencies. These results show that
even if the Static Logic components were to be imple-
mented using the FPGA’s configurable resources they
would consume relatively very low resources (~8% of
LUTs, ~2.5% of flip-flops, ~1.9% of the available block
RAMs, and ~3.4% of the available DSP multipliers). Prior
works ([52-54]) reported similar results indicating that
these types of functions can be implemented very effi-
ciently on FPGAs.
The Static Logic was also synthesized as a custom circuit to
estimate its area if it was made as hard macros on the
FPGA. The total gate count was 164,223 gates (total RAM
and FFs count remain the same as the FPGA implementa-
tion). Based on that, and to put this into perspective, the
total area of the Static Logic as custom HW macros is esti-
mated to be ~0.06 mm2 in a state-of-the-art 16/14 nm fab-
rication technology based on the International Technology
Roadmap for Semiconductors (ITRS) [55]. A typical state-
of-the-art FPGA would have a die area from few hundred
mm2 to around 2,000 mm2 [56].

4.2 PRE Implementation

The PRE was also implemented in a second Virtex 6 LX

550T FPGA. It can be installed once in an untrusted man-
ner since the data is not being decrypted in the PRE. Our
FPGA-based PRE consists of an Ethernet controller, 1 Kb
modular multiplier, and a FSM to receive the rK key and
accumulate the data into 1 Kb chunks to be multiplied by
the rK. The components of the FPGA along with their max-
imum frequency are shown in Table 3.

Table 2. FPGA resource usage of the Static Logic.

Static Logic LUTs FFs BRAMs DSP FMax (MHz)

Full System

25,981 15,599 12* 29
234.9

(7.56%) (2.27%) (0.95%) (3.36%)

SHA3-256

3,324

(1.13%)

1,117

(0.17%)

0

(0.00%)

3

273.9
(0.35%)

Enc-Dec 8,711 3,033 0 0

134.7

 (2.31%) (0.41%) (0.00%) (0.00%)

Key

generation

mexp

6,816 3,595 0 0

130.6

(1.98%) (0.52%) (0.00%) (0.00%)

b-generation

circuitry

3,340 4,349 0 2

430.3

(0.68%) (0.68%) (0.00%) (0.23%)

Controllers

Ethernet

Controller
1,302 1,045 12 19

234.6

 (0.38%) (0.15%) (1.89%) (2.20%)

Main FSM

2,488 2,460 0 2

413.6

(0.72%) (0.36%) (0.00%) (0.23%)

* Out of 1,264 available BRAMs (~ 226 Kb out of 22,752 Kb total).

Table 3: FPGA resource usage of the PRE Logic.

PRE Logic LUTs FFs BRAMs DSP FMax (MHz)

Full System
21,068

(4.81%)

8534

(1.24%)

12

(1.89%)

21

(2.43%)
135

ModMult x 10
2,107

(0.61%)

773

(0.11%)

0

(0.00%)

0

(0.00%)
134.7

Ethernet

Controller

1,302

(0.38%)

1,045

(0.15%)

12

(1.89%)

19

(2.20%)
234.6

FSM
266

(0.07%)

260

(0.03%)

0

(0.00%)

2

(0.23%)
274.6

The modular multiplication was parallelized into 10 mul-
tipliers to match the Ethernet communication capacity. For
a 1 Gbps Ethernet link, 8 bits can be processed every cycle.
For this reason, BRAMs were used to buffer the data that
is received/sent from/to Ethernet link and 10 (serial) mul-
tipliers to work in parallel such that 250 bits of the product
results are outputted every cycle, ignoring the latency of
filling the BRAMs and computing the first product result
at the beginning. The synthesis results show that the PRE
used less than 5% of the FPGA resource. This means that it
can be implemented in low-cost FPGAs.

4.3 Performance Evaluation

Static Logic Speed

As shown in Table 2, the Static Logic synthesized on the
FPGA was relatively fast. All components used the 100
MHz FPGA board clock since that was more than enough
to handle the board’s 1 Gbps Ethernet traffic. The SHA3-

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

10 IEEE IOT

256 achieved a throughput of 237MB/s and a latency of 27
cycles to process 64 B of data. Similarly, the 1 Kb- modular
multiplier takes 1,024 cycles to process 1 Kb of data and
can be enhanced by making multiple copies of it to work
in parallel as discussed in subsection 4.2. The Modexp
component is used at the beginning of the session and
when calculating the modular multiplicative inverse as in
Fig. 6. The latency of the modular exponentiation was just
under 0.7ms. The latency of our basic b-generation cir-
cuitry is 2,048 cycles for the 2 Kb RND_1. These compo-
nents can be easily operated at higher frequencies to han-
dle higher bandwidth Ethernet links.

PRE Performance Evaluation

Our proxy re-encryption can be seen as a packet processor;
it receives the data and output the re-encrypted result. The
performance of our FPGA implementation of the proxy
was compared to a software implementation and other
published HW implementations [17, 19]. The SW version
was implemented in python 2.7 on an Intel Xeon CPU with
eight core 3.20 GHz, 23.5 GB of memory, and 2 TB of disk.
The input data was kept entirely in the RAM (using ar-
rays). For precise measurement of the time of the SW ver-
sion, the measurements were repeated 10,000 times and
the average of 10 runs was taken producing the 1,000 meas-
urements in Fig. 8 for 1 Mb of data. The minimum time was
set to be the actual value, the maximum time to the exper-
imental value, and the percentage of error was calculated
and found to be 2.7639% only. The FPGA implementation
makes use of the 1 Gb Ethernet link to fill the BRAMs.
Based on these setups, Fig. 9 shows the time it takes in sec-
onds for the two implementations. The FPGA implemen-
tation is, on average, 5.8 times faster than the SW imple-
mentation. Given the speedup obtained, if the Ethernet
link is 10 Gb, the speedup will be about 58x.

Fig. 8. Execution time of the Python PRE implementation over 1,000

runs.

Table 4 shows a comparison with published FPGA-based
secure platforms [17, 19, and 36]. As this table shows, our
basic block implementations provide an excellent combi-
nation of speed and resource utilization. This is especially
true for our PRE implementation, which at half the re-
source usage, provides over 155x speed improvement over
the implementation in [19]. This is due to the use of mod-
ular multiplication instead of conventional modular expo-
nentiation-based re-encryption.

Table 4: Performance comparison with published FPGA-based secu-
rity implementations.

 Implementation

PRE Implementation Hash

(SHA3-256)

Encryption

(AES)

Slices Speed

(µs/128-bit re-

encryption)

Slices Speed

(Mbps)

Slices Speed

(Gbps)

FPGA Trusted

Computing [17]
N/A 204 12 456 0.572

Privacy Preserv-

ing FPGA [19]
10,854 1,843.71 2,300 540 14,000 40

FPGA-based

IoT [36]
N/A N/A 1,576 12.8

This work* 5,267 11.85 831 237 2,178 34.5

* Including the network controller

Evaluation of Total Latency

The overall end-to-end delay for one transaction as de-
picted in Figure 6 has been evaluated using the global av-
erage internet speed of 6.3 Mb/s [58] and the actual speed
of the FPGA static logic and PRE and assuming a 32Kb IoT
data size. The detailed times (in milliseconds) of each step
along with the exchanged data size(s) and the total time are
shown in Table 5. The total transaction time of 230 ms ob-
tained with the conservative estimate of the network band-
width (inside and outside the cloud) would satisfy typical
IoT applications’ requirements.

Table 5: End-to-End evaluation of the proposed scheme’s delay.

Protocol step # Time (ms)
1- Request (256b) 3.94E-02

2- FPGA serial & ID (512b) 7.88E-02

3- Request (256b) 3.94E-02

4- Mask (2,048b), hash (256b), ga mod p (2048b) 0.670

5- RND_2 (2,048b), ga mod p (2,048b) 0.630

6- Hash (256b), gb mod p (2,048b) 3.94E-02

7- Not included

8- ID (256b) 3.94E-02

9- Request (256b) 0.670

10- Mask (2,048b), hash (256b), gab mod p (2,048b) 0.670

11- RND_2_1 (2,048b), gab mod p (2,048b) 0.630

12- Hash (256b), gab mod p (2,048b) 0.354

13- Encrypted b (2,048b) 0.315

14- rK (2,048b) 0.315

15- RND_2_1 (2,048b), encrypted data (32Kb)* 112

16- Encrypted results (32Kb)* 112

Total End-to-End delay 230.1

* For both communication and computation, assuming 6.3 Mbs communication speed

within the cloud in case the PRE is not in the same geolocation as the FPGA. Compu-

tations time is only 32 ms.

Fig. 9. Execution time comparison of a Python implementation and the

PRE FPGA implementation.

Execution times of HW & SW

PRE implementations

Average execution time of the PRE

SW Implementation

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 11

5 CONCLUSIONS & DISCUSSION

A new FPGA-based scheme for securing IoT data in public
clouds that supports emerging business models with sev-
eral involved parties is proposed. It includes a protocol for
establishing a secure session between a client and an on-
the-cloud FPGA to process IoT data. Utilizing a symmetric
proxy re-encryption, data owners can give temporary ac-
cess to IoT data in the cloud without divulging the keys
used by the IoT devices to encrypt the data. The proposed
provides strong protection against various attacks. The use
of modular multiplication (with >1Kb long keys) greatly
reduces the computational complexity compared to con-
ventional techniques (e.g. RSA) while providing similar se-
curity levels. This, and the support for secure dealings be-
tween distributed entities (IoT device, Client, re-encryp-
tion proxy, and the FPGA), make the proposed scheme
well suited for emerging cloud paradigms such as Fog and
Edge computing.
A complete proof-of-concept prototype implementation of
the scheme showed that it is feasible even with existing
FPGAs, simple to implement, efficient in terms of resource
utilization and suites the publish/subscribe model used
with IoT devices. It also achieves PFS, provides authenti-
cation of the on-cloud FPGAs to the clients and IoT de-
vices, and checks the integrity of clients’ configurations to
prevent any modifications and/or other FPGA related at-
tacks such as reverse engineering and cloning. An FPGA
PRE implementation outperformed a SW one by 6x for a
1GB of transformed text. Our HW implementations pro-
vided an excellent combination of speed and HW effi-
ciency compared to other published FPGA-based secure
platforms. Even with conservative estimate of the network
bandwidth (inside and outside the cloud), the total end-to-
end delay of the proposed scheme would satisfy typical
IoT applications’ requirements. Formal verification with a
realistic attacker model was performed on the proposed
protocol that proved that it has no vulnerabilities.

ACKNOWLEDGMENT

The authors wish to acknowledge facility support pro-
vided by King Fahd University of Petroleum and Minerals.

Appendix: ProVerif code (in pi calculus)

1. (* Diffie-Hellman representation*)
2. A -> B : e^n0

B -> A : e^n1
A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0

3. A -> B : {s}k *)
4. free c.(*a channel used to send/receive messages between parties *)
5. free c1. (*a channel used to send/receive messages between the TP and

the IoT_device/FPGA *)
6. private free s. (*a message to be send securely upon executing the pro-

tocol *)
7. (* active adversary *)
8. param attacker = active. (*Active means that the attacker can intercept

messages send ,receive or modify messages *)
9. (* Shared key cryptography *)
10. fun enc/2. (*encryption function with 2 inputs *)

11. reduc dec(enc(x,y),y) = x. (*the corresponding decryption*)
12. fun hash/1. (* the hash function with 1 input *)
13. (* Diffie-Hellman functions *)
14. fun f/2. (*a function used to represent gab=gba *)
15. fun g/1. (*the exponent ion function *)
16. equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the func-

tion f *)
17. (* Test whether message s is secret *)
18. query attacker:s.
19. (* The TP process *)
20. let TP = new n00; new b;
21. (*using channel c1 to share a key with the IoT_device and the FPGA*)
22. (out(c1,g(n00)) | in(c1,x11); let k = f(n00,x11) in out(c1,

enc(g(n1),k));out(c1,enc(hash(b),k))).
23. (*The IoT_device process *)
24. let IoT_device = new n0; new n11;
25. (*sharing a key with the TP *)
26. (*receiving gb and hash(b) from the TP *)

let gb_TP = in (c1,m);
let hash_b = in (c1,h) in

27. (*receiving gb and hash(b) from the FPGA *)
out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA);

28. (*authenticating the FPGA *)
if gb_TP=gb_FPGA then
(if hash_b=hash_FPGA then

29. (*if authentication done, send the message s *)
let k1 = f(n0,gb_TP) in out(c, enc(s,k1)))
else (0)).

30. (*The FPGA process *)
31. let FPGA = new n01;
32. (*receiving gb and hash(b) from the TP and receiving ga from the cli-

ent *)
let gb = in (c1,m);
let hash_b1 = in (c1,h); in
in(c,x0);

l et k1 = f(gb,x0) in
33. (*sending gb and hash(b) to the IoT_device*)

out(c,gb);
out(c,hash_b1);
in (c,m3);

34. (*receiving the message s from the IoT_device *)
let s3 = dec(m3,k1) in 0).

35. process TP | IoT_device | FPGA

REFERENCES

[1] J. Rivera and R. Van der Muelen. (2013, December). Gartner Says
the Internet of Things Installed Base Will Grow to 26 Billion Units
By 2020. [Online]. Available:
http://www.gartner.com/newsroom/id/2636073

[2] R. van Kranenburg and A. Bassi, “IoT Challenges,” Commun. Mob.
Comput., vol. 1, no. 1, p. 9, 2012.

[3] Amazon. (2016). AWS IoT. [Online]. Available:
https://aws.amazon.com/iot/

[4] M. J. Yuan. (2011). IBM Watson. [Online]. Available:
https://www.ibm.com/watson/developercloud/services-
catalog.html

[5] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” Proc. 2nd
international workshop on hardware and architectural support for
security and privacy. Vol. 13. 2013.

 [6] S. S. and T. M. J. Götzfried, M. Eckert, “Cache Attacks on Intel SGX.”
Proc. of the 10th European Workshop on Systems Security, 2017.

[7] C. M. and S. M. M. Schwarz, S. Weiser, D. Gruss, “Malware Guard
Extension: Using SGX to Conceal Cache Attacks.” arXiv preprint
arXiv:1702.08719, 2017.

[8] S. C. and A. S. F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen,
“Software Grand Exposure: SGX Cache Attacks Are Practical,” arXiv
preprint arXiv:1702.07521, 2017.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

12 IEEE IOT

[9] M. P. Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, “Inferring fine-grained control flow inside SGX
enclaves with branch shadowing,” arXiv preprint
arXiv:1611.06952, 2016.

[10] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing,” Proc. Int. Conf. Supercomput., pp. 160–171, 2003.

[11] D. Champagne and R. B. Lee, “Scalable architectural support for
trusted software,” High Perform. Comput. Archit. (HPCA), 2010
IEEE 16th Int. Symp., pp. 1–12, 2010.

[12] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation,” Proc. 25th
USENIX Secur. Symp., 2016.

[13] C. W. Fletcher, M. Van Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,”
Scalable Trust. Comput. STC ’12. Proc. Seventh ACM Work., p. 3,
2012.

[14] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J.
Kubiatowicz, and D. Song, “PHANTOM: Practical Oblivious
Computation in a Secure Processor,” in CCS’13, pp. 311–324, 2013.

[15] E. Brickell and J. Li, “Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities,” IEEE
Trans. Dependable Secur. Comput., vol. 9, no. 3, pp. 345–360,
2012.

 [16] Voss, Sven-Hendrik. "Towards unique performance using FPGAs in
modern communication, data processing and sensor systems,"
Signal Processing and Integrated Networks (SPIN), 2016 3rd
International Conference on. IEEE, 2016.

[17] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,”
Proc. 22nd Int. Conf. on Field Programmable Logic and
Applications, FPL 2012, pp. 63–70, 2012.

[18] V. Costan and S. Devadas, “Security challenges and opportunities
in adaptive and reconfigurable hardware,” 2011 IEEE Int. Symp.
Hardware-Oriented Secur. Trust, pp. 1–5, 2011.

[19] L. Xu, W. Shi, and T. Suh, “PFC: Privacy preserving FPGA cloud - A
case study of MapReduce,” IEEE International Conference on Cloud
Computing, CLOUD, pp. 280–287, 2014.

[20] P. Swierczynski, M. Fyrbiak, C. Paar, C. Huriaux, and R. Tessier,
“Protecting against Cryptographic Trojans in FPGAs,” Proc. 23rd
IEEE Int. Sym. Field-Programmable Custom Computing Machines
(FCCM), pp. 151-154, 2015.

[21] M. A. Tariq, B. Koldehofe, and K. Rothermel, “Securing Broker-Less
Publish / Subscribe Systems Using Identity-Based Encryption,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 518–528, 2014.

[22] H. Ning, H. Liu, and L. T. Yang, “Aggregated-proof based
hierarchical authentication scheme for the internet of things,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 3, pp. 657–667, 2015.

[23] N. Ye, Y. Zhu, R. C. Wang, R. Malekian, and Q. M. Lin, “An efficient
authentication and access control scheme for perception layer of
internet of things,” Appl. Math. Inf. Sci., vol. 8, no. 4, pp. 1617–
1624, 2014.

[24] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards viable certificate-based authentication for the internet
of things,” Proc. 2nd ACM Work. Hot Top. Wirel. Netw. Secur. Priv.
- HotWiSec ’13, p. 37, 2013.

[25] Microsoft. (2012). Azure IoT Suite. [Online]. Available:
https://www.microsoft.com/en-us/internet-of-things/azure-iot-
suite.

[26] F. Li and P. Xiong, “Practical secure communication for integrating
wireless sensor networks into the internet of things,” IEEE Sens. J.,
vol. 13, no. 10, pp. 3677–3684, 2013.

[27] I. E. Bagci, S. Raza, T. Chung, U. Roedig, and T. Voigt, “Combined
secure storage and communication for the internet of things,”
IEEE International Conference on Sensing, Communications and
Networking, SECON 2013, pp. 523–531, 2013.

[28] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure CoAP for the internet of things,” IEEE Sens. J.,
vol. 13, no. 10, pp. 3711–3720, 2013.

[29] H. Zhang and T. Zhang, “Short Paper: "A peer to peer security

protocol for the internet of things: Secure communication for the
sensiblethings platform,” 18th International Conference on
Intelligence in Next Generation Networks, ICIN 2015, pp. 154–156,
2015.

[30] J. Qian, H. Xu, and P. Li, “A novel secure architecture for the
internet of things,” Proc. International Conference on Intelligent
Networking and Collaborative Systems, IEEE INCoS 2016, pp. 398–
401, 2016.

[31] D. Singh, G. Tripathi, and A. Jara, “Secure layers based architecture
for internet of things,” IEEE World Forum Internet Things, WF-IoT
2015 - Proc., pp. 321–326, 2015.

[32] S. Sicari, A. Rizzardi, D. Miorandi, C. Cappiello, and A. Coen-
Porisini, “A secure and quality-aware prototypical architecture for
the internet of things,” Inf. Syst., vol. 58, pp. 43–55, 2016.

[33] T. Bhattasali, R. Chaki, and N. Chaki, “Secure and trusted cloud of
things,” Annual IEEE India Conference, INDICON 2013, 2013.

[34] B. Guttman and E. Roback, “An Introduction to Computer
Security : The NIST Handbook,” Natl. Inst. Stand. Technol. Technol,
1995.

[35] J. Dofe, J. Frey, and Q. Yu, "Hardware Security Assurance in
Emerging IoT Applications," Proc. IEEE Int. Symp. on Circuits and
Systems (ISCAS), pp. 2050-2053, 2016.

[36] A. Johnson, R. Chakraborty, and D. Mukhopadhyay, "A PUF-
Enabled Secure Architecture for FPGA-Based IoT Applications,"
IEEE Trans. on Multi-Scale Computing Systems, Vol. 1, No. 2, pp.

110-122, 2015.

[37] Y. Liu, J. Briones, R. Zhou, and N. Magotra, "Study of Secure Boot
with a FPGA-based IoT Device," Proc. IEEE Int. Midwest Symp. on
Circuits and Systems (MWSCAS), pp. 1053-1056, 2017.

[38] Xilinx Inc., http://www.xilinx.com, “XAPP1084(v1.3): Developing
Tamper Resistant Designs with Xilinx Virtex-6 and 7 Series FPGAs,”
Xilinx, Inc., vol. 1084, pp. 1–20, 2013.

[39] S. Goren, O. Ozkurt, A. Yildiz, and H. F. Ugurdag, “FPGA bitstream
protection with PUFs, obfuscation, and multi-boot,” 6th
International Workshop on Reconfigurable Communication-
Centric Systems-on-Chip, ReCoSoC 2011 - Proceedings, 2011.

[40] Xilinx Inc., http://www.xilinx.com, “Xilinx Partial Reconfiguration
User Guide,” vol. UG702, pp. 1–124, 2012.

[41] C. Böhm and M. Hofer, Physical unclonable functions in theory and
practice, vol. 9781461450. 2013.

[42] Intel, (2010). Stratix V Device Overview. [Online]. Available:
https://www.altera.com/en_US/pdfs/literature/hb/stratix-
v/stx5_51001.pdf

[43] TechTarget, (2012). Reference Architecture. [Online]. Available:
http://internetofthingsagenda.techtarget.com/definition/referen
ce-architecture

[44] R. C. Merkle, “Secure communications over insecure channels,”
Communications of the ACM, vol. 21, no. 4. pp. 294–299, 1978.

[45] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and
atomic proxy cryptography,” Lect. Notes in Computer Science, vol.
1403, pp. 127–144, 1998.

[46] Mark Stamp, Information Security Principles and Practice, 2nd ed.,
A JOHN WILEY & SONS, INC., PUBLICATION, p. 608, 2011.

[47] P. Maistri, S. Tiran, P. Maurine, I. Koren, and R. Leveugle,
“Countermeasures against em analysis for a secured FPGA-based
AES implementation,” Int. Conf. Reconfigurable Comput. FPGAs,
ReConFig 2013, 2013.

[48] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik,
“Hardware trojan insertion by direct modification of FPGA
configuration bitstream,” IEEE Des. Test, vol. 30, no. 2, pp. 45–54,
2013.

[49] B. S. Xavier Allamigeon, Vincent Cheval. (2014). ProVerif:
Cryptographic protocol verifier in the formal model. [Online].
Available:
http://prosecco.gforge.inria.fr/personal/bblanche/proverif

[50] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the
indifferentiability of the sponge construction,” Lect. Notes in
Computer Science, vol. 4965 LNCS, pp. 181–197, 2008.

[51] D. N. Amanor, C. Paar, J. Pelzl, V. Bunimov, and M. Schimmler,

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2864513,
IEEE Internet of Things Journal

 13

“Efficient hardware architectures for modular multiplication on
FPGAs,” Proc. International Conference on Field Programmable
Logic and Applications, FPL, vol. 2005, pp. 539–542, 2005.

[52] D. Suzuki, “How to maximize the potential of FPGA resources for
modular exponentiation,” Advances in Cryptology - Cryptographic
Hardware and Embedded Systems - CHES 2007, pp. 272–288,
2007.

[53] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the
Smallest,” Lect. Notes Comput. Sci. Adv. Cryptol. - Cryptogr. Hardw.
Embed. Syst. - CHES 2005, pp. 427–440, 2005.

[54] D. S. Kumar, “Compact Implementation of SHA3-1024 on FPGA,”
vol. 3, no. 7, pp. 79–86, 2015.

[55] ITRS. (2012). International Technology Roadmap for Semicon
ductors. [Online]. Available:
http://www.semiconductors.org/clientuploads/Research_Techno
logy/ITRS/2015/0_2015 ITRS 2.0 Executive Report (1).pdf

[56] Xilinx Inc.. 7 Series FPGAs Packaging and Pinout, Product
Specification Xilinx. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug
475_7Series_Pkg_Pinout.pdf

 [57] Thorsten Kleinjung, et. al., "Factorization of a 768-bit RSA
modulus," IACR Cryptology ePrint Archive 2010: 006 (2010).

[58] M. Jackson, “Global Average Internet Speeds Hit 6.3Mbps vs
14.9Mbps in UK,” 2016. www.ispreview.co.uk/
index.php/2016/06/q1-2016-akamai-uk-internet-speeds-reach-
15-mbps-vs-6-3-mbps-globally.html.

