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Abstract— A new scheme using Field Programmable Gate Arrays (FPGAs) to secure IoT data processing in public clouds against 
various attacks (including attacks from insiders) is proposed. The proposed scheme supports various business models involving 
multiple parties and allow the data owner to give temporary access to IoT data to specific clients at a public market place (the 
cloud). The scheme achieves perfect forward secrecy, provides FPGA authentication, a secure way to establish a symmetric 
session key between the on-cloud FPGA, the IoT device and the client, and allows user’s configuration integrity check while 
running in the cloud FPGA. A symmetric proxy re-encryption (PRE) scheme is used to support the publish/subscribe mode of 
operation of IoTs. A complete prototype has been implemented to show the feasibility of the proposed scheme.  Formal verification 
of the proposed protocol verified that it does not have any vulnerabilities. Experimental results showed that an FPGA 
implementation of the proposed PRE was 6x faster than the SW implementation in transforming a ciphertext of size 1 Gb. 
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1 INTRODUCTION

nternet of things (IoT) is penetrating all physical 
fields, including homes, manufacturing and urban 

spaces, and is expected to continue to grow dramatically in 
the future, reaching around 21 billion by 2020 [1]. The mas-
sive amount of data that is generated by these devices need 
to be stored, aggregated, and processed if any value is to 
be made of these data. Data has proven to be the most val-
uable commodity of our times. As such, many business 
models have emerged and will continue to emerge to mon-
etize the enormous volumes of data generated every in-
stance. Within these business models several sovereign en-
tities are involved; data generators (IoT devices), data 
owners, carriers, keepers, one time/regular users, etc. Re-
searchers have already identified many security challenges 
with IoT data security [2], but this new multifaceted data 
usage and handling introduces many new ones.  

The cloud has emerged as the natural place for storing 
and processing IoT-collected data. Leading cloud vendors 
already offer IoT platforms [3]-[4]. To this end, public 
clouds have become marketplaces for many services that 
share and handle data. As such, cloud operators/vendors 
need to provide adequate infrastructure for securing the 
data and maintain its integrity and privacy when it is 

stored or traded with other entities for different purposes. 
This includes protecting the data from insiders’ attacks, 
something that is not fully achievable with current tech-
niques. In addition to conventional encryption and key 
management techniques, the major thrust in data protec-
tion in public clouds is in developing trusted execution en-
vironments or processors. However, so far there exist no 
processor that can really provide a truly isolated execution 
environment for users’ applications such that no infor-
mation can leak. Field-programmable Gate Arrays 
(FPGAs) on the other hand can provide such an environ-
ment. FPGAs are pre-fabricated integrated circuits that 
contains up to millions of general logic blocks, interconnect 
primitives, static RAM blocks (BRAMs), clock generators, 
DSP blocks, etc. that can be configured by the user to per-
form any function (i.e. to realize a custom computing ma-
chine). FPGA configuration (the equivalent of a context 
switch in conventional processor-based computing ma-
chines) does not require the involvement of operating sys-
tems, drivers or compilers, nor any other system software. 
This reduces the FPGAs’ attack surface substantially al-
lowing the use of more robust attack models and stronger 
security guarantees. FPGAs can be integrated with other 
cloud resources to form flexible, scalable, independent and 
secure compute resources within the cloud infrastructure . 
Clients can use them to perform fast and secure computa-
tions on their sensitive IoT data while utilizing the other 
benefits of the cloud. FPGAs can also be used to build more 
sophisticated solutions for modern machine-to-machine 
communications and big data applications [16]. 
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IoT-based systems usually follow the publish/sub-
scribe model with data coming from multiple IoT devices 
(publishers), and is read and processed by one or more cli-
ents (subscribers). To secure such data processing in the 
on-cloud FPGAs even from the cloud providers, a symmet-
ric proxy re-encryption is needed to convert a publisher’s 
ciphertext to another ciphertext that can be decrypted by 
the subscriber(s) without revealing the original key to the 
subscriber. Thus, the re-encryption proxy acts like an on-
cloud broker allowing data owners to give subscribers ac-
cess to encrypted data without revealing their master keys. 
Symmetric proxy re-encryption allows the use of symmet-
ric encryption, which is more efficient when implemented 
on FPGAs compared to asymmetric encryption [21]. 

There is a need for new schemes for securing IoT data 
that can support different business models with multiple 
entities in different premises involved in data generation, 
storage, distribution, and processing. In this work, such a 
scheme is proposed. Utilizing FPGAs and standard secu-
rity primitives, it guarantees IoT data privacy and integrity 
against  various types of attacks and provides the standard 
overall protection as outlined in [34] under different use 
scenarios. It also provides FPGA authentication and en-
sures the integrity of the user’s on-FPGA application, data 
confidentiality and configuration integrity. The proposed 
scheme utilizes a specially adapted form of symmetric 
proxy re-encryption to: 1) allow processing IoT data in the 
cloud without the need for encrypting the IoT data to spe-
cific on-cloud FPGAs, 2) avoid decrypt-then-encrypt pro-
cess in the cloud which exposes the IoT data to cloud pro-
vider, and 3) to enable data sharing among the cloud re-
sources, which allows our scheme to be suitable also for 
Map-Reduce applications. A complete prototype of the 
proposed scheme with the proxy re-encryption have been 
materialized with FPGAs and its performance has been 
evaluated. The confidentiality and integrity security prop-
erties of our proposed protocols was verified using the 
ProVerif automatic cryptographic protocol verifier. The 
proposed FPGA structure was verified to be secure against 
man-in-the-middle attacks and FPGA impersonation. 

Next, related works are reviewed in Section 2. In Section 
3 an overview of the proposed scheme is introduced, in-
cluding the protocol, its security analysis, the related 
framework (HW and SW components), and the proposed 
symmetric proxy re-encryption. Experimental results are 
presented in Section 4. This includes the complete imple-
mentation of the proposed scheme and the symmetric 
proxy re-encryption in FPGAs and the details of all com-
ponents, their implementation details and performance 
figures. It also provides performance comparisons be-
tween our FPGA-based proxy re-encryption and a soft-
ware version of it implemented in python. Finally, conclu-
sions are presented in Section 5. 

2 RELATED WORK 

Intel’s Software Guard Extensions (SGX) [5] utilizes a 

set of micro-coded instructions that extend Intel architec-
ture to provide secure execution enclaves. It provides se-
curity-sensitive computations with integrity and confiden-
tiality guarantees even from privileged software such as 
the operating system (OS), the kernel and hypervisors. 
This is accomplished by allowing the user-level code to al-
locate private regions of memory, called enclaves, which 
are protected from other processes (including those run-
ning at higher privilege levels). It also provides software 
attestation to assure the user that their code (and the data 
it uses) is running in the intended trusted enclave.  SGX 
does not prevent Cache-timing attacks, Physical attacks 
and Microcode attacks [6]–[9]. Furthermore, using these 
enclaves to receive the code from one party (e.g. the client) 
and receive the data from another party (e.g. the IoT de-
vice) is not directly supported by SGX; eliminating the ben-
efits of SGX for the IoT data protection. 

Other secure processors have been proposed such as 
Aegis [10], Bastion [11], Sanctum [12], Ascend [13], and 
Phantom [14]. Again, they provide isolated memory con-
tainers for users’ applications and address translation 
mechanisms. To protect against malicious OS that can 
learn the memory access patterns of the container and tim-
ing cache attacks, Sanctum [12] flushes a container’s RAM 
on context switches and makes containers manage their 
own page tables and handle their page faults, hence the OS 
cannot learn the virtual address causing the page fault. 
Still, Sanctum design does not protect against any physical 
attacks nor does it prevent fault-injection attacks and tim-
ing attacks. Ascend [13] and Phantom [14] secure proces-
sors make use of oblivious RAMs (RAMs that hide the op-
eration being performed and shuffles their contents peri-
odically to obscure memory access patterns). This however 
resulted in huge slowdown compared to other processors.  

Unlike SGX, which uses the Enhanced Privacy ID 
(EPID) [15] to preserve the privacy of users using SGX in 
remote hosts, these secure processors did not guarantee 
the privacy of the user. Users can be tracked by the identity 
of the processor they are using. 

FPGA-based schemes for securing clients’ data in the 
cloud were proposed in [17,18]. In [17]  an FPGA-based se-
curity approach for cloud computing that makes use of 
RSA and its private key to form a root of trust (ROT) inside 
the FPGA was proposed. Augmenting the cloud’s servers 
with two types of chips that are paired cryptographically 
by the manufacturer was proposed in [18]. The FPGA 
would be the processing chip and a custom chip that holds 
the state between power cycles using none-volatile 
memory. These solutions however cannot support data ag-
gregated from multiple resources, hence are not suitable 
for IoT data protection in the cloud. A framework for users’ 
data privacy for Map-Reduce applications in the cloud us-
ing the security features of current FPGAs and proxy re-
encryption was proposed in [19]. Public/private keys are 
used for encrypting/decrypting a symmetric key to be 
shared between the user and the FPGAs in the cloud for 
data encryption/decryption. The proxy re-encryption 
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scheme allows multiple access to the encrypted data from 
different users with different assigned keys. In addition, 
they propose using the FPGA’s embedded symmetric keys 
for protecting the configuration bit stream. These embed-
ded keys however are not only unavailable for general us-
ers, but were proven to be insecure against known 
plaintext attacks (KPA) [20]. The proposed scheme also re-
quires a certificate authority (CA) to certify the FPGA’s 
public keys as well as a proxy server to manage key re-en-
cryption. The scheme assumes full trust in the cloud user 
who will get access to the FPGA’s symmetric keys and 
semi-trust in the proxy and cloud operator. 

Research on IoT security mainly falls into efficiently au-
thenticating and securing the IoT devices themselves 
and/or securing the end-to-end communication between 
these devices and the cloud. Lightweight authentication 
methods were proposed to cope with IoT devices’ limita-
tions. These methods include homomorphism [22], Elliptic 
Curve Cryptography (ECC) [23] and Datagram Transport 
Layer Security (DTLS) protocol based authentication [24]. 
Commercial cloud-based IoT platforms use industry-
standard protocols, such as Transport Layer Security (TLS) 
and X.509, to secure communication between the IoT de-
vices and the cloud [25]. In addition, several lightweight 
communication protocols were proposed based on public 
key infrastructure [26], IPv6/ Low-Power Wireless Per-
sonal Area Networks  [27], integrated DTLS and Con-
strained Application Protocol (CoAP) [28] and Secure 
Sockets Layer (SSL) [29]. Researchers have also proposed 
various secure architectures and supporting technologies 
for IoT devices security. Layered security architectures 
were proposed [30-31] for IoT security and verification, 
conceptually covering various attacks and mitigation tech-
niques in each layer. Layers cover various techniques re-
lated to IoT security such as key management, encryption 
oracles and access control. A middleware was proposed in 
[32] to meet the scalability and the high number of hetero-
geneous devices of the IoT system. The middleware mainly 
targeted developing a security algorithm to tackle packet 
sniffing, man-in-the-middle attack and identity spoofing in 
the IoT environment. An architecture on lightweight iden-
tity-based cryptography (LIBC) with ECC was proposed in 
[33] to solve security issues related to cloud-integrated IoT 
environment. A dynamic permutation method for obfus-
cating data encryption in a data processing unit connected 
to multiple sensors/actuators was proposed in [35]. In [36], 
an FPGA-based secure architecture for IoT devices is pro-
posed. It utilizes a PUF-based true random number gener-
ator and cryptographic cores to protect the IoT device 
against Trojans/tampering in the field and provide safe 
communications with other (pre-defined) modules. An-
other effort for securing FPGA-based IoT devices was re-
ported in [37]. Using a platform FPGA (with an embedded 
CPU), both the boot image and the configuration bit stream 
are encrypted and authenticated to protect the design and 
avoid spoofing and Trojan attacks. 

All the above techniques either are concerned with se-
curing the IoT device itself, as a stand-alone or part of a 
network, or its communication with another entity (the 
owner of the data). They do not support emerging cloud-
based business models that involve multiple entities ac-
cessing, analyzing, processing, and using data in public 
clouds that came from multiple IoT devices. In addition, 
they neither provide secure and safe methods for IoT own-
ers to license their devices’ data, nor did they consider at-
tacks from cloud insiders. I.e. none provided a complete 
solution that can be practically applied within a public 
cloud environment. Fig. 1 illustrates a typical application 
of our proposed scheme in the context of smart cities. IoT 
devices installed by some entity(s) in many locations col-
lect various information (traffic, pollution, noise, etc.), en-
crypt it with their private keys and send it for storage in a 
public cloud. Clients pay the data owners to get temporary 
re-encryption keys to use this data to obtain useful infor-
mation for their customers. The re-encryption proxy (PRE) 
re-encrypt the data with the key established with the FPGA 
in the cloud, which in turn decrypt the data and process it 
using the clients’ applications and send them the results. 

 

 
Fig. 1. A typical use case of the proposed scheme in smart cities IoT 

applications. 

3 OVERVIEW OF THE PROPOSED SCHEME 

3.1 The In-Cloud FPGA 

The in-cloud FPGA devices in the proposed scheme 
should have the following capabilities (most of which al-
ready exist in current FPGAs):   

– A unique identification number;  a nonvolatile, un-
changeable and permanently programmed value that 
can be used to authenticate the FPGA similar to that 
found in Xilinx FPGAs [38]. This identifier alone, how-
ever is not enough for device authentication as it is il-
lustrated in [39]. 

– Internal Configuration Access Port (ICAP) such as in 
Xilinx devices [40]. A specially developed circuitry on 
the FPGA (dubbed Static Logic) would configure the 
FPGA through the ICAP. External reconfiguration and 
readback ports should be disabled [40]. 

– Have partial reconfiguration capabilities; i.e. parts of 
the FPGA can be reconfigured while other parts remain 
the same. 

– Supports the readback of static configuration contents 
only (Look-Up-Tables, interconnects, and I/Os only), 
but cannot readback dynamic data such as RAM or 
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Flip-Flop contents. 
Fig. 2 shows the proposed on-FPGA infrastructure to 

implement secure IoT data processing in clouds or data-
centers. Many of the components of the static or fixed logic 
blocks (blocks that remain fixed and are not re-configured) 
already exist in many FPGAs as hard macros (custom cir-
cuits pre-fabricated on the FPGA with optimized perfor-
mance/area/power). The proposed fixed logic includes: 

 Key generation circuitry that consists of a PUF (Physi-
cally Unclonable Function) and a b-generation cir-
cuitry to generate random numbers that are used by 
the modular exponentiation circuit (mexp),  

 Enc/Dec block for Encryption/Decryption,  

 A hash function such as SHA3 [46],  

 Controllers to coordinate the different activities be-
tween the static logic blocks and to control the Ether-
net communication etc.  

PUFs are functions that make use of the manufacturing 
process variations to generate different (and unique) long 
random numbers in response to different input stimuli 
[41]. These responses are not only stable  per device, but 
they are also unique and unpredictable since manufactur-
ing variations cannot be controlled. Hence, PUFs can be 
used to authenticate devices (such as FPGAs) and provide 
long random numbers that can be used for key generation. 
Some of Altera’s FPGA are already equipped with SRAM-
based PUFs [42]. We believe that in the near future all 
FPGA devices will be equipped with many standard secu-
rity primitives (as hardware macros) such as PUFs, Hash, 
RSA, etc. Even with current FPGAs, the Static Logic, can be 
provided by the FPGA or board manufacturer as pre-con-
figured circuitry on the FPGAs on tamper-proof boards 
and packages. Boards will have to be shipped with batter-
ies and be powered constantly to maintain the Static Logic’s 
configuration. The entity that does this will be the Trusted 
Party (TP) in the proposed scheme. Users’ circuits are 
placed into specific FPGA regions via partial reconfigura-
tion. Only the input/output of the Encryption/Decryption 
are available to the users.  
 

 
Fig. 2. The proposed structure of on-cloud FPGAs (control signals are 

not shown). 

Notation  

RND_1 is the on-FPGA, m-bit, PUF-generated random 
number that is read once by the TP (at the FPGA/board 

manufacturing time) and cannot be read again or altered. 
The mask number RND_2, is also an m-bit random number 
generated by the TP. RND_2 is used to generate an n-bit 
random number b from the FPGA-RND. RND is a secure 
random number generated by the client. The parameter 
config represents the partial bit stream of a client’s design. 
Config_RB is the actual FPGA configuration read back us-
ing ICAP. Encryption of a data using a key k is denoted as 
CT := E(data,k) and the corresponding decryption as PT: 
=D(CT,k). An FPGA device F is identified by the unique 
identifier, denoted as ID(F). 

We use the term ‘IoT devices’ to refer to constrained in-
ternet-enabled devices (directly or through gateways). Cli-
ent application and client are used interchangeably. 

The b-generation circuitry can be implemented as in Fig. 
3. This simple implementation utilizes differential circuitry 
to protect against differential power attacks during the b-
generation phase. It consists of two m-bit shift (rotate) reg-
isters (RND_1 and RND_2) and an n-bit register for the 
produced b. The n-bits of the RND_1 with corresponding 
1s (i.e. high bits) in RND_2 are shifted into the b register in 
m or less cycles. 

 

Fig. 3. The b-generation circuitry that generates b used for the session 
key. To protect against differential power attacks, differential 
circuitry is used for the RND_1 and b registers. The RND_2 
register’s value is already known and needs no protection. 

Involved parties 

Fig. 4 shows the parties that are involved in our proposed 
scheme. The client, who is not necessarily the IoT device or 
data owner, requests an FPGA to process the IoT devices’ 
data from the Cloud Provider (CP) who is providing 
FPGA-based processing as a service. The FPGA Vendor 
(FV) sells FPGA devices to the CP and acts as a Trusted 
Party (TP). FV could be the FPGA manufacturer or the 
board manufacturer. The cloud is used for IoT data storage 
and processing. The cloud is also used for forwarding the 
control commands as we consider that there is no direct 
communication between the client application and the IoT 
devices (similarly to the cloud-based IoT business models 
of Microsoft [43] and IBM [4]). Therefore, IoT devices re-
ceive control commands from the cloud and send their 
data to the cloud to be stored and processed. The TP facil-
itates authentication and secret sharing among the differ-
ent entities involved. 
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Fig. 5. The proposed symmetric proxy re-encryption. 

3.2 The Proposed Symmetric Proxy Re-Encryption 

Data collected from different IoT devices are usually ag-
gregated and stored in the cloud before clients process it. 
Different IoT devices use different keys, which means that 
the on-cloud FPGAs need to use different keys for each 
data they processes, and similarly, the IoT device needs to 
send the encrypted data to a specific FPGA. This does not 
suit the publish/subscribe model used in such scenarios.  
Therefore, we propose a symmetric proxy re-encryption 
(PRE) that would securely transform data encrypted by the 
IoT devices to a data encrypted by the session key estab-
lished between the IoT device(s) and the on-cloud FPGA. 
This would make it possible for any IoT device’s data to be 
processed by any authenticated FPGA in the cloud. 

 
Fig. 4. Overall framework of the proposed scheme. 

 
The symmetric proxy re-encryption scheme is illus-

trated in Fig. 5. The IoT device authorizes an FPGA to de-
crypt the data that is stored or going to be stored in the 
cloud in the format (data * K mod pi), where K = gr mod p, is 
the IoT device’s private key. The parameters p and pi are 
primes, data are chunks of data, both data and K must be ≥ 
1 Kbits long, and data cannot be larger than pi (to be able to 
recover the data with an inverse modular multiplication). 
With operands larger than 1 Kb long, there is no known 
efficient, non-quantum algorithm that solves the integer 
factorization required to break such a secret [57]. Initially, 
the IoT device and the FPGA share a session key (gab mod 
p) using Diffie-Hellman (DH) key exchange [44]. The IoT 
device then sends the re-encryption key (rK) to a proxy re-
siding in the cloud. The rK is computed by multiplying the 
session key by the multiplicative modular inverse of the 
IoT device private key (gr mod p). The proxy converts the 
data by modular multipilication by rK and sends the result 
to the FPGA. The data is now converted to the format data 
* gab mod p and the FPGA can decrypt the data by inverse 
modular multiplication by the shared session key (gab mod 
p). Proof of the security of this scheme is straight forward 
and follows directly the proof of [45].  

It is assumed that the proxy and the FPGA are in the 
same location to make the transformation fast. The only 
operations that need communication outside the cloud are 
the FPGA authentication by the IoT device and the sharing 

of a session key with it. Using a shared key to authenticate 
the FPGA and allow the FPGA to decrypt the data is only 
made possible in this case due to the use of symmetric PRE. 
Had the PRE not being symmetric, public key cryptog-
raphy would have been required, which requires a certifi-
cate authority to certify the public keys for every FPGA in 
the cloud and limits the scalability of the publish/sub-
scribe system [21]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Proposed Security Protocol 

The proposed protocol for securing the communication 
between the clients’ applications, the IoT devices, and the 
on-cloud FPGAs is illustrated using the sequence diagram 
in Fig. 6. The client application is responsible for authenti-
cating the FPGA, securely sharing keys with the FPGA, se-
curely sending configuration bitstream and checking the 
configuration integrity while the configuration bitstream is 
running in the FPGA. On the IoT device side, the IoT de-
vice also needs to authenticate the FPGA and share a key 
with it. The IoT data is stored in the cloud using the IoT 
device’s private key (gr mod p) and the IoT device gives del-
egation for the authenticated FPGA to decrypt and process 
the data: 

– A client sends a request for a physical resource (i.e. the 
FPGA) to the CP. An FPGA is assigned to the client. It 
can receive data from multiple IoT devices. The CP 
sends the FPGA’s identifier (ID(Fi)) to the client (step 1 
and step 2 in Fig. 6). 

– The client forwards the ID(Fi) to the TP which responds 
with FPGA authentication credentials; an m-bit random 
number RND_2 that has exactly n number of high bits 
(used for the b-generation as in Fig. 3), hash of the cor-
responding n-bit number b concatenated with ID(Fi), 
and the FPGA’s session key portion (gb mod p) (step 3 
and step 4 in Fig. 6). Both g and p are public values with 
g usually being a small integer such as 2 and p being a 
prime number satisfying the condition gb ≥ p. Similarly, 
ga must be ≥ p. 

– The client forwards RND_2 and its own portion of the 
session key, ga mod p, to the CP and requests the FPGA’s 
authentication credentials. The FPGA uses RND_2 to 
generate b using the b-generation circuitry (step 5 in 
Fig. 6), then uses it to generate its portion of the session 
key (gb mod p), computes Hash(b+ID(Fi)), and sends the 
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result back to the client (step 6 in Fig. 6). The client can 
now authenticate the FPGA by comparing the values of 
Hash (b+ID(Fi)) and (gb mod p) that have been received 
from the TP and CP. Both parties now share the sym-
metric session key (gab mod p), completing the Ephem-
eral Diffie–Hellman key exchange [46]. At this point, a 
and b are destroyed by the client and the FPGA, respec-
tively. In addition, the session key will be destroyed at 
the end of the session to achieve Perfect Forward Se-
crecy (PFS). 

– The client sends his/her circuit’s configuration bit-
stream config encrypted using gab mod p. The static logic 
on the FPGA will then decrypt it and use it to configure 
the FPGA through the ICAP (step 7 in Fig. 6). 

– The CP broadcasts the ID of the FPGA to the client-
specified IoT devices. The IoT device then sends the 
FPGA ID to the TP and the TP responds with a new ran-
dom number (RND_2_1) along with the hash and the 
key portion of the Diffie-Hellman key exchange (gb1 mod 
p). The IoT device requests FPGA authentication by 
sending RND_2_1 and its Diffie-Hellman key exchange 

portion (ga1 mod p) to the FPGA. The FPGA responds by 
providing the hash and the gb1 mod p. The IoT device can 
then compare the hashes and keys portions that it had 
received from both the TP and the FPGA (steps 8-12 in 
Fig. 6). If there is a match, the session will be estab-
lished. Otherwise, it will be terminated. 

– The FPGA hashes the key (b1), which is generated by 
the PUF circuitry, and encrypt it using the established 
session key (ga1b1 mod p) and sends the encrypted hash 
(Enc(b1h , ga1b1 mod p)) to the IoT device (step 13 in Fig. 5) 
The hash of b1 is used instead of b1 to avoid exposing it 
outside the FPGA and to satisfy the PFS. The IoT device 
sends the re-encryption key (rK1 = b1h /gr mod p) mod pi 
to the on-cloud proxy which in turn transforms the IoT 
device data as discussed by the scheme in Fig. 4 and 
sends the re-encrypted data to the FPGA for processing 
(step 14 and step 15 in Fig. 6). The FPGA decrypts the 
data, run the application, and sends the result to the cli-
ent after encrypting it using the session key (gab mod p). 
The same circuit could process data from different IoT 
devices, each with its own rK. 

Fig. 6 The protocol sequence diagram. The dotted box indicates the steps of performing integrity check to the configuration 
running in the FPGA. 
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– To protect against any circuit tampering (e.g. HW Tro-
jans or sniffing circuitry inserted on the FPGA), the client 
chooses a secure random value RND, encrypts it with the 
gab mod p and sends it to the FPGA requesting configura-
tion readback. The Static Logic decrypts RND, reads back 
the FPGA configuration, hashes it with RND, encrypts 
with the session key, and sends it back to the client (step 
16 and step 17 in Fig. 6). The client can use this to validate 
the integrity of the FPGA. This check can be repeated any 
number of times (with a new RND every time to prevent 
replay attacks), during the operation of the client’s cir-
cuit on the FPGA.  
The steps above are repeated for every session and 

RND_2 is never repeated. It should be noted that this 
scheme also supports 3rd-party provided circuit IPs (i.e. 
the circuit is provided by an IP vendor). In this case, to pro-
tect the circuit IPs, the IP vendor will encrypt the circuit 
IP(s) using a different Mask and a key obtained through 
similar steps, and performs the integrity checks. 

 

3.4 Security Analysis  

The proposed protocol illustrated in Fig. 5 provides 
FPGA authentication, configuration integrity check and 
data confidentiality in the cloud environment. It provides 
one-way authentication of the FPGA to both, the client’s 
application in the cloud and the IoT device. I.e. the protocol 
does not authenticate the client’s application and the IoT 
device in the other direction (to the FPGA). The CP usually 
does that. It also minimizes communication between the 
client application or the IoT device and the TP. 

Table 1 provides a detailed security analysis of the pro-
posed scheme against relevant types of attacks. The attacks 
are classified as cryptographic, network, and physical at-
tacks. Cryptographic attacks include Known-plaintext at-
tack (KPA), Chosen-plaintext attack (CPA), Ciphertext-
only attack (COA), Chosen-ciphertext attack (CCA) and 
open key attack model, which includes Related-key and 
Known-key distinguishing attacks. Network attacks in-
clude man-in-the-middle (MiM), impersonation and re-
play attacks [46].  

Physical attacks can be invasive, non-invasive, or semi-
invasive. The most relevant of such attacks to an FPGA-
based secure computing is the side-channel attack; an at-
tack that uses information leaked about the operation be-
ing performed. Information leaks out as timing, power, 
and/or electromagnetic radiation (e.g. differences ob-
served when processing binary 1s and 0s). These attacks 
are mitigated as shown in Table 1 by using the differential 
circuitry for generating b (Fig. 2) to prevent leaking RND_1 
out and similar techniques for other components such as 
the RSA [47].  Other non-invasive attacks that are particu-
lar to FPGAs include Reverse Engineering and Tampering, 
Cloning, and Counterfeiting attacks. In Reverse Engineer-
ing attacks, an adversary studies the configuration blocks 
and replaces (or tamper with) the security components by 
his own malicious components (e.g. Trojans) in order to 

disclose secrets and sensitive data [48]. Cloning attack oc-
curs when an adversary creates an exact copy of the FPGA 
configuration. Counterfeiting attack is an extension to the 
cloning attack and it occurs when identical FPGAs are 
used. Hence, a configuration made for one device can be 
used with another. The details of the design do not need to 
be known by the attacker and the configuration is treated 
as a black box. Compromising the FPGA would only re-
quire inserting a snooping circuitry to disclose FPGA se-
crets and consequently, the users’ data. These attacks are 
prevented as described in Table 1. 

Verification 

ProVerif [49] was used for the formal verification of the 
security of the proposed protocol and to ensure that the 
protocol does not suffer from any vulnerabilities. ProVerif 
can verify the secrecy (the attacker cannot obtain the se-
cret), authentication and strong secrecy (the attacker can-
not learn the changes made to the secret) of security proto-
cols. Fig. 7 illustrates the formal verification process with 
ProVerif to test each security poperty.  

 

 

Fig. 7 The formal verification process of the proposed protocol with 
ProVerif [49]. 

The following assumptions were made: 

– We modeled the interactions between the IoT-device 
and the FPGA as this also models the interactions be-
tween the client and the FPGA. 

– The attacker has access to all communication channels 
except for private channels. 

– To verify the match of the hash values received from 
the TP and the FPGA in the IoT device side, these val-
ues are sent to the IoT device and the FPGA. The FPGA 
then send the value received from the TP to the IoT de-
vice to emulate the operations of the b-generation and 
its corresponding hash value. 

– The channels between the IoT device/FPGA and the TP 
are set as private. For the case of the FPGA this is to 
model the initial process of installing the FPGA secrets 
by the TP. After the FPGA installation in the cloud, it 
does not communicate with the TP.  

– All communications between entities that go through 
the cloud are not considered private. Communications 
between the IoT device and the clients, on one side, and 
the TP on the other side (i.e. steps 3, 4, 9, and 10 in Fig. 
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6) take place outside the cloud and are considered pri-
vate (i.e. secured via SSL/TLS). 

–  The attacker is active which means that the attacker has 
full access to all messages and can send or replay mes-
sages in the communication channels. 

The ProVerif code of the proposed protocol is provided 
in the appendix. It consists of the following parts: 

– Channels involved and adversary model (lines 3-8), 

– Encryption/decryption and hash functions models 
(lines 9-16). 

– The TP’s, the IoT-device’s, and the FPGA’s operations 

(lines 19-22, 23-29, 30-34, respectively). 

The results of running the ProVerif code shows that the 
query is true indicating that the protocol is free from vul-
nerabilities (all the required security properties are met).  

Table 1: Summary of the attacks prevented by the proposed scheme. 

Attack category Attacker Countermeasures 

Cryptographic 
attacks 

Assumed to be a malicious 
insider who tries to break 
the cryptographic oracle and 
obtains the session key es-
tablished between the cli-
ent/IoT device and the 
FPGA. 

Any data outside the FPGA is encrypted.  Open key attack model 
[46] is prevented by producing random uncorrelated numbers us-
ing the PUF.  

Network attacks 

Assumed to be a malicious 
insider/outsider attempting 
to impersonate the FPGA 
and/or obtain sensitive 
data. 

Impersonation 

The TP sends the hash Hash(b(RND_2) + ID(Fi)) 
to  the client which has to match the hash re-
ceived from attacker. The attacker can send 
Hash(b(RND_2)* + ID(Fi)) and gt mod p which do 
not equal Hash(b(RND_2) + ID(Fi) and gb mod p. 
Replaying the hash to be sent by the Fi is also 
prevented because RND_2 is never repeated.   

MiM 

MiM is unable to re-compute the hash sent by the 
FPGA while providing the correct gb mod p. Ex-
changes between the client and the TP outside 
the cloud (messages 3 and 4 in Fig. 6) can be pro-
tected by standard protocols such as SSL,TLS etc.  

Replay 

Replaying the values to be sent by the FPGA is 
prevented because RND_2 is never repeated.  In-
tegrity checking replay is prevented using the 
newly client-generated random number (RND). 

Physical and 
FPGA attacks 

Assumed to be a malicious 
insider that has access to the 
FPGA devices in the data-
center and is trying to obtain 
the device secrets and the 
IoT sensitive data. 

Invasive 
Damage the FPGA and any divulged secrets 
such as the RND_1 are useless because it is only 
unique to that FPGA. 

Non-invasive 

All blocks of the static logic have constant pro-
cessing time (cycles). Similarly, Power and Elec-
tromagnetic Radiation analysis attacks are miti-
gated due to the use of differential RND_1 cir-
cuitry and similar techniques for the security 
components such as the RSA [47]; the 
power/electromagnetic profiles do not depend 
on the value of b or the shared key. 

Semi-invasive 
The required knowledge and equipment are be-
yond a malicious insider. 

Reverse Engi-
neering and 
Tampering 

Static Logic is installed by the TA and cannot be 
read back. Furthermore, repeated integrity 
checks would expose any changes made to the 
FPGA Configuration. 

Cloning and 
counterfeiting 

The PUF produces a unique RND_1 for every 
FPGA. 
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4 EXPERIMENTAL RESULTS 

4.1 Static Logic Implementation 

To evaluate the practicality and performance of the pro-
posed scheme, a complete proof-of-concept prototype of 
an FPGA system has been implemented. A Xilinx Virtex-6 
LX 550T FPGA [38] prototyping board (with 1 Gbps Ether-
net ports) was used for the prototype. For prototyping pur-
poses, the Static Logic blocks were implemented using the 
FPGA’s reconfigurable logic blocks. The Static Logic is 
made of the following components: 

– A 256-bit SHA3 hashing block based on the Keccak 
sponge function [50]. The design required major 
changes to make it routable and to pipeline it (mainly 
the rounds steps). 

– A 1 Kb modular multiplier based on the interleaved 
modular multiplication algorithm [51]. 

– A modular exponentiation block (mexp) based on the 
Square-and-Multiply algorithm [52]. To protect 
against Differential Power Analysis (DPA) attacks, the 
implemented modexp performs the multiplication at 
each step but the result will not be written to the ap-
propriate register except when the corresponding ex-
ponent bit is 1 (in case the bit is 0, the result is written 
to a dummy register). This masks the power depend-
ency on the exponent bits. 

– The PUF as 2 Kb differential registers containing a ran-
dom number, and the b-generation circuitry (as shown 
in Fig. 3). 

– An Ethernet controller and a state machine to handle 
the data flow between the components.  

The FPGA’s logic and memory utilization of the different 
Static Logic blocks are shown in Table 2 along with their  
maximum possible frequencies. These results show that 
even if the Static Logic components were to be imple-
mented using the FPGA’s configurable resources they 
would consume relatively very low resources (~8% of 
LUTs, ~2.5% of flip-flops, ~1.9% of the available block 
RAMs, and ~3.4% of the available DSP multipliers). Prior 
works ([52-54]) reported similar results indicating that 
these types of functions can be implemented very effi-
ciently on FPGAs.  
The Static Logic was also synthesized as a custom circuit to 
estimate its area if it was made as hard macros on the 
FPGA. The total gate count was 164,223 gates (total RAM 
and FFs count remain the same as the FPGA implementa-
tion).  Based on that, and to put this into perspective, the 
total area of the Static Logic as custom HW macros is esti-
mated to be ~0.06 mm2 in a state-of-the-art 16/14 nm fab-
rication technology based on the International Technology 
Roadmap for Semiconductors (ITRS) [55]. A typical state-
of-the-art FPGA would have a die area from few hundred 
mm2 to around 2,000 mm2 [56]. 

4.2 PRE Implementation 

The PRE was also implemented in a second Virtex 6 LX 

550T FPGA. It can be installed once in an untrusted man-
ner since the data is not being decrypted in the PRE. Our 
FPGA-based PRE consists of an Ethernet controller, 1 Kb 
modular multiplier, and a FSM to receive the rK key and 
accumulate the data into 1 Kb chunks to be multiplied by 
the rK. The components of the FPGA along with their max-
imum frequency are shown in Table 3.  

 
Table 2. FPGA resource usage of the Static Logic. 

Static Logic LUTs FFs BRAMs DSP FMax (MHz) 

Full System 

25,981 15,599 12* 29 
234.9 

(7.56%) (2.27%) (0.95%) (3.36%) 

SHA3-256 

3,324 

 

(1.13%) 

1,117 

 

(0.17%) 

0 

 

(0.00%) 

3 

273.9 
(0.35%) 

Enc-Dec 8,711 3,033 0 0 

134.7 

 (2.31%) (0.41%) (0.00%) (0.00%) 

Key  

generation 

 

 

mexp 

6,816 3,595 0 0 

130.6 

(1.98%) (0.52%) (0.00%) (0.00%) 

b-generation 

circuitry 

3,340 4,349 0 2 

430.3 

(0.68%) (0.68%) (0.00%) (0.23%) 

 

Controllers 

Ethernet 

Controller 
1,302 1,045 12 19 

234.6 

 (0.38%) (0.15%) (1.89%) (2.20%) 

Main FSM 

2,488 2,460 0 2 

413.6 

(0.72%) (0.36%) (0.00%) (0.23%) 

* Out of 1,264 available BRAMs (~ 226 Kb out of 22,752 Kb total). 

 

Table 3: FPGA resource usage of the PRE Logic. 

PRE Logic LUTs FFs BRAMs DSP FMax (MHz) 

Full System 
21,068 

(4.81%) 

8534 

(1.24%) 

12 

(1.89%) 

21 

(2.43%) 
135 

ModMult x 10 
2,107 

(0.61%) 

773 

(0.11%) 

0 

(0.00%) 

0 

(0.00%) 
134.7 

Ethernet 

Controller 

1,302 

(0.38%) 

1,045 

(0.15%) 

12 

(1.89%) 

19 

(2.20%) 
234.6 

FSM 
266 

(0.07%) 

260 

(0.03%) 

0 

(0.00%) 

2 

(0.23%) 
274.6 

  
The modular multiplication was parallelized into 10 mul-
tipliers to match the Ethernet communication capacity. For 
a 1 Gbps Ethernet link, 8 bits can be processed every cycle. 
For this reason, BRAMs were used to buffer the data that 
is received/sent from/to Ethernet link and 10 (serial) mul-
tipliers to work in parallel such that 250 bits of the product 
results are outputted every cycle, ignoring the latency of 
filling the BRAMs and computing the first product result 
at the beginning. The synthesis results show that the PRE 
used less than 5% of the FPGA resource. This means that it 
can be implemented in low-cost FPGAs. 

4.3 Performance Evaluation 

Static Logic Speed 

As shown in Table 2, the Static Logic synthesized on the 
FPGA was relatively fast. All components used the 100 
MHz FPGA board clock since that was more than enough 
to handle the board’s 1 Gbps Ethernet traffic. The SHA3-
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256 achieved a throughput of 237MB/s and a latency of 27 
cycles to process 64 B of data. Similarly, the 1 Kb- modular 
multiplier takes 1,024 cycles to process 1 Kb of data and 
can be enhanced by making multiple copies of it to work 
in parallel as discussed in subsection 4.2. The Modexp 
component is used at the beginning of the session and 
when calculating the modular multiplicative inverse as in 
Fig. 6. The latency of the modular exponentiation was just 
under 0.7ms. The latency of our basic b-generation cir-
cuitry is 2,048 cycles for the 2 Kb RND_1. These compo-
nents can be easily operated at higher frequencies to han-
dle higher bandwidth Ethernet links.  

PRE Performance Evaluation  

Our proxy re-encryption can be seen as a packet processor;  
it receives the data and output the re-encrypted result. The 
performance of our FPGA implementation of the proxy 
was compared to a software implementation and other 
published HW implementations [17, 19]. The SW version 
was implemented in python 2.7 on an  Intel Xeon CPU with 
eight core 3.20 GHz, 23.5 GB of memory, and 2 TB of disk. 
The input data was kept entirely in the RAM (using ar-
rays). For precise measurement of the time of the SW ver-
sion, the measurements were repeated 10,000 times and 
the average of 10 runs was taken producing the 1,000 meas-
urements in Fig. 8 for 1 Mb of data. The minimum time was 
set to be the actual value, the maximum time to the exper-
imental value, and the percentage of error was calculated 
and found to be 2.7639% only. The FPGA implementation 
makes use of the 1 Gb Ethernet link to fill the BRAMs. 
Based on these setups, Fig. 9 shows the time it takes in sec-
onds for the two implementations. The FPGA implemen-
tation is, on average, 5.8 times faster than the SW imple-
mentation. Given the speedup obtained, if the Ethernet 
link is 10 Gb, the speedup will be about 58x.  
 

 
Fig. 8. Execution time of the Python PRE implementation over 1,000 

runs. 

 
Table 4 shows a comparison with published FPGA-based 
secure platforms [17, 19, and 36]. As this table shows, our 
basic block implementations provide an excellent combi-
nation of speed and resource utilization. This is especially 
true for our PRE implementation, which at half the re-
source usage, provides over 155x speed improvement over 
the implementation in [19]. This is due to the use of mod-
ular multiplication instead of conventional modular expo-
nentiation-based re-encryption.  
 

Table 4: Performance comparison with published FPGA-based secu-
rity implementations. 

 Implementation 

PRE Implementation Hash 

(SHA3-256) 

Encryption 

(AES) 

Slices Speed 

(µs/128-bit re-

encryption) 

Slices Speed 

(Mbps) 

Slices Speed 

(Gbps) 

FPGA Trusted 

Computing [17] 
N/A 204 12 456 0.572 

Privacy Preserv-

ing FPGA [19] 
10,854 1,843.71 2,300 540 14,000 40 

FPGA-based 

IoT [36] 
N/A N/A 1,576 12.8 

This work* 5,267 11.85 831 237 2,178 34.5 

* Including the network controller 

Evaluation of Total Latency 

The overall end-to-end delay for one transaction as de-
picted in Figure 6 has been evaluated using the global av-
erage internet speed of 6.3 Mb/s [58] and the actual speed 
of the FPGA static logic and PRE and assuming a 32Kb IoT 
data size. The detailed times (in milliseconds) of each step 
along with the exchanged data size(s) and the total time are 
shown in Table 5. The total transaction time of 230 ms ob-
tained with the conservative estimate of the network band-
width (inside and outside the cloud) would satisfy typical 
IoT applications’ requirements. 

 
Table 5: End-to-End evaluation of the proposed scheme’s delay. 

Protocol step # Time (ms) 
1-    Request (256b) 3.94E-02 

2-    FPGA serial & ID (512b) 7.88E-02 

3-    Request (256b) 3.94E-02 

4-    Mask (2,048b), hash (256b), ga mod p (2048b) 0.670 

5-    RND_2 (2,048b), ga mod p (2,048b) 0.630 

6-    Hash (256b), gb mod p (2,048b)  3.94E-02 

7-    Not included 

8-    ID (256b) 3.94E-02 

9-    Request (256b) 0.670 

10- Mask (2,048b), hash (256b), gab mod p (2,048b) 0.670 

11- RND_2_1 (2,048b), gab mod p (2,048b) 0.630 

12- Hash (256b), gab  mod p (2,048b) 0.354 

13- Encrypted b (2,048b) 0.315 

14- rK (2,048b) 0.315 

15- RND_2_1 (2,048b), encrypted data (32Kb)* 112 

16- Encrypted results (32Kb)* 112 

Total End-to-End delay 230.1 

* For both communication and computation, assuming 6.3 Mbs communication speed 

within the cloud in case the PRE is not in the same geolocation as the FPGA. Compu-

tations time is only 32 ms.  

 
Fig. 9. Execution time comparison of a Python implementation and the 

PRE FPGA implementation.  

Execution times of HW & SW 

PRE implementations 

Average execution time of the PRE 

SW Implementation 
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5 CONCLUSIONS & DISCUSSION 

A new FPGA-based scheme for securing IoT data in public 
clouds that supports emerging business models with sev-
eral involved parties is proposed. It includes a protocol for 
establishing a secure session between a client and an on-
the-cloud FPGA to process IoT data. Utilizing a symmetric 
proxy re-encryption, data owners can give temporary ac-
cess to IoT data in the cloud without divulging the keys 
used by the IoT devices to encrypt the data. The proposed 
provides strong protection against various attacks. The use 
of modular multiplication (with >1Kb long keys) greatly 
reduces the computational complexity compared to con-
ventional techniques (e.g. RSA) while providing similar se-
curity levels. This, and the support for secure dealings be-
tween distributed entities (IoT device, Client, re-encryp-
tion proxy, and the FPGA), make the proposed scheme 
well suited for emerging cloud paradigms such as Fog and 
Edge computing.  
A complete proof-of-concept prototype implementation of 
the scheme showed that it is feasible even with existing 
FPGAs, simple to implement, efficient in terms of resource 
utilization and suites the publish/subscribe model used 
with IoT devices. It also achieves PFS, provides authenti-
cation of the on-cloud FPGAs to the clients and IoT de-
vices, and checks the integrity of clients’ configurations to 
prevent any modifications and/or other FPGA related at-
tacks such as reverse engineering and cloning. An FPGA 
PRE implementation outperformed a SW one by 6x for a 
1GB of transformed text. Our HW implementations pro-
vided an excellent combination of speed and HW effi-
ciency compared to other published FPGA-based secure 
platforms. Even with conservative estimate of the network 
bandwidth (inside and outside the cloud), the total end-to-
end delay of the proposed scheme would satisfy typical 
IoT applications’ requirements. Formal verification with a 
realistic attacker model was performed on the proposed 
protocol that proved that it has no vulnerabilities. 
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Appendix: ProVerif code (in pi calculus) 

1. (* Diffie-Hellman representation*) 
2. A -> B : e^n0 

B -> A : e^n1 
A and B compute the key as k = (e^n0)^n1 = (e^n1)^n0 

3. A -> B : {s}k *) 
4. free c.(*a channel used to send/receive messages between parties *) 
5. free c1. (*a channel used to send/receive messages between the TP and 

the IoT_device/FPGA *) 
6. private free s. (*a message to be send securely upon executing the pro-

tocol *) 
7. (* active adversary *) 
8. param attacker = active. (*Active means that the attacker can intercept 

messages send ,receive or modify messages *) 
9. (* Shared key cryptography *) 
10. fun enc/2. (*encryption function with 2 inputs *) 

11. reduc dec(enc(x,y),y) = x. (*the corresponding decryption*) 
12. fun hash/1. (* the hash function with 1 input *) 
13. (* Diffie-Hellman functions *) 
14. fun f/2. (*a function used to represent gab=gba *) 
15. fun g/1. (*the exponent ion function *) 
16. equation f(x,g(y)) = f(y,g(x)). (*the corresponding equation of the func-

tion f *) 
17. (* Test whether message s is secret *) 
18. query attacker:s. 
19. (* The TP process *) 
20. let TP = new n00; new b;  
21. (*using channel c1 to share a key with the IoT_device and the FPGA*) 
22. (out(c1,g(n00))  | in(c1,x11); let k = f(n00,x11) in out(c1, 

enc(g(n1),k));out(c1,enc(hash(b),k))). 
23. (*The IoT_device process *)    
24. let IoT_device = new n0; new n11;  
25. (*sharing a key with the TP *)          
26. (*receiving gb and hash(b) from the TP *) 

let gb_TP = in (c1,m);  
let hash_b = in (c1,h) in 

27. (*receiving gb and hash(b) from the FPGA *)  
out(c,g(n0)) ; in(c,gb_FPGA)| in(c,hash_FPGA); 

28. (*authenticating the FPGA *) 
if gb_TP=gb_FPGA then 
( if hash_b=hash_FPGA then 

29. (*if authentication done, send the message s *) 
let k1 = f(n0,gb_TP) in out(c, enc(s,k1))) 
else (0)). 

30. (*The FPGA process *) 
31. let FPGA =  new n01;  
32. (*receiving gb and hash(b) from the TP and receiving ga from the cli-

ent *) 
let gb = in (c1,m);  
let hash_b1 = in (c1,h); in 
in(c,x0);  

l  et k1 = f(gb,x0) in  
33. (*sending gb and hash(b) to the IoT_device*) 

out(c,gb); 
out(c,hash_b1); 
in (c,m3);  

34. (*receiving the message s  from the IoT_device *) 
let s3 = dec(m3,k1) in 0). 

35. process TP | IoT_device | FPGA 
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