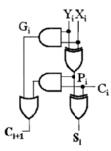
King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering


COE 202 – Digital Logic Design (T121)

Homework # 04 (due date & time: Saturday 17/11/2012 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem # 1 (20 points): The Full-Adder circuit is shown to the right. Given the following gate delays;

Gate/ Circuit	Propagation Delay
Inverter	1 τ
AND, OR	2 τ
XOR	4 τ

- (i) (5 points) What is the carry propagation delay per Full adder stage?
- (ii) (15 points) For an *n*-bit Ripple-Carry Adder-Subtractor, what is the total delay for the n^{th} sum bit and the $(n+1)^{th}$ carry-out bit?

<u>Problem # 2 (20 points):</u> Use a 4×16 <u>non-inverted-output decoder</u> and external gate(s) to implement the following function:

$$F(A, B, C, D) = \sum (1, 3, 5, 8, 10, 14)$$

<u>Problem # 3 (20 points):</u> Repeat problem # 3 but use a **4×16** <u>inverted-output</u> decoder and external gate(s).

Problem # 4 (20 points): Repeat problem # 3 but use a **16×1 MUX** and external gate(s).

<u>Problem # 5 (20 points):</u> Repeat problem # 3 but use an 8×1 MUX and external gate(s). Connect C, A, and D to S_2 , S_1 , and S_0 , respectively.