King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 202: Digital Logic Design (3-0-3)
Term 111 (Fall 2011)
Major Exam 2
Thursday December 8, 2011

Time: 120 minutes, Total Pages: 10

Namo	e:K	ey	ID:	Section:
Notes	S: Do not open the exam	book until instr	ructed	
•	Calculators are not al	lowed (basic,	advanced, cell phones, c	etc.)
•	Answer all questions			
•	All steps must be show	rn		

Any assumptions made must be clearly stated

Question	Maximum Points	Your Points
1	16	
2	20	
3	20	
4	34	
Total	90	

Question 1. (points)

I.

a. What are the conditions for a gate to be universal?

[1 Point]

Can implement Any Boolean expression without need for any other type gates. This is equivalent to ability to perform any of the fo;;owing:

- 1. {AND, NOT}
- 2. {OR, NOT},
- 3. {AND, OR, NOT}

Show that a two input gate performing the function f(A, B) = A'B is a universal gate.

[3 Points]

- 1. Can Implment {NOT} \rightarrow B=1, f = A'
- 2. Can Implment {AND} \rightarrow Use two such gates; one acts as inverter generating A' and a 2nd with it's a-input = A', B= B and, f = AB

II. Let F(x, y, z) + G(x, y, z) = H(x, y, z), where F, G and H are Boolean functions of three variables x, y, and z. Given that

$$F(x, y, z) = x \dot{z} + yz$$
 and $H(x, y, z) = z \dot{z} + xy$

- a- Find a possible function G(x, y, z) that will satisfy the above relation. [3 Points]
- b- Is the solution unique? If not, what is the number of possible G(x, y, z) functions that can satisfy the above relation? [2 Points]

(*Hint*: *Draw the K-maps of the functions above*)

(*Hint*: *Draw the K-maps of the functions above*)

Since
$$F + G = H$$
, then

Since $F + G = H$, then

1) If $H = \emptyset$ then $F = \emptyset$ $G = \emptyset$

2) IF $H = 1$ and $F = \emptyset$ then

General be 1 $\Longrightarrow b = c = 1$

3) IF $H = 1$ and $F = 1$ Then

 $G = X = Dat Core$
 $\Longrightarrow 0 = 0 = 0$
 $\Longrightarrow 0 =$

III. Using the K-Map method, give a simplified SOP expression for the Boolean function $F(A, B, C, D) = \sum (0, 1, 4, 10, 14)$ subject to don't care conditions $d(A, B, C, D) = \sum (2, 5, 8, 15)$. [8 Points] $\langle SHOW \ your \ WORK \rangle$

 $\mathbf{F}(A, B, C, D) = \mathbf{A'C'} + \mathbf{ACD'}$

AB	CI	00	01	11	10
Ab	00	1	1		X
	01	1_	X		
	11			X	1
	10	X			1

Given a 4-bit unsigned number $X(x_3 x_2 x_1 x_0)$, the function F(X) is defined as:

$$F(X) = \begin{cases} X - 1, & X \text{ is odd} \\ \frac{X}{2}, & X \text{ is even} \end{cases}$$

You are to design a digital circuit that takes X as an input and produces Z = F(X) as output;

(a) How many bits are required to represent the output Z?

[2 points]

The maximum unsigned # representable in 4 bits is 15 which is an odd #

The maximum unsigned # representable in 4 bits is 15

Which is an odd #

F(15) = 14 which is also representable in 4 bits

of bits for Z is 4

(b) Derive the truth table for the output function Z.

[5 points]

					_		
X3.	X2_	X	Xo	Z_3	Z_2	Z_{l}	Zo
-0	0	0	.Q.	0	O	0	0
0	Ó	0	(0	0	٥	0
0	0	1	0	0	0	0	l
Q	6	-	1	0	0	1	Ó
Ó	1	0	Ø 1:	0	Ø	1	o O
Ö	1	0	ا ن	0	ţ	Q	0
ð	1	1	1	0	0	1	Ĭ
0	1	•	, 0	0	ļ	1	ტ
(Q	٥	0	0	1	0	٥
1	0	٥	1	1	Ø	Ø	0
Į	O		0	0	1	0	{
Ţ	O	1	1		O	}	0
l	1	O	1	0	ŧ	1	O
1	1	C		11	Ù	()	0
•	1 1	1	Ø,	0	Ì	1	١
	1 1		ı J	11	ı	\ 1	1
					1	1	O

(c) If **Z** is to be implemented using only NAND gates, derive minimized expressions for the output bits of the circuit. [8 points]

$$Z_2 = AB + AD + BD$$

(d) Implement the output expressions obtained in (c) using NAND gates only

[5 points]

Z3 = AD

$$A - D - Z_3$$

(20 Points)

a. In each of the following problems, first represent the numbers in brackets in binary in the signed-2's complement notation <u>using 5 bits</u> then perform the indicated arithmetic operation using only binary addition. [8 points]

In each case check if you have obtained the correct results and indicate clearly if overflow occurred or not.

same sign \rightarrow No over flow (-6) - 00110 \rightarrow 11010 + (-7) + -00111 \rightarrow 11001 -13 - ine result = -01101 = -13	sign of result is different \rightarrow (+5) 00101 \rightarrow 00101 overflow $-\frac{(-12)}{+17}$)15 overflow	W 01100 10100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

b. Interpret each of the following 5-bit binary numbers in the format indicated:

[6 points]

Binary Number	Is equal to (in decimal)	When interpreted as:	
11011	-11	Signed-magnitude	
01101	+13	Signed-1's complement	
10110	01010 - 10	Signed-2's complement	
11010	26	Unsigned	

- c. When doing signed-2's complement arithmetic in 6-bits: (Fill in the spaces <u>with signed decimal values</u>)

 [6 points]
 - The range of numbers that can be represented extends from $\frac{-32}{}$ to $\frac{+31}{}$.

- The largest positive number that can be added to +13 without causing an overflow is $\frac{+18}{}$
- Overflow may occur when (circle all that applies):
 - i. Adding a positive number to a negative number
 - ii. Subtracting a negative number from a negative number
 - (iii.) Subtracting a negative number from a positive number

Question 1. Given the function

$$F(X,Y,Z) = \Pi M (1,2,4,5,7)$$

a. Implement F using 2 2-to-4 decoders and any other gates you need

$$F(X,Y,Z) = \sum_{n} m(0,3,6)$$

b. Implement F using the 4-to-1 MUX shown below (see steps for obtaining the solution)

X	Y	Z	F	F
0	0	0	1	Z'
0	0	1	0	
0	1	0	0	Z
0	1	1	1	Z
1	0	0	0	0
1	0	1	0	U
1	1	0	1	Z'
1	1	1	0	

- c. It is required to design a circuit that adds two <u>5-bit numbers</u>, A and B, that are represented in <u>signed-magnitude</u>. The result *O*, also 5-bits, should also be represented in signed-magnitude notation. <u>Ignore overflow. You can Design this circuit in anyway you like or follow the suggested sequence below.</u>
 - (I) Using MSI parts, design a circuit that receives two 5-bit signed numbers A &B (represented in **signed-magnitude**) and produces three outputs **L**, **S** and **LS**, *where*:
 - **L:** a 4-bit number which equals the larger <u>magnitude</u> of either A or B irrespective of their signs (e.g, A=-5 and B=+4 then L=5 but if A=-3 and B=+7 then L=7)
 - **S:** a 4-bit number which equals the smaller <u>magnitude</u> of either A or B irrespective of their signs (e.g, A=-5 and B=+4 then S=4 but if A=-3 and B=+7 then S=3)
 - **LS:** a single bit which equals the sign of larger magnitude number of either A or B (e.g, A=-5 and B=+4 then LS=1 or if A=-3 and B=+7 then LS=0).

(II) Using MSI parts, design a Signed-Magnitude Adder that will take as input L, S, LS (produced by the circuit in I above), A and B, and generates A+B

Hint: to add two signed-magnitude numbers \boldsymbol{A} and \boldsymbol{B} we can do the following:

- 1. If $sign(\mathbf{A}) = Sign(\mathbf{B}) \rightarrow then \ magnitude(\mathbf{O}) = magnitude(\mathbf{A}) + magnitude(\mathbf{B}), \ sign(\mathbf{O}) = Sign(\mathbf{A})$
- 2. else (i.e. $sign(\mathbf{A}) \neq Sign(\mathbf{B})) \rightarrow subtract$ the smaller number from the larger number magnitude(\mathbf{O}) = max[magnitude(\mathbf{A}), magnitude(\mathbf{B})] min[magnitude(\mathbf{A}), magnitude(\mathbf{B})], $sign(\mathbf{O}) = Sign$ of the number with the larger magnitude

Sign of output (O_4) is LS Magnitude is either L+S (when signs are equal) or L-S when signs are different The Adder/Subtractor performs A+B if the Add/Sub input is 1 and A-B otherwise

