These Slides are prepared from
Matt Bishop slides and book “Introduction to Computer Security”
Benefiting from the Slides posted by Ahmad Al-Mulhem

Access Control

Access Control Matrix Ch 2

Access Control Mechanisms Ch 14

Adnan Gutub

gutub@kfupm.edu.sa

Computer Engineering Department
King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia

Matt Bishop

COE 449 Term 081

‘ Ch 2: Access Control Matrix

e Protection State
e Access Control Matrix Model

e Protection State Transitions

— Commands
* Operational
» Conditional

COE 449 Term 081 2/30

Protection State

* The “state” of a system is the collection of the current
values of all memory locations (RAM, registers,
secondary storage, etc.)

* The “protection state” of a system is the subset of states
that deals with protection
— Describes current settings, values of system relevant to protection

» Access control matrix model - tool
— Describes protection state precisely
— Matrix describing rights of subjects
— State transitions change elements of matrix

COE 449 Term 081 3/30

Access Control

* subjects (e.g. users or processes) = objects (e.qg. files)
— Subjects (active) need to access objects (passive)

» Two main categories:
— Discretionary access control (DAC):
o defined by user ------- Discretionary = optional

— Mandatory access control (MAC):
« enforced by the system

COE 449 Term 081 4/30

The set of all protected entities is the set O
objects (entities)

0; ... Op S; ... S,

* SubjectsS={s,,....S, }
s, * ObjectsO={o0,...,0,}
 RightsR={ry,....,r, }

* Entries Afs;, 0] = R

e Als,ol={r,....1}

! means subject s; has rights
Iy ..., I, OVer object o

subjects

Processes and users constitute the set S

COE 449 Term 081 5/30

Example 1

* Processes: p, q
* Files: f, g
* Rights: read, write, execute, append, own

f g p q
P rwo r rWXo W
q a ro r rwxo

COE 449 Term 081 6/30

Example 2

» Processes: telegraph, nob, toadflax
* Rights: own, ftp, nfs, mail

host names | telegraph | nob toadflax
telegraph [own ftp ftp
nob ftp, nfs, mail, own | ftp, nfs, mail
toadflax ftp, mail ftp, nfs, mail, own
COE 449 Term 081 7/30
Example 3

* Procedures: inc_ctr, dec_ctr, manage

e Variable: counter

* Rights: +, —, call

inc_ctr
dec_ctr
manage

COE 449 Term 081

counter inc_ctr

dec_ctr manage

+

call

call

call

8/30

State Transitions

As processes execute, the protection state of system changes
— Based on history, time, day, functions, rights of other subjects...etc
— Conditions (no access to file while being in writing function) ...etc

The initial state of the system X, = (S,,0,,A¢)

— State Transitions set of operations is represented as: t;, T,, . . .
— Successive states X,, X;, X,, . ..

|- represents transition

= Xi |- <, Xis2: cOmmand t

moves system from state X; to X;,,

1

- X; |- " X,,: a sequence of commands moves system from state X; to X,,

Commands often called transformation procedures

COE 449 Term 081

9/30

“Primitive Operation Commands

» create subject s » create objecto
— Creates new row, column — Creates new column in
in ACM ACM

e enterrinto A[s, 0]
— Adds r rights for subject s over object o

 delete r from A[s, 0]
— Removes r rights from subject s over object o

* destroy subject s « destroy object 0

— Deletes row, column — Deletes column from ACM
from ACM

COE 449 Term 081

10/30

Multi-Operational Commands
Creating File

 Process p creates file f with r and w permission

command createefile(p, f)
create object f;
enter own into Al[p, fl;
enter r into Alp, fl:;
enter w into Alp, fl:;
end

COE 449 Term 081

11/30

» Make process p the owner of file g

command makeeowner(p, g)
enter own into Alp, gl:;
end

* Mono-operational command
— Single primitive operation in this command

COE 449 Term 081

12/30

o Letp give qr rights over f, if p owns f

command grantereadefileel(p, £, Q)
if own in Alp, £l
then
enter r into Alg, fl;
end

* Mono-conditional & Mono-operational command

— Single condition & single primitive operation in this
command
COE 449 Term 081 13/30

‘ Multi-Conditions Commands

e Letpgive qrandw rights over f, if p owns f and
p has c rights over g

command grantereadefilee2(p, £, Qq)
if own in Alp, fl] and c in Alp, ql
then
enter r into Alqg, fl;
enter w into Alqg, fl;
end

Commands with 2 conditions = bi-conditional
Commands with 2 primitive commands = bi-operational

COE 449 Term 081 14/30

« All multi-conditions are joined by and and
never or !I' Why ??

» Also, conditions cannot be based on
negation such as:

if r not in A[p, £f] XXX

COE 449 Term 081 15/30

Key Points

 Access control matrix (ACM) is a simple
theoretical (not practical) tool for representing
protection state

 Transitions - commands- alter protection state

6 primitive operations change matrix

— Transitions can be expressed as commands
composed of these operations and, possibly,
conditions

COE 449 Term 081 16/30

These Slides are prepared from
Matt Bishop slides and book “Introduction to Computer Security”
Benefiting from the Slides posted by Ahmad Al-Mulhem

Access Control

Access Control Matrix Ch2 _ C 0 M P U T E R
Access Control Mechanisms Ch 14 SECU R I TY

Adnan Gutub

gutub@kfupm.edu.sa

Computer Engineering Department “

King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia

Matt Bishop

COE 449 Term 081

Chapter 14: Access Control
Mechanisms

 Access control lists
Capabilities

Locks and keys

Ring-based access control
Propagated access control lists

COE 449 Term 081 18/30

Problems with Access control
matrix:

» number of subjects and objects can be very
large

* most entries are blank/empty
« creations and deletions are expensive

COE 449 Term 081

19/30

" Access Control Lists (ACL)

» ACL = Columns of “access control matrix”

. filel file2 \ file3
* Andy /rx \ / r \ /rwo \

e Betty | | rwxo] | r / \]

» Charlie \rx / \rwo / \W /

* ACLs:

 filel: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
 file2: { (Andy, r) (Betty, r) (Charlie, rwo) }
 file3: { (Andy, rwo) (Charlie, w) }

COE 449 Term 081

20/30

10

Default Permissions

» Normal: if not named, no rights over file
— Principle of Fail-Safe Defaults

* |f many subjects, may use groups or wildcards in
ACL

* Example (UNICOS)

— entries are (user, group, rights)
* If user is in group, has rights over file
e “*” s wildcard for user, group
— (holly, *, r): holly can read file regardless of her group
— (*, gleep, w): anyone in group gleep can write file

COE 449 Term 081 21/30

ACL Abbreviations

» ACLs can be long ... so combine users
— Example (UNIX): 3 classes of users: owner, group, rest

— rwxr XK
Krest
group

owner
— Separate read, write, execute rights for user, group and rest
— Ownership assigned based on creating process
 “-” means no right (e.g. rw-r- - r--)

COE 449 Term 081 22/30

11

* Problem: Abbreviated ACL results in loss of granularity

» Solution: Augment abbreviated lists with full ACLs
— Intent is to shorten ACL

ACLs override abbreviations
— Exact method varies

e Example: IBM AIX

— Base permissions are abbreviated ACL, extended permissions are
ACLs with user, group

— ACL entries can add rights, but on deny, access is denied

COE 449 Term 081 23/30

Which subjects can modify an object’s
ACL?

— creator is given own right that allows this

Are there privileged users (root)? Do ACLs
apply to them?

Does the ACL support groups or wildcards?

How are conflicts in access control
permissions handled?

COE 449 Term 081 24/30

12

Capability Lists (C-List)

e C-List: Rows of access control matrix

. filel file2 file3
» Andy rx r rwo _[>
» Betty NWxo r >
o Charlie] rx rwo w >
o C-Lists:

* Andy: { (filel, rx) (file2, r) (file3, rwo) }
o Betty: { (filel, rwxo) (file2, r) }
o Charlie: { (filel, rx) (file2, rwo) (file3, w) }

COE 449 Term 081

25/30

C-List Meaning

e Like a bus ticket

— Mere possession indicates rights that subject has over
object

— Object identified by capability (as part of the token)

» Name may be a reference, location, or something else

— Architectural construct in capability-based addressing;
this just focuses on protection aspects

» Must prevent process from altering capabilities

— Otherwise subject could change rights encoded in
capability or object to which they refer

o C-List typically supported by hardware

COE 449 Term 081

26/30

13

ACLs vs. Capabilities

 Both theoretically equivalent; consider 2 questions
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
— ACLs answer second easily; C-Lists, first
 Suggested that the second question, which in the
past has been of most interest, is the reason ACL-
based systems more common than capability-based
systems

— As first question becomes more important (in incident
response, for example), this may change

COE 449 Term 081

27/30

Locks and Keys

» Associate information (lock) with object, information (key)
with subject
— Latter controls what the subject can access and how
— Subject presents key; if it corresponds to any of the locks on the
object, access granted
» This can be dynamic
— ACLs, C-Lists static and must be manually changed

— Locks and keys can change based on system constraints, other
factors (not necessarily manual)

COE 449 Term 081

28/30

14

* n layers of privilege (rings)
ring 0 is most privileged
ring n is least privileged

* Introduced by Multics (1964-2000)
* Typically hardware enforced
* Special gates between rings are

provided to allow an outer ring to
access an inner ring’s resources

COE 449 Term 081

29/30

Key Points

* Access control matrix (ACM) is a simple tool to
model protection state but:
— most entries are blank/empty

— expensive to manage (creations, modification and
deletions)

* Access control mechanisms provide controls for
users accessing files & resources

* Many different forms
— ACLs, capabilities, locks and keys
— Ring-based mechanisms (Mandatory)

COE 449 Term 081

30/30

15

