
Our reference: MICPRO 1849 P-authorquery-v8

AUTHOR QUERY FORM

Journal: MICPRO

Article Number: 1849

Please e-mail or fax your responses and any corrections to:

E-mail: corrections.esch@elsevier.sps.co.in

Fax: +31 2048 52799

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF
file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

No queries have arisen during the processing of your article.

Thank you for your assistance.

mailto:corrections.esch@elsevier.sps.co.in


1

2

3

4

5

7

8
9

10
11
12
13
14
15

1 6

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Microprocessors and Microsystems xxx (2010) xxx–xxx

MICPRO 1849 No. of Pages 18, Model 5G

30 September 2010
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
A hardwired NoC infrastructure for embedded systems on FPGAs

Muhammad E.S. Elrabaa ⇑, Abdelhafidh Bouhraoua
Computer Engineering department, King Fahd University for Petroleum and Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o
17
18
19
20
21
22
23
24
Article history:
Available online xxxx

Keywords:
Multi-core embedded systems
Field Programmable Gate Arrays (FPGAs)
Networks-on-chip
Systems-on-chips
25
26
27
28

0141-9331/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.micpro.2010.09.008

⇑ Corresponding author. Tel.: +966 3 860 1496; fax
E-mail addresses: elrabaa@kfupm.edu.sa (M.E.S. E

(A. Bouhraoua).

Please cite this article in press as: M.E.S. Elrabaa
(2010), doi:10.1016/j.micpro.2010.09.008
a b s t r a c t

A hardwired network-on-chip based on a modified Fat Tree (MFT) topology is proposed as a communi-
cation infrastructure for future FPGAs. With extremely simple routing, such an infra structure would
greatly enhance the ongoing trend of embedded systems implementation using multi-cores on FPGAs.
An efficient H-tree based floor plan that naturally follows the MFT construction methodology was devel-
oped. Several instances of the proposed NoC were implemented with various inter-routers links progres-
sion schemes combined with very simple router architecture and efficient client network interface (CNI).
The performance of all these implementations was evaluated using a cycle-accurate simulator for various
combinations of NoC sizes and traffic models. Also a new data transfer circuit for transferring data
between clients and NoC operating at different (unrelated) clock frequencies has been developed. Allow-
ing data transfer at one data per cycle, the operation of this circuit has been verified using gate-level sim-
ulations for several ratios of NoC/client clock frequencies.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Field Programmable Gate Arrays (FPGAs) have gained consider-
able acceptance among VLSI designers not only as prototyping
platforms but also as system implementation platforms for appli-
cations with short time to market constraints. State of the art
FPGAs have also become very attractive for system-on-chip (SOC)
and embedded systems designs due to their ease of use, flexibility,
large gate count, abundance of I/Os and efficient hardware macros,
embedded processors (both hard and soft), re-configurability,
extensive tool support and improved speed [1,2]. FPGAs can be
configured (and re-configured) to implement any digital processor
or group of processors (called cores or Intellectual Property blocks
or IPs). Several cores could be implemented simultaneously that
can communicate among themselves and the outer world. This
matches the current trend of multi-core implementation of
embedded systems [1]. This lead to a new trend of implementing
embedded systems on FPGAs. The inter-core communications in
these implementations, however, are still implemented as
dedicated point-to-point or using shared buses. The first method
though provides good speed, consumes relatively large portion of
the FPGA’s logic/interconnect resources reducing the total number
of cores that can be implemented. The second method is more
resource efficient but suffers from performance penalties and does
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not scale well. Having a scalable interconnection network (i.e. a
network-on-chip) on future FPGAs has the highest potential for
satisfying the communication needs of future FPGA-based embed-
ded systems [1].

Conventional FPGAs suffered from relatively high configuration
time (time needed to load all the configuration bits into the FPGA)
due to the limited number of external configuration ports and the
serial nature of the configuration process itself. Also, configuration
interconnects were completely separated from data/functional
interconnects. Since adding more external configuration ports
would be at the expense of regular data I/Os, FPGA vendors added
internal reconfiguration ports [3] that can be accessed by various
cores implemented on the FPGA itself. Vendors also have divided
their FPGAs into areas that can be configured separately with each
area having its own local interconnect with functional and config-
uration interconnects remaining separate. This alleviated some of
the problems associated with the serial nature of reconfiguration
making dynamic reconfiguration (re-configuring the FPGA during
use) more practical. Still, having separate configuration and func-
tional interconnects is not only wasteful of space but means that
special circuitry are required to connect the regular data port of
an IP to the configuration interconnects and then to the internal
configuration port of the region being re-configured. This requires
having a dedicated configuration management circuit on the FPGA,
yet more wasting of valuable logic resources. Hence it makes
perfect sense to share the physical interconnects by functional
(regular) data and configuration data. This would not only free
valuable FPGA space but would also make available more intercon-
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2010.09.008
mailto:elrabaa@kfupm.edu.sa
mailto:abouh@kfupm.edu.sa
http://dx.doi.org/10.1016/j.micpro.2010.09.008
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro
http://dx.doi.org/10.1016/j.micpro.2010.09.008
Original text:
Inserted Text
Embedded Systems 

Original text:
Inserted Text
client-Network 

Original text:
Inserted Text
macros (IPs), 

Original text:
Inserted Text
re-configuration 

Original text:
Inserted Text
reconfigured. 



82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

2 M.E.S. Elrabaa, A. Bouhraoua / Microprocessors and Microsystems xxx (2010) xxx–xxx

MICPRO 1849 No. of Pages 18, Model 5G

30 September 2010
nect resources available for reconfiguration, enabling fast dynamic
run-time reconfiguration. This in turn would open the door for new
and innovative computing paradigms.

Another major problem with FPGA interconnects is their rela-
tively large delays. This is due to the fact that in order to make
them configurable switch boxes (made of MUXs or Pass gates)
are inserted at regular lengths along the interconnect wires. These
wire delays constitute a challenge for circuit designers to meet
their timing constraints (i.e. timing closure of the design). The
same problem (timing closure) has faced designers of conventional
SoCs where a chip is assembled by integrating different IPs, possi-
bly from different vendors, with various operating frequencies and
communication patterns. Networks-on-chip were proposed to
solve these problems by providing a scalable shared interconnect
medium that can meet the different communication requirements
of IPs [4–6]. As a result, there has been a significant amount of ef-
fort made in the area of NoCs, and the focus has mostly been on
proposing new topologies, and routing strategies. However, re-
cently the trend has shifted towards engineering solutions and
providing design tools that are more adapted to reality. For exam-
ple, power analysis of NoC circuitry has intensively been studied
[7,8], more realistic traffic models have been proposed [9], and
more adapted hardware synthesis methodologies have been
developed.

High throughput architectures, however, haven’t been ad-
dressed enough in the literature. Besides the efforts related to
the Nostrum [10] and the Æthreal [11], most of the other efforts
were based on a regular mesh topology with throughputs (ex-
pressed as a fraction of the wire speed) not exceeding 30% [11].

In [12,13] a NoC topology based on a modified Fat Tree (MFT)
was proposed to address the throughput issue. MFT is a subclass
of Fat Trees (FT) multi-stage-interconnection networks [14]. The
conventional Fat Tree topology was modified by adding enough
links such that contention was completely eliminated thus achiev-
ing a throughput of nearly 100% [12] while eliminating any buffer-
ing requirement in the routers. Also, simplicity of the routing
function, typical of Trees, meant that the router architecture is
greatly simplified. The approach was extended to satisfy heteroge-
neous bandwidth requirements of different clients [15]. The new
approach allowed NoC designers to satisfy the bandwidth require-
ment of each client without the need to ‘‘overdesign” the NoC,
reducing power consumption without impacting the performance
of applications running on the NoC.

Many researchers have proposed soft NoCs for FPGAs that uti-
lize the FPGA’s configurable resources to implement the NoC’s var-
ious components (e.g. [16–19]). Though many of these soft NoCs
have demonstrated various degrees of performance improvement,
they consumed significant portion of the FPGA’s resources (logic/
interconnects/memories). Most critical of these are memory blocks
(for implementing I/O buffers in the NoC interface) which leave
designers with insufficient RAM blocks to implement their
applications.

As a result of the limitations of soft NoCs, several researchers
have recently proposed introducing NoCs as FPGA macros (i.e. as
hardwired, full-custom designed circuitry) [20–26]. In [20] a
reconfigurable router that can be configured to have various num-
bers of ports was first proposed. Users would need to implement
the routing algorithm they desire and configure the NoC accord-
ingly. In [21] a configurable Mesh-based NoC is proposed. This
NoC is only modeled in SystemC using channels to implement
the routing protocols with no actual implementation provided.
Also the NoC itself require significant reconfiguration (routing ta-
bles, logical to physical addresses mapping, virtual point-to-point
connections, etc.). Although Mesh topology would fit conveniently
with the tile-based FPGA re-configuration regions, it has sever per-
formance limitations in terms of achievable throughput (<30% of
Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
the wire speed) [10,11]. Another Mesh-based NoC is proposed in
[22]. It combines hardwired resources (links and routers) with soft
resources (configurable network interface). This provided extra
flexibility at the cost of using up the FPGA’s resources and reducing
the speed since soft parts will inevitably have lower speed than the
hardwired parts. Elmiligi et al. [23] proposes a centralized pro-
grammable switch fabric to connect routing nodes and coarse grain
configurable processing elements. This strategy won’t work with
regular fine-grained FPGAs because the size of the central switch
will grow exponentially with the number of I/O ports. A similar ap-
proach is proposed in [24]. Based on the Æthereal NoC [11], routers
and links are implemented as hardwired blocks while the network
interfaces are split between hard and soft parts. The NoC requires
significant configuration to implement the Æthereal’s different QoS
services. This in turn requires the implementation of a dedicated
NoC configuration manager as part of a system manager [25], using
up yet more FPGA resources or area. Configurable router that can
support several NoC topologies is proposed in [26]. Routers contain
the required logic circuitry to implement the supported topologies’
routing algorithms, something that is wasteful of FPGA chip area.
Furthermore, Routers and clients are connected using the FPGA’s
configurable interconnects and using asynchronous handshaking
(Req-Acknowledge). This is not only wasteful of further FPGA re-
sources, but also limiting to the over all NoC performance. As
was demonstrated in [33], full-custom hardware components can
achieve much higher performance at a very small fraction of the
area of configurable logic.

In this work a new FPGA hardwired NoC is proposed. The pro-
posed NoC would provide an efficient infrastructure for functional
inter-module communications as well as reconfiguration of the
FPGA’s regions. A brief overview of the proposed approach is first
introduced in the next section followed by a brief description of
how the NoC is constructed (in terms of links and routers) and
the proposed physical floor plan. In Section 3 the detailed NoC de-
sign is presented including router’s architecture, links progression,
and client interface design. This is followed by performance evalu-
ation (in terms of throughput and packet delays) of the proposed
NoC implementations options under various conditions of size
and traffic types. This includes a detailed gate count for these op-
tions and the area impact of adding a hardwired NoC to an FPGA.
Finally conclusions are provided in Section 5.
2. Approach

To circumvent the limitations of the previously proposed FPGA
NoCs, the target of this work was to develop an FPGA NoC infra-
structure with minimal reconfiguration requirements. This would
minimize the use of soft parts in the NoC implementation, increas-
ing the speed and reducing the overall area footprint of the NoC.
Also to achieve maximum data rates in the NoC a full synchronous
design of the NoC is adopted. Since the NoC is designed as a full-
custom circuit with a relatively small area, it is not difficult to de-
sign it as a synchronous circuit with its own clock tree. In fact an
efficient H-tree floor plan was developed for the proposed NoC that
would match the clock tree’s own topology (usually laid out as an
H-tree) simplifying the timing closure of the NoC. Since IPs will
have their own clocks, specialized circuitry was developed to
transfer data between the NoC and IPs at the maximum possible
data rate. Also the developed NoC would have minimal intrusion
on existing FPGA architectures for seamless integration into exist-
ing FPGA design flows. It is meant to be an infra structure for pro-
viding a fast medium for delivering functional/configuration data
to all parts of the FPGA. In other word it provides the lower layers
(up to routing) of the networking protocol while the higher layers
are left for the system designer to choose and implement (or
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.
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choose from a library of IPs). The fixed NoC infrastructure is based
on the MFT architecture [12,13]. The router architecture is further
simplified by eliminating adaptive routing altogether. This would
not only reduce the router area, but it will also insure in-order
reception of packets, thus simplifying the client network interface
design significantly. Also to reduce the NoC area further and to
simplify the clients’ network interface, the original MFT architec-
ture was modified by reducing the number of links significantly.
Different strategies for link reduction were evaluated using simu-
lations to determine the best strategy in terms of throughput and
gate count.
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3. NoC construction and floor plan

3.1. Modified Fat Tree (MFT) NoC construction

Fig. 1 shows the recursive construction of a FT network. The
starting basic unit, called a group of order 1, is composed of a single
router with two clients attached to it. This unit is replicated and a
new row of routers is added. Higher order groups are then formed
in the same way from lower order groups, Fig. 1. Hence an n-client
network will have (n/2)* LOG2(n) routers organized as n/2 columns
by LOG2(n) rows. In this work, rows are numbered from 0 to
LOG2(n) � 1, with row 0 being the first level of routers which are
connected to the clients. The MFT is constructed in a similar man-
ner with the addition of additional links, Fig. 2. In the original MFT
the downward output ports (links) are double the number of upper
links for each router. This link doubling (referred to in this work
as geometrical link progression) would proceed from the top row
C
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Fig. 2. (a) The original MFT topology and (b) router architecture w
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to row 0. Hence at the client/NoC interface routers will have
2n+1 � 1 downward links (i.e. 2n � 1 input links per client). Each
of these I/P links featured a FIFO buffer as called for by the original
MFT architecture [12]. In this work two new modifications were
adopted for the MFT; (1) adaptive upward routing was eliminated
to further simplify the router’s design and guaranteeing in-order
packet arrival, thus simplifying the client interface greatly, Fig. 2)
Different schemes for increasing the number of downward output
links (i.e. link progression) were adopted. The later modification
was adopted to reduce the number of links and FIFOs at the edge
of the NoC at the client interface. This was a result of observations
from numerous simulations with different traffic models that most
of the extra links were inactive for most of the time. The router de-
sign was modified to support the different link progression
schemes evaluated.
3.2. Routing in MFT

Packets are routed up till they reach a summit router where
there is a direct path to the destination. So when an upward packet
is received by a router at row r, LOG2(n) � r� 1 bits of the destina-
tion address are simply compared to a stored pattern of equal
length that indicates all the addresses reachable from that router.
If they match the packet is routed down the opposite side, if not,
the packet is routed up on the same side till it reach the summit.
Downward packets are routed right or left based on the value of
one of the destination address bits. The exact bit locations within
the destination address that are used for upward and downward
routing depends on the router location and are hardwired into
c) 8 clients group made of 2 four clients groups (order 3) 
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the router during design. This greatly simplifies the routers design.
Also due to the deterministic routing and the buffer-less nature of
the network packet order is maintained.

3.3. NoC floor plan

An efficient floor plan is proposed for the NoC based on the H-
tree topology, Fig. 3. Each tile in the floor plan represents a config-
uration region (CR) and it will be considered as a single client from
the NoC design point of view. This is just for the purpose of config-
uration (i.e. each of these tiles represents the minimum re-config-
uration region for the purpose of partial configuration). An actual
client may occupy any number of CRs and can utilize any (or all)
of the NoC ports in these CRs. Also two (or more) clients can occupy
the same CR tile, but the designer needs to implement his/her own
interface switch to time multiplex the NoC port in that CR. It
should be noted that this floor plan is just illustrative and not an
actual layout (i.e. it is not to scale). In reality, the routers and links
area would be very small compared to CR tiles. Fig. 3 also lists the
maximum length of links in terms of CR length.

As Fig. 3 shows, the routers and links layout follow the borders
of the CRs to minimize the impact on conventional FPGA structure.
With this floor plan, the longest links are the most upper links that
span one-half the chip length. They are, however, fewer in num-
bers, making the routing of these links’ wires easier. Also, proper
buffer insertion in these links must be applied to maintain the re-
quired clock rate.
combinations and using the arithmetic link progression scheme.

Row IA 2 2 2 2 4 4 4 4 6 6 6 6 MFT
SL 0 1 2 3 0 1 2 3 0 1 2 3

5 1 1 1 1 1 1 1 1 1 1 1 1 1
4 2 2 2 2 3 3 3 3 4 4 4 4 3
3 3 3 3 3 5 5 5 5 7 7 7 7 7
2 4 4 4 3 7 7 7 5 10 10 10 7 15
1 5 5 4 3 9 9 7 5 13 13 10 7 31
0 6 5 4 3 11 9 7 5 16 13 10 7 63
4. NoC design

4.1. Link progression schemes in the MFT NoC

Three types of link progression in the MFT NoC have been
evaluated in this work; (1) Arithmetic progression, (2) Mixed
Arithmetic/Geometrical progression and (3) Limited Geometrical
progression. The three types are briefly explained below.
2 CRs with level 0 
router in between 

2 groups 2 CRs are connected with 4 
level 2 routers  

2 groups 1 CRs are 
connected with 2 level 1 
routers  

NoC Size (CRs) 4 8 

Maximum link length (in 
terms of CR length) 

1 2 

Fig. 3. The H-tree construction of the NoC floor plan (not to scale). The client/NoC interf
(row 0).

Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
4.1.1. Arithmetic link progression
The Arithmetic progression MFT, abbreviated as AMFT, is based

on partial reduction of contention through the addition of a fixed
number of links on the downward path of each router. Hence, in-
stead of the doubling called for by the original MFT architecture,
the number of output ports of each router is equal to the number
of input ports plus a fixed number called the increment (IA). An
increment of 2, means adding an extra link to both the left and
right groups of output links. Another parameter, stop level (SL) is
introduced to increase the variations of the network structure
exploration. Starting from the top row, SL represents the row at
which incrementing the output links will stop leaving the routers
in lower levels with an identical number of inputs and outputs. Ta-
ble 1 below illustrates the arithmetic progression for a NoC with 64
CRs for various combinations of IA and SL. It shows the number of
output links per side (left or right) per router for each row in the
NoC. The last column shows the corresponding MFT number of
output links when doubling of the links is used. It is very clear that
this scheme results in a significant decrease in the number of links
at most levels especially the last one (row 0).

4.1.2. Mixed arithmetic/geometrical link progression
This scheme as its name indicates is a mixture of arithmetic and

geometric progression. Starting from the top row, output ports are
2 groups 3 C
R

s are connected w
ith 8 level 3 routers resulting 

in a 16 C
R

s structure. It w
oul d take 16 level 4 routers to 

connect this cluster to another 16-C
R

s cluster.  

16 32 64 128 

2 4 4 8 

ace (CNI) is at the edge of the NoC at the client’s interface to the 1st level of routers

C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.

http://dx.doi.org/10.1016/j.micpro.2010.09.008
Original text:
Inserted Text
Floor Plan

Original text:
Inserted Text
IPs 

Original text:
Inserted Text
Design

Original text:
Inserted Text
Progression Schemes 

Original text:
Inserted Text
1) 

Original text:
Inserted Text
2) 

Original text:
Inserted Text
3) 

Original text:
Inserted Text
(I

Original text:
Inserted Text
)

Original text:
Inserted Text
. 

Original text:
Inserted Text
(S

Original text:
Inserted Text
Arithmetic/Geometrical 



318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Table 2
Number of routers’ output links per side for a network of 64 CRs, various (IA, SL)
combinations and using the mixed arithmetic/geometrical link progression scheme.

Row IA 2 2 2 4 4 4 6 6 6 MFT
SL 1 2 3 1 2 3 1 2 3

5 1 1 1 1 1 1 1 1 1 1
4 2 2 2 3 3 3 4 4 4 3
3 3 3 3 5 5 5 7 7 7 7
2 4 4 7 7 7 11 10 10 15 15
1 5 9 15 9 15 23 13 21 31 31
0 11 19 31 19 31 47 27 43 63 63
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incremented by IA until the row SL is reached. After that, doubling
of the links is implemented resulting in number of links in between
that of the arithmetic progression and the original MFT. This
scheme is meant to increase the number of links at the lower rows
because in a typical placement, clients are placed adjacent to other
clients that they communicate with the most. Hence most of the
traffic will be routed through lower levels. Table 2 shows this link
progression scheme for a NoC with 64 CRs for various combina-
tions of IA and SL.

4.1.3. Controlled geometrical progression
Based on the assumption that more links are needed at lower

rows, this scheme keeps the number of links constant (with no pro-
gression at all) for upper rows and start doubling them at level SL.
This results in a much lower number of links and the overall gate
count.

4.2. Modified router architecture

As was explained before, the routers in the original (see Fig. 2)
were designed with no possibility of contention due to the geomet-
rical link progression. With the above progression schemes conten-
tion may arise and hence requires modification of the routers’
architecture. Since several input ports are going to be eventually
competing for fewer output ports crossbar structures have to be in-
serted on both the left and the right paths to manage the allocation
of the output ports. Fig. 4 shows the router architecture modified
to handle contention. Two crossbars have been added to arbiter
contentious allocation of the output ports. The two crossbars are
independent from one another, simplifying the design of the arbi-
tration control. Routing, computed in the input port logic, deter-
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Output 
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Fig. 4. Router architecture w
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mines to which crossbar the request for output port allocation is
sent. Unlike regular crossbars, all output ports are considered as
one single path and only a status bit (allocated/unallocated) is
associated with output ports. Requests are queued in a first come
first serve basis using simple logic that maintains the order of arri-
val of the requests. A request queue maintains this priority. It is a
simple FIFO with a size equal to the difference between the num-
ber of input ports and output ports of the crossbar. Each entry is
designed to hold the index of the corresponding input port that is-
sued the request. Because all output ports are identical resources,
there is no need to specify which output port is requested.

4.3. The client network interface (CNI)

The MFT NoC is characterized by a relatively high number of
links at the edge of network (where it interface to the clients). Buf-
fering has also been pushed to these interfaces. In order to over-
come these limitations a new client interface architecture is
proposed. This interface aims at reducing the number of parallel
FIFOs (from the incoming links) into a single centralized FIFO be-
fore interfacing this FIFO to the client. Fig. 5 below shows the block
diagram of the CNI. It is made of three parts; an upper part consist-
ing of several bus-widener structures that will be named paralleliz-
ers from this point forward, a single centralized FIFO memory and a
data transfer interface circuit. The outputs of the parallelizers are
connected to the central FIFO via a single many-to-one multi-
plexer. The data transfer interface circuit is required to transfer
the data between the two clock domains; the NoC’s and the cli-
ent’s. The design of each of these parts is described below.

4.4. The parallelizers

Each one of the parallelizers is made of two layers. The first
layer is a collection of registers connected in parallel to the incom-
ing data bus from one of the incoming links (ports). Packet data is
received into one of these registers one word at a time. When this
layer is full, an entire line made by concatenating all the registers
of the first layer is transferred to a second set of registers (the sec-
ond layer in the parallelizer) in a single clock cycle. The ratio be-
tween the width of the parallel bus and the width of a single
word is called the parallelization factor. Portions of packets from
the same source are always received by the same parallelizer in or-
der. Packets from different sources are received on different paral-
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(Right)

Downward 
Input Ports

(Right)

X-Bar

ith contention handling.
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lelizers simultaneously and independently. When the first portion
of a packet is received and transferred to the second layer of the
parallelizer, a flag is set to request transfer of a new packet to
the FIFO. The control logic responsible for these transfers will first
attempt to reserve space in the FIFO corresponding to one packet.
The condition here for this architecture to produce efficient results
is the adoption of a fixed packet size. This condition simplifies the
space allocation in the FIFO and alleviates the control logic from
any space or fragmentation management due to variable size allo-
cation and disposal. In the case the FIFO is full and no space could
be reserved, the request is rejected and the backpressure mecha-
nism is triggered on that requesting port.

The control logic continuously transfers the received packet
words to the FIFO. Every time a packet portion enters the second
layer of registers in one of the parallelizers a flag is set to indicate
the presence of data. Those parallelizers which are currently
receiving packets are said to be active. Only active parallelizers
are continuously polled to check the presence of data. The polling
follows a round-robin policy. A single clock cycle is used to process
the currently selected parallelizer. Polling the active parallelizers
only supposes some mechanism to ‘‘skip” all the non-active paral-
lelizers between two active ones. In order to avoid wasting clock
cycles crossing those non-active parallelizers, a special request
propagation circuit has been designed. Fig. 6 shows the schematic
of this circuit. The upper set of flip-flops correspond to the status
flag indicating whether a parallelizer is active or not while the low-
er one is used to indicate which parallelizer is selected to transfer
its data during a given clock cycle. The multiplexers are used to in-
stantly skip the non-active parallelizers.

As a result of this fast polling scheme packets arriving simulta-
neously on different parallelizers may be received in different or-
der. Packet order from the same source is still guaranteed though
because of the buffer-less nature of the network. The absence of
buffers means that two consecutive packets cannot be sourced
from the same client simultaneously. So if these two packets are
destined to the same sink, the second cannot reach the destination
before the first one is entirely received. So, even if the first packet is
delayed, the second one cannot be sourced. Moreover, the routing
Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
scheme is deterministic so two packets originating from the same
source that are destined to the same client take the same path. In
the extreme case where the packet size is so small that it can fit in
the FFs within few routers along the path freeing the source output
link (to the first router) and allowing the second packet to enter the
network, contention will occur between the two packets for the
same output port of a router along the path and the second packet
is held back.

4.5. The central FIFO buffer

The central FIFO is organized into a pool of packet slots that can
be allocated/freed individually. Each slot has the size of one packet.
Different parallelizers, simultaneously active, polled in a round ro-
bin fashion using the fast polling circuit result in an out-of-order
writing of the different packet portions into the central FIFO. The
definition of FIFO is violated here as some packets complete their
writing before packets that started being written earlier in time.
This requires special handling. Two queues are used to keep track
of the slot indexes; (1) the Allocated Queue (AQ) and (2) the Free
Queue (FQ). The AQ contains the indices of the allocated slots con-
taining complete packets while the FQ keeps track of the empty
slots. A temporary address table, called Writing Table (WT), is used
to store the addresses of the packets currently being written into
the FIFO. The size of this table is equal to the number of paralleliz-
ers and each parallelizer has a corresponding entry in the table.
Fig. 7 shows the structure of the central FIFO.

When a new packet portion is received at one of the paralleliz-
ers, a request is sent to the central FIFO control logic. If the FQ is
empty, backpressure is initiated to stop the network from sending
more data into the parallelizer. If the FQ is not empty, the top ele-
ment in the FQ is popped and sent to the entry corresponding to
the requesting parallelizer in the WT. The entry, stored in a regis-
ter, is divided into two fields. The upper field, called an Index (IDX),
is used to store the index slot allocated to the current packet cor-
responding to the parallelizer it is coming from. The lower field
points to the current location in the slot to which the next packet
word is to be written. This field, called the Counter (CNT) is initial-
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.
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ized to zero when the slot is allocated. When a new portion of a
packet for which a slot has already been allocated reaches the cen-
tral FIFO, it is written in the location addressed by the correspond-
ing entry in the WT. The CNT field is then incremented by one.
When the last portion of the packet is written into the central FIFO,
the corresponding entry in the WT is invalidated and the IDX field
is pushed at the tail of the AQ.

The client side of the central FIFO logic continuously monitors
the contents of the AQ. If at least one entry is present, which means
one packet is ready to be sent out, the entry is popped out from the
AQ. The IDX field is used to read out the different packet words
Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
from the central FIFO. After the packet is completely read out of
the FIFO, the IDX field is pushed into the FQ to be reallocated to an-
other packet.

4.6. The data transfer interface (DTI) circuit

There are several ways to transfer data between two clock do-
mains in GALS systems (Globally Asynchronous Locally Synchro-
nous) [27]. With out any assumptions about the two clocks, the
asynchronous style represents the least impact on the communi-
cating blocks operation and performance. Due to handshaking
and synchronization between the two domains, a datum transfer
would take at least three clock cycles of the slower of the two
clocks [27]. In [28] throughput was increased to one datum per
clock cycle (of the slower of the two clocks) by pipelining the syn-
chronization itself alongside the data. This simple approach of
implementing the FIFOs as pipelines greatly reduced the probabil-
ity of failure due to Metastability and eliminated the need for
detecting full/empty conditions. However it increased the latency
of the interface since the pipeline has to be filled first before data
can come out of it. It also imposed the constraint that the sender
and receiver had to operate at the same data rate. A better ap-
proach for data transfer between different clock domains based
on a general FIFO was proposed in [29]. It allows the sender and
receivers to put (or send) and get (or receive) data at their own
clock rates simultaneously. In addition for elaborate circuitry for
detecting empty/full FIFO conditions, more circuits were added
to detect when the FIFO is nearly full or empty. These signals are
necessary to maintain the data transfer rates while synchronizing
the conventional empty/full signals.

In this work a novel FIFO design for transferring data between
two different clock domains was developed. The new FIFO design
is simpler than the one in [29] yet it allows independent data send-
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.
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ing and receiving at different rates (equal to the sender and recei-
ver clock rates, respectively) with no need for empty/full detection.
At the heart of this FIFO is a new circuit for transferring data be-
tween two clock domains. This basic component is first described
then the construction of the FIFO will be shown.

4.7. The basic DTI FIFO stage

Fig. 8 below illustrates the basic circuit and the signaling proto-
col required to transfer data between a client and the NoC. Data
transfer is illustrated for equal client and NoC clock frequencies
(CLKC and CLKNoC, respectively), the worst case condition in terms
of the number of cycles required to complete a datum transfer.
Two data latches are utilized, one on the client side and another
on the NoC side. ENC and ENNoC are the latch enable signals for
putting the data and getting the data. A simple four-phase signal-
ing protocol is used to simplify the circuit design. A conservative
two Flip Flop synchronizer design is employed [30]. The client ini-
tiates the transfer by setting up the data and raising the PUT signal.
The client-side controller would strobe the latch (ENC ") and initi-
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ates a request signal (ReqOut). This signal would reach the NoC-side
controller as PUTReq after two clock cycle (the synchronization de-
lay). This controller would then strobe the NoC data latch and ini-
tiates an acknowledgement signal (TAKEACK). This signal would
reach the client-side controller after two more clock cycles which
in turn respond by deactivating the request signal. The NoC con-
troller would then deactivate the acknowledge signal, completing
the transfer in 8 cycles. If the client or the NoC have higher clock
frequency than the other, the transfer would take less number of
cycles (the minimum is four). The use of two latches (instead of
a single latch or FF as in most FIFOs) per cell achieves two objec-
tives; (1) it greatly simplifies the design by decoupling the PUT
(writing to the client’s side latch) and GET (reading the NoC’s side
latch output) operations, (2) it effectively provides a two-stage
pipeline per FIFO stage, reducing the impact of clock frequency dif-
ference on the PUT/GET rates.

The number of required transfer cycles could have been reduced
by overlapping data transfers but this would have resulted in more
complex circuitry that would be slower to operate. As will be
shown later, a maximum throughput of one datum transfer per cy-
C
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cle with a latency of less than one cycle is still achieved by the pro-
posed FIFO.

Fig. 9 below shows the design of the client/NoC controllers of
one of the FIFO’s stages (stage i). Each controller has a simple
two-state FSM implemented with a single FF and simple logic.
The client-side controller basically would latch the data into the
client-side latch and assert the ReqOut signal if it receives a PUT re-
quest while the PUTACK signal is low. The ReqOut signal is kept high
till the PUTACK signal goes high. The OK_to_PUT signal is then set
when the PUTACK signal goes back low. This signal is reset when
the controller latch new data. It would be clear why an SR-latch
is used to set and reset this signal when the FIFO construction is
described. The NoC-side controller would latch-in the data when
it receives a PUT request while the previous data has been con-
sumed (i.e. when OK_to_TAKE is low). It also asserts the TAKEACK

signal and keeps it high till the PUT request signal goes low. After
latching the data the OK_to_TAKE signal is set high. The NoC con-
sumes the data by asserting the TAKE signal which in turn resets
the OK_to_TAKE signal.
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Fig. 10 shows the block diagram of an n stage FIFO constructed
from the basic data transfer circuit described above. Two counters
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connected to the inputs of all stages on the client side. When a PUT
request is received from the client an internal PUT signal (PUTi) is
asserted and routed to the stage selected by the PUT pointer if its
OK_to_PUT signal is high. The pointer is also incremented. The
SR-latch in the FIFO stage used for the OK_to_PUT signal of the se-
lected stage would reset after one clock cycle, hence the internal
PUT signal would not evaporate before the end of the cycle. This al-
lows the client to put a data item every cycle (of its own clock) as
long as the FIFO is not full (indicated by the OK_to_PUT signal of
the tail cell).

On the NoC side a datum is removed every clock cycle from the
head of the queue selected by the TAKE pointer if the correspond-
ing OK_to_TAKE signal is high. The NoC can assert the back pres-
sure signal (BP) to stop taking the data. When a data item is
taken, the TAKE pointer is incremented to point to the next cell.
As explained earlier, it would take 8 cycles to complete a datum
transfer within a cell. Data transfer within all cells proceed in par-
allel, hence using 8-stage FIFO ensures achieving the maximum
PUT/TAKE data rates of one datum per clock cycle for any client/
NoC clock frequencies.
5. Performance evaluation

To evaluate the performance of the proposed NoC a custom cy-
cle-accurate simulator has been developed. Numerous simulations
have been carried out to determine the optimum parallelization
factor, central FIFO organization (width and size), and link progres-
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sion scheme for several NoC sizes. Two simple synthetic traffic
models have been used; traffic with uniform address distribution
and traffic with non-uniform distribution. The latter model as-
sumes that clients that communicate with one another the most
are placed adjacent to one another. Hence the probability of a cer-
tain destination address is assumed to decrease logarithmically
with the ‘distance’ between the destination address and the source
address. The distance between two clients, d, is the order of the
minimum group that contains both clients. So the probability of
a certain destination address PA is simply calculated as PA = (0.5)d

with the imposed constraint that the sum for all destination prob-
abilities equal to 1. A packet’s delay is defined as the number of
clock cycles from the time a packet is injected into the network un-
til it starts being read out by the receiving client. Throughput is the
amount of useful data versus idle time actually delivered by the
network per unit of time. It is expressed as a fraction of the maxi-
mum bandwidth or wire speed (which is 1 word/cycle/client). In all
simulations, a very high injection rate (by all clients simulta-
neously) was used to stress out the NoC.
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Fig. 11. Measured throughput versus FIFO emptying rate (R) and parallelizer’s width (P)
on the left are for a packet size of 32 bytes while results on the right are for a packet si
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(size and width) on the NoC performance for various NoC sizes
for the two traffic models (uniform and non-uniform). Also two
packet sizes were considered; 32 bytes and 64 bytes. Figs. 11 and
12 show throughput and maximum delay for various combinations
of central FIFO width (or emptying rate, R), size and parallelizer’s
width (called P on the figure). So an R4P4 value on the x-axis
means a FIFO emptying rate of 4 bytes/cycle and a parallelizer’s
width of 4. For each NoC three FIFO sizes were considered with
the two traffic models and two packet sizes (32 and 64 bytes). So
a NonU F16 legend means non-uniform traffic and FIFO size of
16 packets. Similarly a U F16 legend means uniform traffic and a
FIFO size of 16 packets. These results were obtained using geomet-
rical link progression to maximally stress out the client interface
circuitry. It is very clear that a FIFO size of 16 packets, emptying
rate of 8 and parallelizer width of 8 is sufficient to obtain the max-
imum performance under all conditions. Also the larger packet size
yields a slightly better throughput. Hence these values (R = 8, P = 8,
FIFO size of 16 packets and packet size of 64 bytes) were used in all
subsequent simulations. It should also be noted that for the same
FIFO size and emptying rate a larger parallelizer width may actu-
ally lead to a slightly reduced throughput (e.g. going from R4P8
to R4P16). This is due to the fact that it would take more cycles
to assemble packet fragments in the parallelizers. So when the FIFO
is full and backpressure is triggered, it will take longer before the
parallelizers get filled and transfer the data to the FIFO.
NoC size: 16 CRs

NoC size: 32 CRs
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for 3 NoC sizes, several FIFO sizes, uniform and non-uniform traffic models. Results
ze of 64 bytes.
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Fig. 12. Measured maximum packet delay versus FIFO emptying rate (R) and parallelizer’s width (P) for 3 NoC sizes, several FIFO sizes, uniform and non-uniform traffic
models. Results on the left are for a packet size of 32 bytes while results on the right are for a packet size of 64 bytes.
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5.2. Evaluation of the different link progression schemes

Using the optimum parallelizer and central FIFO parameters ob-
tained above, numerous simulations were carried out to evaluate
the performance of the different link progression schemes de-
scribed in Section 3. Fig. 13 below shows the throughput for arith-
metic and mixed arithmetic/geometrical link progression for a NoC
size of 64 CRs for uniform and non-uniform traffic. This Figure
clearly shows that for non-uniform traffic where most of the traffic
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is local, for both schemes, the minimum number of extra links (i.e.
I = 2 and S = 4) would boost the throughput to the maximum pos-
sible value. Any other values for I and S would be an over design. As
for uniform traffic (where most of the traffic traverse upper rows of
the NoC), a minimum increment of 2 combined with slightly lower
stopping level of 3 would yield a throughput very close to the max-
imum while providing huge savings on hardware resources. The
average packet delays for these two progression schemes were
found to be identical and independent of the link progression
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Average packet delay for both arithmetic and mixed arithmetic/geometrical link
progression schemes and the original geometrical link progression scheme for the
two traffic models.

NoC type Arithmetic or mixed
link progression

Original MFT with pure
geometrical link progression

NoC size Uniform Non-uniform Uniform Non-uniform

16-CRs 15 11.5 14.5 11.5
32-CRS 16.5 12 16 12
64-CRs 18.5 12 18 12
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curves) and non-uniform traffic.
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parameters (increment and stop level). Table 3 shows the average
packet delays for these link progression schemes compared to the
original geometrical link progression for the two traffic models for
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several NoC sizes. Also the delays of these schemes are very close
to the geometrical progression scheme.

Fig. 14 shows throughput versus link doubling start level for the
controlled geometrical link progression scheme for three NoC sizes
for the two traffic models. As expected this scheme yielded the
lowest throughput for uniform traffic since it has the fewest links
in upper rows where most of the traffic is. For the more realistic
non-uniform traffic, this progression scheme achieves high
throughput (>90%) even for relatively low level of link doubling.
As will be shown next this allows the designer to reduce the num-
ber of links at the edge of the NoC (and consequently the NoC gate
count) significantly while retaining an excellent throughput. Again
the average packet delays for this scheme were identical to the
other link progression schemes.

5.3. DTI simulation results

The ability of the DTI circuit to transfer data between a client
and the NoC at the maximum rate of one datum/cycle is very cru-
cial for the operation of the NoC. To verify the operation of the DTI
circuit a gate-level implementation of an 8-stage FIFO was simu-
lated (with unit gate delays) with three Client to NoC clock fre-
quency ratios; 1:1, 1:2.5 and 2.5:1. Fig. 15 shows the simulation
results for the three clock ratios alongside one another. The results
show that for equal frequencies, both client and NoC are able to
put/get a datum per clock cycle. When the NoC’s clock frequency
is 2.5� that of the client, the client is still able to put data every cy-
cle but the data removal rate by the NoC is automatically reduced
by a factor of 2.5 of the NoC clock frequency. When the client’s
clock frequency is 2.5� that of the NoC, initially when the FIFO is
empty, the client is able to put data at the maximum rate. The rate
gradually goes down till it reaches 1/2.5 of the client’s clock rate.
The gradual reduction of the rate is due to two factors; (1) for this
(c) Client's clock frequency is 2.5X
the NoC's.

ck frequency is 2.5X
the client's.

ith three client/NoC clock frequency ratios.
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clock ratio, it takes 4 NoC clock cycles to transfer a datum between
the client-side latch to the NoC-side latch. Since the FIFO size is 8
there will be enough time for several cells to complete their data
transfers. (2) The inherent pipelining with the cell due to the use
of two latches.

5.4. Comparison with a mesh-based NoC

In order to compare the MFT’s performance to a classical Mesh
NoC, another simulator was developed for simulating Mesh NoCs
using simple non-bursty traffic with uniform address generation.
Fig. 16 below shows the average latency results for several Mesh
sizes. It is very clear that unlike the MFT, these networks start to
saturate at very low injection rate (�30%). This is consistent with
reported results in the literature for this popular type of NoCs.

5.5. NoC gate count

The total gate count of various sized NoCs for the three link pro-
gression schemes have been evaluated using a word size of 8-bits.
A special C-code is used to generate the RTL-level Verilog descrip-
tion of routers, parallelizers and central FIFOs under different link
progression schemes. These Verilog codes were then automatically
synthesized. The special polling circuitry and the DTI were manu-
ally designed using basic logic components (gates, MUXs and FFs)
to optimize their performance. A break down of gate count is
shown below:

1. The router is made of:
� Upward and downward input ports which have been syn-

thesized using 250 and 260 gates, respectively (mostly FFs)
� Crossbars that are only present in routers with a number of

output ports that are not enough to eliminate contention.
These crossbars are considered as series of wide many-to-
one multiplexers implemented using pass-gates. They are
modeled as 3 2-input NAND-equivalent gates per bit. One
multiplexer per output port is needed. The number of input
ports depends on the link progression scheme. For example,
a crossbar of 6 inputs and 8 outputs with an 8-bits datapath
is equivalent to approximately 6 � 8 � 8 � 3 = 1152 gates

� Output ports contain minimum amount of logic (mainly for
the backpressure signal)

2. Parallelizers are implemented using simple FFs at a gate-equiv-
alency of 4/FF/bit. For example, a 16-word-wide, 2-stage paral-
lelizer of 8 links will amount to 16 � 2 � 8 � 8 � 4 = 8 K gates.

3. The central FIFO is implemented using embedded memories
where the area taken by a 16 packets memory with a packet
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size of 64 bytes (8 K-bits) is 0.008 mm2 in a 0.13 lm technol-
ogy. This is roughly equivalent to 1.4 K gate in the same tech-
nology. The control logic of the central FIFO amounts to about
1 K gates.

4. The total gate count for DTI circuit depends on the width of the
central FIFO’s data width. For an 8-byte data width the DTI con-
tains 7 K gates.

Table 4 below shows the gate count for arithmetic link progres-
sion for various combinations of arithmetic increment IA and stop
level SL. The gate count for the original MFT is also shown in the ta-
ble (last column) for comparison). The gate count for the mixed
arithmetic/geometrical and the controlled geometrical link pro-
gression schemes are shown in Tables 5 and 6, respectively. For
all progression schemes, the total RAM size used for central FIFOs
is 128 Kb, 256 Kb and 512 Kb for NoC sizes of 16, 32 and 64 CRs,
respectively.

Fig. 17 shows a bar chart of the throughput of all link progres-
sion schemes versus stop (start) levels for the arithmetic and
mixed arithmetic/geometrical (controlled geometrical) link pro-
gression schemes for the two traffic models for a 64 CRs NoC. Also
shown on the same Figure are the total gate counts for the three
schemes (as lines) and the throughput and gate count of the origi-
nal MFT NoC for reference. As this figure shows, the controlled geo-
metrical progression with a low starting level yields the lowest
gate count at an adequate throughput for non-uniform traffic. On
the other hand the arithmetic link progression with a stop level
of 3 achieved maximum throughput at a �50% gate count for both
types of traffic. It is very clear that the original geometrical and
mixed arithmetic/geometrical link progression schemes represent
an over design; large gate count at a throughput not more than
the arithmetic progression. Based on these results FPGA designers
can have different products with different link progression
schemes for different applications; controlled geometrical progres-
sion (starting at level 2) for applications with localized non-uni-
form traffic and arithmetic progression targeting applications
with more uniform traffic.

5.6. Impact on FPGA resources

To put the numbers of gate count into perspective the impact on
FPGA resources has been estimated for two cases of a 64 CRs NoC
with central FIFO size of 8 Kb; controlled geometrical progression
with starting level of 2 and arithmetic link progression with an
arithmetic progression of 2 and stop level of 4. The 1st design pro-
vide 75% throughput for non-uniform traffic with minimum gate
count of 477 K-gates of logic and 512 Kb of RAM while the second
design provide throughputs of 93% and 87% for non-uniform and
uniform traffic, respectively at a gate count of 558 K-gates of logic
and 512 Kb of RAM. To evaluate the impact of the extra logic and
RAM resources required by the NoC on the FPGA resources (slices)
the following has been done:

1. To evaluate the area penalty of adding custom logic two Xilinx
Virtex-6 FPGAs with identical resources except for the number
of custom DSP slices have been considered. The XC6VLX240T
and XC6VLX365T [31] FPGAs are identical in every aspect (I/
Os, MACs, Transceivers, Block RAMs, etc.) except for the number
of custom DSP slices (called DSP48E1 slices) and the number of
logic slices. The XC6VLX240T has 192 more DSP48E1 slices than
the XC6VLX365T. Accordingly the XC6VLX365T has 19,200
more logic slices than the XC6VLX240T. Hence one can fairly
assume that each additional DSP48E1 slice costs 100 logic
slices. So if the number of logic gates per DSP slice is estimated,
one can estimate the general cost of custom logic. This is a
crude method but can still give a good estimate of the cost of
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.
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adding custom logic. According to the data sheet of these FPGAs
[31], each DSP48E1 slice contains the following; 25 � 18-bit
two’s complement multiplier, a 48-bit accumulator, multiplier
bypass logic, a 48-bit add/subtract arithmetic unit and a logic
unit that can generate any one of 10 different logic functions
of the two 48-bit operands. The DSP48E1 includes an additional
pre-adder, and the multiplier can perform logic functions (AND,
OR) and barrel shifting. Assuming that the multiplier is using a
modified Booth algorithm that saves area and enhance speed
[32] it would require a minimum of 2614 gates (30 gates for
encoding and sign extension, 2200 gates for partial products
generation and adder array, and 384 gates for the final 48-bit
adder). The pre-adder and bypass logic would require at least
624 gates, the logic unit would require a minimum of 528 gates
and the accumulator needs about 480 gates. The total (ignoring
any logic required to do the barrel shifting by the multiplier)
amounts to 4246 gates. This means that adding 42.46 gates of
custom logic will require the elimination of a single FPGA logic
slice. Hence, to add one of the above NoC implementations to a
Virtex-6 FPGA would require the elimination of about 11,200
and 13,100 logic slices for the controlled geometrical progres-
sion and arithmetic progression NoCs, respectively. For an
XC6VLX760 Virtex-6 FPGA with 118,500 slices, this amounts
to 9.45% and 11% reduction of logic resources.

2. Considering the same LX760 Virtex-6 FPGA, the central FIFOs
would consume 512 Kb of the FPGA’s 25,920 Kb block RAMs,
which is less than 2%.

Hence, according to these area approximations, to add a fairly
large sized NoC (64-clients) as a hardware macro to a state-of-
the-art FPGA around 10% of the logic resources and 2% for the block
RAMs will have to be sacrificed.

5.7. CR size selection

Selecting the appropriate size of a CR in terms of logic slices rep-
resents a major design trade-off. As the number of CRs increases
(hence each CR will have smaller number of logic slices), the CR
fragmentation is reduced but the NoC area will grow and more lo-
gic slices have to be eliminated. Hence the number of CRs should
be determined by the class of applications targeted by the FPGA.
For example if the average number of logic slices required by cli-
ents is 2000 with up to 20 clients per implementation, then a
32-CRs NoC with 2000 logic slice per CR could be used resulting
in an 64 K slice FPGA. Assuming arithmetic link progression with
increment of 2 and stop level of 2, the NoC would occupy an area
equivalent to 5600 logic slices and consume 256 Kb of the block
RAMs. So an existing FPGA design with about 120,000 slices (e.g.
Xilinx XC6VLX760 Virtex-6 FPGA) could be re-designed to achieve
the above. This is the trend followed by FPGA vendors for some
time now; providing FPGAs with various flavors for different clas-
ses of applications (general logic, DSP applications, embedded pro-
cessors or the so called platform FPGAs, etc.). The NoC will be just
another variation on top of these basic options with FPGAs ranging
from having no NoC at all to having NoCs with various sizes.

5.8. FPGA implementation of the MFT NoC

Two NoCs with full geometrical progression (i.e. link doubling
from one level to the next) have been mapped to two FPGAs; a
32-client NoC on a Xilinx Virtex-6 XC6LX760 and a 16-client NoC
on a Virtex-4 XC4LX200 to show the area/speed of the NoC if
implemented as soft macros. Highest speed grades were used for
both implementations. The first NoC has a total of 80 routers,
2240 links, parallelizers (31 per client) and 32 central FIFOs. The
second NoC has a total of 32 routers, 608 links, 240 parallelizers
C infrastructure for embedded systems on FPGAs, Microprocess. Microsyst.
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Table 5
Gate count (in K gates) for the mixed arithmetic/geometrical link progression scheme.

NoC type MFT with mixed arithmetic/geometrical link progression MFT

NoC size IA = 2, SL = 2 IA = 2, SL = 3 IA = 2, SL = 4 IA = 4, SL = 2 IA = 4, SL = 3 IA = 4, SL = 4 IA = 6, SL = 2 IA = 6, SL = 3 IA = 6, SL = 4

16-CRs 117 152 – 173 199 – 231 246 – 194
32-CRS 327 427 – 537 638 – 770 854 – 781
64-CRs 890 1146 1636 1585 1862 2464 2403 2628 3296 3147

Table 6
Gate count (in K gates) for the limited geometrical link progression scheme.

NoC type MFT with controlled geometrical link progression MFT

NoC size SL = 1 SL = 2 SL = 3 SL = 4

16-CRs 64 104 – – 194
32-CRS 142 222 401 – 781
64-CRs 317 477 836 1593 3147

Table 7
Area and speed results for the soft implementation of the MFT NoC. Area is reported as n
Resources have been normalized for 8-bit data width.

NoC Resources Total LUTs

Complete
NoC

32-client MFT on Virtex-6 (LX760)
with 5-i/p LUTs

With FF parallelizers 139,409
(29.4%)

With BRAM
parallelizers

82,497
(17.4%)

16-client MFT on Virtex-4 (LX200)
with 4-i/p LUTs

With FF parallelizers 21,133
(12%)

With BRAM
parallelizers

20,623
(11.5%)

5-clients on Virtex-4 (LX200ff)
with 4-i/p LUTs [24]

With FF FIFOs 7716
(4.33%)

With BRAM FIFOs 4278
(2.4%)

5-ports router on Altera Stratix
EP1S80 [26]a

Only the router 550 4-i/p LUTs

4-clients on Virtex-2 XCV800
with 4-i/p LUTs [16]a

With BRAMs in routers 3227
(34.8%)

5-ports router on Virtex-2 Pro
(XC2VP30) with 4-i/p LUTs [17]a

With BRAMs in router 772 (2.57%)

9-clients on Virtex-2 Pro 40
with 4-i/p LUTs [20]a

With BRAMs in routers 6110
(14%)

a Clients network interfaces are not included.
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Fig. 17. Throughput and total gate count for a 64 CRs NoC versus stop level of the arith
geometrical) link progression for uniform (U) and non-uniform (NU) traffic.

M.E.S. Elrabaa, A. Bouhraoua / Microprocessors and Microsystems xxx (2010) xxx–xxx 15

MICPRO 1849 No. of Pages 18, Model 5G

30 September 2010

Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
(15 per client) and 16 central FIFOs. These are fairly large NoCs
(due to geometrical progression) that would be implemented using
781 K and 194 K Gates of custom logic and 256 Kb and 128 Kb of
RAM. The central FIFOs were implemented using the FPGAs’
BRAMs which are 18 Kb each. Each NoC was implemented twice;
once with the parallelizers implemented using slice FFs and an-
other with BRAMs. Table 7 shows the area and speed results for
these two NoCs alongside several NoC implementations on FPGAs.
umber of LUTs used and their percentage of available. The same is done with BRAM.

FFs only BRAM Freq.

Per
client

Complete
NoC

Per
client

Complete
NoC

Per
client

4356 84,928 2654 576 Kb 18 Kb 349 MHz
(0.9%) (17.9%) (0.6%) (2.2%) (0.07%)
2578 26,032 814 18,432 Kb 576 Kb 341 MHz
(0.5%) (5.5%) (0.2%) (71%) (2.2%)

1321 25,743 1609 288 Kb 18 Kb 211 MHz
(0.8%) (14.4%) (0.9%) (4.8%) (0.3%)
1289 9007 563 4608 Kb 288 Kb 210 MHz
(0.7%) (5%) (0.3%) (76%) (4.8%)

1544 – – 118 MHz
(0.9%)
856 – – 122 MHz
(0.5%)

– – 123 MHz

807 – – 40 MHz
(8.7%)

– 180 Kb 32.25 MHz

679 – 594 Kb 66 Kb 50 MHz
(1.6%) (17%) (1.9%)
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Table 8
Area (gate count) and speed results for the HW implementation of a 16-client MFT NoC compared to other HW NoCs. Resources have been normalized for 8-bit data width.

Total Gate count RAM Freq.

NoC Complete NoC Per client Complete NoC Per client

16-client MFT using 90-nm technologyb 194 K gates 12.1 K gates 128 Kb 8 Kb 800 MHz
216 K gates 13.5 K gates Included in equivalent gates

5-clients using 90-nm technology [24]c 77 K Gates 15.4 K gates Included in equivalent gates 500 MHz

5-ports router using 180-nm technology [26]a 1500 Not including buffer RAM and its control 340 MHz

9-clients using 130-nm technology [20]a,b 1.1 M gates 122 K gates Included in equivalent gates 200 MHz

a Clients network interfaces are not included.
b Speed estimated as 4� that of the FPGA implementation as in [33].
c Gate count estimated by dividing total area in mm2 by the area of a minimum size 2-ip NAND gate.
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Resources are reported as total used and per client since different
implementations implemented different NoC sizes. Also, for the
published soft NoCs the number of LUTs were normalized for a
data width of 8-bits by simple division. Many of the reported
implementations do not report the detailed usage of BRAMs (like
[16] where BRAMs are used in the routers). Many researchers just
implement the routers without the clients’ network interfaces. Re-
sources are reported as total numbers and percentage of available
resources. Although these percentages do not mean much because
they depend on the FPGA used, they are reported since they were
reported in the original papers.

Although the MFT NoC was not intended for soft implementa-
tion it is still comparable to other soft NoCs in resource utilization
and superior in speed as the results in Table 7 show.
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5.9. Speed and area comparison with other HW NoCs

Table 8 shows the area (gate count) and speed estimation for
the 16-client MFT NoC with geometrical link progression alongside
several HW NoCs from the literature. The performance of the MFT
NoC is estimated based on the Virtex-4 FPGA implementation to be
at least between 800 and 1000 MHz [33] for a 90-nm technology
(the Virtex-4 technology). The gate count is given for two in-
stances; one with central FIFOs expressed in RAM Kbs and another
with the RAM converted to their gate equivalent for comparison
with other HW NoCs. This table shows that the MFT NoC is very
efficient in area and superior in performance even if the other
HW NoC speed is assumed to increase by 50% from one technology
generation to the next.
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6. Conclusions

A new hardwired NoC based on a modified Fat Tree topology for
future FPGAs has been developed along with an efficient H-tree
floor plan that naturally follows the construction methodology.
The performance of the proposed NoC has been evaluated for three
link progression schemes for various NoC sizes and traffic models.
Simulations result showed that for uniform traffic, arithmetic link
progression would yield best performance with moderate gate
count. For more localized traffic (non-uniform), the controlled geo-
metrical progression can provide adequate performance at the
lowest gate count. As for the client interface, a new efficient design
have been developed that requires a single central FIFO buffer
combined with link-termination circuitry (parallelizers) that pro-
vide temporary storage for incoming data words. An intelligent
round robin circuit was also developed to transfer packet data from
parallelizers to the central FIFO. The design of these interface cir-
cuitry was optimized through extensive simulations. These simula-
tions showed that a parallelization factor of 8 combined with a
FIFO size of 16 packets and emptying rate (i.e. width) of 8 words
Please cite this article in press as: M.E.S. Elrabaa, A. Bouhraoua, A hardwired No
(2010), doi:10.1016/j.micpro.2010.09.008
are enough to achieve maximum throughput and minimum packet
delay. Simulations also showed that performance is fairly indepen-
dent of packet size. Finally a new interface circuit that transfer data
between the NoC and clients operating at different (and unrelated)
clock frequencies has been developed. Unlike the asynchronous
interfaces used by other NoCs, this circuit allows the NoC and cli-
ents to communicate synchronously at the maximum rate of 1 da-
tum/cycle no matter what is the clock frequency ratio between
them. Due to its asynchronous nature, the operation of this circuit
was verified with gate-level simulations. Both soft and hard wired
implementations of the MFT NoC show superior performance over
reported NoCs at an area cost that is comparable or better than
other NoCs.
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