SUMMARY This paper describes a new circuit technique for performing clock recovery and data re-timing functions for high-speed source-synchronous data communications, such as in burst-mode data transmission. The new clock recovery circuit is fully digital, non-PLL-based, and is capable of retiming the output clock with the received data within one data transition. The absence of analog filters or other analog blocks makes its area much smaller than conventional circuitry. It can also be described by any hardware description language, simulated, and synthesized into any digital process. This enables it to be ported from one technology to another and support system on a chip (SOC) designs. The design concept is demonstrated with T-Spice simulations using a 0.25 μm digital CMOS technology. Static performance was evaluated in terms of supply and temperature dependent skews. The shifts in output clock due to these static conditions were within ±40 ps. Also dynamic behaviours such as jitter generation and jitter transfer were evaluated. The circuit generates a jitter of 68 ps in response to a supply noise of ±250 mV amplitude and 100 MHz frequency. Input data jitter transfer is within ±0.1 dB up to a jitter frequency of 150 MHz.

key words: clock recovery, low-power digital CMOS circuits

1. Introduction

The fast expansion of multimedia (Audio/Video) over the Internet in recent years has caused an explosion in the data transfer volume over wide-area networks (WANs) and local-area networks (LANs). This led to a rapid migration from copper wires to optical fibers as transmission media for high-speed digital transmission schemes such as synchronous optical networks/synchronous digital hierarchy (SONET/SDH). This necessitated the development of low-cost high-speed clock recovery circuits (CRCs) in the repeaters and receivers that can accurately extract clock signals from nonreturn-to-zero (NRZ) source-synchronous serial bit streams. The CRC must maintain synchronism between the generated clock and the data in the presence of data phase noise (jitter), supply and temperature fluctuations. Also, in a point-multipoint operating scenario (as in optical networks), the CRC must be able in extracting synchronized clocks for different data packets arriving from different. In the next section a comprehensive review of existing clock recovery techniques for NRZ data, their advantages, and shortcomings is presented. Also, the targeted characteristics of the new CRC are stated. The circuit description of the proposed CRC is given in Sect. 3. The performance evaluations using T-Spice simulations are presented in Sect. 4. These include skew due to supply and temperature variations as well as jitter characteristics of the output clock. Conclusions are in Sect. 5 followed by the list of references.

2. Review of Clock Recovery Techniques

Random NRZ data has two properties that make clock recovery difficult [1],[2]: 1) No spectral contents at the bit rate or its even-order harmonics and 2) Long streams of consecutive 1s and 0s. The first property can be dealt with by using edge detection of the NRZ data to generate strong spectral contents at the bit rate and its harmonics [1]. The second property plagued traditional CRCs such as Phase-Locked-Loops (PLLs). A PLL that employs phase locking view long sequences of 1s or 0s as new low frequency data and attempts to lock to this new frequency. This produces data-dependent jitter in the PLL’s output. To reduce this jitter the PLL’s bandwidth has to be limited which in turn limits the PLL’s capture range (i.e. limit the PLL’s ability to lock-in a different data with an actual different frequency). Also, larger loop gain reduces jitter generation but reduces stability. A switched filter can tune the loop gain and bandwidth to reduce the jitter generation [3]. Alternatively two loops can be used, one for frequency acquisition (coarse tuning) and another for phase acquisition (fine tuning) [2],[4]. In summary, analog PLL-based CRCs suffer from several shortcomings; 1) The analog blocks such as the VCO, charge pump and loop filter are large in area and difficult to port to other processes or supplies, 2) The VCO has to operate at double the data frequency to ensure 50% duty limiting the data rate, 3) Phase error accumulation in the VCO. 4) Long lock times due to the loop damping behavior. Many recent designs proposed solutions for some of the above shortcomings. In [5] a PLL with a VCO that runs at half the input data frequency is proposed. However, an additional delay-locked-loop is required to generate 4 phases of this clock to retine the data and the other analog features are still retained. In [6] the VCO is operated...
at the clock frequency but both data and clock are divided by 2 such that the phase detector (PD) operates at half the clock frequency. This increased the operating frequency of the CRC but also increased the jitter since the jitter correction is done every two input transitions. Fully digital or semi-digital solutions have been proposed to solve some of the problems associated with analog PLLs. A semi-digital CRC that utilizes an analog PLL to generate a clock with 10 phases and a digital PLL to select the appropriate phase for data retiming is described in [7]. The relatively poor resolution, however, means increased jitter. In [8], feedback phase-selection and averaging phase-interpolation are added to increase resolution and reduce the jitter. In [9] an analog PLL and a gated VCO are used to achieve faster lock times. Still, these solutions retain many of the analog PLL shortcomings and stability is an issue with the two loops interaction. A fully digital PLL was proposed in [10]. The period of a high-speed clock is used as a reference for the digitally controlled oscillator (DCO) and the phase-comparator. Both resolution and frequency of operation are limited, but fast locking is achieved. A fully digital delay-locked-loop clock multiplier that utilizes delay interpolation was also developed [11]. The above-mentioned digital or semi-digital PLL implementations retain most of the architectural features of their analog counterparts. The use of feedback techniques requires some form of filtering to adjust the loop gain and bandwidth. This complicates the design because it has to be done while insuring that the loop remains stable. Non-PLL/DLL digital techniques for clock generation, multiplication, or de-skewing were proposed [12], [13]. They use phase interpolation [12] or synchronous delay mirrors [13] to shorten lock times and correct duty cycles. These techniques utilize complex control schemes (for cycle detection and duty cycle corrections) and require more than one clock cycle for locking. The circuit described in this paper does not require any control and is able to lock to the data’s phase within one transition. The main objective of this work was to devise a fully digital CRC thus allowing cell-based designs that can be ported from one process to another. The following characteristics were targeted: 1) Compact size, 2) Low power consumption, 3) Unconditionally stable, 4) Low jitter generation, 5) Fast locking, and 6) High jitter tolerance.

3. Circuit Description of the Proposed CRC

The proposed fully digital, non-PLL/DLL, non-feedback CRC is shown in Fig. 1. It uses an external clock (no frequency acquisition is performed) to generate an output clock synchronized with the data. Clock folding and phase interpolation are used to increase the output clock’s resolution. There are four main blocks; 1) Data double-edge detector, 2) Clock positive-edge detector, 3) Replicated delay lines (two), and 4) A}

Fig. 1 The architecture of the proposed all-digital CRC.

Fig. 2 The double-edge detector circuitry.

Fig. 3 Simulation of the input/outputs of the DED circuit.
will remain at the same frequency and phase. In other words, phase corrections to the output clock will only occur in response to an input transition. Hence at least one input transition is required to separate data from different sources.

3.2 The Positive-Edge Detector (PED)

This circuit, depicted in Fig. 4, is similar to the DED except that it generates a pulse only when the input exhibits a positive transition. It has two outputs that are generated from the input clock (\(\text{Clk}_{\text{i}}\)); a pulsed-clock edge (PCE) output that is used as an input to the first delay line, and a delayed clock (D\(_{\text{CE}}\)CK) output that drives the second delay line. Two inverters are used to delay Clk\(_{\text{i}}\), approximately by an equal delay to that of the input inverter and XOR in the DED circuit.

Simulation result for the PED circuit at 1 GHz is shown in Fig. 5. As this figure shows, the PCE output pulse is significantly narrower than the trigger pulse generated by the DED circuit. As will be explained later, this is very important for the proper operation of the CRC. This, however, does not require any special design since the NAND gate in the PED circuit is significantly faster than the XOR gate in the DED circuit. A concern might arise about the possibility of transmitting such a wideband signal on a CMOS IC. These signals will have short paths since the delay line and ELMC can be packed very closely. This eliminates the effects of self-inductance or substrate losses and RC effects would dominate. Assuming the output impedance of the PED is 1 k\(\Omega\) (a much higher value than the real effective output impedance) and its load capacitance to be 50 fF, the cutoff frequency would be about 20 GHz. Hence all the major harmonics of the CE\(_{\text{i}}\)s signals will pass.

3.3 The Delay Lines

The two identical delay lines, each made of \(2n\) identical inverters, are used to generate \(n\) phases of the PCE and the D\(_{\text{CE}}\)CK signals (Fig. 1). The successive outputs of these delay lines (CE\(_{1}\) to CE\(_{n}\) and CK\(_{1}\) to CK\(_{n}\)) are separated by two inverters' delay (\(2 \times T_{\text{Dine}}\)) and are fed to the ELCM circuit.

3.4 The ELCM Circuit

This circuit selects and maintains the appropriate clock phase that is synchronized with the input data. As shown in Fig. 6, the ELCM circuit consists of an array of \(n\) pulsed flip-flops (PFF) and transmission gates (TGs). The transmission gates form an n-to-1 clock mux. The outputs of the PFFs circuit control the TGs. The circuit diagram of the PFF with the TG is shown in Fig. 7. The CE pulsed signals are latched by the trigger signal T (and its complement) signals. The PFFs have an input, I, that, if asserted, would inhibit the latching of the CE input pulse. The output of the first latching stage of a PFF provides the I input to the next PFF and last PFF provides the I input for the first PFF as shown in Fig. 6. Hence no two successive PFFs could latch simultaneously. \(n\) is chosen according to the wanted frequency of operation.

3.5 Operation of the CRC

The basic operation of the CRC circuit is illustrated in Fig. 7. The DED circuit generates the trigger signal T and its complement from the NRZ input data. The PED circuit generates a train of negative pulses (PCE)
that correspond to the positive clock edges of the input clock as well as the delayed clock signal \(D_{\text{CK}} \). The delay lines generate \(n \) phases of these two signals (for clarity, only the positive edges of the signals \(\text{CK}_{1} - \text{CK}_{n} \) are shown in Fig. 8). The \(n \) phases of the PCE signal (\(\text{CE}_{1} \) to \(\text{CE}_{n} \)) are fed to the ELCM circuit. The \(\text{CE} \) signal(s) with the appropriate synchronization with the input data is latched-in by the corresponding PFF in the ELCM circuit. This in turn enables the appropriate clock phase \(\text{TG}(s) \). It is very important to keep the \(\text{CE} \) pulses as narrow as possible to obtain the highest resolution. When the number of generated clock phases, \(n \), is large enough, the delay line delay will span more than one clock cycle. This in effect folds back the clock phases and hence provide a resolution less than \(2 \times T_{\text{Div}} \) between successive phases. Also the \(\text{TG} \) mux and output clock inverter, will perform phase interpolation between selected phases, yielding even higher resolution. In Fig. 8, \(n \) is high enough to span the clock cycle twice. Higher resolution also means less generated jitter, since the delay separation between successive phases becomes less than an inverter’s delay. \(n \) has to be odd (integer) to ensure that the folded clock phases do not fall into the positions of original phases. It is chosen to satisfy the required resolution, \(t_{\text{res}} \), at a clock period, \(T_{\text{clk}} \), simply as:

\[
 n \geq \left\lceil \frac{T_{\text{clk}}}{t_{\text{res}}} \right\rceil_{\text{Odd}}
\]

Also, to ensure that the folded clock phases span the whole clock period (as in Fig. 8), the product \(2 \times n \times T_{\text{Div}} \) should be more than the required integer multiple of \(T_{\text{clk}} \). For example, if \(T_{\text{clk}} = 1 \) nS, \(T_{\text{Div}} = 50 \) pS and the required resolution is 50 pS, then \(n \) should be chosen to be 21. Then the clock phases will span the clock period twice. But if \(T_{\text{Div}} = 40 \) pS, then \(n \) would have be 25 in order to span the clock period also twice. Figure 9 shows the simulation results for the CRC at 1 Gb/S input data. The CRC relocks to the input data within one data transition after the injection of 250 pS phase error into the input data for both, rising edge (upper figure) and falling edge (lower figure). In the case of a frequency mismatch between the input data and \(\text{Clk}_{in} \), two possible outcomes might result; 1) If there are enough data transitions in the input data the frequency mismatch will manifest itself as a data-dependent jitter in the output clock since the CRC would be selecting different clock phases every few data bits. 2) If there are no data transitions for long periods, the CRC will loose lock. This period depends on the frequency mismatch. For example if the frequency mismatch is 2,000 ppm, the CRC will loose lock after 500 consecutive 1s or 0s. Such a long bit stream of 1s or 0s represent an even bigger problem to conventional PLL-based CRCs. One possible solution is to supply \(\text{Clk}_{in} \) from an external PLL that tracks the data frequency. This PLL would only perform frequency acquisition and can be tailored to have minimal data-dependent jitter (very low bandwidth).

4. Performance Evaluation

The performance of the proposed CRC was evaluated as; 1) Performance under different static conditions (temperatures, phase shift between input data and input clock, and supply voltages), 2) Jitter generation due to supply noise and input clock jitter, and 3) Tracking of input data jitter. The CRC was implemented using a 0.25 \(\mu \)m, 2.5 V CMOS technology with a \(T_{\text{Div}} \) of 45 pS. The targeted resolution was to be better than 45 pS hence \(n \) was set to 23.

4.1 Static Performance

The CRC was simulated under different starting conditions in terms of the skew between input NRZ data (\(\text{Din} \)) and input clock (\(\text{Clk}_{in} \)) for several temperatures in the range \(-25 \) to \(100 \)°C. At 25°C and 0 skew between \(\text{Din} \) and \(\text{Clk}_{in} \), the rising edge of the output
Fig. 10 Shifts in output clock edge relative to Din versus skew between Din and CK\textsubscript{in} for several temperatures.

Fig. 11 Shifts in Clk\textsubscript{out} edge relative to Din vs. VDD.

clock (Clk\textsubscript{out}) was delayed with respect to Din by about 200 pS. Changes in this delay (shifts) of Clk\textsubscript{out} are reported in the scatter graph of Fig. 10 for different temperatures and skews between Din and Clk\textsubscript{in}. As this figure shows, the shifts in Clk\textsubscript{out} range mostly between 25 and −25 pS with the spread increasing at higher temperatures. This is due to the increased delay of the inverters in the delay lines, which decreases the resolution. Also due to interpolation between adjacent clock phases the actual resolution is better than the designed value (for which clock interpolation was ignored). The effect of the supply voltage VDD on the output clock shifts is shown in Fig. 11. The supply was swept from −25% to +25% and again the shifts do not exceed the designed resolution. Actually significant portion of the shifts is due to the changes in the delay of the output clock buffer. This indicates that this buffer should be kept to a minimum number of stages.

4.2 Jitter Generation

Many sources contribute to jitter generation in conventional PLL-based CRCs (low loop gain, supply noise, data-pattern). In the proposed CRC, supply noise and input clock jitter will generate output jitter but the data pattern won’t affect the jitter since there is no feedback. Many workers only report jitter generated due to low loop gain and input data pattern (quite supply jitter). Figure 12 shows the jitter in the output clock due to supply noise. A 100 MHz sinusoid with ±0.25 V amplitude (±10% of VDD) was superimposed on VDD and the output clock periods were overlaid on top of one another to emulate a jitter scope measurement. Each period was laid out twice, once as is, and another with half a period phase shift to account for effects of duty-cycle modulation on output jitter. A relatively high noise frequency was used to reduce the simulation time, which had to span hundreds of cycles. At such high noise frequency a feedback loop (e.g., a PLL) will not be able to track and correct the resulting jitter. The measured peak-to-peak jitter of the proposed CRC was 64 pS, a very low jitter at this supply noise level. This is consistent with the selected output clock resolution. To simulate the effects of input clock jitter, the input clock was frequency modulated with various values of the modulation index (X) and a modulation frequency of 50 MHz. Again the jitter frequency was made high enough to reduce the simulation times and the output files sizes, but in reality, the jitter frequency would not exceed 1 or 2 MHz. As X increases, the jitter increases, with the jitter being equal to 0.5 \times X \times T_{Clk}. Figure 13 shows both Clk\textsubscript{in} and Clk\textsubscript{out} signals with an input modulation index of 0.05. The Clk\textsubscript{in} jitter is 25 pS while the Clk\textsubscript{out} jitter is 40 pS. Thus the jitter gain is about 1.6x (or 4.1 dB) at this modulation index. Figure 14 shows the jitter gain in dBs as a function of Clk\textsubscript{in} jitter. The gain decreases as the input jitter increases. The output jitter reaches a saturation level
of jitter frequency. Ideally, the CRC is supposed to track any jitter in Din (i.e. Din to Clk_{out} jitter gain should be 0 dB) in order to perform rapid re-timing of the output clock and reduce the bit-error-rate (BER). Feedback type CRCs can track this jitter up to certain frequencies that depend on the loop bandwidth. Beyond that, the BER would increase very rapidly and the CRC’s jitter tolerance would diminish. For the proposed CRC, the jitter tracking was evaluated using 1 unit interval (UI) peak-to-peak input data jitter at various frequencies. 1 UI jitter corresponds to changing the relative data position by one half of the data period (in this case 500 ps). The jitter gain (transfer) is reported in Fig. 15 as a function of the jitter frequency. The jitter gain does not exceed +0.1 dB and is within ±0.1 dB up to 150 MHz jitter frequency. Even beyond that frequency it does not fall quickly as in PLL-based CRCs. At 500 MHz, the jitter transfer drops only to −3.5 dB, a very remarkable performance compared to conventional CRCs. The average power consumption of the CRC at the maximum data rate of 1 Gb/s was 14.3 mW. The CRC was implemented using a digital standard cell library and no special design considerations were made to target a low power performance. Still, a power consumption of 14.3 mW at that data rate is a very good result. This circuit can easily be described using a synthesizable hardware description language (HDL) code, making it very portable from one process to another enabling SOC designs. Also, a PLL block can be used to replace the high frequency external input clock (only for frequency acquisition) as in [2], [4].

5. Conclusions

A comprehensive review of existing clock recovery techniques and their shortcomings was presented. A new non-PLL-based, fully digital clock recovery circuitry for NRZ data retiming was proposed. The new circuit was demonstrated using a 2.5 V, 0.25 μm CMOS technology at a 1 Gb/s data rate. Circuit simulations were utilized for performance evaluation. This CRC’s capture time was one data transition and it tracked both static and dynamic operating conditions. The jitter generation due to VDD noise or input clock jitter was within the designed resolution, and unlike conventional CRCs is data-pattern independent. The jitter transfer with a 1 UI input data jitter was within ±0.1 dB up to 150 MHz jitter frequency. Adding more stages to the delay lines and the ELCM circuit can enhance the resolution of the output clock and improve the jitter characteristics. This CRC is easily described by a synthesizable HDL code, making it very portable from one process to another and hence can support SOC designs.

Acknowledgement

The author is grateful for the facilities support provided by King Fahad University of Petroleum and Minerals.

References

Muhammad E.S. Elrabaa received his B.Sc. degree in computer Engineering from Kuwait University, Kuwait in 1989, and his M.A.Sc. and Ph.D. degrees in Electrical Engineering from the university of Waterloo, Waterloo, Canada, in 1991 and 1995, respectively. His graduate research dealt with Digital BiCMOS ICs and Low-Power circuit techniques. From 1995 till 1998, he worked as a senior circuit designer with Intel Corp., in Portland, Oregon, USA. He designed and developed low power digital circuits for Microprocessors. From 1998 till 2001 he was with the Electrical Engineering department, UAE University as an assistant professor. In 2001 he joined the computer engineering department, KFUPM as an assistant professor. His current research interest includes, integrated smart sensors, low-power circuits, and data communication circuits. He authored and co-authored several papers, a book and holds two US patents.