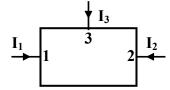

COE 360 - 2nd Assignment - Dr. Muhammad Elrabaa


- 1. The gate capacitance of an MOS device with an Aluminum gate, Silicon substrate and SiO_2 insulator was measured to be $3X10^{-7}$ F/cm². Also its threshold was measured to be -0.6 V:
 - (a) What is the oxide thickness?
 - (b) Assuming that the oxide trapped charge is zero, what is the substrate type? Calculate the substrate doping.
 - (c) Redo (b) above with an oxide trapped charge of 10^{-7} cm⁻³.

Hint: Get the constants you need from the text book, chapter 3. You can solve the resulting non-linear equations by hand (iterations) or write a simple program to do that. [3 marks]

- 2. An MOS transistor is made with a P-Type Polysilicon gate and an N-type Silicon substrate $(N_D=10^{15}~\text{cm}^{-3})$. The oxide thickness is 20nm and the oxide trapped charge is -5E-8 c/cm².
 - (a) Calculate the threshold of this device and determine its type,
 - (b) Calculate the required substrate doping to make the threshold -0.8V [2 marks]
- 3. For the MOS transistor (shown in the figure below) the following measurements were made using the three terminals shown in the figure (none of them is the substrate):

Terminal Voltages			Terminal Currents		
V_1	V_2	V_3	I_1	I_2	I_3
0 V	0 V	0 V	0 mA	0 mA	0 mA
1 V	0 V	0 V	1 mA	-1 mA	0 mA
0 V	1 V	0 V	-1 mA	1 mA	0 mA
2 V	1 V	0 V	0 mA	0 mA	0 mA
1 V	2 V	0 V	0 mA	0 mA	0 mA
2 V	1 V	1 V	1 mA	-1 mA	0 mA

- Current into a terminal is positive
- Current out of a terminal is negative

- a. Which terminal is the gate?
- b. What is the type of this transistor (NMOS or PMOS)?
- c. What is the range of possible values of the threshold voltage? Is this a depletion mode or enhancement mode transistor? [2.5 marks]
- 4. Fill the following table showing the effects (increase, decrease or no effect) of certain process/operating conditions on an enhancement PMOS Source-to-drain current. Also give a brief explanation of why these effects would take place: [2.5 marks]

Process/Operation condition	Effect on I _{SD}	Explanation
Higher Substrate doping		
Lower Temperature		
Thicker Gate Oxide		
A more positive Oxide trapped charge		
A larger gate- metal's work function		