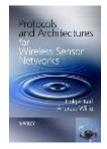
COE 545 – Wireless Sensor Networks Course Information – T192

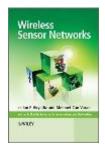
Dr. Abdulaziz Barnawi

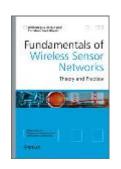
COE Dept.

KFUPM

Administrative Information


- Class Schedule
 - Time: M. W. 8:10-9:25PM (tentative)
 - Location: 24-165
- Office Hours
 - Mon. 3:00-4:00 PM, Wed. 9:00-10:00AM (tentative)
 - or By appointment
- Office
 - Location: 59-1040
 - Tel: 1038
- Course pages
 - My Webpage: http://faculty.kfupm.edu.sa/COE/barnawi/coe545-T182.html
 - Blackboard 9.1 course page


Course Goals


- Introducing some existing applications of wireless sensor networks
- Learn the various hardware, software platforms that exist for sensor networks
- Presenting elements of network protocol design and how to apply these principles in the context of wireless sensor networks
- Providing an overview of the various network level protocols for MAC, routing, time synchronization, aggregation, etc.
- Strengthen research skills in the area of wireless sensor networks through paper presentations on various issues in sensor networks as well as a through a research project

Course Material

- No specific textbook but, there is a couple of books that are recommended for reading:
 - Protocols and Architectures for Wireless Sensor Networks by Holger_Karl and Andreas Willig, Wiley, ISBN: 0-470-09510-5, June 2005 available in KFUPM Main Library TK7872.D48 K37 2006
 - 2. Wireless Sensor Networks, by Ian F. Akyildiz and Mehmet Can Vuran, John Wiley & Sons 2010, ISBN 978-0-470-03601-3 electronic version is available https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470
 515181
 - 3. Fundamentals of Wireless Sensor Networks: Theory and Practice by Dargie, Waltenegus and Poellabauer, Christian, John Wiley & Sons 2010, ISBN: 9780470997659 - available in KFUPM Main Library TK7872.D48 D37 2010

Course Material

- These are three additional <u>open access</u> books on wireless networks and wireless sensor networks that may be of interest to you:
 - 1. Mobile Ad Hoc Networks: Applications
 - 2. Mobile Ad Hoc Networks: Protocol Design
 - 3. Wireless Sensor Networks
- Reading list:
 - Journal and conference articles mainly from IEEE, ACM, Elisver and Springer
 - References of this list will be posted in the course webpage
- Lecture slides
 - Check course webpage and Blackboard

Course Lecture Dynamics

- By instructor
 - This will include theory, fundamental information
- By the students
 - This will include focused surveys and presentations on selected research papers or technologies, typically open for debate and discussion
- By invited speakers
 - We will have a couple of lectures by invited speakers based on availability

Reading-list Presentation Details

- Each student will assigned and present a number of papers (2 to 3)
- Student reading list will be posted about 1-2 weeks in advance
- A short critical review (2-3 pages max) must be submitted with the presentation one day in advance. A sample will be posted the on Blackboard
- Each presentation is 30-35 min at the most

Reading-list Presentation Details

- Each student presentation should have and will be evaluated based on:
 - Identifying the problem statement
 - Discussing related background
 - Discussing the main proposed solution in the paper
 - Discussion of the major results and findings
 - Evaluating the merits of the proposed solution by identifying discrepancies and research holes
 - Suggest potential improvements and possible future research directions

Course Research Project

- Goals
 - To experience the process of identifying and solving a research problem in the area of wireless sensor networks
 - Learn and improve technical writing skills
 - Learn and improve presentation skills
- Simulation
 - Use any simulation tool that you are familiar with (e.g. ns-2, Cooja, MATLAB, etc.)
 - Or write your own code (C++, Java, Python, etc)
- Mathematically-oriented
 - This may include the application of a theory towards modeling, design, optimization, etc.

Course Research Project Details

- Individual work is preferred
- Teams can be considered based on the problem and approval of instructor
- Submitting a proposal is required:
 - A set of few recommended projects will be provided
 - A pre-proposal discussion with the instructor including topic selection
 - A formal proposal write-up (2 to 4 pages max)
 - Should include rough schedule of project milestones
 - Should address comments and improvements suggested by instructor and peers
 - Final draft of project proposals must be submitted on the due date
 - Proposal presentation and discussion is required

Course Research Project Details

- A final project presentation and peer grading (towards end of semester)
- Submission of final report in a technical paper form (and, if applicable, a demo)
 - IEEE or ACM conference-style research paper (6-12 pages max) detailing your project
 - Refer to the course page for tips and guidelines for preparing the paper

Course Grading Policy

- Assignments and selected paper presentations: 15%
- Guidelines and grading criteria for paper presentations:
 - Problem statement (0-10)
 - Related background (0-10): Compare and relate the work to other works
 - Presentation skills (0-15): Illustrate key ideas of the work with examples and figures; clarity in delivery and finishing within time
 - Knowledge (0-30): The depth and breadth of knowledge of the presented material. Ability to identify unsolved problems.
 - Critical thinking (0-20): identify discrepancies, research holes, and potential improvements of the work
 - Summary report (0-15)

Course Grading Policy

- □ Project: 35%
 - (see previous slides for project details)
 - Spend some time as soon as possible to explore various topics in the area and choose the one that you could contribute in, proposal discussions will also help
 - The project will be evaluated in stages:
 - Proposal (0-15)
 - Progress report (0-5)
 - ☐ Final presentation (0-30)
 - Demo (0-10)
 - Final Report (0-40)

Course Grading Policy

- Short Mid-term Exam: 20%
 - Will be discussed in class
- ☐ Final: 30%
 - The final exam will utilize
 - All class presentations
 - Handouts
 - One or two selected papers by instructor

Important Dates

Project Proposal

Mid-Term Exam

Project Proposal Presentations

Project Presentations

Project Final Report

Final Exam

February 26, 2020

March 09, 2020

March 16, 2020

April 22, 2020

May 03, 2020

May 07, 2020

Topics to Cover

- Introduction
- Sensor node architecture
- Power and Energy Management
- Wireless Communication
- MAC Protocols for Sensor Networks
- Network Bootstrapping and Clustering
- Routing and Data Aggregation

Topics to Cover

- Synchronization
- Localization, Cross-layer Design
- Miscellaneous topics
 - Security
 - Al and Machine learning
 - Underwater Sensor networks

