King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 202 – Fundamentals of Computer Engineering

Term 062

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@kfupm.edu.sa

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

-

Definitions

- Memory: A collection of cells capable of storing binary information (1s or 0s) – in addition to electronic circuit for storing (writing) and retrieving (reading) information
- Two Types of Memory:
 - 1. Random Access Memory (RAM):
 - Accepts new information for storage to be available later for use
 - Write/Read operations
 - Read Only Memory (ROM): is a programmable logic device (PLD)
 - Programming: specifying information and embedding it within hardware
 - Read operation (no write)

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Definitions (2)

- Programmable Logic Devices (PLDs):
 - ROM
 - Programmable Logic Array (PLA)
 - Programmable Array Logic (PAL) device
 - Complex Programmable Logic Device (CPLD)
 - Field-Programmable Gate Array (FPGA)
- PLD is an integrated circuit with internal logic gates and/or connections that can in some way be changed by a programming process
 - Example: connections can be made with fuses
 - Intact fuse connection → symbol = "X"
 - Blown fuse no connection → symbol = "+"

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

3

Used symbol

Multi-input OR gate

conventional symbol

array logic symbol

- Most PLD technologies have gates with very high fan-in
- Fuse map: graphic representation of the selected connections

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

,

Read-Only Memory (ROM)

- Def: A device in which "permanent" binary information is stored
- Block diagram of ROM:

- k inputs → can specify up to 2^k words
- Each word is of size n bits
- ROM DOES NOT have a write operation → ROM DOES NOT have data inputs

Word: group of bits stored in one location

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

5

ROM Internal Logic

<u>Note</u>: The decoder stage produces ALL possible minterms

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Internal Binary Storage of ROM

- Every ZERO in truth table specifies an OPEN circuit
- Every ONE in truth table specifies a closed circuit
- Example: At address 00011 → The word 10110010 is stored

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

-

Programming Technologies for ROM

- 1. Mask Technology → ROM
- 2. Fuses → Programmable ROM or PROM
 - · User can blow/connect fuses employing some equipment
- 3. Erasable floating-gate technology → EPROM
- Electrically erasable technology → Electrically erasable programmable ROM or EEPROM or E²PROM

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Combinational Circuit Implementation with ROM

- <u>Problem</u>: Design a combinational circuit using ROM.
 The circuit accepts a 3-bit number and generates an output binary number equal to the square of the number.
- Solution: Derive truth table:

Inputs		Outputs							
A2	A1	A0	B5	В4	В3	B2	B1	В0	No
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

9

Combinational Circuit Implementation with ROM – cont'd

- Note that B1 is ALWAYS 0 → no need to generate it using the ROM
- Note that B0 is equal to A0 → no need to generate it using the
- Therefore: The minimum size of ROM needed is 2³X4 or 8X4

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Problem

- <u>Problem</u>: Specify the size of a ROM (number of words and number of bits per word) that will accommodate the truth table for the following combinational circuit components:
- (a) An 8-bit adder subtractor with Cin and Cout assume output is 16-bit wide
- (b) A binary multiplier that multiplies two 8-bit numbers
- (c) A code converter from a 4-digit BCD number to a binary number

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

11

Problem - Solution

Solution:

```
(a) An 8-bit adder subtractor with Cin and Cout Inputs to the ROM (address lines):
```

```
8 (first number) + (8 second number) + 1 (Cin) + 1 (Add/Subtract) → 18 lines
```

Hence number of words in ROM is $2^{18} = 256K$

Size of each word = number of possible functions = 16 (addition/subtraction) + 1 (Cout) = 17

Hence ROM size = 256K X 17

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Problem - Solution

Solution:

(b) A binary multiplier that multiplies two 8-bit numbers Inputs to the ROM (address lines):

8 (first number) + (8 second number) → 16 lines Hence number of words in ROM is 2¹⁶ = 64K Size of each word = number of possible functions = 16 (result is 16-bit wide)

Hence ROM size = $64K \times 16$

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

13

Problem - Solution

Solution:

(c) A code converter from a 4-digit BCD number to a binary number

Inputs to the ROM (address lines):

4 (number of BCD digits) X (4 bits/digit) → 16 lines

Hence number of words in ROM is $2^{16} = 64K$

Size of each word = number of possible functions to represent all 4-digits BCD number

= number of bits required to represent 9999

= 14 (remember $2^{13} \le 9999 \le 2^{14}$)

Hence ROM size = 64K X 14

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Problem

 <u>Problem</u>: Tabulate the truth for an 8 X 4 ROM that implements the following four Boolean functions:

$$A(X,Y,Z) = \Sigma m(3,6,7); B(X,Y,Z) = \Sigma m(0,1,4,5,6)$$

 $C(X,Y,Z) = \Sigma m(2,3,4); D(X,Y,Z) = \Sigma m(2,3,4,7)$

Solution:

Inputs				Outputs				
Х	Υ	Z		Α	В	С	D	
0	0	0		0	1	0	0	
0	0	1		0	1	0	0	
0	1	0		0	0	1	1	
0	1	1		1	0	1	1	
1	0	0		0	1	1	1	
1	0	1		0	1	0	0	
1	1	0		1	1	0	0	
1	1	1		1	0	0	1	

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Programmable Logic Array (PLA)

- Unlike PROM, PLA does NOT provide full decoding of the variables; i.e. it does not generate all the minterms
- The decoder is replaced with an array of AND gates that can be programmed to generate product terms of the input variables
- The terms are then selectively (programmable connections) connected to OR gates to provide the sum products for the required Boolean functions

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

17

Example 1:

 Problem: Implement the following functions using a PLA

$$F_1 = AB' + AC + A'BC';$$
 $F_2 = (AC + BC)'$

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

PLA Internal Logic

- Notes:
 - The size of the PLA is specified by:
 no of inputs X no of products X no of outputs
 - In general: for an n inputs, k products, and m outputs PLA:
 - n buffer inverter gates
 - k AND gates
 - m OR gates
 - m XOR gates
 - 2n X k programmable connections (inputs ←→ AND gates)
 - k X m programmable connections (AND gates ←→ OR gates)
 - m programmable connections (for the XOR gates)

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

21

Implementing Combinational Circuits Using PLA

- Reduce number of distinct products (i.e. save by reducing number of AND gates):
 - Simplify Boolean function (and its complement) to obtain the least number of products
 - Reducing number of literals in the product is not a saving since all inputs are already available; However, less is better

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Example 2: Implementing a Combinational Circuit Using a PLA

• Problem: Implement the following two Boolean functions with a PLA:

$$F_1(A,B,C) = \Sigma m(0,1,2,4);$$
 $F_2(A,B,C) = \Sigma m(0,5,6,7)$

Solution:

The combination that gives a minimum no of product terms is: F1 = (AB + AC + BC)'F2 = (AB + AC + A'B'C')

		Inputs			Outp	Outputs		
	Product	Α	В	С	(C)	(T)		
	Term				F1	F2		
AB	1	1	1	-	1	1		
AC	2	1	-	1	1	1		
BC	3	-	1	1	1	-		
A′B′C′	4	0	0	0	-	1		

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

23

B2

0

1

0

0

Problem:

- <u>Problem</u>: Derive the PLA programming table for the combinational circuit that squares a 3-bit number. Minimize the number of product terms.
- Solution:

Random Access Memory (RAM)

- Def: A device in which binary information is stored and can be transferred to and from any location - with the access taking the same time regardless of the location
- To compare:
 - Serial Memory: the access time depends on the location of the info – e.g. magnetic disk, tape, etc
- Binary info is stored in words group of bits in one location
 - A group of size eight is called BYTE

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

27

Read Write n data input lines Memory Unit 2^k words n bits per word Write n data output lines

Read/Write Operation of RAM

- Write Operation:
 - 1. Apply the binary address of the desired word to the address lines
 - 2. Apply the data bits that must be stored in memory to the data input lines
 - 3. Activate the Write input
- Read Operation:
 - 1. Apply the binary address of the desired word to the address lines
 - 2. Activate the Read input

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

29

RAM – Control Inputs to a Memory Chip

 Chip select (CS): to enable the particular RAM chip or chips containing the word to be accessed → Memory Enable

In	puts	Operation		
Chip Select (CS)	Read/Write' (R/W')			
0	Х	None		
1	0	Write to selected word		
1	1	Read from selected word		

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

Properties of RAM

- Statistic RAM (SRAM):
 - Internal latches that store the binary information. The stored information remains valid as long as power is applied
- Dynamic RAM (DRAM):
 - Stores the binary information in the form of an electric charge on capacitors
 - Must be periodically recharged refreshing; ALL words are read and re-writting to restore the decaying charge
 - Less power consumption compared to SRAM
 - SRAM is easier to use
- Volatile Memory: info is lost when power is off (e.g. RAM)
- Nonvolatile Memory: info is retained even if power is off (e.g. magnetic disk, ROM, etc)

5/22/2007 Dr. Ashraf S. Hasan Mahmoud

Problems of GREAT Interest

5/22/2007

Dr. Ashraf S. Hasan Mahmoud

32