King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 202 – Fundamentals of Computer Engineering

Term 081

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@kfupm.edu.sa

1/2009 Dr. Ashraf S. Hasan Mahmoud

1

Sequential Circuit

Definition

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Storage Elements

- Storage can be constructed logic with delay, such as a buffer by connecting the output to the input. The signal must not undergo inversion in the loop or the system will be unstable or astable
- Positive Feedback stability issues and dependence on propagation delay.

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Synchronous Circuits

- Asynchronous: input changes at any time may result in the any of the outputs or internally stored information (called state) to change.
 - Such circuits are difficult to design because of dependence on propagation delays and their interaction with timing of input changes.
- Synchronous: sequential makes use of clock signals so that the storage elements (and outputs) only change at discrete instants of time in relation to the clock signal.
 - Clocked synchronous circuits provide some degree of independence on timing variations related to gate propagation delays.

1/11/2009

SR Latch

- Definition: A storage element that maintains binary state indefinitely (as long as power is applied), until directed by an input signal to switch to its other state
- Has two inputs: S and R, and two outputs: Q and Q'
- Notes:
 - S=1, R=0 \rightarrow set state (i.e. Q = 1, and Q' = 0)
 - S=0, R=1 → reset state (i.e. Q = 0, and Q' = 1)
 - S=0, R=0 \rightarrow keep state (i.e. new Q = old Q, new Q' = old Q')
 - S=1, R=1 → undefined

3	R	Q	ō				
1	0	1	0	0-4-4-4-			
0	0	1	٥	Set state			
0	1	0	1				
0	0	0	1	Reset state			
1	1	0	0	Undefined			
	(b) Function table						

1/11/2009

SR Latch – Timing Diagram and Stability

- Note: the outputs are NOW a function of time as well as the inputs
- Stability issue: When SR latch in the undefined state 00 and then both S and R are simultaneously changed to 00 – oscillations appear!!
- S (Set)
 - · What is the period of the oscillations?

SR Latch – NAND Gates Implementation

- · Very similar to the NOR gates implementation
- Notes:

1/11/2009

- S=0, R=1 \rightarrow set state (i.e. Q = 1, and Q' = 0)
- S=1, R=0 \rightarrow reset state (i.e. Q = 0, and Q' = 1)
- S=1, R=1 \rightarrow keep state (i.e. new Q = old Q, new Q' = old Q')
- S=0, R=0 \rightarrow undefined

S	R	Q	ā			
0	1	1	0	Catadata		
1	1	1	0	Sei state		
1	0	0	1			
1	1	0	1	Resel state		
0	0	1	1	Undefined		
(b) Function table						

SR Latch with Gating

- The inputs S and R are not always visible to the latch
 - Depending on the value of C
- Control signal C
- When enabled (i.e. C = 1):
 - You can write a 0 to Q by S=0, R=1
 - You can write a 1 to Q by S=1, R=0
 - You can keep the state by S=0, R=0
- It is still possible to drive the latch into the undefined state!!

Ç	Ş	B	Next state of Q
0	х	х	No change
1	0	٥	No change
1	0	1	Q = 0; Reset state
1	1	0	Q = 1; Sat state
1	1	1	Undefined

(b) Function table 8

Gated D-Latch

- With this controlled input D-Latch it is NOT possible to drive it into the invalid state
 - Both inputs CAN NOT be active at the same time
- When enabled (i.e. C = 1):
 - You can write a 0 to Q by D=0
 - You can write a 1 to Q by D=1

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

9

Flip-Flops

- · Problems with previous latches:
 - When C is enabled the latch is in *transparent* mode. i.e. changes in S and R will be reflected in changes to its state so it is still possible to drive the SR latch into the undefined state and then to instability.
- Solutions:
 - Master-Slave flip-flop
 - Edge-triggered flip-flop

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Timing Issues - Again

- Propagation Delay: times it takes for an input to appear at the output is called the propagation delay.
 - t_{PHL}: time it takes for an input to cause the output to change from logic-level-high to logic-level-low.
 - t_{PLH}: delay associated when an inpu change causes the output to chang from logic-level-low to logic-levelhigh.
- The overall propagation delay is average of t_{PHL} and t_{PLH}

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

15

Timing Issues - Again

- Setup Time (Ts): a constant duration for which the inputs must be held prior to the arrival of the clock transition
- Hold Time (Th): refers to the duration for which the inputs must not change after the arrival of the transition

Asynchronous Inputs

- Special inputs for setting or resetting them asynchronously
 - Independent of the clock input
- The direct set and direct reset signals are called preset and clear, respectively
- Examining the function table:
 - When S=0, R=1, the FF is set regardless of the clock and the JK inputs
 - When S=1, R=0, the FF is reset regardless of the clock and the JK inputs
 - For the JK to operate normally, S and R should be 1 and 1.

1/11/2009

Flip-Flop Characteristic Tables

Table 6-7

	(a) <i>JK</i> Flip-Flop					(b) SR Flip-Flop			
J	K	Q(t+1)	Operation	,	S	R	Q(t+1)	Operation	
0	0	Q(t)	No change		0	0	Q(t)	No change	
0	1	0	Reset		0	1	0	Reset	
1	0	1	Set		1	0	1	Set	
1	1	Q'(t)	Complement		1	1	?	Undefined	
(c) <i>D</i> Flip-Flop					(d) TFlip-Flop				
[)	Q(t+1)	Operation		-	Γ	Q(t+1)	Operation	
()	0	Reset		()	Q(t)	No change	
	1	1	Set			1	Q'(t)	Complement	

1/11/2009 Dr. Ashraf S. Hasan Mahmoud

JK Flip-Flop Characteristic Equation

• Using table on previous slide, one can write:

$$Q(t+1) = J\overline{Q(t)} + \overline{K}Q(t)$$

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

20

SR Flip-Flop Characteristic Equation

• Using table on slide 19, one can write:

$$Q(t+1) = S + \overline{R}Q(t)$$

S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	Х

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

21

D Flip-Flop Characteristic Equation

• Using table slide 19, one can write:

$$Q(t+1) = D$$

D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

T Flip-Flop Characteristic Equation

• Using table on slide 19, one can write:

$$Q(t+1) = T \oplus Q(t)$$

<u>T</u>	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

1/11/2009

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

23

Flip-Flop Excitation Tables

Table 6-7

(a) <i>JK</i> Flip-F	lop		((b) <i>SR</i> Flip-	Flop	
Q(t)	Q(t+1)	J	K	Q(t)	Q(t+1)	S	R
0	0	0	Χ	0	0	0	Χ
0	1	1	Χ	0	1	1	0
1	0	Χ	1	1	0	0	1
1	1	Χ	0	1	1	Χ	0
(c) D Flip-Flop			(d) TFlip-Flop				
Q(t)	Q(t+1)	[)	Q(t)	Q(t+1)	7	Γ
0	0	()	0	0	()
0	1	:	1	0	1	1	L
1	0	()	1	0	1	L
1	1		1	1	1	()
		[Or. A	hraf S. Hasan Mahmoud			

Example

• Problem:

- a) Write characteristic equations for each type of flipflops, using the information in Table 6-7. A characteristic equation gives the function Q(t+1) in terms of Q(t) and the input variables to the flip-flop.
- b) Use the characteristic equation for the *JK* flip-flop to find equations A(t+1) and B(t+1) from the flip-flop input equations corresponding to Table shown on next slide.

Solution:

a) Refer to previous slides for the development of characteristic equations

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Example - cont'd

• Solution (cont'd):

- b) Finally, Using the characteristic equation for the A ${\it JK}$ flipflop:
 - $A(t+1) = J_A A(t)' + K_A' A(t) \rightarrow$
 - A(t+1) = B(t)A(t)' + (B(t)X')'A(t)
 - = B(t)A(t)' + B(t)'A(t) + XA(t)
- Same for the B JK flip-flop:
 - $B(t+1) = J_B B(t)' + K_B' B(t) \rightarrow$
 - B(t+1) = X'B(t)' + (A(t)X' + A'(t)X)'B(t)
 - B(t+1) = X'B(t)' + A(t)B(t)X + A'(t)B(t)X'

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

29

Sequence Recognizer

- <u>Problem</u>: Design a circuit to recognize the occurrence of the bits 1101 (input from left to right) on an input line X by making an output signal Z equal to 1; Otherwise Z is equal to 0
- Solution:

Sequential circuit with one input X and one output Z

Examples of operation:
1. No sequence – Z remains zero
2. sequence occurs – Z is one
3. Two overlapping sequences – Z is one twice!

Sequence Recognizer

t=4 t=3
t=2 t=1

Sequence Recognizer

t=4 t=3
t=2 t=1

Sequence Recognizer

t=4 t=3

1/11/2009

Sequence

Sequence Recognizer – State Diagram

Solution (cont'd):

You always start from an initial state \rightarrow State S_0

To remember first '1' of sequence \rightarrow State S₁

To remember two consecutive 1s of sequence \rightarrow State S₂

To remember '110' sequence \rightarrow State S₃

Note an arrival of S_1 while in state S_3 should make the output Z=1, and move to state B "to remember this '1' which could be the first digit of another 1101 sequence

31

Sequence Recognizer – State Table Solution (cont'd): initial state Present **Next State** Output Z State $X = 0 \mid X = 1$ $X = 0 \mid X = 1$ S_0 0 0 S_0 S_1 S_1 S_0 S_2 0 0 S_3 S_2 S_2 0 0 S_3 0 S_1 1 Dr. Ashraf S. Hasan Mahmoud 32 1/11/2009

Sequence Recognizer – State Table

Solution (cont'd):

Present State	Next	Next State			Output Z		
State	X = 0	X = 1		X = 0	X = 1		
S ₀	S_0	S ₁		0	0		
S_1	S_0	S ₂		0	0		
S ₂	S_3	S ₂		0	0		
S ₃	S_0	S_1		0	1		

State Code Assignment (Grey Coding):

 $S_0 \rightarrow 00$

 $S_1 \rightarrow 01$ $S_2 \rightarrow 11$

 $S_3 \rightarrow 10$

Present State	Next	State	Output Z
State	X = 0	X = 1	X = 0 X = 1
00	00	01	0 0
01	00	11	0 0
11	10	11	0 0
10	00	01	0 1

Dr. Ashraf S. Hasan Mahmoud

33

Sequence Recognizer – State Table

Present State

Input

Solution (cont'd):

Present State		Next State			Output Z		
310	ite	X = 0	X = 1		X = 0	X = 1	
0)	00	01		0	0	
0	1	00	11		0	0	
1	1	10	11		0	0	
10	0	00	01		0	1	

1/11/2009

-Another way of writing the state table - Four states → we need two flip-flops A & B (in general if number of states is n, then we require log₂n flip-flops)

Next State

Dr. Ashraf S. Hasan Mahmoud

Output

Ζ

1

0

Let's Check Our Design – Timing Diagram – cont'd

Important Notes

- The value of the input prior to the positive edge is the value used to generate the rest of the outputs
 - In other words, the input signal is sampled at the positive-edge instant minus epsilon these samples constitute the input signal X
- Positive-edge triggered FFs respond to the input existing prior to the positive edge of the clock – and their output (state) lasts till the next positive edge at least
- The combination logic (AND gate for this example) for producing Z responds to instantaneously to signals at the input of this combination logic – regardless of the clock signal

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Mealy and Moore Type Finite State Machines

- Mealy Machine:
 - In a Mealy machine, the outputs are a function of the present state and the value of the inputs as shown in figure.
 - The outputs may change asynchronously in response to any change in the inputs.

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

43

Mealy and Moore Type Finite State Machines – cont'd

- Moore Machine:
 - In a Moore machine the outputs depend only on the present state as shown in figure.
 - A combinational logic block maps the inputs and the current state into the necessary flip-flop inputs to store the appropriate next state just like Mealy machine.
 - However, the outputs are computed by a combinational logic block whose inputs are only the flip-flops state outputs.
 - The outputs change synchronously with the state transition triggered by the active clock edge

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Sequence Recognizer – Mealy Machine Example

- Problem: Design a sequence recognizer (state machine) that outputs '1' if the input is '1' for three consecutive clocks – Use MEALY DESIGN – using D flip-flops
- Solution: State diagram is as shown
 State table is as shown

 $S_0 \qquad \begin{array}{c} \text{Initial} \\ \text{State} \\ \text{AB} = 00 \end{array} \qquad \begin{array}{c} 0/0 \\ \text{S}_2 \\ \text{O/0} \\ \text{I/0} \qquad \begin{array}{c} \text{Got 11} \\ \text{AB} = 10 \end{array} \\ \\ S_1 \qquad \begin{array}{c} \text{Got 1} \\ \text{AB} = 0 \end{array} \qquad \begin{array}{c} 1/1 \\ \text{AB} = 10 \end{array}$

Arc label: X/Z

1/11/2009

Present State		Input	Next	Next State		D Flip-Flops Input	
Α	В	Х	Α	В	Z	D _A	D_B
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	0
. Ashraf S. Hasan Mahmoud							45

Sequence Recognizer - Mealy Machine Example - cont'd Solution: The D flip-flops inputs are: 00 01 11 10 Present State Input Next State Output D Flip-Flops Input Х 0 $D_A = AX + BX$ 0 0 0 0 01 11 10 0 0 0 0 Х х $D_B = A'B'X$ 01 11 10 0 0 0 0 Notice we chose to use D f/f 0 1 х that respond on -ve clock edge Z = AXB 1/11/2009 46

Sequence Recognizer – Moore Machine Example

 Problem: Design a sequence recognizer (state machine) that outputs '1' if the input is '1' for three consecutive clocks – Use MOORE DESIGN – using D flip-flops

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Serial Two's Complementer – Problem 6-15

- **Problem**: A serial two's complementer is to be designed. A binary integer of arbitrary length is presented to the serial two's complementer least significant bit first on input X. When a given bit is presented on input X, the corresponding output bit is to appear during the same clock cycle on output Z. To indicate that a sequence is complete and that the circuit is to be initialized to receive another sequence, input Y becomes 1 for one clock cycle. Otherwise, Y is 0
 - a) Find the state diagram for the serial two's complementer
 - b) Find the state table for the serial two's complementer
 - c) Design the circuit using D flip-flops
 - d) Design the circuit using JK flip-flops

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

53

Serial Two's Complementer – Problem 6-15

Solution:

Remember to complement $A_nA_{n-1}...A_1A_0$, we scanned the binary digits from LSB to MSB, skipping all zeros and passing the first 1 bit. All subsequent bits are complemented. The result is the two's complement of $A_nA_{n-1}...A_1A_0$

Example: 2's complement of (10110100) is equal to (01001100)

Example: 2's complement of (0011) is equal to (1101) Example: 2's complement of (000) is equal to (000) Example: 2's complement of (10) is equal to (10)

Serial Two's Complementer – Problem 6-15 – State Diagram

Solution (cont'd):

Two inputs X: the binary bits in serial

Y: indicator when number is complete

Scanning the binary number, we switch between two modes:

copying binary digits till first 1 is found

inverting subsequent bits

Hence TWO states are needed – need to remember that we passed the one

Because we have four inputs, each state has FOUR departing arcs

Serial Two's Complementer – Problem 6-15 – State Diagram (2)

Solution (cont'd):

State S₀: initial state (copying X to Z without inverting bits)

- 1. if zero arrives (input patterns 00 or 01) on X it is copied to Z -
- 2. if one arrives (input patter 11) on X it is also copied to Z if Y is 1 (i.e last bit of number)
- 3. if one arrives and it is not last bit (input pattern 10) then it is copies to Z but circuit moves to the other state to start complementing bits

State S_1 : (copying X to Z while inverting bits) till Y = 1

when Y = 1, another number is about to start – move to initial state S_0

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Serial Two's Complementer -Problem 6-15 – State Table

Solution (cont'd):

2 States → need one flip-flop Let $S_0 = 0$, while $S_1 = 1$

Present State	Inp	outs	Next State	Output
Q(t)	Х	Υ	Q(t+1)	Z
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	0

Dr. Ashraf S. Hasan Mahmoud

57

Serial Two's Complementer - Problem 6-15 - Implementation Using D Flip-Flops

Solution (cont'd):

Present State	Inp	uts	Next State	Output	<i>D</i> -Flip-Flop Input
Q(t)	Х	Υ	Q(t+1)	Z	D _o
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	1	0
1	1	0	1	0	1
1	1	1	0	0	0
(c) DE	lin-Elon		•		

XY Q(t)	00	01	11	10			
0	0	0	0	1			
1	1	0	0	1			
$D_Q = QY' + XY'$							

01 11 10 0

Z = Q'X+QX'

Q(t) Q(t+1) D 1

Dr. Ashraf S. Hasan Mahmoud

More Examples: Problem 6-14

<u>Problem</u>: Design a sequential circuit with two D flipflops A and B and one input X. When X = 0, the state of the circuit remains the same. When X = 1, the circuit goes through the state transitions 00 to 10 to 11 to 01, and back to 00, and then repeats.

1/11/2009

0

0 0

0

 $D_A = AX' + B'X$

1/11/2009

0 0 0 0

0

 $D_B = AX + BX$

Dr. Ashraf S. Hasan Mahmoud

Dr. Ashraf S. Hasan Mahmoud

63

64

Note that the output in this

case is the states AB

Problem 6-14 – Circuit Implementation

Solution:

Another Example: Problem 6-5

 Problem: A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$D_A = X'Y + XA$$
; $D_B = X'B + XA$; $Z = XB$

- a) Draw the logic diagram of the circuit
- b) Derive the state table
- c) Derive the state diagram

This is NOT a design problem – should be much easier than the ones presented earlier!

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Yet Another Example: Up/Down Counter with Enable

• <u>Problem</u>: Design a sequential circuit with two *JK* flipflops A and B and two inputs X and E. If E = 0, the circuit remains in the same state, regardless of the input X. When E = 1 and X = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11, back to 00, and then repeats. When E = 1 and X = 0, the circuit goes through the state transitions from 00 to 11 to 10 to 01, back to 00 and then repeats.

1/11/2009

Dr. Ashraf S. Hasan Mahmoud

Recommended Set of Problems

Problems Of INTEREST:

Problems with "s" are solved in this slides package

1/11/2009

Dr. Ashraf S. Hasan Mahmoud