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What is a Random Variable?
• Random Experiment
• Sample Space

• Def: A random variable X is a function that 
assigns a number of X(ζ) to each outcome ζ in the 
sample space of S of the random experiment

S

ζ
real linex

X(ζ) = x
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Set Functions
• Define Ω as the set of all possible outcomes
• Define A as set of events
• Define A as an event – subset of the set of all 

experiments outcomes
• Set operations:

• Complementation Ac: is the event that event A does 
not occur

• Intersection A ins B : is the event that event A and B 
occur 

• Union A un B: is the event that event A or B occur
• Inclusion A in B:  An event A occurring implying 

events B occurs
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Set Functions
• Note:

• Set of events A is closed under set operations
• Φ – empty set
• A ∩ B = Φ are mutually exclusive or disjoint 
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Axioms of Probability
• Let P(A) denote probability of event A:

1. For any event A belongs A, P(A)  ≥ 0;
2. For set of all possible outcomes Ω, P(Ω) = 1;
3. If A and B are disjoint events, P(A un B) = P(A) + 

P(B)
4. For countably infinite sets, A1, A2, … such that Ai ins 

Aj = Φ for i≠j
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Additional Properties

• For any event, P(A) ≤ 1
• P(AC) = 1 – P(A)
• P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
• P(A) ≤ P(B) for A ⊆ B
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Conditional Probability

• Conditional probability is defined as
P(A ∩ B)

P(A/B) = -------------
P(B)

• P(A/B) probability of event A conditioned on the 
occurrence of event B

• Note: 
• A and B are independent if P(A ∩ B) = P(A)P(B) P(A/B) = 

P(A)
• Independent IS NOT EQUAL TO mutually exclusive
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The Law of Total Probability

• A set of events Ai, i = 1, 2, …, n partitions the set of 
experimental outcomes if

and 

Then we can write any event B in terms of Ai, i = 1, 2, …, 
n as

Furthermore,
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Bayes’ Rule
• Using the total law of probability and applying it to 

the definition of the conditional probability, yields
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Example: Binary Symmetric 
Channel

• Given the binary symmetric channel depicted in 
figure, find P(input = j / output = i); i,j = 0,1. Given 
that P(input = 0) = 0.4, P(input = 1) = 0.6.

0

1

input
0

1

output
P(out=0/in=0) = 2/3

P(out=1/in=1) = 3/4

P(out=0/in=1) =
 1/4

P(out=1/in=0) = 1/3

Solution:
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The Cumulative Distribution 
Function
• The cumulative distribution function (cdf) 

of a random variable X is defined as the 
probability of the event {X ≤ x}:

FX(x) = Prob{X ≤ x}    for -∞<x< ∞

i.e. it is equal to the probability the variable X 
takes on a value in the set (- ∞,x]

• A convenient way to specify the 
probability of all semi-infinite intervals
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Properties of the CDF
• 0 ≤ FX(x) ≤ 1

• Lim   FX(x) = 1  
x ∞

• Lim   FX(x) = 0  
x -∞

• FX(x) is a nondecreasing function if a < b FX(a) ≤ FX(b)

• FX(x) is continuous from the right for h > 0, 
FX(b) = lim FX(b+h) = FX(b+)

h 0

• P[a < X ≤ b] = FX(b)  - FX(a)

• P[X = b] = FX(b) - FX(b-) 
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Example 1: Exponential Random 
Variable
• Problem: The transmission time X of a 

message in a communication system obey 
the exponential probability law with 
parameter λ, that is

Prob [X > x] = e- λx x > 0

Find the CDF of X. Find Prob [T < X ≤ 2T] 
where T = 1/ λ
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Example 1: Exponential Random 
Variable – cont’d
• Answer: 
The CDF of X is 
FX(x) = Prob {X ≤ x} = 1 – Prob {X > x}

= 1 - e- λx x ≥ 0
= 0             x < 0

Prob {T < X ≤ 2T} = FX(2T) - FX(T)
= 1-e-2 – (1-e-1)
= 0.233
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Example 2: Use of Bayes Rule
• Problem: The waiting time W of a 

customer in a queueing system is zero if 
he finds the system idle, and an 
exponentially distributed random length of 
time if he finds the system busy. The 
probabilities that he finds the system idle 
or busy are p and 1-p, respectively. Find 
the CDF of W
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Example 2: cont’d
• Answer: 
The CDF of W is found as follows:

FX(x) = Prob{W ≤ x}

= Prob{W ≤ x/idle}p + Prob{W ≤ x/busy}(1-p)

Note Prob{W ≤ x/idle} = 1 for any x > 0 

FX(x) = 0                             x < 0
= p+(1-p)(1- e- λx)   x ≥ 0
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Types of Random Variables
• (1) Discrete Random Variables

• CDF is right continuous, staircase function of x, 
with jumps at countable set x0, x1, x2, …

x0 1 2 3

1/8

1/2

7/8
1

FX(x)

x0 1 2 3

1/8

3/8

pmfX(x)

Pmf: probability mass function
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Types of Random Variables
• (2) Continuous Random Variables

• CDF is continuous for all values of x Prob { X 
= x} = 0 (recall the CDF properties)

• Can be written as the integral of some non 
negative function

∫
∞

∞−

= dttfxFX )()(

Or

dx
xdFtf X )()( =

f(t) is referred to as the probability density function or PDF
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Types of Random Variables
• (3) Random Variables of Mixed Types

FX(x) = p F1(x) + (1-p) F2(x)
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Probability Density Function
• The PDF of X, if it exists, is define as the 

derivative of CDF FX(x):

dx
xdFxf X

x
)()( =
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Properties of the PDF
• fx(x) ≥ 0

∫=≤≤
b

a
x dxxfbxaP )(}{•

• ∫
∞−

=
x

xX dttfxF )()(

∫
∞

∞−

= dttf x )(1•
A valid pdf can be formed from any nonnegative, piecewise 
continuous function g(x) that has a finite integral:

∫
∞

∞−

∞<= cdxxg )(

By letting fX(x) = g(x)/c, we obtain a function that satisfies the
normalization condition.
This is the scheme we use to generate pdfs from simulation 
results!
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Conditional PDFs and CDFs
• If some event A concerning X is given, then 

conditional CDF of X given A is defined by
P([X ≤ x] ∩ A)

FX(x/A) = ------------------- if P(A) > 0
P(A)

The conditional pdf of X given A is then defined by

d
fX(x/A) = --- FX(x/A)

dx
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Expectation of a Random Variable
• Expectation of the random variable X can 

be computed by

∫
∞

∞−

= dtttfXE x )(][

∑
∀

==
i

ii xXPxXE ][][

for discrete variables, or

for continuous variables.
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nth Expectation of a Random 
Variable
• The nth expectation of the random variable 

X can be computed by

∫
∞

∞−

= dttftXE x
nn )(][

∑
∀

==
i

ii
nn xXPxXE ][][

for discrete variables, or

for continuous variables.
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Central Moments a Random 
Variable
• The nth central moment of a random 

variable is given by

[ ]( )[ ]nXEXE −
Therefore, the variance of a r.v is given by

The standard deviation is computed as

[ ] [ ]( )[ ]22 XEXEXVarX −=≡σ
[ ] [ ]( )22 XEXE −=

XXVarXSD σ== )()(
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Expectation of a Function of the 
Random Variable
• Let g(x) be a function of the random 

variable x, the expectation of g(x) is given 
by

∫
∞

∞−

= dttftgxgE x )()()]([

∑
∀

==
i

ii xXPxgxgE ][)()]([

for discrete variables, or

for continuous variables.
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Example 3:
• Problem: For X nonnegative r.v. show that

for continuous X:                                 , and 

for discrete X: 

( )∫
∞

−=
0

)(1][ dttFXE x

∑
∞

=

>=
0

)(][
k

kXPXE

Prove the above formulas
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The Characteristic Function
• The characteristic function of a random 

variable X is defined by

][)( Xj
x eE ωω =Φ

• Note that ФX(ω) is simply the Fourier Transform 
of the PDF fX(x) (with a reversal in the sign of the 
exponent)

• The above is valid for continuous random 
variables only

∫
∞

∞−

= dxexf Xj
X

ω)(
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The Characteristic Function (2)
• Properties:

0

)(1][
=

Φ=
ω

ω
ω xn

n

n
n

d
d

j
XE

∫
∞

∞−

−Φ= ωω
π

ω dexf xj
xX )(

2
1)(
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The Characteristic Function (3)
• For discrete random variables, 

][)( Xj
x eE ωω =Φ

• For integer valued random variables,

∑
∀

==
k

xj
k

kexXP ω)(

∑
∞

−∞=

==Φ
k

kj
x ekXP ωω )()(
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The Characteristic Function (4)
• Properties

∫ −Φ==
π

ω ωω
π

2

0

)(
2
1)( dekXP kj

x

for k=0, ±1, ±2, …
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Probability Generating Function
• A matter of convenience – compact 

representation
• The same as the z-transform
• If N is a non-negative integer-valued 

random variable, the probability 
generating function is defined as

][)( NzEzN =

∑
∞

=

==
0

)(
i

iziNp

....)2()1()0( 2 +=+=+== zNPzNPNP
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Probability Generating Function (2)
• Properties:

• 1

• 2

• 3

• 4

0

)(
!

1)(
=

==
z

i

i

zN
dz
d

i
iNP

1

)(][
=

=
zdz

zdNNE

[ ]2)1(')1(')1(''][ NNNNVar −+=

1)(
1

=
=z

zN
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Probability Generating Function (3)
• For non-negative continuous  random 

variables, let us define the Laplace
transform of the PDF

1)(
0

=
=s

sX

∫
∞

−=
0

* )()( dxexfsX sx
X

Properties: ][ sxeE −=

0

* )()1(][
=

−=
s

n

n
nn sX
ds
dXE

)()( jssX XΦ=
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Some Important Random Variables 
– Discrete Random Variables
• Bernoulli
• Binomial
• Geometric
• Poisson

Identities to remember:
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Bernoulli Random Variable
• Let A be an event related to the outcomes of some random 

experiment. The indicator function for A is defined as

IA(ζ) = 0     if ζ not in A
= 1     if ζ is in A

• IA is random variable since it assigns a number to each outcome in S
• It is discrete r.v. that takes on values from the set {0,1}
• PMF is given by

pI(0) = 1-p, pI(1) = p
where P(A) = p

• Describes the outcome of a Bernoulli trial 

• E[X] = p,    VAR[X] = p(1-p)
• X(z) = (1-p+pz)   
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Binomial Random Variable
• Suppose a random experiment is repeated n independent 

times; let X be the number of times a certain event A occurs 
in these n trials

X = I1 + I2 + … + In

i.e. X is the sum of Bernoulli trials (X’s range = {0, 1, 2, …, n})

• X has the following pmf

for k=0, 1, 2, …, n   

• E[X] = np,     Var[X] = np(1-p)
• X(z)  = (1-p + pz)n

knk pp
k
n

kXP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1(][
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Geometric Random Variable
• Suppose a random experiment is repeated - We 

count the number of M of independent Bernoulli 
trials until the first occurrence of a success

• M is called geometric random variable
• Range of M = 1, 2, 3, …

• X has the following pmf

for k=1, 2, 3, …

• E[X] = 1/p,      Var[X] = (1-p)/p2

• X(z) = pz/(1-(1-p)z))

ppkX k 1)1(]Pr[ −−==
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Geometric Random Variable - 2
• Suppose a random experiment is repeated - We 

count the number of M of independent Bernoulli 
trials until the first occurrence of a success – not 
counting the successful trial                  

• M is called geometric random variable
• Range of M = 0, 1, 2, 3, …

• X has the following pmf

for k=0, 1, 2, 3, …

• E[X] = (1-p)/p,      Var[X] = (1-p)/p2

• X(z) = p/(1-(1-p)z))

ppkX k)1(]Pr[ −==

Note the different range for 
these two Geometric r.v.s
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Poisson Random Variable
• In many applications we are interested in counting the 

number of occurrences of an event in a certain time period

• The pmf is given by

For k=0, 1, 2, … ; 
α is the average number of event occurrences in the specified 

interval

• E[X] = α,     Var[X] = α
• X(z) = eα(z-1)

• Poisson is the limiting case for Binomial as n ∞, p 0, such 
that np = α – remember 

αα −== e
k

kX
k

!
]Pr[

( ) λλ −

→∞→

=− en n

pn
1lim

0,
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Example 4:
• Calculate the probability generating 

function for the Poisson r.v.?

• Solution: Applying the definition

∑
∞

=

−=
0 !

)(
k

k

e
k

zZN k αα

( )∑
∞

=
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0 !k

k

k
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zee αα ×= −

)1( −= zeα
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Poisson Random Variable - 2
• If the average rate of occurrence per time 

unit is λ, then the average number of 
occurrences in t seconds is equal to λt

• The probability of k occurrences in t 
seconds is given by 

( ) ( ) ,...2,1,0
!

== − ke
k
ttP t

k

k
λλ

Compared to previous slide – we have replaced α by λt
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Some Important Random Variables 
– Continuous Random Variables
• Uniform
• Exponential
• Gaussian (Normal)
• Rayleigh
• Gamma
• Pareto
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Uniform Random Variables
• Realizations of the r.v. can take values 

from the interval [a, b]

• PDF fX(x) = 1/(b-a)         a≤x≤b

• E[X] = (a+b)/2,    Var[X] = (b-a)2/12

• ФX(ω) = [ejωb – ejωa]/(jω(b-a))
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Example 5: Analog-to-Digital 
Conversion
Problem: compute the SNR for a uniform 

quantizer using 2N representation values?
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Exponential Random Variables
• The exponential r.v. X with parameter λ has pdf

• And CDF given by

• Range of X: [0, ∞)

• E[X] = 1/λ,     Var[X] = 1/λ2

• ФX(ω) = λ/(λ-jω)

⎩
⎨
⎧

≥
<

= − 0
00

)(
xe
x

xf xX λλ

⎩
⎨
⎧

≥−
<

= − 01
00

)(
xe
x

xF xX λ
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Exponential Random Variables –
cont’d
• The exponential r.v. is the only r.v. with the memoryless

property!!
• Memoryless Property:

P[X>t+h/ X>t] = P[X>h]

Proof:
P[(X > t+h) ∩ (X > t)]

P[X>t+h/ X>t] = ---------------------------
P[(X > t)]

P[(X > t+h)        e-λ(t+h)

= --------------- = ----------
P[X > t]             e-λt

= e-λh

= P[X > h]
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Gaussian (Normal) Random 
Variable
• Rises in situations where a random variable X is the sum of 

a large number of “small” random variables – central limit 
theorem

• PDF

For -∞<x< ∞; m and σ > 0 are real numbers

• The characteristic function is given by 

• E[X] = m,       Var[X] = σ2

)2/()( 22

2
1)( σ

σπ
mx

X exf −−=

2/22

)( ωσωω −=Φ jm
X e
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Gaussian (Normal) Random 
Variable - 2
• CDF given by

where

∫
∞−

−−=
x

mt
X dtexF )2/()( 22

2
1)( σ

σπ

⎟
⎠
⎞

⎜
⎝
⎛ −

+=
2

5.05.0
σ

mxerf

dtexerf
x

t∫ −=
0

2/2

)(

Note – the CDF can also be written in terms of the Q-function, where
dtexQ

x

t∫
∞

−= 2/2

2
1)(
π
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Rayleigh Random Variable
• Rises in modeling of mobile channels
• Range: [0, ∞)

• PDF:

• For x ≥ 0, α > 0

• E[X] = α√(π/2),    Var[X] = (2-π/2)α2

)2/(
2

22

)( α

α
x

X exxf −=
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Gamma Random Variable
• Versatile distribution ~ appears in modeling of lifetime of devices 

and systems
• Has two parameters: α > 0 and λ > 0

• PDF: 

• For 0 < x < ∞
• The quantity Г(z) is the gamma function and is specified by

• The gamma function has the following properties:
• Г(1/2) =  √π
• Г(z+1) = zГ(z)  for z>0
• Г(m+1) = m!    For m nonnegative integer

• E[X] = α/λ,     Var[X] = α/λ2

• ФX(ω) = 1/(1-jω/ λ)α

)(
)()(

1

α
λλ λα

Γ
=

−− x

X
exxf

∫
∞

−−=Γ
0

1)( dxexz xz

If α = 1 gamma r.v. 
becomes exponential
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Pareto Random Variable
• Originally used by economists to model 

income and other soci-economic 
quantities.

• For α (shape parameter) > 0, β (scale 
parameter) > 0, the PDF is given by

• The CDF is given by

( ) x
x

xf X ≤= + βαβ
α

α

1

( ) x
x

xFX ≤⎟
⎠
⎞

⎜
⎝
⎛−= ββ α

1

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 54

Pareto Random Variable - 2
• nth moment (if it exists) is given by

• Expected value:

• Variance: 

[ ] α
α
αβ

<
−

= n
n

xE
n

n

[ ] α
α
αβ

<
−

= 1
1

xE

[ ]
( ) ( )

α
αα

αβ
<

−−
= 2

21 2

2

xVar



28

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 55

Example 6: Packet Size Modeling
• Pareto distribution is used to model the 

packet size, P, in bytes for internet traffic 
as follows:

where x is a Pareto random variable with the 
following PDF

θ is given by 

),min( maxSxP =

( )
⎪⎩

⎪
⎨
⎧

=

<≤= +

max

max1

Sx

Sx
xxf X

θ

βαβ
α

α

)(1 maxSFX−=θ
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Example 7: Packet Size Modeling
• Calculate the expected value for packet size using 

the model proposed in Example 3?

• Models proposed to test ETSI/UMTS networks use 
the following parameters: α = 1.1, β = 81.5 Bytes, 
Smax = 66,666 Byte (this results in a mean 
packet size of 480 Bytes)



29

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 57

Computer Methods for Generating 
Random Variables
(1) The transformation 

method

Procedure:
a. Obtain FX(x)
b. Generate U ~ uniform 

between 0 and 1
c. Find Z = FX

-1(U) – Z 
follows the distribution 
specified by fX(x)

0

1

FX(x)

x

U

Z = FX
-1(U)
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Example 8 – Generating 
Exponential r.v.
Problem: Generating exponential random variables with parameter λ
Answer:
To generate an exponentially distributed r.v. X with parameter λ (i.e. 

its mean is 1/λ), we need to find FX(x) and invert it.

FX(x) = 1 – e-λx (see example 1)

Therefore, FX
-1(x) is equal to

X = -(1/λ) ln(1-U)

where ln(t) is the natural logarithm of t while U is a uniform r.v. 
between 0 and 1. Note that the above expression can be 
simplified to be

X = -(1/λ) ln(U)

This is because 1-U is also a uniform random r.v. between 0 and 1
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Example 9 – Generating Bounded 
Pareto Distribution
Problem: Generate a random variable 

conforming the bounded Pareto 
distribution specified in Example 4. 

Answer: ?
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Example 10 – Generating Gaussian 
Random Variable
Problem: Generate a Gaussian random 

variable of mean m and standard 
deviation equal to δ.

Answer: ?
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Computer Methods for Generating 
Random Variables
(2)Rejection Method
(3)Composition Method
(4)Convolution Techniques
(5)Characterization Method

See references for details

Transformation method is sufficient for 
simulations required in this course
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Joint Distributions of Random 
Variables
• Def: The joint probability distribution of 

two r.v.s X and Y is given by

FXY(x,y) = P(X ≤ x, Y ≤ y)

where x and y are real numbers.

• This refers to the JOINT occurrence of {X 
≤ x} AND {Y ≤ y}

• Can be generalized to any number of 
variables
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Joint Distributions of Random 
Variables - Properties
• FXY(-∞, -∞) = 0
• FXY(∞, ∞) = 1
• FXY(x1, y) ≤ FXY(x2, y) for x1 ≤ x2

• FXY(x, y1) ≤ FXY(x, y2) for y1 ≤ y2

• The marginal distributions are given by
• FX(x) = FXY(x, ∞) 
• FY(y) = FXY(∞, y)
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Joint Distributions of Random 
Variables – Properties - 2

• Density function: 

or

• Marginal densities:

and

yx
yxFyxf XY

XY ∂∂
∂

=
),(),(

2

∫ ∫
∞− ∞−

=
x y

XYXY ddfyxF βαβα ),(),(

∫
∞

∞−

= dyyxfxf XYX ),()(

∫
∞

∞−

= dxyxfyf XYy ),()(



33

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 65

Joint Distributions of Random 
Variables – Independence

• Two random variables are independent if 
the joint distribution functions are 
products of the marginal distributions:

or
)()(),( yFxFyxF YXXY =

)()(),( yfxfyxf YXYX =
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Joint Distributions of Random Variables 
– Discrete Nonnegative Variables

• Def:

where 
P(X=xi, Y=yi) is the joint probability for 
the r.v.s X and Y
U(x) is 1 for x ≥ 0 and 0 otherwise 

( ) ( )∑∑
∞

=

∞

=

−−===
0 0

),(),(
i j

iiiiXY yyUxxUyYxXPyxF
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Example 11:
• Problem: The number of bytes N in a 

message has a geometric distribution 
with parameter p. The message is broken 
into packets of maximum length M bytes. 
Let Q be the number of full packets in a 
message and let R be the number of 
bytes left over. Find the join pmf and the 
marginal pmfs of Q and R.
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Example 11: cont’d
• Solution: 

N ~ geometric P(N=k) = (1-p)pk

Message of N bytes Q full M-bytes packets +
R remaining bytes

Therefore: Q ∈ {0, 1, 2, …}, R ∈ {0, 1, 2, …, M-1}

The join pmf is given by:
P(Q=q, R=r) = P(N = qM+r) = (1-p)p(qM+r)
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Example 11: cont’d
• Solution: 

The marginal pmfs:

and

∑
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====
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0
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M

r
rRqQPqQP

( )∑
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=

+−=
1

0
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rqMpp
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=
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( ) 1,...,1,0
1
1

−=
−
−

= Mrp
p
p r
M

Verify the marginal pmfs add to ONE!!
P(R = r) is a truncated geometric r.v.
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Independent Discrete R.V.s
• For Discrete random variables:

P(M=i, N=j) = P(M=i) P(N=j)
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Example 12:
• Problem: Are the Q and R random variables 

of Example 11 independent? Why?
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Conditional Distributions
• Def: for continuous X and Y

Or

• For discrete M and N  

( )
)(

),()/(
xF

yxFxXyYPxyF
X

XY
XY =≤≤=

( )
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),(
xf

yxfxyf
X

XY
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==
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Conditional Distributions - 2
• For mixed types:

or 

( ) ∑
∞

=

≤==
0

),(
i

X xXjNPxF

∑
∞

=

=≤==
0

)/()(
j

jNxXPjNP

∫
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==== dxxfxXjNPjNP X )()/()(
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Conditional Distributions - 3
• For mixed types:

or

( ) =NXXX xxxF
N

,...,, 21,...,, 21

( ) ( ) ( )11,...,/12/1 ,...,/.../
11121 −−

×××= NNXXXXXX xxxFxxFxF
NN

( ) =NXXX xxxf
N

,...,, 21,...,, 21

( ) ( ) ( )11,...,/12/1 ,...,/.../
11121 −−

×××= NNXXXXXX xxxfxxfxf
NN
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Example 14: 
• Problem: The number of customers that 

arrive at a service station during a time t is 
a Poisson random variable with parameter 
βt. The time required to service each 
customer is exponentially distributed with 
parameter α. Find the pmf for the number 
of customers N that arrive during the 
service time T of a specific customer. 
Assume the customer arrivals are 
independent of the customer service time.
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Example 14: cont’d 
• Solution:

The PDF for T is given by
Let N = number of arrivals during time t

the arrivals conditional pmf is given by

To find the arrivals pmf during service time T, we use:

this reduces to:

Thus N is geometrically distributed with probability of 
success equal to α /(β+ α)

∫
∞
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Joint Moments
• For continuous X and Y:

• For discrete X and Y

( )[ ] ∫ ∫
∞

∞−

∞

∞−

= dxdyyxfyxgYXgE XY ),(),(,

( )[ ] ( )ji
i j

ji yYxXPyxgYXgE === ∑∑
∀ ∀

,),(,
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Autocorrelation and 
Autocovariance Function
• Autocorrelation:

• For continuous X and Y:

• For discrete X and Y

• Autocovariance:

[ ] ∫ ∫
∞

∞−

∞

∞−

= dxdyyxxyfXYE XY ),(

[ ] ( )ji
i j

ji yYxXPyxXYE === ∑∑
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40

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 79

Autocorrelation and 
Autocovariance Function - 2
• X and Y are uncorrelated if

or equivalently 

• Independent variables are uncorrelated, 
the reverse DOES NOT HOLD – Gaussian 
r.v.s are the exception

[ ] [ ] [ ]YEXEXYE =

[ ] 0, =YXCov
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Example 14: Joint Gaussian 
Variables
• Problem: show that if X and Y are two 

uncorrelated Gaussian r.v.s, then they are 
independent
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Example 14: Joint Gaussian 
Variables – cont’d
• Solution:

The joint distribution for X and Y is given by

where:
µX and µX are equal to E[X] and E[Y], respectively
σX and σY are the respective standard deviations
ρXY = Cov(X,Y)/(σXσY)
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Example 14: Joint Gaussian 
Variables – cont’d
• Solution:

If X and Y are uncorrelated Cov(X,Y) = 
0 or ρXY = 0. Rewriting the joint 
distribution yields

but the last expression is equal to fX(x)fY(y) 

Therefore, X and Y are independent

( ) ( ) ( ) ( ) ( ){ }
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2222 −−−−

=



42

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 83

Functions of a Random Variable
• Problem setting:

• Let X be a r.v., 
• Let g(x) be a real-valued function 
• Y = g(X) 
• What is the probability distribution for Y?

• General Approach:

Prob[ Y in C] = Prob[ g(X) in C]
= Prob[ X in B]

These events are equivalent
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Example 15: The MAX Function
• Let g(x) = (x)+

= 0    if x < 0
x    if x ≥ 0

Note g(x) can be written in other forms:
g(x) = max(x, 0)

e.g: 
1. # of customers arriving in batch sizes greater 

than M Y = (X – M)+

2. voltage output of a half-wave rectifier
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Example 16: The MAX Function
• Problem: Let X be an nonnegative integer-

valued r.v. Let P(X=i) = pi, for i=0,1, …
Y is defined as Y = max(X-M, 0) where M is +ve
integer
Find pmf for the r.v. Y

• Solution:
Y = max(X-M,0) = (X-M)+ has the range {0, 1, 
…}

P(Y = 0) = Prob[X ≤ M]
= Σ pi i=0,1, …, M

P(Y = k) = pk+M k = 1,2, …
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Example 17: Quantization
• Let Y = q(X) be the uniform quantization 

function defined in figure

xd 2d 3d 4d

-4d -3d -2d -d
d/2

3d/2

5d/2

7d/2

-7d/2

-5d/2

-3d/2

-d/2

y

• Note Y can be 
written as 

Y = floor(X) + 0.5d

e.g. PCM voice
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Example 18: Quantization
• Problem: Let X be a sample voltage of a 

speech waveform and suppose that X is 
uniform on the interval [-4d, 4d]. Let Y = 
q(X), where the quantizer input-output 
characteristic is as shown in previous 
example. Find the pmf for Y.
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Example 18: Quantization – cont’d
• Solution:

Y = q(x),  -4d ≤ x ≤ 4d,  Y ∈ {±7d/2, 
±5d/2, ±3d/2, ±d/2}
The PDF for X is given by:

Therefore, the PDF for Y is computed as:

∫
+

−

==
dk

dk
X dxxfkYP

5.0

5.0

)()(

dxddxf X 44)8/(1)( ≤≤−=

{ }ddddk 21,23,25,278/1 ±±±±∈=
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General Rule
• Problem: Let Y = g(x),  

if the PDF for X is 
given by fX(x), find 
the PDF for the r.v. Y.

x1 x1+dx1 x2 x2+dx2 x3 x3+dx3 x

y

y
y+dy

• Solution:
Prob[ y < Y < y +dy] = fY(y) |dy|
The event {y < Y < y +dy} is equivalent to the event {x1 < X < x1

+dx1} ∪ {x2 < X < x2 +dx2} ∪ {x3 < X < x3 +dx3} 
fY(y) |dy| = fX(x1)|dx1|+fX(x2)|dx2|+fX(x3)|dx3|

In general:  ∑
=

=
k xx

XY

k
dy
dxxfyf )()(
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Linear Transformations – Y = aX + b
• This is a special case of “Functions of 

Random Variables”

• The PDF of Y can be shown to be

• One can also show that

and

⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

byf
a

yf XY
1)(

bXaEYE += ][][

][][ 2 XVaraYVar =



46

10/3/2004 Dr. Ashraf S. Hasan Mahmoud 91

Example 19: Y = X2

• Problem: Let Y = X2,  where X is a 
continuous r.v.  Find the PDF of Y.

• Solution:
y = x2 has two solutions: x0,1 = ±√y
|dy/dx| = 2x = 2√y
therefore fY(y) is given by:

y
yf

y
yf

yf XX
Y 2

)(
2

)(
)(

−
+=
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Functions of Multiple Random 
Variables
• Let X1, X2, …, Xn be random variables and let Z be 

defined as 
Z = g(X1, X2, …, Xn)

The CDF of Z is found as follows:
{Z ≤ z} ≡ Rz = {X = (x1, x2, …, xn): g(X) ≤ z}

Therefore, 
FZ(z) = P(X in Rz)

or

where the integrals are carried over Rz

( ) NNXXXZ dxdxdxxxxfzF
N

...,...,,...)( 2121,...,, 21∫ ∫=
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Example 20: Z = X + Y
• Problem: Let Z = X + Y, find FZ(z) and fZ(z) in terms of 

fXY(x,y)

• Solution:
P(Z ≤ z) = P(X+Y ≤ z)
or

The PDF for Z is given by

Note that is X and Y are independent, then fZ(z) can be 
written as:

The later relation is know as the convolution integral of the 
marginal PDFs for X and Y

One can also show that
where Φ(ω) is the characteristic function for the respective 

r.v.
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Sum of Random Variables
• Let X1, X2, …, Xn be random variables and let Y be defined as

Y = X1 + X2 + … + Xn

• It is easy to show that

E[Y] = E[X1] + E[X2] + … + E[Xn]

This results holds whether Xis are independent or not
• Furthermore,

For uncorrelated Xis, the relation reduces to   

[ ] [ ] ( )∑ ∑∑
= ≠==

+=
n

i

n

jij
ji

n

i
i XXCovXVarYVar

1 ,11

,

[ ] [ ]∑
=

=
n

i
iXVarYVar

1

Exercise: Prove these relations
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Sum of Random Variables – cont’d
• Generalizing the results of Example 20, the 

PDF of the random variable Y is given by

or

• Note the above relation is valid for the 
probability generating function N(Z) and 
the Laplace transform X(s) as well.

( ) ( ) ( ) ( )NXXXY xfxfxfyf
N

...21 21
∗∗=

( ) ( ) ( ) ( )ωωωω
NXXXY ΦΦΦ=Φ ...

21
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Sum of Two Nonnegative Integer-
Valued Random Variables 
• Let N = K1 + K2, where K1 and K2 are nonnegative integer-

valued random variables. The distribution for N is given by

if the variables K1 and K2 are independent, then the distribution 
can be written as

which is the discrete form of the convolution integral 
introduced in Example  20  
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Example 21: Sum of Two 
Independent Poisson R.V.s
• Problem: Define Y = K1 + K2, where K1 and 

K2 are two independent Poisson random 
variables with mean λ1t and λ2t. Find the 
distribution of Y
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Example 21: Sum of Two 
Independent Poisson R.V.s – cont’d
• Solution 1:

The pmfs of K1 and K2 are given by

Using the convolution relation, the pmf for N is 
computed as

Examining the last expression, one can conclude 
that N itself follows the Poisson distribution with 
mean (λ1t + λ2t)
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Example 21: Sum of Two 
Independent Poisson R.V.s – cont’d
• Solution 2:

The pmfs of K1 and K2 are given by

Or equivalently, the respective probability generating 
functions are given by

Using the convolution relation, the probability generating 
function for the sum N is given by

Examining the last expression, one can conclude that N itself
follows the Poisson distribution with mean (λ1+ λ2)t
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Example 22: Sum of Two 
Exponential Random Variables
• Problem: Let Y = X1 + X2 where X1 and X2 are identical independent 

(iid) exponential r.v.s with parameter µ. Find the distribution of Y.

• Solution: 
The exponential PDF is given by
Using the convolution integral, the PDF for Y is computed as

One can show in general that the distribution of the sum of k iid
exponential r.v.s is given by

The above is referred to as k-stage Erlang distribution

Exercise: prove that the E[Y] = k/µ and Var[Y] = k/µ2
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Example 23: Sum of Random Number of  
Exponential Random Variables
• Problem: Let Y be the sum of k iid exponential r.v.s as in previous example. 

The number of random number k is itself a geometric r.v. with parameter p. 
Find the distribution of Y.

• Solution: 
Using the results of previous example, the Laplace transform of the r.v. Y 
conditioned on the fact k is equal to n is given by

Therefore, the average Laplace transform is given by 

Examining the last formula, one can conclude that the sum is itself an 
exponentially distributed r.v. with mean 1/(pµ)
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Inequalities and Bounds
• Markov Inequality

• Chebyshev Inequality

• Chernoff Bound
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Markov Inequality
• Let X be a nonnegative random number and h(X) is a 

nondecreasing function of X, then the expectation h(X) can be 
written as

Therefore, 

Two popular example of h(X), are h(X) = x and h(X) = eax

For h(X) = x, we can write

The above is referred to as the simple Markov inequality 
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Example 24: Markov Inequality
• Problem: Find the simple Markov inequality and 

compare with the exact survivor function for an 
Erlang 4 distribution with µ = 2.

• Solution:
E[X] is given by k/ µ = 2 (see example 23)
therefore, the simple Markov inequality is given by

The exact survivor function is evaluated as
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Example: Markov Inequality – cont’d
• Solution:

The former integral can be evaluated either 
numerically or using tables of integrals, using the 
latter,

( ) ( )
( ) 4

!1
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−−
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−
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−−
− k

jk
tetXP

k
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t

• The simple Markov 
inequality and the exact 
survivor function are plotted 
in the graph. It is clear the 
computed bound it quite 
loose!!

• Actually for 0<t <2 the 
bound value is greater than 
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Chebyshev Inequality
• Using Markov’s inequality one can write

Let Y = (X – E[X])2 E[Y] = Var[X]
therefore,

but P(|X-E[X]|2 ≥ ε2) is equal to P(|X-E[X]| 
≥ ε); Hence the inequality can be rewritten 
as

( ) [ ]
2

2

ε
ε YEYP ≤≥

[ ]( )( ) [ ]
2

22

ε
ε XVarXEXP ≤≥−

[ ]( ) [ ]
2ε

ε XVarXEXP ≤≥−
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Example 25: Chebyshev Inequality
• Problem: Find Chebyshev inequality for the 

Erlang 4 distribution of previous example.

• Solution:
The mean of the Erlang 4 distribution, E[X], 
is equal to k/µ=2, while variance is equal to 
k/µ2= 1.
Therefore, the inequality is then

( ) 2

12
ε

ε ≤≥−XP
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Example: Chebyshev Inequality –
cont’d
• Solution:

The exact solution of 
P(|X-2|≥ ε) is given by 

( ) ( ) 222 ≥+≥=≥− xXPXP εε
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• The graph shows a comparison between Chebyshev
inequality and the exact solution. The bound is loose!
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Chernoff Bound
• Using Markov’s bound, and letting h(t) = eαt; where 
α ≥ 0, one can write

where X(- α) is the Laplace transform of the variable 
X evaluated at s = - α.

• Note that for discrete r.v.s, Let z = eα in the 
previous expression, this results in the following 
bound

where N(z) is the probability generating function 
for the r.v. X.

( ) [ ] ( ) 0≥−=≤≥ −− ααααα XeeEedXP dXd

( ) ( ) 0ln ≥−≤≥ − ααNzjXP j
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Example: Chernoff Bound
• Problem: Find Chernoff bound for the Erlang

4 distribution of previous example.

• Solution:
Substituting directly into the Chernoff
bound formula,

To determine the value of α that minimizes 
the RHS we differentiate with respect to α
and solve for α
α= µ – k/t

( )
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Example: Chernoff Bound – cont’d
• Solution:

Therefore,

It is interesting to 
note that the 
bound decays at 
the same rate as 
that of the exact 
solution! 
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Weak Law of Large Numbers
• Let X1, X2, …, Xn be a sequence of iid random variables with 

finite mean E[X] = µ.
Define  Mn = 1/n (X1 +  X2 +  … +  Xn )

It can be shown that for ε > 0

lim P(|Mn – µ| < ε) = 1
n ∞

Note:
• Mn is referred to as the sample mean
• The weak law states that for a large enough fixed value of n, the 

sample mean using n samples will be close to the true mean with 
high probability

• The above is true even if the variance not finite!!

Prove this law
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