King Fahad University of Petroleum and Minerals
COE Department
COE 451: Design and Analysis of Local Area Networks
COURSE PROJECT

Polling Networks Simulation

Salman Ali Al-Qahtani
927863
Table of Contents
3Polling Networks Simulation

31
Polling Network and its Operation strategy:

31.1
Operation strategy:

41.2
Measuring the Performance:

52
System Modeling and Assumptions

52.1
Assumptions:

62.2
Simulation Model

62.2.1
Event Generation:

72.2.2
Simulation Flow Chart :

82.3
Numerical results:

82.3.1
Comparing analytical and simulation results

92.3.2
Performance Analysis

92.3.3
Effects of increasing the total number of stations

102.3.4
Effects of increasing the walking time

112.3.5
Exhaustive service versus K-limited service

112.3.6
Comments on the results

122.4
Simulation Form:

132.5
Simulation Code :

133
References:

Table of Figures

5Figure ‎1.2‑1: Polling Network Model

5Figure ‎1.2‑2: Cycle Time of one Poll (M<=N)

7Figure ‎2.2‑1 : Simulation Flow Chart

8Figure ‎2.3‑1: Mean total delay versus Throughput

8Figure ‎2.3‑2: Average number stored in station buffer versus Throughput

9Figure ‎2.3‑3: Mean delay versus throughput at different number of stations

9Figure ‎2.3‑4: average number of packets stored at a station versus throughput at different number of stations

10Figure ‎2.3‑5: Mean total delay versus throughput at different values of walking time

10Figure ‎2.3‑6: average number of packets stored at a station versus throughput at different values of walking time

11Figure ‎2.3‑7: Transfer delay versus throughputs for Exhaustive and K-limited

Polling Networks Simulation

1 Polling Network and its Operation strategy:

1.1 Operation strategy:
The basic feature of a polling network is the action of the central computer in polling each location, or station, on the network in some predetermined order to provide access to the channel. As each location is polled, the connected device, if it has data to transmit, uses the full data rate of the connecting channel to transmit its backlog to the central computer. In between polls, the connected devices accumulate packets, but do not transmit until polled. Transmissions between stations take place through the central computer, which receives all incoming packets and transmits them to the appropriate locations.

 In polling, the stations in the network are each given a chance to transmit, one at a time, according to a fixed order or sequence. When the last station in the sequence finishes transmitting based on the service policy, the first station in the sequence is again given the opportunity to transmit. One complete sequence is called a polling cycle or simply cycle. In the form of polling referred to as distributed or hub polling, when one station finishes transmitting its data, it informs the next station in the sequence of its chance by transmitting a special fixed-length packet called a poll. Logically (and perhaps even physically), the stations form a ring, with the polling order determined by the positions of the station in the ring.

When poll arrives to a station, the station will be served based on one of the following service policies:

· Exhaustive Policy: If an Exhaustive policy is in use, the server serves all packets at a queue that it finds upon arrival there, and the new packets that arrive after the server (while serving).

· Gated Policy: If a gated policy is in use, the server serves all packets at a queue that it finds upon arrival there, but no new packets that arrive after the server will be served.

· Limited Policy: If a Limited policy is in use, the server serves a limited number of packets.
1.2 Measuring the Performance:

The following parameters will be used to measure the performance:

· Throughput: the ratio of the total average arrival rate to the network to the total capacity of the network (both in packets/second).

[image: image1.wmf]R

X

M

S

__

l

=

· Average cycle time: the total time required to poll each station and return to the starting station in the polling sequence

[image: image2.wmf]S

Mw

T

c

-

=

1

· Average waiting delay: it is divided into to components

· the waiting delay in the station buffer while other station are being served.

· the waiting delay in the station buffer while the particular station is being served.

[image: image3.wmf])

1

(

2

)

1

(

2

)

/

1

(

__

S

R

X

S

S

M

S

Mw

W

-

+

-

-

=

 Assuming constant packet lengths

· Average number of packets stored in a station buffer: it is divided into two parts

· Those packets that arrive while a station inactive

· Those packets that arrive while the station is being served.

[image: image4.wmf])

1

(

2

)

1

(

2

)

/

1

(

__

S

R

X

S

S

M

S

Mw

W

N

-

+

-

-

=

=

l

l

l

· Average transfer delay: the total average time between packet arrival at station and its delivery to the central computer.

[image: image5.wmf]W

R

X

T

+

+

=

t

__

 where
[image: image6.wmf]t

is the end-to-end prorogation delay for the bus.

[image: image7.emf]Central

Computer

Station i

Station 3

S

ta

ti

o

n

2

S

t

a

ti

on

1

S

ta

ti

o

n

N

-1

Station N

Poll

direction

w



i



3



2



1



1



N



N

Figure ‎1.2‑1: Polling Network Model

[image: image8.emf]W

Service

Station i

Service

Station

i+1

W

Service

Station M

Service

Station 1

Service

Station i

T

C

One Cycle

Time

Figure ‎1.2‑2: Cycle Time of one Poll (M<=N)

2 System Modeling and Assumptions
2.1 Assumptions:
The polling network model for this simulation uses distributed polling. There are N queues indexed by i, 0 <= i <= N - 1. There is a single server that moves successively from queue i to queue (i + 1) mod N (Figure 1.2-1). The rate at witch packets arrive at a station for transmission on the network is the same for all stations. To simplify the model, we assume all packets except the poll are of the same length (constant packet lengths). A station that has permission to transmit (received the poll) transmits exhaustively, that is, until all massages in its input queue have been transmitted. This includes any packets that might arrive while the station has the poll and is transmitting other packets on the network. Packets arrive at each station according to a Poisson or Bernoulli process, independent of all other arrivals. The arrival rates at the station are identical.
The server has a switchover (Poll) time to go from queue i to queue (i + 1) mod N with fixed delay. This is called walk time (w) and it is required to transfer the poll from one station to another and synchronize the station for transmission to the central computer. We assume that the distance between stations are equals, so that the walks time are equals. The total time required to poll each station and return to the starting station in the polling sequence is called cycle time and the average cycle time is
[image: image9.wmf]T

C

 (Figure 1.2-2).
Each packet at queue i requires a service time that is related to the packet length, but since the packets size are equally likely then the service time is assumed to be constant time. The packets service times, walk time (Poll) and packets arrival processes are all mutually independent.
2.2 Simulation Model
2.2.1 Event Generation:

In our system we have three types of events:

· Packet Arrival event: Packets arrive at queue i according to:
· A Poisson process with the rate
[image: image10.wmf]l

i

. where the inter-arrival time is exponentially distributed, and the Next Arrival Time (Packets) = Clock Time + (- 1/
[image: image11.wmf]l

i

ln(u)) Where 0 <= u <=1

· Or a Bernoulli process with probability
[image: image12.wmf]p

i

. The Next Arrival Time (Packets) = Clock Time + (n * one unit time) Where n is the number of first success of Bernoulli process.

· Poll Arrival Event: Next Arrival Time (Poll) = Clock Time + WalkTime(w) where w is small constant value of time. And the sequence of Next station= (current station sequence +1) mod N
· Completion Event: Time of service Completion= Clock Time + Service Time (s) where s is constant value of time.
2.2.2 Simulation Flow Chart :

[image: image13.emf]Main Program:

Start Simulation

Procedure initialize:

Initialize The Model

 1. Set CLOCK=0.

 2. Set Cumulative statistics to 0

 3. Generate Initial events .

 4. Define Initial System State.

Obtain Input Parameters:

 1. Chose Arrival Distribution (Bernoulli or Poisson).

 2. Read Service time , Poll Delay .

 3. Service policy (E,G or L)

Advance Time Procedure:

1. Find Imminent Event e.

2. Advance CLOCK to its Time

3. delete this event from event list.

Join the Queue

Q[k]=Q[k]+1

Collect Statistics

Simulation Over

Compute Summary Statistics:

Utilization , Packet Delay , ..,etc

Check The Type of event e

e=1

NO

YES

e=3

e=2

Packet ARRIVAL

POLL

Arrival

COMPLETE

Notations

:

Event Type e:

 e=1 : ARRIVAL

 e=2 POLL arrival .

 e=3 : COMPLETE

Q[k]: Terminals’ Queue

 k= 1…..N

N: Number of terminals

PS: Polled Station

Queuing Policy:

 FIFO : first-in-first-out.

Service Policy:

 E: Exhaustive

 G: Gated

 L: Limited

END

Start

Step 1

Step 2

Step 3

Queue Empty?

NO

YES

1-Schedule Next Service Completion

2-Hold the poll

Schedule Next Arrival

Depart From Queue

Q[k]=Q[k] -1

ServicePolicyVoilated ?

Queue Empty ?

Pass POLL to the Next

Station PS=(PS+1) mod N

NO

YES

YES

Schedule New Service

NO

Schedule Its Next poll

FlowChart of Polling System Simulation

Salman Ali AlQahtani

Figure ‎2.2‑1 : Simulation Flow Chart
2.3 Numerical results:

2.3.1 Comparing analytical and simulation results

In this section we will compare the simulation model with the analytical equations described in section 4.3. The comparison of simulation results and numerical results obtained from solution of the analytical model is depicted in Figures (5.32-5.33). From the figures, the two results are almost in total agreements.
[image: image14.emf]MeanDelay_T

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

Delay_T

T_Analytical T_Sim

Figure ‎2.3‑1: Mean total delay versus Throughput
[image: image15.emf]0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

N

N_Analytical N_Sim

Figure ‎2.3‑2: Average number stored in station buffer versus Throughput
2.3.2 Performance Analysis

2.3.3 Effects of increasing the total number of stations

In this section, the effect of increasing the number of stations on the performance of polling networks is shown. As we expected, increasing the number of stations will increase the cycle time, and thereby increasing the waiting time of a packet. Consequently, increasing the waiting time will increase the average number of stored packets at station. See figures (2.3-3,2.3-4).

[image: image16.emf]0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

T

T_M=5 T_M=50 T_M=100

Figure ‎2.3‑3: Mean delay versus throughput at different number of stations
[image: image17.emf]0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

N

N_M=5 N_M=50 N_M=100

Figure ‎2.3‑4: average number of packets stored at a station versus throughput at different number of stations
2.3.4 Effects of increasing the walking time
In this section, the effect of increasing the walk time on the performance of polling networks is shown. As we expected, increasing the walk time will increase the cycle time, and thereby increasing the waiting time of a packet. Consequently, increasing the waiting time will increase the average number of stored packets at station. See figures (2.3-5,2.3-6).
[image: image18.emf]0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

T

T_w=0.05 T_w=0.1 T_w=0.15

Figure ‎2.3‑5: Mean total delay versus throughput at different values of walking time
[image: image19.emf]0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

N

N_w=0.05 N_w=0.1 N_w=0.15

Figure ‎2.3‑6: average number of packets stored at a station versus throughput at different values of walking time
2.3.5 Exhaustive service versus K-limited service
In this section the performance of polling networks using exhaustive service policy versus K-limited service policy in terms of average transfer delay are compared. Using the parameters: landa=0.4, M=5,w=0.1 Ts[0.05-0.45], we show how the mean transfer delay vary with parameter K . As shown in figure (2.3-7), the performances of two service policies are the same for the case of low and medium traffic load. For high traffic load, the transfer delay of K-limited service policy is less than exhaustive. However, when the parameter K is large enough, it functions nearly like the exhaustive service.
[image: image20.emf]MeanDelay_T

0

1

2

3

4

5

6

7

8

9

10

11

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Throughput_S

Delay_T

T_exh T_k=5 T_k=15 T_K=20 T_k=10

Figure ‎2.3‑7: Transfer delay versus throughputs for Exhaustive and K-limited
2.3.6 Comments on the results

 From examination of the equations and plots given in previous sections, we can make some comments on the design of polling networks. In fact, it is important to keep average of transfer delay and average of stored packets per station as small as possible. So, to do that, the number of stations should be restricted when the walking time is large and, correspondingly, if large number of stations is required , we should try our best to keep the walking time as small as possible.

 Also, both average of transfer delay and average of stored packets per station increase with throughput. Thus, as throughput increases, the performance in terms of delay will decrease, and more storage is required at the network stations.
In case of low and medium traffic load environments, the exhaustive and k-limited service disciplines are almost the same. However as throughput increases, k-limited service disciplines will provide more fairness than exhaustive. But as K becomes large enough, the performance K-limited discipline approaches the exhaustive.
2.4 Simulation Form:
[image: image21.png]PollingSimulationForm : Form:

Input

: e [
s @ Bemoli C poission || 04 |02 [005 | C Gated

Close

Output Parameters Run SaveOutput

Werlio [SLHo | Clock | TotalDelay_ST [No_P_Arriwed[Ho P Served| WG | W | T | S |TotPKiVisited VistCounter]
[S0215.2| 4455, 19962923] 0132| eoisz [o.d1tst[o.1718|0.2208] 0.0 20132 Ta061
T 2 | soots.o| 4421, 14965205] 19915 19915 [0.11011 [0.1720]0.2220] 0.1 19915 Ta0e1
T 5 | soots.| 4449 6dsetale] 20103 20103 [o.11115]0.1713[0.2213] 0.0 20103 Ta0se1
T | 4 | soots.o| 4433.59960830] Tooqe| 19548 | 0.1103 [0.1723]0.2223] 0.1 19545 Ta0se0
T [5 | soots.2| 44075496601 To906 19903 [0.11005[0.17150.2215] 0.1 19905 Ta0se0
2 | 1 | soio0.25| e3a.0401d5e| 20062] 2ooez[0.12507 [0.21560.3156] 0.2 20062 160401
2 | 2 | soio0.25] ezel edotenzs] Too4s| 1545 [0.12434[0.2145[0.3149] 0.2 19545 T60401
2 | 5 | soioo.2s| ez aeotseas] 20126 _201zs [0.12547[0.2146[0.3146] 0.2 20126 160401
2 | 4 | soio0.25] 2o oao1dzag 20006 20006 [0.12473]0.2145[0.3145] 0.2 20008, 160400
2 | 5 | soioo.25| e2dnsdotesd] Toaez| tomee [0.12383[0.2146 03146 0.2 19662 160400
5 | 1| sois.15] avs.os0zssio) 1954219541 [0.14201 [0 2537 [n.40a7] 0.3 1541 Ta0420
5 | 2 | sois.15] aoie.zsozesn| 19654 196% _[0.14167 [0.25a1 4wt 0.3 19655 Ta0420 =

[image: image22.png]MeanDelayGraphFormall: Form

—x-TAN ——T.SIM

T versus Throughput S

Platform (Microsoft Access 2003)

2.5 Simulation Code :

Attribute VB_Name = "poll"

Option Compare Database

' Declare Public constant.

Public Const ST_NO = 100, Q_Limit = 100000, Eevent_NO = 3

Global Landa, P, Meu, Clock, retval, MIAT, WalkTime, ServiceTime, WC, LastEventTime As Double

Global ServedPackets, NoofPacketServedInCurrentStation, MaxPacketToBeServed, NoOfIteration As Long

Global CurrentStation, NextStation, ArrivalType, ServiceType, NextEventType, NoofStations, RunType, TargetStation As Byte

Global PacketsDelay(ST_NO), PacketsDelayInQueue(ST_NO), TotalPaketsDelay, TimeOfArrival(ST_NO, Q_Limit), TotalDelays As Double

Global Qsize(ST_NO), ServedPacketPerStation(ST_NO), QueuedPackets(ST_NO), NumberOfCycle, MaxQ(ST_NO) As Long

Global VisitingCounter(ST_NO), NoofArrivedPackets(ST_NO), TotalPacktsVisited(ST_NO), LimitedParameter, SizeAtArrival As Long

Global TotalofWalkTime, TotalofSerciceTime, NextEventTime(Eevent_NO, ST_NO) As Double

Sub main()

 Initialization

 While (ServedPackets <= MaxPacketToBeServed) ' Check if simulation Over

 ScheduleNewEvent (CurrentStation) ' Find the next event

 Select Case NextEventType ' Evaluate TypeOfNextEvent.

 Case 1 '"ARRIVAL"

 PacketArrival (TargetStation) ' arrival to station i

 Case 2 '"POLL"

 PollArrival (TargetStation)

 Case 3 'COMPLETE

 Completion (TargetStation) ' serve queu i

 Case Else ' Other values.

 Debug.Print "Not between 1 and 3"

 End Select

 Wend

 Report

End Sub

'==

Sub Initialization()

 Dim i As Integer

 ' initialize all statistical parametrs and the events list

 NumberOfCycle = 0

 Clock = 0

 NextEventType = 0

 ServedPackets = 0

 SizeAtArrival = 0

 TotalDelays = 0

 NoofPacketServedInCurrentStation = 0

 LastEventTime = 0

 TimeSinceLastEvent = 0

 TotalofWalkTime = 0

 TotalofSerciceTime = 0

 If LimitedParameter = 0 Then LimitedParameter = 1000000000#

 For i = 1 To NoofStations

 PacketsDelay(i) = 0

 ServedPacketPerStation(i) = 0

 PacketsDelayInQueue(i) = 0

 NoofArrivedPackets(i) = 0

 Qsize(i) = 0

 MaxQ(i) = 0

 QueuedPackets(i) = 0

 VisitingCounter(i) = 0

 TotalPacktsVisited(i) = 0

 Next i

 For i = 1 To NoofStations

 If ArrivalType = 1 Then

 NextEventTime(1, i) = 0 'Clock + Bernouli((P))

 Else

 NextEventTime(1, i) = 0 'Clock + expon((MIAT))

 End If

 NextEventTime(3, i) = 1E+29

 TimeOfArrival(i, 1) = NextEventTime(1, i)

 Next i

 CurrentStation = 1 'Start polling first station

 NextStation = 1

 NextEventTime(2, 1) = WalkTime + Clock 'Send poll to first station

 WC = 0

End Sub

Sub ScheduleNewEvent(station As Byte)

 'the next event is either : (1) Arrival , (2)POLL ,(3) Call Completion

 'Return the event with Minimum Time And its type and Station Number

 'Calculate Statistics

 Dim tempevent, tempstation, j As Integer

 Dim TimeSinceLastEvent, MinTimeOfNextEvent, delay As Double

 Dim min1, min2 As Double

 NextEventType = 0

 MinTimeOfNextEvent = 1E+29

 ' Compair the nearst arrival with the next service time

 ' of curruent station and with the next poll

 ' return the nearset one in time with event time and advance

 For j = 1 To NoofStations

 If NextEventTime(1, j) < MinTimeOfNextEvent Then ' find nearest arrival

 MinTimeOfNextEvent = NextEventTime(1, j)

 NextEventType = 1

 TargetStation = j

 End If

 Next j

 If NextEventTime(3, station) <= MinTimeOfNextEvent Then 'compare with next service time

 ' of current station

 MinTimeOfNextEvent = NextEventTime(3, station)

 NextEventType = 3

 TargetStation = station

 End If

 tempevent = NextEventType

 tempstation = TargetStation

 min1 = MinTimeOfNextEvent

 If NextEventTime(2, 1) < MinTimeOfNextEvent Then ' compare with next poll time

 MinTimeOfNextEvent = NextEventTime(2, 1)

 NextEventType = 2

 TargetStation = NextStation

 End If

 If NextEventType = 2 And WalkTime = 0 Then

 j = 0

 For i = 1 To NoofStations

 If Qsize(i) > 0 Then j = j + 1 ' check if all sations empty

 Next i

 If j = 0 Then ' if all stations are empty advance to nearst arrival

 MinTimeOfNextEvent = min1 '

 NextEventTime(2, 1) = min1

 TargetStation = tempstation

 End If

 End If

 If NextEventType = 0 Then

 ret = MsgBox("\n event list is empty at Clock" & Clock, vbOKOnly, "WARRING")

 Exit Sub

 End If

 Clock = MinTimeOfNextEvent 'Advanced clock time

 ' calculate Statistics

 TimeSinceLastEvent = Clock - LastEventTime

 LastEventTime = Clock

 TotalDelays = TotalDelays + TimeSinceLastEvent

 If NextEventType = 2 Then TotalofWalkTime = WalkTime + TotalofWalkTime

 'TotalDelayOfCustomersInQueue = TotalDelayOfCustomersInQueue + NoOfCustomerInQueue * TimeSinceLastEvent

 'TotalTimeServerBusy = TotalTimeServerBusy + ServerStatus * TimeSinceLastEvent

 ' For j = 1 To NoofStations

 ' PacketsDelay(j) = PacketsDelay(j) + Qsize(j) * TimeSinceLastEvent

 ' Next j

 End Sub

'===

Sub PacketArrival(station As Byte)

 Dim i, j As Byte

 Call ScheduleNextEvent(station, "ARRIVAL") ' schedule next event time

 NoofArrivedPackets(station) = NoofArrivedPackets(station) + 1

 Qsize(station) = Qsize(station) + 1

 QueuedPackets(station) = QueuedPackets(station) + 1

 TimeOfArrival(station, Qsize(station)) = Clock ' record packet arrival time

 If Qsize(station) > MaxQ(station) Then MaxQ(station) = Qsize(station)

End Sub

'===

Sub PollArrival(station As Byte)

 ' Check if polled station has packets

 ' otherwise pass the poll

 VisitingCounter(station) = VisitingCounter(station) + 1

 TotalPacktsVisited(station) = TotalPacktsVisited(station) + Qsize(station)

 SizeAtArrival = Qsize(station)

 If Qsize(station) > 0 Then

 Call ScheduleNextEvent(station, "COMPLETE") 'start serving current station

 NextEventTime(2, 1) = 1E+29 'hold the poll

 Else

 Call ScheduleNextEvent(station, "POLL") 'pass the poll

 End If

End Sub

'==

Sub Completion(station As Byte)

 Dim i As Long

 Dim delay As Double

 ' Collect statistics

 If Qsize(station) > 0 Then

 delay = Clock - TimeOfArrival(station, 1)

 PacketsDelay(station) = PacketsDelay(station) + delay

 ServedPackets = ServedPackets + 1

 ServedPacketPerStation(station) = ServedPacketPerStation(station) + 1

 NoofPacketServedInCurrentStation = NoofPacketServedInCurrentStation + 1

 Qsize(station) = Qsize(station) - 1

 TotalofSerciceTime = ServiceTime + TotalofSerciceTime

 End If

 '========= check for service policy type

 ' 1- exahustive serve all packets

 ' 2- gated serve SizeAtArrival

 ' 3- limited serve LimitedParameter

 '==

 If ServiceType = 3 And NoofPacketServedInCurrentStation >= LimitedParameter Then

 NoofPacketServedInCurrentStation = 0

 Call ScheduleNextEvent(station, "POLL") 'if limitedfactor exceeded pass poll

 Else

 If ServiceType = 2 And NoofPacketServedInCurrentStation >= SizeAtArrival Then

 NoofPacketServedInCurrentStation = 0

 SizeAtArrival = 0

 Call ScheduleNextEvent(station, "POLL") 'f limitedfactor exceeded pass poll

 Else

 If Qsize(station) = 0 Then

 NextEventTime(3, station) = 1E+29 ' hold its serving time and move
 to next station

 TimeOfArrival(station, 1) = 0

 Call ScheduleNextEvent(station, "POLL") 'if last packet pass poll

 NoofPacketServedInCurrentStation = 0

 SizeAtArrival = 0

 Else

 For i = 1 To Qsize(station) ' advance the packet in queue

 TimeOfArrival(station, i) = TimeOfArrival(station, i + 1)

 Next i

 Call ScheduleNextEvent(station, "COMPLETE")

 End If

 End If

 End If

End Sub

'==

Sub ScheduleNextEvent(station As Byte, EventType As String)

 Dim U As Double

 If EventType = "ARRIVAL" Then

 If ArrivalProcess = "Poission" Then

 NextEventTime(1, station) = Clock + expon((MIAT))

 Else

 NextEventTime(1, station) = Clock + Bernouli((P))

 End If

 End If

 If EventType = "COMPLETE" Then

 NextEventTime(3, station) = Clock + ServiceTime

 PacketsDelayInQueue(station) = PacketsDelayInQueue(station) + Clock –
 TimeOfArrival(station, 1)

 End If

 If EventType = "POLL" Then

 NextEventTime(2, 1) = Clock + WalkTime

 NextStation = (station + 1) Mod NoofStations ' Station Seq 1,2,........,N

 If NextStation = 0 Then ' reaching last station

 NextStation = NoofStations

 NumberOfCycle = NumberOfCycle + 1

 End If

 CurrentStation = NextStation

 End If

End Sub

'==

 Function expon(mean As Double) As Double

 Dim U As Double

 Randomize

 U = Rnd

 expon = -mean * Log(U)

 End Function

 '==

 Function Bernouli(P As Double) As Double

 Dim U, i As Double

 Randomize

 U = Rnd

 i = 1

 While (U > P) ' search for first success

 Randomize

 U = Rnd

 i = i + 1

 Wend

 Bernouli = i ' return the next slot time of the next arrival

 End Function

'==

 Sub Report()

 'Writing OutPut Parameters

 Dim str As String

 Dim db As Database

 Dim rst As Recordset

 Dim retval As Integer

 Dim i As Integer

 str = "SELECT OutPutTable.* FROM OutPutTable;"

 Set db = CurrentDb()

 Set rst = db.OpenRecordset(str)

 For i = 1 To NoofStations

 rst.AddNew

 rst!Clock = Clock

 rst!MaxDelay = 0 'MaxDelay(i)

 rst!IterationNo = NoOfIteration

 rst!MaxQueueSize = MaxQ(i)

 rst!NoOfPacketArrived = NoofArrivedPackets(i)

 rst!NoOfPacketServed = ServedPacketPerStation(i)

 rst!NoofStations = NoofStations

 rst!StationNo = i

 rst!ArrivalRate = 1 / MIAT

 rst!PacketsInqueue = QueuedPackets(i)

 rst!PacketsDelay = PacketsDelay(i)

 rst!VisitingCounter = VisitingCounter(i)

 rst!ServiceTime = ServiceTime

 rst!WalkTime = WalkTime

 rst!TotalDelay = TotalDelays

 rst!AverageDelay = PacketsDelay(i) / ServedPacketPerStation(i)

 rst!TotalPacktsVisited = TotalPacktsVisited(i)

 rst!NQ = TotalPacktsVisited(i) / VisitingCounter(i) 'PacketsDelayInQueue(i) / PacketsDelay(i)

 rst!NQ2 = TotalPacktsVisited(i) / VisitingCounter(i)

 rst!T = PacketsDelay(i) / ServedPacketPerStation(i)

 rst!W = PacketsDelayInQueue(i) / QueuedPackets(i)

 ' rst!S = TotalofSerciceTime / Clock

 rst!S = NoofStations * (1 / MIAT) * ServiceTime

 rst.Update

 Next i

 rst.Close

 Set db = Nothing

 End Sub

3 References:
[1] Joseph L.Hammond and Peter J.P. O’Reilly “Performance Analysis of Local Computer Networks”, 1986, Addison-wesley publishing company.
[2] Course slides and notes.

PAGE
13

_1132477261.unknown

_1132478094.unknown

_1132478509.unknown

_1133522827.xls
Chart2

		0.1		0.1		5.5460671329

		0.2		0.2		6.2353936958

		0.3		0.3		7.1092409134

		0.4		0.4		8.2418953514

		0.5		0.5		9.9137715626

		0.6		0.6		12.2781901741

		0.7		0.7		16.149503355

		0.8		0.8		23.5092690849

		0.9		0.9		43.5494844437

T_M=5

T_M=50

T_M=100

Throughput_S

T

0.3511884511

2.7779776621

0.4516433239

3.1205803823

0.535733211

3.571291213

0.6581129313

4.1694646072

0.8095020771

4.9789332008

1.0450991392

6.1796527004

1.3871571541

8.241780777

2.073920536

12.4240855789

4.3391717911

26.0617191315

Comparison

		

								landa=0.4, M=5,w=0.1 Ts[0.05-0.45]

								Analytical Results				Simulation

						S		T		N		T		N

						0.1		0.325		0.11		0.3511884511		0.2209888697

						0.2		0.4125		0.125		0.4516433239		0.2485009342

						0.3		0.5178571429		0.1471428571		0.535733211		0.2802971065

						0.4		0.65		0.18		0.6581129313		0.31951015

						0.5		0.825		0.23		0.8095020771		0.3726514935

						0.6		1.075		0.31		1.0450991392		0.4515074551

						0.7		1.475		0.45		1.3871571541		0.588707149

						0.8		2.25		0.74		2.073920536		0.8664691806

						0.9		4.525		1.63		4.3391717911		1.6251008034

Comparison

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

T_Analytical

T_Sim

Throughput_S

Delay_T

MeanDelay_T

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M_Increase

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

N_Analytical

N_Sim

Throughput_S

N

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

W_Increase

						landa=0.4, M=5,50,100,w=0.1

				Simulation Results

						M=5				M=50				M=100

				S		T		N		T		N		T		N

				0.1		0.3511884511		0.2209888697		2.7779776621		2.2197725534		5.5460671329		4.3986797762

				0.2		0.4516433239		0.2485009342		3.1205803823		2.4893146658		6.2353936958		4.9539830542

				0.3		0.535733211		0.2802971065		3.571291213		2.8401160812		7.1092409134		5.6497707891

				0.4		0.6581129313		0.31951015		4.1694646072		3.3123539257		8.2418953514		6.5489624357

				0.5		0.8095020771		0.3726514935		4.9789332008		3.9372067642		9.9137715626		7.8618998051

				0.6		1.0450991392		0.4515074551		6.1796527004		4.8722492027		12.2781901741		9.7271483612

				0.7		1.3871571541		0.588707149		8.241780777		6.4856842327		16.149503355		12.6790214062

				0.8		2.073920536		0.8664691806		12.4240855789		9.7517477417		23.5092690849		18.1767777824

				0.9		4.3391717911		1.6251008034		26.0617191315		20.166149826		43.5494844437		32.1632147789

W_Increase

		

T_M=5

T_M=50

T_M=100

Throughput_S

T

		

N_M=5

N_M=50

N_M=100

Throughput_S

N

								landa=0.4, M=5,w=0.05,0.1,0.15

				Simulation Results

						w=0.05				w=0.1				w=0.15

				S		T		N		T		N		T		N

				0.1		0.2225422233		0.1112128064		0.3511884511		0.2209888697		0.4588238239		0.3319987118

				0.2		0.3141393006		0.1244773567		0.4516433239		0.2485009342		0.5496108174		0.3669137716

				0.3		0.4035417497		0.142454201		0.535733211		0.2802971065		0.6658242941		0.4104655504

				0.4		0.4984656394		0.1635593504		0.6581129313		0.31951015		0.8122440815		0.4694536626

				0.5		0.6181666315		0.1933153868		0.8095020771		0.3726514935		1.0112223268		0.5528838634

				0.6		0.7857524633		0.2331814587		1.0450991392		0.4515074551		1.2964036703		0.6742588043

				0.7		1.0668413162		0.3076135278		1.3871571541		0.588707149		1.7159768581		0.8729722738

				0.8		1.5655405998		0.4419879675		2.073920536		0.8664691806		2.5848481655		1.2596915245

				0.9		3.3944821835		0.9081346869		4.3391717911		1.6251008034		6.187505722		2.5249888897

		

T_w=0.05

T_w=0.1

T_w=0.15

Throughput_S

T

		

N_w=0.05

N_w=0.1

N_w=0.15

Throughput_S

N

_1132478337.unknown

_1132477597.unknown

_1128005592.vsd
Central Computer�

Station 1�

Station 2�

Station 3�

Station i�

Station N�

Station N-1�

Poll direction�

�

_1131555517.vsd
�

�

�

Main Program:
Start Simulation��

Procedure initialize:
Initialize The Model� 1. Set CLOCK=0.
 2. Set Cumulative statistics to 0� 3. Generate Initial events .� 4. Define Initial System State.
Obtain Input Parameters:
 1. Chose Arrival Distribution (Bernoulli or Poisson).� 2. Read Service time , Poll Delay .
 3. Service policy (E,G or L)�

Advance Time Procedure:
1. Find Imminent Event e.
2. Advance CLOCK to its Time
3. delete this event from event list.�

Schedule Next Arrival�

Depart From Queue�Q[k]=Q[k] -1�

ServicePolicyVoilated ?�

Join the Queue
Q[k]=Q[k]+1�

Collect Statistics�

Simulation Over�

Compute Summary Statistics:
Utilization , Packet Delay , ..,etc

 �

Check The Type of event e�

�

Packet ARRIVAL�

POLL Arrival�

COMPLETE�

NO�

YES�

e=1�

1-Schedule Next Service Completion�2-Hold the poll�

NO�

YES�

e=3 �

e=2�

Notations:
Event Type e:
 e=1 : ARRIVAL
 e=2 POLL arrival .
 e=3 : COMPLETE

Q[k]: Terminals� Queue
 k= 1�..N
N: Number of terminals�PS: Polled Station�Queuing Policy:
 FIFO : first-in-first-out.
 Service Policy:
 E: Exhaustive
 G: Gated
 L: Limited�

END�

Start�

Step 1�

Step 2�

Step 3�

Queue Empty?�

Queue Empty ?�

Pass POLL to the Next Station PS=(PS+1) mod N�

NO�

YES�

YES�

Schedule New Service�

NO�

Schedule Its Next poll�

FlowChart of Polling System Simulation�

Salman Ali AlQahtani�

_1132477078.unknown

_1128006272.unknown

_1127853382.vsd
W�

Service�Station i�

Service�Station �i+1�

W�

Service�Station M�

Service�Station 1�

Service�Station i�

One Cycle�

Time�

_1127893801.unknown

_1127836718.unknown

