

Table 2-2. Key Features of Previous Generations of IA-32 Processors							
Intel Processor	Date Intro- duced	Max. Clock Frequency at Intro- duction	Transis -tors per Die	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	None
Intel 286	1982	12.5 MHz	134 K	16 GP	16	16 MB	Note 3
Intel386 DX Processor	1985	20 MHz	275 K	32 GP	32	4 GB	Note 3
Intel486 DX Processor	1989	25 MHz	1.2 M	32 GP 80 FPU	32	4 GB	L1: 8KB
Pentium Processor	1993	60 MHz	3.1 M	32 GP 80 FPU	64	4 GB	L1:16KB
Pentium Pro Processor	1995	200 MHz	5.5 M	32 GP 80 FPU	64	64 GB	L1: 16KB L2: 256KI or 512KB
Pentium II Processor	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1: 32KB L2: 256KI or 512KB
Pentium III Processor	1999	500 MHz	8.2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32KB L2: 512KI
NOTES: 1. The register size and e (GP) registers can be 2. Internal data paths tha	external da addressed it are 2 to 4	ita bus size are as an 8- or a 4 times wider ti	e given in b 16-bit data nan the ext	oits. Note als registers in ernal data b	o that ea all of the j us for ead	ch 32-bit g processors	eneral-purp or.

Intel Processor	Date Intro- duced	Micro- Architecture	Clock Frequency at Intro- duction	Transis- tors Per Die	Register Sizes ¹	System Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²	
Pentium III and Pentium III Xeon Processors ³	1999	P6	700 MHz	28 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	Up to 1.06 GB/s	64 GB	32-KB L1; 256-KB L2	
Pentium 4 Processor	2000	Intel NetBurst Micro- architecture	1.50 GHz	42 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Execution Trace Cache: 8KB L1; 256-KB L2	
Intel Xeon Processor	2001	Intel NetBurst Micro- architecture	1.70 GHz	42 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 256-KB L2	
Intel Xeon Processor ⁴	2002	Intel NetBurst Micro- architecture; Hyper- Threading Technology	2.20 GHz	55 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 512-KB L2	
Intel [®] Xeon™ Processor MP ⁴	2002	Intel NetBurst Micro- architecture; Hyper- Threading Technology	1.60 GHz	108 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 256-KB L2; 1-MB L3	
NOTES 1. The registr 2. First level 3. Intel Pentii process te 4. Hyper-Thr	er size an cache is c um III and chnology, eading teo	d external data I lenoted using th Pentium III Xeo were introduce chnology is impli	bus size are g e abbreviatio on processors d in October 1 emented with	iven in bits n L1, 2nd le , with adva 1999. two logical	evel cache is nced transfe processors.	denoted a	as L2 nd built o	n 0.18 micron	

4	Implementation Technology Trends Four implementation technologies of interest	
	 Integrated circuit logic Transistor density: increases by ~35% per year Die size: increases by ~10-20% per year The combined effect is a growth rate in transistor count on a chip of about ~55% per year 	
	 Semiconductor DRAM Capacity increases by ~40-60% per year Cycle time has not decreased as much: ~33% over 10 years Bandwidth has increased: about ~66% more over 10 years Also, changes to the interface have helped further improve bandwidth 	
	 Magnetic disk technology Recently, capacity improving by ~100% every year (quadrupling in two years) Access time has improved by one-third in 10 years 	
	 Network technology More improvements in bandwidth, less in latency Bandwidth doubling every year in US Gigabit Ethernet available 	
	Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A	8

Where Has This Performance Improvement	
recimology	
– More transistors per chip	
– Faster logic	
Machine Organization/Implementation	
– Deeper pipelines	
 More instructions executed in parallel 	
Instruction Set Architecture	
 Reduced Instruction Set Computers (RISC) 	
 Multimedia extensions 	
 Explicit parallelism 	
Compiler technology	
 Finding more parallelism in code 	
 Greater levels of optimization 	
Lecture Slides on Computer Arch 11 & Assembly Lang ICS 233 @ Dr A	

Inside the Pentium 4 Processor Chip

Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A R Naseer

Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A 18

17

Datapath Components	
Program Counter (PC)	
 Contains address of instruction to be fetched 	
 Next Program Counter: computes address of next instruction 	
 Instruction and Data Caches 	
 Small and fast memory containing most recent instructions/data 	
Register File	
 General-purpose registers used for intermediate computations 	
 ALU = Arithmetic and Logic Unit 	
 Executes arithmetic and logic instructions 	
Buses	
 Used to wire and interconnect the various components 	
Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A	28

Tool		MARS Assembler and Simulator				
Tool						
C:\Documents and Settings\Muhamed Mudawar\My Documents\ICS 233\Tools\MARS\Fibon	acci.a	sm - MAR	\$ 3.2.1	_ 0 🛛		
<u>File Edit R</u> un <u>S</u> ettings <u>T</u> ools <u>H</u> elp						
Edit Execute		Regist	ers Copre	DC 1 Coproc 0		
1 # Compute first twelve Fibonacci numbers and put in array, then print		Name	Number	Value		
2 .data		\$zero	0	0x00000000 🔺		
3 fibs: .word 0 : 12 # "array" of 12 words to contain fib values		\$at	1	0x00000000		
4 size: .word 12 # size of "array"	=	\$v0	2	0x00000000		
5 .text		\$v1	3	0x00000000		
6 la \$t0, fibs # load address of array		\$a0	4	0x00000000		
7 la \$t5, size # load address of size variable		\$a1	5	0x00000000		
8 lw \$t5. 0(\$t5) # load array size		\$a2	6	0x00000000		
9 li \$t2, l # l is first and second Fib, number		\$83	7	0x00000000		
10 add.d \$f0, \$f2, \$f4		\$1U 6+1	8	0x00000000		
11 sw \$t2.0(\$t0) # F[0] = 1		φι] (¢+0	9	0x00000000		
12 sw \$t2, 4(\$t0) # F[1] = F[0] = 1		φ12 \$t3	10	0x00000000		
13 addi \$t1, \$t5, -2 # Counter for loop, will execute (size-2) times		\$t4	12	0×00000000		
14 loop: lw \$t3, 0(\$t0) # Get value from array F[n]		\$t5	13	0x00000000		
15 lw \$t4, 4(\$t0) # Get value from array F[n+1]		\$t6	14	0x00000000		
16 add \$t2, \$t3, \$t4 # \$t2 = F[n] + F[n+1]	-	\$t7	15	0x00000000		
•		\$s0	16	0x00000000		
Line: 1 Column: 1 🗹 Show Line Numbers		\$s1	17	0x00000000		
		\$s2	18	0x00000000		
Mars Messages Run I/O		\$s3	19	0x00000000		
		\$s4	20	0x00000000		
		\$s5	21	0x00000000		
Clear		\$s6	22	0x00000000		
		\$s7	23	0x00000000		
Lecture Slides on Computer Arch				42		
& Assembly Lang ICS 233 @ Dr A						

