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Abstract

The construction of sea walls requires accurate predictions of hazard levels. These

are commonly expressed in terms of wave overtopping rates. Alarge amount of data

related to wave overtopping has recently become available.Use of this data has al-

lowed the development of artificial neural networks, which have the aim of accurately

predicting wave overtopping rates. The available data cover a wide range of structural

configurations and sea conditions. The neural networks created therefore constitute a

unified, generic approach to the problem of wave overtoppingprediction.

Neural network models are developed using two standard approaches: multi-layer

perceptron (MLP) networks and radial basis function (RBF) networks. A novel hy-

brid approach is then developed. The hybrid networks combine the properties of MLP

and RBF networks. This is achieved firstly through a hybrid architecture, which con-

tains artificial neurons of the types used in both MLP and RBF networks. Secondly,

the hybrid networks are trained using a hybrid algorithm which combines the gradi-

ent descent method usually associated with MLP networks with a more determinis-

tic forward-selection-of-centres method commonly used byRBF networks. The hy-

brid networks are shown to have better generalisation properties with the overtopping

dataset than have basic MLP or RBF networks. They have been named ‘global-local

artificial neural networks’ (GL-ANNs) to reflect their ability to model both global and

local variation in an input-output mapping.

The properties of GL-ANNs are explored further through the use of a number of

benchmark datasets. It is shown that GL-ANNs often contain fewer neurons than the

corresponding RBF networks and have less need of regularisation when setting inter-

neuronal weights. Some criteria for determining whether the GL-ANN approach is

likely to be beneficial for a particular dataset are also developed. Such datasets are

seen to be those that have inter-parameter relationships that operate on both a local and

global level. The overtopping dataset used within this study is seen to be typical of

such datasets.
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Notation

Vector and matrix quantities are indicated bybold type. Where possible, the use of the

same symbol for more than one purpose has been avoided. However, in cases where

the same symbol is widely used in more than one area of study this symbol has been

retained. The symbols concerned areC, g, u, v, α, η, λ andσ. When these symbols are

used the intended meaning should be clear from the context.

A empirically determined coefficient in parametric regression

A design matrix of a partly interpolated neural network

Ac armour crest freeboard of a structure

B empirically determined coefficient in parametric regression

Bh width of berm of a structure

Bt width of toe of a structure

C empirically determined coefficient in parametric regression,

capacitance of an electrical circuit

Cd discharge coefficient

d Euclidean distance between input and weight vectors

E squared error of an artificial neural network

f general function

fi fan-in to a neuron

fJ a column in the full design matrix

f̃J a column in the orthogonal component of the full design matrix

F Froude number

F design matrix of a fully interpolated neural network

F̃ orthogonal component of the full design matrixF

g acceleration due to gravity, general function

g error gradient

Gc width of structure crest

xv



h water depth at the base of the toe of a structure

hB water depth over the berm of a structure

ht water depth over the toe of a structure

h∗ wave breaking parameter

H Hessian matrix

Hm0,toe significant wave height at the toe of a structure, from spectral analysis

H1/3,toe average height of the highest 1/3 of the waves in a random wave-train

i individual local input to an artificial neuron

i local input vector to an artificial neuron

I identity matrix

l characteristic length in dimensional analysis

L inductance of an electrical circuit

m0 variance of the water surface elevation

p pressure

P general smoothing function

P projection matrix

q overtopping discharge per unit length of wall per unit time

q0 the dimensionless overtopping dischargeq/
(

gHm0,toe
)0.5

Q∗ a general dimensionless overtopping discharge

r previous search direction during gradient descent

R resistance of an electrical circuit

R0 the dimensionless crest freeboardRc/Hm0,toe

Rc crest freeboard

Rmax maximum wave run-up

R∗ a general dimensionless crest freeboard

R2 linear regression coefficient of determination

s spread, or width, of a radial basis function

s current search direction during gradient descent

S sum of squared errors

sm−1,0 wave steepness

t target output

t vector target of a neuron given a number of different inputs

T pseudo-temperature used in simulated annealing

Tm−1,0,deep wave period in deep water, from spectral analysis

Tm−1,0,toe wave period at the toe of a structure, from spectral analysis

xvi



Tp,deep peak wave period in deep water

T0 dimensionless mean wave period,Tm−1,0toe
(

g/Hm0,toe
)0.5

u depth-averaged component of velocity in the x-direction ,

net input to a hidden layer artificial neuron

v depth-averaged component of the velocity in the y-direction,

net input to an artificial neuron

w synaptic weight within an artificial neural network

w weight vector of an artifical neuron

x individual input to an artificial neural network

x input vector to an artificial neural network

y output of an artificial neuron

y vector output of a neuron given a number of different inputs

Z impedance of an electrical circuit

α momentum coefficient, zero of a general function

αd slope below berm

αu slope above berm

β angle of wave attack relative to the normal, in degrees

γ minimum line search coefficient

γb empirical berm reduction factor

γ f roughness/permeability factor of a structure

γh empirical depth reduction factor

γβ empirical wave attack angle reduction factor

δ delta, a common factor used in calculating weight updates

∆w weight update

η learning rate, water surface elevation

λ regularisation or weight decay coefficient, Levenberg-Marquardt

coefficient

ξ breaker parameter

ρ density

σ steepness parameter in a radial basis function, correlation coefficient

τ characteristic time in dimensional analysis

ϕ geopotential

ω angular frequency
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Chapter 1

Introduction

1.1 Historical Overview

In England and Wales it is estimated that 1.8 million homes and 140,000 commercial

properties are in areas at risk of flooding or coastal erosion[1]. The value of the assets

at potential risk has been estimated at £237 billion [2]. Hazards range from damage to

property and vehicles [3] to threats to human life - between 1999 and 2002 at least 12

lives were lost as a result of individuals being swept off coastal paths, breakwaters and

seawalls [4]. In addition, flooding has ‘intangible’ effects on the people affected. A

recent report from the Department for Environment Food and Rural Affairs (DEFRA)

found that they experienced considerable health problems,particularly psychological

effects [5].

Considerable time and money is devoted to the construction and maintenance of

sea defences - the expected cost on infrastucture in Englandand Wales for the year

2005-6 is £320 million [2]. This investment is likely to riseas a result of the increase

in mean sea levels and in the frequency of storm surges causedby global warming

[1]. However, due to the cost and the environmental impact ofsea-walls it is important

not to over-engineer sea defences, so accurate methods for predicting the efficacy of a

particular design are essential [6, 4].

Concern with the construction of sea defences is not new. For hundreds of years

it has been considered necessary to protect human activities and property from the

destructive power of the oceans.

In 1014 a ‘great sea flood’ hit a broad area along the South Coastof England.

This storm is recorded in the ‘Anglo-Saxon Chronicle’ [7]. Itcaused major land-

slides at Portland and many towns were washed away. Water levels in London rose

1
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to unprecedented levels [8].

In 1607, high water levels in the Bristol Channel caused flooding over an area of

520km2 in South-West England and South Wales, killing around 2000 people [8]. It

is not known whether the water levels were caused by a storm surge or by a tsunami

[9, 10, 11]. Shortly afterwards, Lord Coke declared that it was the responsibility of the

state to defend the population against the sea.

by the Common Law ... the King of Right ought to save and defend

his Realm, as well against the Sea, as against the Enemies, that the same

be not drowned or wasted [12]

The ‘great storm’ of 1703 caused enormous damage to propertyand the ferocity of

the storm inspired Daniel Defoe to write his first book, ‘The Storm’ [13], the following

year [14]. Hundreds of ships were destroyed resulting in thedeaths of at least 8000

seamen [14]. Wind-speeds are thought to have been in the region of 120 mph [15].

They caused enormous damage to buildings, destroying 400 windmills and blowing

down thousands of chimney-stacks and millions of trees. Off the Plymouth coast,

the recently completed Eddystone Lighthouse was destroyed, killing its builder Henry

Winstanley [16]. Storm surges caused major flooding at Bristol and Brighton. The

estimated costs of repairs in the United Kingdom was equivalent to £10 billion today

[14].

On 31 January 1953 strong winds, low pressure and high tides led to storm surges

along the East coast of England, reaching a height of nearly 3metres at King’s Lynn.

Flood defences were breached, affecting coastal towns in Lincolnshire, Norfolk, Suf-

folk, Essex and Kent. Over 300 people died and 24000 homes were flooded [17]. The

clean-up operation took weeks and is estimated to have cost the equivalent of £5 billion

today [18]. The affect on the Netherlands was even more devastating: 50 dykes burst

and over 1800 people were killed. Following on from this flood, the British govern-

ment put in place a storm warning system [19]. However, by 1993, a report found that

41% of these were in ‘moderate or significant’ need of repair [20]. In response to this

report the Environment Agency was created in 1996, with responsibility for flood de-

fences and flood warnings [18]. The British Government is currently developing a new

strategy for flood and coastal changes within the context of sustainable development

and climate change [21].

On an international level there have been two major coastal floods in the last year.

On 26 December 2004 an earthquake occurred off the Indonesian coast. This trig-

gered tsunami waves that affected thirteen countries including Indonesia, Thailand, Sri
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Lanka, India and Somalia. Over 200,000 people were killed and 5 million made home-

less by the tsunami. An Indian Ocean early warning system is now being designed at

an estimated cost of $20 million [22]. On 29 August 2005, a class 4 hurricane hit New

Orleans. The water depth of Lake Pontchatrain rose dramatically as a result of heavy

rainfall and a storm surge. This caused some of the city’s levees to break, resulting in

flooding to a depth of 6 metres in some parts of the city. The number of deaths is not

yet accurately known but is expected to run into thousands, and the cost of repair is

likely to be tens of billions of dollars [23].

1.2 Hazard Levels and Wave Overtopping Rates

Adequate defences require accurate predictions of the effectiveness of a particular de-

sign. One way to do this is to estimate the volume of water likely to ‘overtop’ a

sea-wall, given information concerning the structure of the wall, the sea-state and me-

teorological information. This value is generally recorded as an average overtopping

rate per metre of seawall, over the period of a storm. Safe overtopping rates have been

estimated by Owen [24]. Different hazard levels have been identified for pedestrians,

vehicles and buildings, as illustrated in figure 1.1. Franco[25] has further differentiated

hazard levels according to the type of seawall.

There have been doubts expressed as to the accuracy of mean overtopping rates as

a predictor of hazard level [4]. Maximum instantaneous overtopping rates or velocities

are likely to be a better guide to hazard level. However, the prediction and measure-

ment of peak instantaneous overtopping volumes is prone to considerable variability at

the current time, so mean overtopping rates are still the most commonly used predictor

of hazard levels. In recent years two paradigms have emergedthat produce an estimate

of this quantity: curve-fitting and numerical simulation.

Curve-fitting is an empirical approach. It takes results obtained from laboratory

tests on scale models and uses them to set parameters within aparametric regression

model. It has the advantage that, once the parameters have been set, the resulting curve

may be used to predict results instantly for previously unknown scenarios. The process

involved is essentially one of interpolation. However, empirical curve-fitting requires

the generation of large amounts of accurate data from laboratory tests. It is therefore

time-consuming and expensive. Further, each parametric model is only applicable to a

limited range of structures, necessitating the generationof a series of alternative curves.

Numerical simulation yields results for a particular scenario more quickly than
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do laboratory models. Further, it gives a time-dependent picture of the progress of a

storm. It is therefore able to provide information in addition to mean overtopping rates,

such as instantaneous water pressure. However, this methodalso has its drawbacks.

The results of the computational approach are not easily generalised. Whereas the

empirical approach results in a curve that may be used for interpolation, numerical

simulation must be repeated for each individual scenario.

When used to predict overtopping at ‘real’ seawalls, both approaches involve the

use of certain approximations. The empirical approach is dependent on laboratory-

scale data, and their validity therefore depends upon the scalability of results from

freshwater scale-models to full-scale seawater sites. Theapproximations made during

the scaling process are discussed in section 1.3. The numerical approach requires

the parameterisation of very complex scenarios. In order tomake the mathematical

models tractable it is necessary to make assumptions and approximations, as described

in section 1.4.

This thesis presents a new approach to wave overtopping prediction using artificial

neural networks (ANNs). ANNs were originally envisaged as models of the mam-

malian brain. However, for the purposes of this study they may be seen as a method for

achieving non-parametric (or semi-parametric) regression. They share the advantage

of the curve-fitting approach: once their internal parameters have been set to appropri-

ate values, they are able to interpolate (and in some cases extrapolate) to values that

were not used in setting their parameters. However, unlike the curve-fitting approach,

ANNs are not limited by the choice of any particular mathematical function. A single

ANN may therefore be used as a generic prediction tool acrossa wide range of sea-

walls and sea-conditions. ANNs have the further advantage that they perform well in

the presence of ‘noisy’ data. This means that an ANN may utilise data from full-scale

sites measured under a variety of conditions.

The rest of this chapter reviews the existing state of research into wave overtop-

ping prediction and relates it to the research presented within this thesis. Section 1.3

describes the empirical curve-fitting approach. Section 1.4 explains the use of numer-

ical simulation techniques. Section 1.5 is a detailed history of ANNs. Section 1.6

reviews previous uses of neural networks in the area of hydroinformatics. Section 1.7

provides an outline of a new type of hybrid neural network to be presented in this the-

sis. Section 1.8 concludes this chapter and explains the structure of the rest of this

thesis.
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1.3 Empirical Curve-fitting

The most well-established method of predicting mean wave overtopping rates is that

of empirical curve-fitting. This is a parametric approach inwhich the form of the rela-

tionship between the independent parameters and the overtopping rate is assumed. A

small number of free parameters are then deduced by minimising a cost function, usu-

ally mean square error. This method is invariably linked to an experimental approach,

in which results are obtained from scale models. These models generally contain sim-

ple idealised structures and flumes that give normal wave attack.

Besley [26] assumed an approximately exponential relationship between crest free-

board and mean overtopping discharge, following on from Owen [24]. He obtained

empirical constantsA andB for smooth, impermeable walls of various slopes to obtain

the best fit for equation 1.1.

q0 = AT0exp

(

−BR0

T0

)

(1.1)

In this equationq0=q/(gH3
m0,toe)

0.5 is the dimensionless overtopping discharge,R0 =

Rc/Hm0,toe is the dimensionless freeboard,T0=Tm−1,0toe
(

g/Hm0,toe
)0.5 is the dimension-

less mean wave period, q is the mean overtopping discharge rate in m3/s/m, Rc is the

crest freeboard,Hm0,toe is the significant wave height at the toe of the wall,Tm−1,0toe is

the mean wave period at the toe of the wall andg is the acceleration due to gravity.

The method is only intended to be applied to smooth impermeable walls with slopes

between 1:1 and 1:5, to waves of period less than 10 seconds approaching normal

to the structure, and to values ofR0/T0 between 0.05 and 3.0. Further, predictions

are likely to be accurate only to within a factor of 10 [26]. Adaptations to the basic

equation allow modifications for angled wave attack, bermedwalls, rough slopes and

wave return walls. However, the basic exponential form of the function is retained

throughout. Details of the adaptations made to the basic equation, as well as alternative

equations used by other researchers, are given in Appendix A.

The curve-fitting approach has the advantage that predictions are obtained very

easily once the free parameters have been determined. Further, the input-output rela-

tionship is explicit and easy to understand. However, all curve-fitting approaches suffer

from certain drawbacks.

• The parametric approach is inherently limited in its scope and requires knowl-

edge of the relationship between the independent parameters and the overtopping

rate on the part of the modeller.
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• Predictions are limited to idealised structures, due to thesmall number of free

parameters.

• The dependence on laboratory techniques means that the creation of appropriate

data is time-consuming and expensive.

• The use of experimental data in predicting ‘real’ storms relies upon the valid-

ity of the scaling process. There are substantial approximations involved in the

assumptions that surface tension and viscosity scale with size. A specific dif-

ficulty related to the use of freshwater in experimental tests has been described

by Bullock et al. [27]. Saltwater has higher aeration levels than freshwaterand

therefore displays greater compressibility and lower impact pressures. This ef-

fect is particularly noticeable for violent situations, which lead to large amounts

of trapped air.

1.4 Numerical Modelling

The mathematical modelling approach runs a numerical simulation of wave motion,

within constraints including equations governing the underlying physics, given initial

conditions such as water velocity and boundary conditions such as wall and bed slope

geometry. The usual starting point is the Navier-Stokes equations, which are an expres-

sion of the fundamental laws of conservation of mass, momentum and energy. Solution

of these equations for any but the simplest of scenarios is extremely computationally

expensive [28]. However, in situations in which the depth ofthe water is small com-

pared to the wavelength of the waves the non-linear Shallow Water Equations (SWEs),

given in equation 1.2, are known to provide a good approximation [29].
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In this equationu andv are the velocity components in the horizontal plane,ϕ is

the geopotentialgh, g is the acceleration due to gravity andh is the water depth.

These may be derived from the Navier-Stokes equations by assuming that the ver-

tical velocity is small compared to the horizontal velocity. This is equivalent to the

assumption of hydrostatic pressure. When waves are impacting, this assumption is
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incorrect. However it has been shown that the SWEs give reasonable accuracy even

under certain breaking conditions [30, 31].

Numerical schemes have been designed for solving these equations. Typical is

the approach in Huet al. [28], which uses a finite-volume solver with a Godunov-

type upwind scheme. Such a scheme may be used to model particular scenarios with

considerable accuracy, terms being added to allow for factors such as bed stress or bed

dryness [32]. The wall and bed geometry are included in the model using appropriate

boundary conditions.

Mathematical modelling typically gives results within a factor of 2 of the measured

overtopping discharges [28]. This is a considerable improvement on the curve-fitting

regime. This is expected, since modelling is applied to a particular scenario rather than

a family of scenarios.

Such schemes have so far been applied only to near-ideal walls in laboratory-

controlled tests, mainly due to the great computational cost of running such simu-

lations. It is to be expected that mathematical modelling of‘real’ scenarios would

require additional terms, and therefore computer time, in order to achieve similar ac-

curacy. The number of uncontrolled variables in ‘real’ seaswill also affect the accuracy

of predictions made by numerical solvers.

The underlying mathematical model used within numerical modelling normally

contains a number of assumptions, such as shallow water inviscid flow, in order to

reduce the high computational cost of running the simulations. Modelling ‘real’ sce-

narios requires more accurate models and leads to greatly increased computation time.

Shiachet al. [31] made comparisons between a numerical model (based on the Shal-

low Water Equations) and experimental observations. They found that for strongly

impacting waves the model was too inaccurate to be of practical use and a more de-

tailed model had to be employed. Under these circumstances Volume of Fluid (VoF)

models [33] or free surface capturing models [34] had to be employed, resulting in a

dramatic increase in computational cost.

A further disadvantage of the numerical simulation approach is that it is situation-

specific. A detailed knowledge of both the sea wall geometry and the exact sea condi-

tions is required, so a small design change necessitates a complete rerun of the simu-

lation.
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1.5 Artificial Neural Networks

1.5.1 Introduction

Artificial Neural Networks (ANNs) were originally devised as models of the human

brain. It was hoped that ANNs could reveal useful information about the structure

of the brain and the processes that occur within the brain. The use of ANNs as a

tool for exploring brain function has become increasingly widespread within cognitive

psychology and neurophysiology in recent years. However, this study is primarily

interested in ANNs as a tool for solving mathematical problems. In particular, ANNs

are used to identify unknown multivariate functions from samples of data. Aspects

concerning the biological validity of an ANN architecture or of a training algorithm

are only occasionally considered.

In a biological neuron, electrical signals are passed from neuron to neuron via

synaptic connections. The strength of the incoming electrical signal is moderated by

the excitatory or inhibitory nature of the synaptic connection. Several incoming signals

may be combined within the main cell body. The overall outputsignal from a neuron

then passes along a long axon. The signal strength is maintained along much of the

axon’s length and may activate neighbouring neurons. Each of these neurons therefore

receives roughly the same signal.

In an ANN a neuron is represented by a simple processing unit that has three func-

tions: it takes one or more inputs, performs a mathematical transformation on these in-

puts and outputs the resulting value. From a signal processing point of view it therefore

has the essential features of a biological neuron [35]. The transformation performed

by the neuron is known by several names. Throughout this study it is referred to as

a ‘transfer function’. Transfer functions may take many mathematical forms, and the

formula chosen will often have a large effect on the computational algorithms used,

the problems which an ANN can solve and the speed with which solutions may be ob-

tained. This thesis is particularly concerned with the difference between local transfer

functions that only have significant outputs across a small volume of input space and

more diffuse transfer functions. Radial basis and sigmoidal functions are representa-

tive of these two types of function, and are described in detail in section 2.1. Their

associated training algorithms are described in sections 2.2-2.5.

Like a human brain, ANNs contain a number of neurons that may be interconnected

in various ways. When a connection is present, the inter-neuronal signal is moderated

by a synaptic ‘weight’. In figure 1.2ip are the inputs to the neuron,wp are the input
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Figure 1.2: Diagram of an artificial neuron
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Figure 1.3: Diagram of an artificial neuron network

weights andf is the transfer function.

The neurons are generally arranged in layers, making the transmission of informa-

tion through a network easier to track. The layers include aninput layer, an output layer

and may contain one or more intermediate layers (figure 1.3).The latter are usually

referred to as ‘hidden’ layers, since they do not hold information that may be immedi-

ately interpreted in a symbolic way. However, the hidden layer neurons perform much

of the processing that makes ANNs such powerful mathematical tools.

Human brains are known to develop through three processes: the growth of new

neurons, the loss of older neurons and an alteration of the strength of synaptic connec-

tions. The first two processes have artificial equivalents inconstructive and pruning

algorithms for resizing ANNs. Some of these will be discussed in detail in future sec-

tions. They include the cascade-correlation algorithm andforward selection of centres



CHAPTER 1. INTRODUCTION 11

in RBF networks. However, the learning process on which neuralnetwork research

has been primarily focused is the process of weight adaptation.

Humans learn from experience. Physiological knowledge concerning the neuronal

structure of the brain indicates how this learning comes about. Particular patterns

of neuronal activity correspond to particular psychological responses. When we find

ourselves in a specific situation, the same neurons that wereexcited last time we were

in a similar situation will ‘fire’ again. Our behaviour at anytime is therefore governed

to a large extent by our behaviour at previous times. However, the strength of synaptic

connections is being adjusted all the time in response to external stimuli. For example,

if a particular action has achieved the desired ends, the synaptic connections firing at

that time are likely to be strengthened. If, on the other hand, an action is unsuccessful,

an inhibitory effect will be induced. The state of our synaptic connection strengths at

any one time may therefore be seen as the result of our responses to all of our previous

experiences [36].

The strength of a synaptic weight is represented in an ANN by aconnection weight.

In order for an ANN to learn, these weights must be adjusted. ‘Learn’ is used here

to mean ‘give an improved response’. Humans learn by adapting their responses to

their environment. By introducing an assessment function wecan ensure that ANNs

learn by improving their score on this assessment function.We can now see that the

ANN learning process is a series of weight adjustments, moderated by an assessment

function. Due to the introduction of an assessment function, the process is also referred

to as ‘training’. The training process is illustrated diagrammatically in figure 1.4.

When there are a large number of neurons, the ANN method results in the deter-

mination of a large number of free parameters (the inter-neuronal weights). It may be

seen as a method for performing non-parametric regression analysis: the large number

of free parameters means effectively that there is no assumption concerning the func-

tional form of the input-output relationship. This may be contrasted with curve fitting

approaches in which an overall functional form is assumed for the relationship be-

tween the variables. The small number of free parameters in such approaches imposes

a considerable restriction on the possible approximating functions produced.

Unlike statistical methods such as linear regression, ANNsare almost invariably

non-linear. Their non-linearity arises from the use of non-linear transfer functions

within individual neurons. The parallel structure of a neural network means that the

overall input-output relationship may be a highly complex,non-linear function al-

though the individual transfer functions represent fairlysimple non-linearities.



CHAPTER 1. INTRODUCTION 12

Present data

Untrained Network

Finished
training?

Trained Network

Yes

NoAdjust weights

Assess errors

Figure 1.4: Diagram showing the neural network training process



CHAPTER 1. INTRODUCTION 13

The training of ANNs has proven to be a complex process. Methods of training are

highly varied: some attempt to approximate the processes ofbiological neurons but

many diverge greatly from them in an attempt to find more computationally efficient

methods to achieve optimal or near-optimal weights. Apart from the method used to

train them, ANNs may be differentiated in many ways. The following perspectives

give alternative ways of classifying ANNs, although we shall see that the different

perspectives are intertwined in complex ways-

• Choice of transfer function [37].

• Selection of assessment function [38].

• Choice of network architecture [38].

The next sub-section (1.5.2) describes some of the applications of ANNs. The rest

of this section details the historical development of neural networks. This development

may be seen as constituted from a number of strands. 1.5.3 describes early research

into ANNs (pre 1985). 1.5.4 describes the development of themost widely used ANN,

the ‘multi-layer perceptron’ (MLP). 1.5.5 details some improvements to the basic MLP

method, while section 1.5.6 describes some global methods for training these types of

networks. 1.5.7 describes the development of an alternative to the MLP, known as a

‘radial basis function’ (RBF) network. Finally, 1.5.8 describes some hybrid networks

that combine the MLP and RBF approaches.

1.5.2 Applications of ANNs

This section aims to give a review of the practical applications of ANNs. These ap-

plications may be split into three main classes: pattern association, pattern recognition

and function approximation. These areas will be treated in turn.

Pattern Association

A neural network may be trained to act as an ‘associative memory’. The process of

training stores a set of patterns (vectors), which may be retrieved from the network.

The aim may be to retrieve a clean pattern when a noisy versionof the pattern is

presented to the network (‘auto-association’). Alternatively, the aim may be to retrieve

a pattern that is different from the input pattern, but has been paired with that particular

pattern (‘hetero-association’). Association is a pertinent model for memory within the
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human brain [36, 39]. It has been applied within the areas of market basket analysis

[40], information retrieval [41, 42], syntax analysis [43]and image recognition [44].

Pattern Recognition

During pattern recognition, an ANN is required to identify the class to which an in-

put pattern belongs. During this task, neural networks divide up ‘decision space’ into

regions, each one corresponding to a single class. Again, this model is analogous to

processes within the human brain, such as the process by which we identify familiar

objects despite variation in viewing angle, lighting conditions and other distortions

to our visual inputs [45]. There are two ways in which the classification may be

performed. During unsupervised learning the network discovers clusters in the data

itself. Alternatively, a supervised learning approach maybe applied. In this case a

network is trained to reproduce known outputs (categories), from which it may then

generalise to unseen inputs. Applications of pattern recognition techniques include fin-

gerprint identification [46], optical character recognition (OCR) [47] and number plate

identification [48, 49]. The NETTalk program is a well-knownprogram that converts

written language into phonemes, allowing a computer to learn to ‘speak’ [50]. Other

applications of pattern recognition include medical diagnosis [51] and financial risk

assessment [52].

Function Approximation

Within function approximation, tasks may be divided into modelling and forecasting.

In the latter, time series data is available and the aim is to predict future data from past

data. Examples include exchange rate prediction [53], house price indexing [54] and

solar activity prediction [55]. Modelling tasks have covered a wide range of topics in-

cluding domestic energy consumption [56] and various aspects of control engineering

including vehicle manoeuvre, electric power, chemical engineering and blood pressure

management [57, 58].

The main application investigated within this thesis, waveovertopping prediction,

comes into the category of modelling. Systems that have beendeveloped for predicting

overtopping levels and other hydraulic parameters are discussed in section 1.6.
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1.5.3 Early Research in ANNs

McCulloch and Pitts are widely credited with founding the modern ANN tradition with

their 1943 paper, ‘A Logical Calculus of Ideas Immanent in Nervous Activity’ [59].

They used neurons with net inputs equal to a simple weighted sum of their inputs.

They used a stepped threshold transfer function: if a net input was positive the output

was 1, otherwise it was 0.

They showed that, given sufficient neurons and correctly set weights, a network

made up of such neurons could compute any computable function.

Hebb [60] noted that the strength of a synaptic connection isincreased if the neu-

rons on either side of the connection are activated synchronously. He used this obser-

vation as the basis of a learning rule that could adjust synaptic weights. Later authors

[61, 62] added the converse rule that the connection strength is decreased if the neu-

rons on either side of the synapse fire asynchronously. For a pair of connected neurons,

their connection weight is therefore increased if both activations deviate from their

mean values in the same direction and decreased if the activations deviate in opposite

directions.

In 1956 von Neumann [63] introduced the idea of redundancy. Neural networks

contain a large number of neurons that collectively represent an individual concept.

The overall system is robust in the sense that one or more of the neurons may be faulty,

giving an ‘incorrect’ output, and yet the system as a whole can still give a ‘correct’

response.

Rosenblatt invented the perceptron in 1958 [64]. His perceptron is an ensemble

of neurons arranged in a single layer. Each neuron has a fixed bias in addition to the

applied inputs. The outputs from the neuron are again stepped, but have values+1 and -

1. Rosenblatt demonstrated that a single neuron could separate inputs into two separate

classes given any linearly separable function, resulting in an output of+1 for one class

and -1 for the other. By using more than one neuron, the inputs may be divided into

more than two classes. Effectively a single-neuron perceptron creates a hyperplane in

input space, which separates the inputs into two categories. When training the network,

it is therefore necessary that the investigator inputs the target category into the system

alongside the input vector.

The perceptron training rule is the first example of a supervised training rule. In

supervised training, target outputs are presented to the ANN and the ANN attempts to

reduce the error between the actual and the target outputs. It can effectively position the

decision surface, starting from a position with all weightsset to zero or from a random
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position, in a finite number of training steps [64]. The weight changes at each step are

proportional to the output of the neuron in question and to the difference between the

target and the actual output. The weights will therefore only be adjusted if the target

and actual weights are different, i.e. the ANN is misclassifying the input pattern. Each

of the input vectors is presented in turn. If the inputs are not correctly classified at this

point, the process is repeated until classification is correct. Each presentation of the set

of all input patterns is known as an ‘epoch’.

Widrow and Hoff [65] introduced a new training rule, often described as the ‘least

squares rule’, and used it to train an ANN they called an adaptive linear element, or

‘ADALINE’. This is related to the perceptron training rule,but the error is calculated

as the difference between the net input and the target output, rather than the difference

between the stepped output and the target output. This meansthat learning will occur

even when the classification of an input pattern is correct and learning is therefore

quicker. The name ‘least squares rule’ has arisen because its use leads to convergence

to the least mean square solution. A full mathematical treatment is given in section

2.2.1.

In 1969 Minsky and Papert’s book ‘Perceptrons’ cast seriousdoubt on the potential

development of neural networks [66]. They pointed out many of the limitations of

Rosenblatt’s perceptrons and stated their belief that multi-layer perceptrons would not

be able to overcome these limitations. The result of this book was that research into

neural networks virtually disappeared during the 1970s andearly 1980s.

There were a few exceptions. In 1982 Kohonen described ANNs that he called

self-organising maps (SOMs) [67]. (A similar idea had been described by Willshaw

and von der Marlsburg in 1976, but their model received less interest [68]). SOMs are

examples of unsupervised ANNs that are used for detecting spatial organisation within

input data. The neurons within a SOM are conceptually arranged in a grid, usually of

1 or 2 dimensions. Before training, neurons weights are initialised randomly. After

training, each neuron responds strongly only to inputs within a particular region of

input space and neurons that are ‘close’ to each respond to similar areas of the input

space. The weights may therefore be viewed as centres that detect nearby inputs. A

SOM therefore creates a topological map of its inputs. It is analogous to certain areas

of the human brain that respond to sensory inputs [69, 70, 71]. For each input vector,

the SOM training algorithm undergoes three phases-

• Competition. The neuron that has the weight vector with the smallest Euclidean

distance from the input vector is selected.
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• Co-operation. Within the conceptual grid, or ‘feature space’, a neighbourhood

around the centre of the winning neuron is identified. This neighbourhood is

described by a mathematical function that peaks at the neuron’s position within

the grid and falls away with distance to reach zero at infinitedistance. A typ-

ical function is the Gaussian function. As training proceeds, the width of the

neighbourhood is reduced, usually in an exponential fashion.

• Adaptation. The weights (centres) of all neurons are adjusted to bring them

closer to the input pattern. The neurons that are closest to the winning neuron

(in feature space) will be affected to a greater extent due to the radial decline of

the neighbourhood function.

Both the neighbourhood widthσ and the learning rateη decrease as the number

of epochs n increases. To achieve full convergenceη must be kept at a constant rate

of about 0.01 towards the end of training in order to achieve full convergence of the

algorithm.

Once a SOM is trained, the weights of the network represent a ‘feature map’, in

that they map the input space onto a conceptual feature space. The position of each

neuron within feature space corresponds to a particular domain, or feature of the input

domain. The SOM may be seen as an encoder, that encodes input space into feature

space. The final position of the weight vectors gives useful information concerning the

distribution of the input vectors. This may be used to classify inputs according to their

corresponding positions in feature space or to identify thesources of variation within

a population, in a manner analogous to principal component analysis.

The Hopfield network [72], introduced in 1982, is a recurrentnetwork. It contains

a single layer of neurons and the output of each neuron is fed back into the ANN as

an input to all of the other neurons. The weight matrix is symmetric, i.e. wi j = w ji

for all pairs of neuronsi and j. Other than these differences, Hopfield neurons act like

perceptrons, giving outputs of+1 or -1 according to the sign of the weighted sum of

the inputs.

Hopfield networks may be used as content addressable memory.After training

they are able to retrieve a correct vector given a faulty or incomplete input vector. In

training, or ‘storage’ as it is more accurately described, the weights of the network are

set in a deterministic way, by the application of linear algebra. There is no need to use

iterative methods such as gradient descent.

During retrieval an incorrect or partial vector is introduced to the network. A single

neuron is selected randomly and its net input is calculated.If this is positive, the neuron
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Figure 1.5: Hopfield network architecture

will switch its output to+1. Conversely, if the net input is negative, the output will be

set to -1. If the net input is zero, the state of the neuron is not changed. The process is

continued until there are no more changes. The output shouldthen correspond to one

of the patterns originally stored in the network.

1.5.4 Multi-layer Perceptrons

All of the networks considered in the last subsection contained direct links between

input and output neurons, without a hidden layer. Most of them also used stepwise or

linear transfer functions. In 1986 Rumelhart and McClelland [73] presented a training

algorithm that would allow the use of one or more hidden layers of neurons and a

variety of transfer functions. The only condition was that the transfer function was

differentiable, i.e. one could calculate a gradient for the function at all points. This

rules out stepwise functions and led to the use of more sophisticated transfer functions.

A step towards the use of more flexible transfer functions maybe made by extend-

ing the least squares rule [74]. Widrow and Hoff considered the dependence of the net

input on the weight vector. However, when using the sum of squared errors (SSE) as

the objective function it is more appropriate to consider the effect of the weights on

a neuron’s output. It is possible to do this provided a differentiable transfer function

is used. The output from the transfer function is dependent upon the net inputv and

may therefore be expressed asf (v). However, the net inputv is in turn a function of
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the input weightsw and the size of the inputsi. Using differentiation it is therefore

possible to obtain the gradient of the output as a function ofthe input weights and the

input vector.

When dealing with an ANN with more than one hidden layer, the inputs to a hidden

layer may come from a further hidden layer. They are therefore dependent on the trans-

fer functions of the previous layer. Provided these transfer functions are differentiable

functions it is possible to apply the chain rule to the next layer of neurons. By succes-

sive application, the error is ‘back-propagated’ so that the dependence of the error on

each of the weights in the network may be calculated. Having obtained partial gradi-

ents with respect to all of the weights within the network, the network’s weights may

then be adjusted in the direction of steepest gradient descent. This method was first

used by Werbos [75]. The name ‘back-propagation’, or simply‘BP’, became widely

used following the publication of ‘Parallel Distributed Processing’ by Rumelhart and

Williams in 1986 [73]. This book led to a resurgence of research into ANNs that is

still ongoing.

The back-propagation algorithm may be applied to any ANN containing neurons

with differentiable transfer functions. However, it has been very closely associated

with a family of functions collectively known as sigmoid functions, due to their S-

shape. These functions accept a net input, which is a weighted sum of all inputs to

the neuron and therefore describes a hyperplane through input space. An additional

input called a ‘bias’ is also used. The use of a bias was first mentioned by Rosenblatt

in his description of a single layer perceptron [64]. This isan input of fixed value

(usually -1) and allows the hyperplane to take any possible position. Specifically, it is

not constrained to pass through the origin. Sigmoid functions transform the net input,

softening it towards its more extreme values so that the finaloutput is constrained to

lie between maximum and minimum values, as illustrated in figure 1.6.

All sigmoid functions share the following properties-

• They are differentiable at all points.

• They approach linear behaviour in their middle region.

• At their extremities they ‘level off’, approaching fixed values asymptotically.

They therefore combine the properties of linear and stepwise functions: they vary

monotonically but have fixed maximum and minimum values. Sigmoid functions are

described in more detail in section 2.1.
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Figure 1.6: Graph of a bipolar sigmoid function

The term ‘multi-layer perceptron’ (MLP) is used to describea particular type of

network. It has the following properties-

• It is a ‘feedforward’ network. This means the network is madeup of fixed lay-

ers - an input layer, an output layer and one or more hidden layers. There are

no connections within a layer, but each layer is usually fully-connected to the

subsequent layer.

• It is trained using the BP algorithm.

• MLP is usually assumed to refer to an ANN containing only sigmoid neurons,

with the possible exception of the output layer which may contain linear neurons.

Despite the name, multi-layer perceptrons have little in common with Rosenblatt’s

perceptron on the surface: they have a different transfer function and a different training

algorithm. However, they are seen as being in the same tradition as their earlier cousin

since they aim to predict output vectors given input vectors, via a knowledge base

represented by stored weights that are adjusted with a supervised training algorithm.

The gradient of the error with respect to the weights varies continuously across the

weight space. The direction of weight changes is tangentialto the error surface at the

point reached by the last iteration. Since the step size is not infinitesimally small, the

BP algorithm must be an approximation to the method of steepest gradient descent.
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By making the step size smaller the approximation is made closer. However, this is

likely to result in slower learning. A larger step size, on the other hand, will lead to

faster learning, but may cause the algorithm to oscillate without approaching an error

minimum, or even diverge.

The obvious solution is to introduce a variable learning rate. Rumelhart, Hinton and

Williams suggested an elegant way to achieve this by introducing a momentum term

[76]. At the nth epoch this term adds a fraction of the (n − 1)th update to the change

in the weights. If the two updates are in a similar direction alarger step will be taken,

whereas if they are in opposing directions a smaller step will be taken. The introduction

of momentum causes the BP algorithm to converge quicker and reduces oscillation

around a minimum gradient. A derivation of the BP algorithm with momentum was

presented by Hagiwara in 1992 [77]. The algorithm is described mathematically in

section 2.2.2.

A second aspect to be considered is the way in which weights are updated. Net-

work weights may be adjusted after the presentation of each input pattern, a process

known as ‘stochastic’ weight updates. Alternatively, during the ‘batch’ process, the

calculated weight updates may be stored for each input but only summed and applied

after the presentation of every item within the training set. Batch weight updates give

more reliable gradient information than stochastic weightupdates. However, stochastic

weight updating has two advantages-

• The memory requirements are much smaller for stochastic weight updates.

• Stochastic updates are better able to avoid small local minima in the error sur-

face.

Stochastic weight updates are therefore preferred for manydatasets, particularly

noisy ones. Several authors have shown that different learning rates should be applied

to each layer of neurons, in order to give optimum training times. In particular, larger

learning rates should be applied to the later than to the earlier layers [78, 35]. Some

authors go further, suggesting that every weight in a network should have its own

learning parameter and that learning parameters should vary from one epoch to the

next [79].

Another factor in the effectiveness of BP is the initialisation of weights. Weights

are usually set randomly to small values, such as [−0.1,0.1] before training. However,

it has been shown [78] that the outcome of training is usuallyhighly dependent on the
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Figure 1.7: Overfitting caused by oversized networks

starting weights. Alternative means for the initialisation of weights may involve the

inclusion ofa priori knowledge.

The selection of network size (model selection) is also an important factor in BP

training. The approach most commonly used is to train a series of ANNs containing

different numbers of hidden neurons. As more neurons are added, the error on the

training data generally falls monotonically. However, if tested with data not used in

training, the assessed error is typically seen to fall as neurons are added, before starting

to rise after a certain point, as illustrated schematicallyin figure 1.7.

This phenomenon is the result of ‘overfitting’ the underlying function. When there

are too many free parameters within the network it starts to fit the errors within the

training data in addition to the underlying function, with aresulting increase in the test

error.

Another type of overfitting occurs if a network is trained fortoo many epochs.

Again, the error on unseen data is seen to rise after a certainpoint (figure 1.8). One

way to avoid this type of overfitting is to stop training early. This may be achieved with

the use of a validation set. The available data is partitioned into training, validation

and test sets. Training is stopped when an increase in the error for the validation set is
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Figure 1.8: Overfitting caused by overtraining

observed. The generalisation properties of the network maythen be assessed using the

test dataset.

The need for early stopping depends upon the size of the MLP. Amari et al. [80]

have shown that early stopping may be valuable in cases wherethe ratio of free pa-

rameters to training samples is greater than 30, but will notbe beneficial otherwise.

This issue is investigated further in section 4.2 in the context of the wave overtopping

dataset.

Related to the early stopping method is the method of cross-validation, which is

often used when the size of the available dataset is small. Inthis method, the data is

first divided into training and test data and the test data is set aside. The training data

is divided into a number of equal sized segments. ANNs are then trained on all but one

of the segments. The remaining segment is used as a verification set to determine an

early stopping point. It may also be used to assess the optimum ANN architecture, i.e.

the optimum number of hidden neurons. Once training is complete, the test set is used

to assess the performance of the network.

Overtraining may also be avoided through the use of weight decay [81]. In this
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procedure a penalty is attached to the use of large weights, so smoothing the overall

approximating function. Typically, the penalty is proportional to the sum of the square

of the weights. Weight decay is underpinned by the theory of regularisation within the

field of numerical optimisation.

Related to the technique of weight decay is the network pruning procedure. Rather

than limiting the size of the network weights, this method aims to reduce the number

of weights within a network. Training therefore takes placein two steps-

1. Create and train a fully-connected network, i.e. one in which each neuron is

connected to every neuron in the layers both before and afterit.

2. Remove connections between neurons that make little contribution to the final

outputs of the network.

An effective algorithm is that of the ‘optimal brain surgeon’, dueto Hassibi and

Stork [82]. This algorithm takes a trained network and assesses the ‘saliency’ of each

network connection. A Taylor series of the error with respect to the weights is con-

structed. Assuming that a fully trained network has an errorgradient with respect to

the weights of zero, the most important term is therefore deemed to be the second order

term, involving the Hessian matrix∂E
∂w . The weight that gives the smallest increase in

this term is set to zero, i.e. the connection is removed from the network, and the re-

maining weights recalculated. The process may be repeated until a large error increase

is observed.

To summarise, BP training of MLPs may be adapted through the setting of a num-

ber of modes and parameters, including-

• Learning rates

• Momentum coefficients

• Stopping criteria

• Weight initialisation

• Choice of batch or stochastic weight updates

• Model selection

• Weight decay parameter

• Network pruning
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Each of these affects the outcome of training, and the selection of these parameters

is often intuitive rather than systematic. This has led someauthors to search for more

automated and predictable training methods, some of which are described in the next

section.

1.5.5 Alternative training methods

Two problems with BP training are the dependence on initial weights and the tendency

to become trapped in local minima. Simulated annealing is anattempt to overcome

these difficulties. It uses a more stochastic approach than BP. Thus, rather than mak-

ing weight changes in the direction of steepest descent, weight changes are assigned a

probability. This probability is dependent on a notional ‘temperature’. At high temper-

atures, the ANN can jump out of valleys in the error surface, but at lower temperatures

the weights become more constrained to lower ‘energy states’ [83]. If ∆E, the change

in training error, is negative the weight change∆w will take place. If∆E is posi-

tive the change would result in an error increase. The associated weight change may

be made, with a probability dependent upon a ‘temperature’T. The temperature is

decreased exponentially as training proceeds. The probability of an error-increasing

change therefore drops and training eventually settles into a minimum. If a sufficiently

slow cooling schedule is chosen, the algorithm should visitthe whole of the weight

space sufficiently often that the global minimum is identified. The mathematical de-

tails of simulated annealing are given in section 2.2.3.

Cascade correlation is a constructive algorithm that grows ANNs to an optimum

size [84]. Neurons are added one at a time and the efficiency of training is improved

by ‘freezing’ the weights of existing neurons. The weights of the new neuron are

then trained on the remaining error of the ANN. Each new neuron is added in a new

layer and accepts outputs from preceding neurons as inputs,in addition to the original

network inputs. This results in a deep network, in which eachlayer is a single neuron

that identifies successively finer detail in the approximating function (see figure 1.9).

Training is usually stopped when a minimum error has been reached. It is usually

performed with the ‘quickprop’ algorithm. This takes into account the gradient vector

during the previous weight update and therefore results in avariable learning rate in a

similar way to a momentum term. (See section 2.2.3 for mathematical details.)

An important alternative to basic gradient descent methodsis the family of second-

order gradient descent methods. These are derived from the field of numerical optimi-

sation, in which the aim is to optimise an unknown non-linearfunction (the error) with



CHAPTER 1. INTRODUCTION 26

Inputs

Hidden
neurons

Output
neurons

Figure 1.9: Cascade correlation architecture

respect to a number of unknown independent parameters, i.e.the network weights.

The approach in these methods is to find a point at which the gradient of the error sur-

face is zero. This point will correspond to a minimum, provided precautions are taken

to avoid identifying a maximum or saddle point in the error surface.

In the conjugate gradient method [85, 86], each weight change is made in a direc-

tion that is conjugate to all previous steps, with respect tothe approximating function.

Further, the step size is optimised using line minimisation. For these reasons, this

method is much more efficient than standard back-propagation. In order to find the

conjugate direction it would usually be necessary to obtainthe Hessian of the network

weights with respect to the observed error. However, by making each weight adjust-

ment a linear combination of the previous weight adjustmentand the current gradient

vector it is possible to obtain a new search direction without explicit calculation of the

Hessian [85]. Further details are provided in Appendix B.

The conjugate gradient method avoids calculating the Hessian, due to the high

computational cost involved. The Levenberg-Marquardt method, on the other hand,

calculates an approximation of the Hessian matrix [86]. It then uses a combination of

gradient descent and Newton’s method to find the zero of the error gradient [87].

The Levenberg-Marquardt algorithm is a very effective heuristic, reaching satis-

factory minima in a small fraction of the number of epochs required by basic gradient

descent, for most datasets. However it has some drawbacks-
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• The construction of the Hessian involves a large number of calculations for large

ANNs, scaling with the number of training patterns and the square of the number

of network weights. This can lead to long training times and large memory

requirements in spite of the efficiency of the algorithm.

• The error measure used must be the mean square error. This is not considered to

be a major limitation by most authors since this is the most commonly used error

measure [87]. However, other error measures are consideredin section 1.6.3.

A mathematical treatment of the Levenberg-Marquardt algorithm is given in sec-

tion 2.3. The effectiveness of this algorithm is discussed in the context of the wave

overtopping dataset in Chapter 4 and in the context of variousother datasets in Chap-

ter 7.

1.5.6 Global training methods

The Levenberg-Marquardt may be seen as a ‘global’ training method, since it takes

into account the gradients of all weights within an ANN simultaneously. However, the

individual gradients are local, the underlying assumptionbeing that the error gradient

of one weight is largely independent of the other weights. The Levenberg-Marquardt

method therefore finds a local error minimum and the closeness of this minimum to

the global minimum is dependent upon the (randomly chosen) starting point. The

simulated annealing method is designed to search the whole weight space and therefore

is potentially a global method. However, the method is inefficient, requiring several

visits to each location in weight space in order to settle into the global minimum. In this

section two further ‘global’ methods are explained, genetic algorithms and Bayesian

data analysis. In both cases, they are global in two senses: they are capable of globally

searching the weight-space of a particular neural network architecture. In addition

they are able to search the space of possible architectures with the aim of identifying

the most appropriate one.

Genetic algorithms

Genetic algorithms (GAs) are search algorithms based upon the process of natural

selection. Invented by Holland in the 1960s [88], they were initially used as search and

optimisation techniques. More recently they been used within the machine learning

paradigm, including neural network training.
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The GA algorithm acts upon a population of ‘genotypes’. These are encodings

for possible solutions to the problem in question, or ‘phenotypes’. Typically they are

strings of numbers or binary digits. The population of genotypes are ‘evolved’ through

a number of ‘generations’. This process is analogous to the traditional training of

ANNs through a series of epochs. However, GAs operate on a whole population of

neural networks, rather than on a single network. The production of each generation

involves three steps-

1. Reproduction. In this step, genotypes are copied to the next generation. The

number of offspring created will depend upon the fitness of the parent, as mea-

sured by an evaluation function. For ANNs this will typically be the mean square

error of the corresponding phenotype.

2. Crossover. Pairs of genotypes are mated randomly. During this step the pairs

of genotypes are split at a random position and each half combined with the

appropriate half from the other genotype.

3. Mutation. This involves the random alteration of individual values (‘alleles’)

within the genotypes. The probablity of random mutation is typically very low -

about 0.001.

Since success in the reproduction step is dependent upon an evaluation function,

there will be a tendency to move towards phenotypes that are more fit for purpose.

Since a large population is used the available search-spaceshould be covered more ef-

fectively than with traditional ANN training, but the members of the population should

converge towards an optimal solution, or solutions, given sufficient generations. [89]

The encoding used within GAs may include any properties selected by the re-

searcher. Within the field of neural networks, the encoded properties fall mainly into

three categories: connection weights, neural architectures and learning rules [90, 91].

There has been little research into the evolution of transfer functions. Some exceptions

are included in section 1.5.8. When optimising network weights it is often found that

GAs are effective at identifying regions that contain minima but less effective at per-

forming local search within these regions. Several researchers have therefore adopted

hybrid algorithms, in which GAs are followed by gradient descent training in order to

pinpoint the location of minima [92].

Bayesian methods

Bayesian data analysis takes place in three steps [93]:
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• Set up a full probability model for all observable and unobservable quantities in

a problem.

• Condition on the observed data. This involves calculating the posterior distribu-

tion of the unobserved quantities in which we are interested, given the observed

data and the chosen probability model.

• Evaluate the fit of the model. If one is dissatisfied with the model, the three steps

may be run again, allowing the comparison of different models.

In the context of neural networks, a neural network architecture represents a statis-

tical model, whose inputs are explanatory variables and whose outputs are data points

which we hope to predict using the statistical model. The network weights are model

parameters that may be adjusted to improve the ‘fit’ of the model. Within a Bayesian

framework, it is possible to make inferences concerning theplausibility of a particular

model (ANN architecture), a particular set of parameter values (network weights) or

specific predictions made by the model. These inferences will be in the form of proba-

bility statements - usually probability density functions(pdfs). By making some or all

of the inputs to a network the subject of Bayesian analysis, itis also possible to assess

the usefulness of different inputs in terms of their explanatory power within the model

[94].

The Bayesian approach has a number of advantages over more established methods

for ANN training-

• It has a sound conceptual and mathematical basis.

• The assumptions made in constructing the explanatory modelare stated explic-

itly.

• Bayesian methods automatically incorporate the principle of ‘Occam’s razor’.

This means that they favour smaller networks with smaller weights, and there is

no need to introduce smoothing terms such as weight decay parameters (section

1.5.4) or regularisation parameters (section 1.5.7) in anad hocway.

• It allows global optimisation of network parameters.

• It permits the comparison of different models, including the selection of network

architectures and of network inputs.
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• Error bars may be estimated, allowing confidence levels to beassigned to a par-

ticular model, to network weights or to network outputs.

1.5.7 Radial Basis Function networks

At a similar time to the re-emergence of MLPs following Rumelhart’s exposition of

the BP algorithm, the theory of RBF networks was developed. Powell surveyed early

work on radial basis functions in 1985 [95]. They were originally conceived not as

neural networks but as solutions to ill-posed hyper-surface reconstruction problems.

Radially symmetric functions were used as a ‘basis’ with which to construct an un-

known function. The purpose of the basis functions was to expand the inputs into a

high-dimensional space, by using a number of functions greater than the dimension-

ality of the inputs. The reason for transforming the inputs into a higher dimensional

space was Cover’s theorem on the separability of patterns. In1965 Cover [96] proved

that a pattern-classification task was more likely to be linearly separable if cast in a

high-dimensional space. The transformed high-dimensional inputs were then passed

through a linear transformation to obtain the final outputs.

Broomhead and Lowe [97] placed the radial basis function approach within the

context of neural networks. Each basis function now became the transfer function of a

hidden layer neuron, while the output neurons had linear transfer functions. However,

the neural network was seen within the context of function-fitting. From this view-

point, network training is equivalent to hypersurface reconstruction and generalisation

is equivalent to multivariable interpolation.

Broomhead and Lowe start from the perspective of strict interpolation, in which

the overall approximating function is constrained to pass through all of the training

points. Form training patterns this may be achieved by creatingm hidden neurons,

each with weights coinciding with one training point. Radialbasis functions have

the same number of free parameters as sigmoid functions. However, the input weight

vector is usually interpreted as a ‘centre’ and the bias weight as a ‘steepness’. This

is because a radial basis function calculates its net input as the Euclidean distance

between its input and its weights. This net input (or distance) is then input into a

function that depends only on the bias (or steepness). The overall result is a radially

symmetric function, as illustrated by the Gaussian function of figure 1.10. Alternative

radial basis functions are described in section 2.1.

RBF networks invariably use a linear output neuron, which simply outputs a weigh-

ted sum of its inputs. As a result, the hidden-to-output weights that will give the lowest
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Figure 1.10: Graph of a Gaussian radial basis function

mean squared error may be calculated using linear algebra. There is no need to use the

gradient descent techniques common to MLPs.

Broomhead and Lowe proceed to situations in which only a subset of the training

patterns are used as RBF centres. The justification for doing this is to reduce the

number of degrees of freedom and so reduce the risk of overfitting. In this situation the

design matrixA, which contains the outputs of all hidden neurons given eachof the

applied inputs, is non-square and the pseudo-inverse givesthe least squares solution.

Broomhead and Lowe point out that the use of a subset of the training data as RBF

centres results in a smoothing effect, or ‘regularisation’ [97, 98]. However, it has been

common to introduce additional regularisation in order to reduce the size of the output

weights obtained from the least squares solution. Regularisation was used by Tikhonov

as a means of solving ill-posed problems [35, 99, 100]. The problem for ANNs is to

approximate the input-output function. This problem is described as ‘ill-posed’ for two

reasons-

• In areas of sparse data, there is insufficient information to uniquely identify the

underling function.

• Noise in the data means that distinct input or output values may not be identifi-

able and there may be apparent discontinuities in the function.

Ill-posed problems may be made well-posed through the introduction ofa priori
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assumptions. These assumptions are smoothness constraints, i.e. they assume that the

function is not fully local, so that values at one point may act as a guide to values at

nearby points. Constraints are included as an additional function. These smoothness

constraints have a similar mode of operation and have a similar effect to the introduc-

tion of weight penalties in the weight decay technique discussed in section 1.5.4.

Poggio and Girosi [99] have provided an alternative justification for the use of regu-

larisation with datasets of high dimensionality. Data necessarily becomes sparse when

it is of high dimensionality. This is the well-known ‘curse of dimensionality’ [101].

The sparse data results in a large number of possible solutions and in order to choose

between them it is necessary to make smoothness assumptions. Since RBF networks

transform the input space into a high-dimensional space, regularisation may be par-

ticularly applicable to them. A mathematical treatment of regularisation is provided

in section 2.5. The issue of regularisation is discussed in detail in the context of the

results obtained using the overtopping dataset in Chapter 5.

While Broomhead and Lowe suggest the use of a subset of the training data as RBF

centres, they give little guidance on the procedure for making a selection. Moody and

Darken selected centres using k-means clustering [102, 103]. Further, they allowed the

centres and steepnesses to alter as the result of gradient descent training.

In 1991 Chenet al. [104] introduced the forward selection (FS) algorithm for the

selection of centres. This is a network growing technique. It introduces a computa-

tionally efficient method for calculating the errors of the series of networks created by

successively adding a single neuron from the training set. The reduction in error after

each addition may be calculated using an orthogonal least squares (OLS) procedure.

An RBF network may therefore be grown one neuron at a time, with the neuron se-

lected at each the stage being the ‘best’ choice at that time.Further details are provided

in section 2.4.

In the late 1990s Kubat and Orr [105, 106] introduced methodsfor deriving RBF

centres from regression trees. Regression trees partition data into hyper-rectangles. A

RBF neuron may be derived from each hyper-rectangle, with its centre at the centroid

of the hyper-rectangle and its width proportional to the volume of the hyper-rectangle.

Orr considers nodes at different levels of the regression tree, which therefore have

differing widths. Nodes are selected for inclusion in the RBF network, with preference

given to wider nodes. As a result wider radial basis functions tend to be added early

on, with more localised functions built into the system towards the end of training.
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1.5.8 Hybrid Neural Networks

Hybrid neural networks, containing both sigmoidal and radial basis transfer functions

in the same layer, have been suggested by Poggio and Girosi [99]. However, there have

been only a few reported implementations of them.

Cohen and Intrator create hybrid networks which they call Perceptron Radial Basis

Nets (PRBFN). Their approach is to cluster the data and then to choose a neuron, either

sigmoidal or radial-based, that approximates the local function within each cluster

[107]. Their method is compared with a novel algorithm introduced in this study in

Appendix C.

Flake’s ‘square unit augmented, radially extended MLP’ (SQUARE-MLP) app-

roach may also be seen as a hybrid approach [108]. Flake uses each of the inputs to

a network twice. One is used as a raw input, while the second uses the square of the

original value. The hidden layer neurons all have sigmoidaltransfer functions. How-

ever, when the sigmoidal functions are applied to the squared inputs, the final output

functions are similar in form to the Gaussian functions commonly used as radial basis

functions. A SQUARE-MLP is therefore similar to a hybrid sigmoid-RBF ANN, with

the constraint that the number of RBF-type and sigmoidal neurons must be equal.

Genetic algorithms were introduced in section 1.5.6. They have specific application

in the area of hybrid networks, since they are able to search the space of possible

architectures, avoiding the need to trial all possible combinations of transfer functions.

Liu and Yao used a GA to search through architectures with a single hidden layer

containing both sigmoid and RBF neurons, applying their results to the classification of

heart disease patients [109]. Jianget al. used a simlar method to model concrete stress

[110]. Both studies used a GA only for the selection of architectures, with network

weights determined by variants on gradient descent.

Hybrid neural networks may be contrasted with modular neural networks, popu-

larised by the work of Jordan and Jacobs [111]. Their ‘hierarchical mixture of experts’

(ME) approach partitions data and creates separate networks for each partition. The

outputs of the networks are then combined using a ‘soft’ gating function. While Jor-

dan and Jacobs only consider MLP networks as candidates for the individual networks,

subsequent authors have admitted the possibility of different types of neuron [112].
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1.6 Artificial Neural Networks in Hydroinformatics

As described in section 1.4 numerical modelling incurs a large computational cost,

while empirical curve-fitting incurs a large experimental outlay (section 1.3). Both

methods have limited applicability, due to these costs. Thecurve-fitting approach is

further limited by any particular choice of free parametersand mathematical function.

For this reason there has been recently a growing interest inthe use of ANNs as an

alternative method of predicting various hydraulic parameters. Whereas the curve-

fitting approach uses parametric regression, the ANN approach may be seen as method

of non-parametric regression. The large number of free parameters means, in effect,

that no assumption is made concerning the mathematical structure of the input-output

relationship.

1.6.1 Freshwater Applications of ANNs

Within hydroinformatics, rainfall-runoff modelling is the area in which there has been

the most interest in ANNs. The aim of modelling is to predict the level of runoff given

known rainfall rates which may vary spatially or temporally, and hence to predict when

flooding may occur [113]. This process has clear parallels with the prediction of wave

overtopping rates, in terms of both the functional and causal relationships between the

input and output variables.

Smith and Eli [114] demonstrated the feasibility of using anANN to make such

a prediction. They used simulated data from a 5-by-5 grid of cells to which were

applied variable rainfall rates. They trained a back-propagation network to predict

the time and level of peak discharge. Shamseldin [115] foundthat the inclusion of

seasonal information as an input improved the performance of ANNs, across a range

of catchment areas.

Hsu et al. [116] used a series of time-delayed rainfall measurements to predict

runoff levels using measured data from the Leaf River Basin in Mississippi. They

obtained results that are superior to those from back-propagation by using a two-step

training algorithm, known as linear least squares simplex (LLSSIM). In this algorithm

the input-hidden weights are determined first, using a multi-start simplex algorithm

[116]. A linear output neuron is employed. In the second step, the hidden-output

weights may therefore be determined using a linear least squares optimisation pro-

cedure, rather than with gradient descent. The LLSSIM algorithm has considerable

similarity to the orthogonal least squares (OLS) algorithmcommonly used to train
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RBF networks (see section 1.5.7). It is found that this training technique gives results

that are an improvement on back-propagation.

Masonet al. [117] used synthetic data that included rainfall intensity, cumulative

rainfall and derivative of rainfall intensity as inputs. They found that RBF networks

trained considerably faster than MLP networks. Fernando and Jayawardena [118, 119]

found the same advantage in training speed when using RBF rather than MLP net-

works. Again the OLS method explains the observed training efficiency (section 1.5.7).

Dawson and Wilby [120] found the same advantage in training speed. However, in

their study MLPs gave greater prediction accuracy, with RBFs giving accuracy com-

parable to that from linear models.

Dibike et al. [121] compared the performance of various types of ANN on rainfall-

runoff prediction. They found that RBF networks trained the fastest,but gave relatively

high MSEs. MLPs gave reasonable results, with comparable results from three differ-

ent methods: BP training with either a unipolar or bipolar sigmoid transfer function,

and Levenberg-Marquardt training. A recurrent Elman network was found to train the

slowest but also gave the lowest MSE.

Senthil Kumaret al. [122] recently compared the ability to model rainfall-runoff

scenarios of RBF networks with MLP networks trained using LLSSIM. Their conclu-

sions are quite complex, with the most effective network dependent on flow conditions:

RBF networks give lower errors for medium and high flows, while MLPs give better

results for low flow conditions.

Some attempts have been made to automate the search for an optimum layer size.

Cascade-correlation ANNs have been applied to streamflow predictions by various

authors [123, 124, 125, 126]. Thriumalaiah and Deo [124] observed that the cascade

correlation algorithm gives much shorter training times than back-propagation, with

comparable error values. Muttiahet al. [126] created an ANN that could predict peak

discharges from a range of watersheds throughout the UnitedStates. Yang [127] used

a method that combined a genetic algorithm, to perform a global search, with gradient

descent, to locate local minima. This was applied to flood forecasting and to water

quality estimation. Abrahartet al. [128, 129] used pruning techniques and genetic

algorithms to find optimum sized networks for river flow forecasting.

Standard MLP networks have also been used for streamflow prediction by several

researchers [130, 131, 132]. Generally it has been found that streamflow exhibits very

different behaviour under high, low and medium flow-rate conditions, and traditional
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ANNs have had difficulty predicting the three types of behaviour within a single net-

work [113].

Hsu et al. [133] used a self-organising feature map (SOM) to group the inputs

before using linear regression to make runoff predictions for each subset identified. In

addition to giving reasonable prediction accuracy and short training times this method

yielded information concerning the division of data into groups exhibiting different

types of flow behaviour. Furundzic [134] also used a SOM to group data, before in-

putting the groups of data into three separate MLP networks.Temperature was used as

an input variable, in addition to previous rainfall and runoff values. Prediction accuracy

was found to be superior to that from linear regression.

See and Openshaw [135, 136, 137] have used a similar technique to group data

with a SOM. After creating a trained MLP for each subset of thedata, the outputs are

recombined using fuzzy logic. A genetic algorithm was used to optimise the if-then

rules used. The partitioning of data may therefore be seen as‘soft’, and the separate

ANNs may be seen as parts of an overall modular network.

Zhang and Govindaraju [138] used a mixture of experts (ME) approach [111] to

create a modular network. Each module is an ANN that takes allof the inputs. The

outputs of all networks are then combined as a weighted sum. The relative weights are

determined individually for each datum by a ‘gating network’. Weights within each

network are determined within a Bayesian theoretical framework. Rather than using

gradient descent, the Bayesian approach is to maximise the posterior likelihood of a

set of weights. The ME approach is an extension of the soft partitioning of See and

Openshaw, in which the weights assigned to the outputs of each network vary from

one input to another in a non-linear fashion.

Maier and Dandy [139] have investigated the effect of adjusting various training

parameters in the back-propagation algorithm. They use theprediction of river salinity

using time-lagged inputs as a test case. The most significantfinding is that choice of

transfer function has a strong effect on both training speed and generalisation ability,

with the hyperbolic tangent function clearly superior to the unipolar sigmoid function

and linear function.

Abrahart and others have investigated the choice of inputs in rainfall-runoff predic-

tion using saliency analysis [140, 141]. He also considers the related problem of data

selection. It is pointed out that rainfall-runoff data is very noisy and that any particular

partitioning into training, validation and test sets therefore introduces considerable bias

into the training process. Abrahart’s solution is to use a ‘bootstrap’ approach, in which
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data is regularly resampled during the training process [142]. Finally, various error

measures are discussed in addition to Mean Square Error (MSE) including maximum

over-prediction and maximum under-prediction [141].

Hsieh and Tang [143] consider the problems of overfitting, data selection and

knowledge extraction in the context of ANN models in meteorology and oceanog-

raphy. Suggested solutions to overfitting are ensemble averaging, early stopping, net-

work pruning and weight decay, while the number of inputs maybe reduced through

application of principal component analysis (PCA). Spectral analysis is suggested as a

means of approximating the non-linear component of an input-output relationship.

Overall, studies on the use of ANNs in freshwater flow prediction have a number

of features in common-

• The aim is invariably to predict future flow, or discharge, rates using past flow

rates. Within wave overtopping prediction, this is the approach used by nu-

merical simulation. It is not used within this study, which aims only to predict

time-averaged overtopping rates, but it would be possible to apply a time-varying

approach to wave overtopping prediction.

• Flow rates are seen to exhibit very different behaviour under various conditions.

As a result, standard MLP networks often have difficulty making generic predic-

tions across a range of conditions. It has become increasingly common to use a

modular approach. Sub-networks are then assigned the task of reconstructing a

particular part of the input-output function or a subset of the training data.

• Constructive algorithms, such as cascade correlation or OLS, generally give

quicker training times than BP. The resultant test errors areroughly compara-

ble to those obtained from BP, although results are highly problem-dependent.

• An optimum transfer function has yet to be identified. Different studies give

preference to either sigmoid or RBF functions.

• Various studies have identified the importance of considering further criteria

when designing ANNs for hydroinformatic simulation. Theseinclude stopping

criteria, model size, input parameter selection and data selection. These issues

are discussed further in section 1.6.3.
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1.6.2 Coastal Applications of ANNs

Applications of neural networks in coastal hydroinformatics are much rarer than fresh-

water studies. The first published paper in this area was by Maseet al. [144], published

in 1995. This predicted the stability of rubble-mound breakwaters using structural pa-

rameters, such as a permeability parameter, as well as sea-state information including

water depth and wave steepness.

A number of authors have used previous tide levels to predictfuture tidal levels,

with methods similar to those used in streamflow predictions[145, 146]. ANN out-

puts have also been combined with harmonic analysis to produce long-term tidal pre-

dictions [147]. Deo and Sridhar Naidu [148] used previous wave heights to predict

their future values. They found that the cascade correlation algorithm was superior to

back-propagation in terms of accuracy and training time. Deo and Kiran Kumar [149]

similarly found that the cascade correlation algorithm wasefficient in interpolating

between monthly mean wave heights to obtain weekly values.

Tsaiet al. [150] predicted wave heights and periods at one coastal station using val-

ues from a series of other stations within Taichung harbour,Taiwan. Similarly, Huang

and Murray [151] used water levels at a series of locations topredict tidal currents at

an inlet of Long Island, New York. Both studies used a basic MLP. Makarynskyy [152]

predicted wave heights and periods at one location off the Irish coast using measure-

ments at nearby locations.

Tanganget al. [153] used ensemble averaging to predict sea surface temperatures

from previous sea level pressure values. In ensemble averaging a number of different

networks are trained, with different starting weights [154, 155]. In the study by Tan-

gang different samples of training data were used to train each network. The overall

output of the system was then computed by averaging the outputs from all of the net-

works. The aim of ensemble averaging is to reduce the variance inherent in any single

neural network [156].

Recently, attempts have been made to predict wave parametersusing independent

variables, rather than related measurements at earlier times or nearby locations. Deoet

al. [157] predicted wave height and wave period by using wind speed over a previous

period of time as inputs to a MLP. They found that different ANNs were required for

fair weather and monsoon conditions. Deo and Jagdale [158] predicted the heights and

period of breaking waves from values of the deep water wave height, deep water wave

period and sea bed slope. They used laboratory measurementsto train a MLP network.

El-Shazly [159] used values of temperature, pressure and wind to predict monthly
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mean sea levels at Alexandria over a 7-year period. Best results were obtained using

a general regression neural network (GRNN). This is a type of variable width RBF

network in which there is a neuron centred at every point within the training data

[160].

The European CLASH project has compiled a large database of wave overtopping

data, which is used within this study (see Chapter 3. Members of the CLASH project

have published a number of relevant papers. Medinaet al. [161] used an ANN to pre-

dict wave overtopping at Zeebrugge breakwater from the crest freeboard and a small

number of hydraulic parameters. Training data was obtainedusing scale models, but

testing with prototype data gave mixed results. The trainedneural network was used

to simulate new data, which was used to create a pseudo-empirical formula with ex-

ponential form, similar to equation 1.1. Verhaegheet al. carried out an in-depth study

of the data within the CLASH database [162, 163]. Pozuetaet al. have very recently

developed MLPs for predicting overtopping discharges using the database [164]. They

use an ensemble approach, with bootstrap resampling from the data. Pozueta’s study

uses an updated version of the CLASH database that was not available at the time that

the research reported in this thesis was performed. It is intended that the findings of

this study will be tested further using the most recent database at a future time (see

section 9.3).

Several authors have commented on the desirability of extracting symbolic infor-

mation from neural networks or inserting known relationships into ANNs [165, 166].

Dibike et al. [167] showed that a neural network could ‘learn’ the partialdifferential

equations representing wave behaviour, and that these equations could be reproduced

from a trained ANN. The ANN is able to perform a time-step in a finite-difference

scheme; given water depths arranged in a grid at time t, waterdepths at time t+1 may

be predicted for a simple flume.

Overall, research on coastal applications has been more varied than that on fresh-

water applications. There has been more attempt to predict dependent variables from

independent variables, rather than using time-series data, and authors have been more

adventurous in their choice of network architecture. Due tothe sparsity of research in

this area however, a consensus has yet to appear on the most effective architectures and

training algorithms. The next section discusses these issues.
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1.6.3 Design Issues

When designing neural networks, there are a number of issues that should be taken

into account [35]. While there have not been sufficient studies in the area of coastal

engineering to enable generalisations to be made, a number of authors have considered

design issues in the context of ANN use for freshwater studies [38, 120, 122]. The

issues fall into the following categories, which are discussed in turn:

• Performance criteria

• Data pre-processing

• Choice of inputs

• Determination of network architecture

• Choice of training algorithm

• Stopping and validation criteria

The most commonly used performance criteria are predictionaccuracy and training

speed, both of which depend primarily on the choice of training algorithm. Prediction

accuracy is most commonly assessed as mean square error (MSE), although alternative

measures such as maximum over-prediction and maximum under-prediction have been

used on occasion [141, 168]. Even in cases where alternativeerror measures have been

employed, the training algorithms used have minimised the MSE. While researchers

within the ANN community usually assume that MSE is the best error measure, many

coastal engineers are accustomed to using alternative error measures such as average

error factor or average absolute error [31], which are likely to give more useful infor-

mation when designing sea-walls. The approach used in this study is to use MSE as

the error measure while developing of ANNs. This allows the use of standard train-

ing methods and makes comparisons with alternative ANN methods straightforward.

After various types of neural network have been developed, they are compared using

alternative error measures, in section 7.3.

Input data should be scaled so that different inputs have similar importance in train-

ing. When using sigmoid output functions, the output data should also be scaled to

avoid training in the extreme ‘flat’ areas. In the case of bipolar sigmoid functions

this means that a range such as [-0.8,0.8] should be used. Training may also be more

effective if data with near-normal distribution is used.
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Using too many inputs is likely to slow down training and leadto over-large net-

works [38]. It is therefore important to pre-select data before training. However, inputs

must be carefully selected on the basis of their informationcontent to avoid discarding

useful information. Parameter selection methods includea priori knowledge, cross-

correlation analysis and principal component analysis. The number of samples to be

used in training is a related issue. Attempts have been made to estimate the optimum

training-test ratio. Kearns has suggested that a fixed ratioof 80:20 gives reasonable

results across a range of datasets [169, 35]. Amari [80] usesa formula that depends

upon the size of the dataset relative to the number of free parameters within the ANN.

Amari’s theory is discussed in section 4.2.

Data needs to be carefully selected to ensure its reliability. While ANNs are toler-

ant to some degree of noise, they will have difficulty identifying an underlying function

in the presence of very high variability. A particular problem occurs in the presence of

systematic errors, which are likely to be incorporated intothe approximating function

since ANNs cannot distinguish between ‘true’ trends and systematic errors.

Network size is discussed in some detail by Maier and Dandy [38]. They point out

that small networks have greater generalisation ability, require less storage space, train

and respond more quickly and make rule extraction simpler. However, they also have

a more complex error surface, with more local minima. Largernetworks generally

require fewer training epochs, can form more complex decision regions and are better

able to avoid local minima. However, they are computationally expensive and require

large training samples to give good generalisation ability. As seen in the last section,

some authors have utilised pruning or constructive algorithms in order to automate the

process of network size selection.

Senthil Kumaret al. [122] concern themselves with a comparison of MLP and RBF

networks. Their conclusions are inconclusive. RBF networks are found to train faster

and to give lower errors using some measures and particular flow regimes. However,

MLP networks give better results using alternative measures.

MLPs have three alternative families of training algorithms : first order gradient

descent, second order gradient descent and global methods.The advantages and dis-

advantages of these methods have been discussed in detail insections 1.5.4 and 1.5.5.

RBF networks have alternative algorithms available to them, as discussed in section

1.5.7. In addition, as we have seen, some authors have used alternative training algo-

rithms, including cascade correlation and LLSSIM.
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Amari et al. have proved that early stopping should not be required if networks are

of reasonable size, i.e. if the ratio of training samples to connection weights exceeds

30 [80]. However, for smaller datasets it is expected that early stopping will improve

generalisation performance. This issue is discussed further in section 4.2.

Consideration should be taken of the need to partition the available data into train-

ing and test data. Further partitioning of the training datainto training and verification

sets is also often performed, in order that a verification setis available to identify the

optimum network architecture or the time at which to stop training. The manner and

proportions in which the partitioning is performed is discussed with reference to the

wave overtopping dataset in section 4.3

Chapters 3-5 describe the methods used to pre-process and select data, and to train

and assess various types of ANN. One of the aims in these chapters is to demonstrate

that the design issues raised in this section have been takeninto consideration when

conducting that research. It is to be hoped that the results reported in this study will

reflect back on some of these design issues, providing evidence concerning the design

of ANNs for hydroinformatics. Specifically, observations are made concerning

• the selection of data and its effect on network outputs

• the effectiveness of various training algorithms

• choice of transfer function and its effect on generalisation ability

• model size selection and its relationship to training algorithms and stopping cri-

teria

1.7 CLASH and the development of a hybrid neural

network

As shown in section 1.6.2, coastal applications of ANNs havebeen quite rare. The

main reason for this is that large amounts of data are required to train ANNs and this

data was not widely available at the time. However, from the second half of the 1990s

onwards attempts were made to collect and collate coastal data, and to utilise it in

ANN training. One such scheme is the European CLASH project [170, 171], which

has collected large amounts of overtopping data from both model and prototype sites.

This data covers a wide range of defensive structures and incident wave conditions
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Initialise and Train MLP network (Levenberg-Marquardt)

Add RBF neurons (Forward Selection with OLS)

Optimise all weights (Levenberg-Marquardt)

Figure 1.11: The three-step training process used by GL-ANNs

and therefore provides an ideal basis for the training of ANNs designed for generic

prediction across a range of scenarios.

This study uses the CLASH database to train a wide range of ANNs, including

MLPs and RBF networks. A variety of training algorithms have been used, including

variants on gradient descent and least squares optimisation. From this investigation has

emerged a hybrid network architecture with a correspondinghybrid training algorithm,

which gives superior results to those from simpler architectures and training methods.

The hybrid ANN reported here contains both sigmoid and RBF neurons. The train-

ing method involves a three-step training algorithm (figure1.11). First a MLP network

is created and trained. RBF neurons are then selected for addition to the network. The

output weights of both sigmoid and RBF neurons are chosen such that they minimise

the mean square error of the network. Finally, all weights, including RBF centres and

steepnesses, are optimised using gradient descent.

Sigmoid neurons are effective at identifying global features of an unknown func-

tion, whereas RBF neurons are able to represent more local variations within the func-

tion. The training process used by the hybrid networks therefore identifies the global

aspects of the function before identifying the more local features. For this reason we

call our networks ‘global-local artificial neural networks’ (GL-ANNs). The results re-

ported in Chapter 7 suggest that GL-ANNs are able to estimate more accurately than

either pure RBF networks or MLP networks the input-output relationship within the

CLASH data. Further, GL-ANNs are seen to be parsimonious in their use of neurons,

at least when compared to RBF networks.

GL-ANNs were also tested using a range of other datasets. Some of these are

small, synthetic datasets with few inputs, while others arelarger datasets with several

inputs and, sometimes, large amounts of noise. From the results of these tests it has

been possible to determine areas in which GL-ANNs perform well as well as some
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Data Models

Development/Analysis

Assessment

Figure 1.12: The interaction between data and models

of the limitations on their use. Some of the results also leadon to discussions of

various issues related to the training of hybrid networks, RBFnetworks and of ANNs

in general. These issues are:

• the need for regularisation when setting output weights

• the determination of optimum RBF steepnesses

• the value of mixed training algorithms involving both deterministic methods and

gradient descent training

• criteria for model selection, i.e. the choice of type and number of neurons

• the choice of stopping criteria in training algorithms.

1.8 Overview

This section describes how the strands of wave overtopping and neural network theory

are related within this thesis. The relationship may be seenas an interaction between

data and the models used to analyse the data. This relationship has two elements:

development (or ‘analysis’) and assessment (see figure 1.12). During development, the

wave overtopping data acts as the stimulus for a study of neural network architectures.

In this phase a narrow range of datasets is considered (just the CLASH dataset), but

a wide range of ANN architectures. In the assessment phase, the process is reversed.

A single architecture (GL-ANNs) is assessed in terms of its effectiveness in modelling

various datasets with different characteristics. The aim of the assessment phase is

to determine the strengths and limitations of the GL-ANN architecture and training

process.

This thesis may be seen as being in four parts: background, development, assess-

ment and conclusion. This chapter has provided a backgroundto the fields of wave
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overtopping prediction and artificial neural networks, as well as describing some pre-

vious research that brings together the two fields. Chapter 2 provides further back-

ground material, in the form of a number of mathematical methods used in neural

network training.

Chapters 3-6 present the development/analysis phase of the research. Chapter 3

describes the CLASH dataset, including the pre-processing of data and selection of

input parameters. The process of developing MLPs and the results of training MLPs

with variations on gradient descent are described in Chapter4. Chapter 5 includes the

results of training RBF networks with the CLASH dataset and a discussion of these

results. Chapter 6 describes in detail the GL-ANN training method and the theory

behind it.

Chapters 7-8 describe the assessment phase. Chapter 7 gives the results of training

GL-ANN with the CLASH data. Comparisons are made with RBF networks and with

MLP networks trained with the Levenberg-Marquardt algorithm. Also included are

extensive discussions of several issues arising from theseresults. Chapter 8 describes

a number of benchmark datasets used to explore the applicability of the GL-ANN

architecture and algorithm and reports the results of training MLP, RBF and GL-ANN

networks with these datasets. Criteria are developed for determining whether the GL-

ANN approach is likely to be fruitful for a particular dataset.

Finally, Chapter 9 concludes the thesis and makes suggestions for possible future

areas of research.



Chapter 2

Mathematical Techniques for Neural

Networks

This chapter describes in detail the mathematical methods used within this thesis.

These are all techniques related to the training of ANNs. A preliminary section (sec-

tion 2.1) introduces various transfer functions commonly used by neural networks.

Section 2.2 introduces the algorithms and equations used toperform gradient descent

optimisation, including back-propagation and several improvements to the basic BP

algorithm. Section 2.3 describes the Levenberg-Marquardtalgorithm and gives the

equations utilised within the algorithm. Section 2.4 presents the Forward Selection

(FS) procedure used to build RBF networks. This section includes detailed treatments

of the Least Squares and Orthogonal Least Squares methods used to optimise the out-

put weights during the FS procedure. Section 2.5 gives a mathematical treatment of

regularisation within the context of FS.

2.1 Transfer Functions

As we have seen in Chapter 1 each neuron in an ANN has a transfer function. This

is a simple mathematical function that takes a number of inputs and transforms them

into a single output. Each transfer function has a number of adjustable parameters that

correspond to the input weights of the neuron. This section describes two families of

transfer functions: pseudo-linear transfer functions andradial basis transfer functions.

Duch and Jankowski have provided a full survey of transfer functions, including com-

binations of pseudo-linear and radial based functions, forthe interested reader [37].

46
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2.1.1 Pseudo-linear transfer functions

The transformation performed by pseudo-linear transfer functions takes place in two

steps. Firstly, the net input,v, is calculated as a weighted sum of the inputs, as given

by equation 2.1. The sum starts with a suffix of 0 rather than 1 to allow for a fixed bias

in addition to the variable inputs (see section 1.5.4).

v =
p

∑

n=0

inwn (2.1)

A true linear function then passes on the net input unchanged(see figure 2.1a).

However, if all the neurons in an ANN have linear transfer functions the overall output

of a multi-layer network must be a linear combination of the inputs [172]. In order to

make neural networks more versatile non-linearity must be introduced into some or all

of the transfer functions. This non-linearity generally introduces limits on the possible

outputs of the transfer function, usually [0,1] or [−1,1]. This is often convenient

mathematically, since the target function may have a limited range of possible outputs.

It also has some biological validity, since the ouput of biological neurons is restricted

in range [36]. Some commonly used linear and pseudo-linear transfer functions are

defined by equations 2.2 - 2.7 and illustrated in figure 2.1.

Equations 2.3 and 2.4 introduce hard-limited thresholds torestrict the output range.

These functions are illustrated in figures 2.1b and 2.1c. Theremaining functions are

sigmoid functions, so called because of their S-shape. These all have the advantage

that they are differentiable at all points. This is essential to the operationof gradient

descent methods (see sections 1.5.4 and 2.2).

Linear function:

f (v) = v (2.2)

Threshold function:

f (v) =















1 if v ≥ 0

−1 if v < 0
(2.3)

Piecewise linear function:

f (v) =



























1 if v ≥ 1

v if -1 < v < 1

−1 if v ≤ -1

(2.4)
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Logistic function:

f (v) =
1

1+ e−v
(2.5)

Hyperbolic tangent function:

f (v) = tanh(v) (2.6)

Bipolar sigmoid function:

f (v) =
1− e−v

1+ e−v
(2.7)

2.1.2 Radial basis transfer functions

As with pseudo-linear functions, the outputs of radial basis functions are calculated in

two steps. The first step calculates the Euclidean distance,d, between the input and the

neuron weights, according to equation 2.8. In order to findd, the two quantities have

to be expressed as vectorsi andw. The subscriptj indicates the individual dimensions

of the input.

d = ‖i − w‖ =

√

√

√ k
∑

j=1

(

i j − w j

)2
(2.8)

The Euclidean distance is then used as the net input to the neuron. The output of

the neuron,y, is calculated as a function of this net input using a transfer function f , as

in equation 2.9. Since the final output depends only upon the Euclidean distanced, it

must be radially symmetric and centred upon the weight vector w. For this reason, the

weight vector is commonly described as a centre and the bias is often replaced with a

‘steepness’ parameter,σ, since it controls the steepness of the functionf .

y (i,w) = f (d) (2.9)

Various functions may be used in equation 2.9. Some commonlyused functions

are described by equations 2.10-2.15 and illustrated in figure 2.2 [35].

Triangular function:

f (d) =



























0 if d ≤ -1

1− |d| if -1 < d < 1

0 if d ≥ 1

(2.10)
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Figure 2.1: Linear and pseudo-linear transfer functions
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Thin plate spline:

f (d) = d2ln |d| (2.11)

Multiquadratic function:

f (d) =
√

d2 + ω2 (2.12)

Inverse multiquadratic function:

f (d) =
1

√
d2 + ω2

(2.13)

Gaussian function:

f (d) = e−σ
2d2

(2.14)

Radial hyperbolic tangent function:

f (d) = 1− tanh
(

d2
)

(2.15)

2.2 Gradient Descent

2.2.1 Adaptive linear elements

During gradient descent training, the error gradient with respect to the weights in a

network is calculated and weight changes are made in the direction of the error gra-

dient. The error gradient is a vector quantity. It is therefore necessary to calculate

the individual partial gradients with respect to each network weight. As long as the

steps made during each weight update are small the directionof travel should be in the

direction of the steepest gradient.

The simplest possible network contains neurons with linearactivation functions

and no hidden layer. Such networks have been described as ‘adaptive linear elements’

(ADALINE) [173]. The inputs pass directly to the output neurons and, for a particular

inputx, the output of each output neuron is given by equation 2.16. Since ADALINEs

contain no hidden layer, the local input vectori is identical to the input to the network,

x. Equation 2.16 is therefore identical to equation 2.1 except for the replacement ofi

by x.

y =
p

∑

n=0

xnwn (2.16)
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Figure 2.2: Radial basis transfer functions
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The function to be minimised by ADALINE’s is the squared error, E. If the target

output for the output neuron ist, the squared error is defined by equation 2.17.

E = (t − y)2 (2.17)

Substituting fory and differentiating with respect to the weight vectorw gives

the error gradientdE
dw of equation 2.18. The vector gradient may be separated into

individual partial gradients∂E
∂w j

, given by equation 2.19.

dE
dw
= −2(t − y) x (2.18)

∂E
∂w j
= −2(t − y) xj (2.19)

In order to minimise the error, we wish to move in the oppositedirection to the error

gradient. If we introduce a learning rateη, the individual weight updates are then given

by equation 2.20, in whichη is a positive real number. The algorithm incorporating

this weight update is known as the ‘least squares rule’ sinceit has been shown that it

will lead to convergence to the least squares solution, given an appropriate choice ofη

[65].

∆w j = η (t − y) xj (2.20)

The discussion so far has considered a single input vector. When consideringm

input patterns, the relevant error function is the sum of squared errorsS, defined by

equation 2.21. The overall error gradient is given by equation 2.22 and the weight

updates by equation 2.23.

S (w) =
m

∑

i=1

(ti − yi)
2 (2.21)

dS
dw
= −2

m
∑

i=1

(ti − yi) xi (2.22)

∆w j = η

m
∑

i=1

(ti − yi) xi j (2.23)

The reader’s attention is drawn to the difference between equation 2.20 and equa-

tion 2.23. The latter implies that the weight changes from all patterns should be
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summed before being applied to the network. This process is known as ‘batch’ we-

ight updating. The alternative procedure, represented by equation 2.20, is commonly

described as ‘stochastic’ weight updating. It is to be expected that the batch update

procedure will converge to the global minimum more quickly,due to superior gradi-

ent information. However, the stochastic method is often preferred when solving real

problems. This issue has been discussed in section 1.5.4, ashas the choice of learning

rate.

2.2.2 Multi-layer perceptrons

Transfer functions in most MLPs are not restricted to linearfunctions. In order to

extend gradient descent, the least squares rule must be extended to allow for a variety

of transfer functionsf . The gradient of the SSE with respect to the input weights of

an output neuron is then expressed by equation 2.24, in whichvi is the net input to the

given neuron given theith input.

dS
dw
= 2

m
∑

i=1

(ti − yi) f ′ (vi) xi (2.24)

When compared to equation 2.22 it is seen that an extra term,f ′(vi), has been

introduced, to reflect the dependency of the outputs on the transfer function. When

using stochastic weight updates, the individual weight adjustments may be expressed

as in equations 2.25-2.26.

δ = (t − y) f ′ (v) (2.25)

∆w j = ηδxj (2.26)

Equation 2.25 shows that there is a factor,δ, common to the updates of all weights

of a particular neuron. For this reason this training rule has become known as the ‘delta

rule’. The weight updates are also seen to be proportional tothe local input vectorx.

The greatest difficulty with the use of multiple layers was the problem of credit

assignment, first identified by Minsky in 1961 [174]. The problem may be seen as one

of identifying the extent to which a particular weight in a network is responsible for

the final output of the network. This is required in order to assess the degree to which

a particular weight should be adjusted during training. Output neurons have a direct

effect on output values, and hence on SSEs. Hidden neurons have an indirect effect on
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outputs, in that they affect the inputs to the output neurons. It is therefore more difficult

to calculate their effect on the final output values.

Provided the hidden and output neurons have differentiable functions, there is a

solution to the problem, using the chain rule. Equation 2.26showed that output neuron

weight updates that achieve steepest gradient descent are proportional to local gradients

and to the local input vector. In a multi-layer network, thisvector is no longer the same

as the overall input to the network and is therefore denoted by i rather thanx, leading

to equation 2.27.

∆w j = ηδi j (2.27)

i is in turn dependent on the outputs from the previous layer ofneurons. Applica-

tion of the chain rule yields the dependence of the SSE on the hidden layer neurons,

and hence the weight updates required for steepest gradientdescent. These are given

in equations 2.28-2.29, in whichg andu are the transfer function and net input, respec-

tively, of the jth hidden layer neuron.

δ j = g′ (u)
∑

k

δkwk j (2.28)

∆w ji = ηδ j xi (2.29)

∆w ji is the weight update for theith weight of the jth neuron in the hidden layer.

Thek subscript refers to the neurons in the output layer. Thus thecontribution of the

hidden neuron to each of the output neurons is summed.

The δ values calculated using equation 2.28 may in turn be passed back to the

previous layer if there are two hidden layers, and so on. For this reason, the training

rule has been described as the generalised delta rule [76] and the training algorithm is

commonly known as back-propagation of error or ‘BP’.

2.2.3 Modifications to back-propagation

This section gives a mathematical treatment of some modifications to BP, as described

in sections 1.5.4 and 1.5.5.
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Momentum

The introduction of momentum into gradient descent training speeds up convergence

by introducing a variable learning rate. When successive updates are in the same direc-

tion the algorithm emphasises the weight changes. On the other hand, when successive

weight changes are in opposing directions, the size of the updates is reduced. At thenth

epoch, the weight updates are given by equation 2.30, in which∆wi (n) and∆wi (n− 1)

are the current and previous weight updates, respectively.

∆wi (n) = ηδ j (n) xi (n) + α∆wi (n− 1) (2.30)

The momentum coefficientα is constrained such that 0≤ α < 1. The effect of this

term is therefore to add a fraction of the last update to the current update.

Weight Decay

Weight decay aims to reduce network overfitting by adding a penalty term to the error

function [81]. The penalty term is commonly chosen to be the sum of squares of

the network weights. The error function is then given by equation 2.31 and the error

gradient for theith weight is given by equation 2.32. The weight decay parameter, λ,

controls the level of weight decay, or ‘regularisation’, applied during training.

E = E0 +
1
2
λ
∑

w2
i (2.31)

δ = δ0 − λwi (2.32)

Simulated Annealing

Simulated annealing tries to avoid becoming trapped in local error minima by using a

fairly high learning rate, but disallowing some weight changes. In order to encourage

convergence a pseudo-temperatureT is introduced. This parameter determines the

probability of a weight change being made. The temperature is reduced during training

and the probability of a weight change being performed is given by equation 2.33.

p (∆w) = e(−∆E/T) (2.33)

An annealing schedule must be introduced. This commonly includes an exponen-

tial drop in temperature, with training stopping when a fixednumber of epochs have
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led to no reduction in error [83].

Quickprop

Quickprop was introduced by Fahlman [84] and has been particularly associated with

the cascade correlation algorithm. The weight updates are calculated according to

equation 2.34, in whichg(t) andg(t−1) are the current and previous values of the error

derivative.

∆w (t) =
g (t)

g (t − 1) − g (t)
∆w (t − 1) (2.34)

Its operation is similar to that of gradient descent with momentum, with the previ-

ous weight update taken into account when calculating the current update.

2.3 Levenberg-Marquardt method

The Levenberg-Marquardt method is a second-order method [175, 86]. Rather than

finding the error minimum directly it aims to locate the zero of the error gradient. The

zeroα of a univariate functionf may be found using the Newton-Raphson method

according to the iterative formula of equation 2.35.

αn+1 = αn −
f (αn)
f ′ (αn)

(2.35)

When extended to a multivariate function,α becomes a vector and the derivative

of the function is now a vector derivative, as in equation 2.36.

αn+1 = αn −
f (αn)
∇ (αn)

(2.36)

In the case of neural network optimisation, we wish to find thezero of the error

gradientg with respect to the network weights. Sinceg is a vector quantity and is itself

a derivative, we have to work with the Hessian matrixH (equation 2.37).

wn+1 = wn −
g (wn)
H (wn)

(2.37)

Each element in the Hessian contains second derivatives of the error function,

summed over all training patterns. However, the error measure E is related to the out-

puts and target outputs by equation 2.17. The elements within the Hessian therefore

contain values like that in equation 2.38, summed across alltraining patterns.
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∂2E
∂wi∂w j

= 2

(

∂y
∂wi

∂y
∂w j
+ (y− t)

∂2y
∂wi∂w j

)

(2.38)

One can calculate local values of the first derivatives. These are theδ values used

in the gradient descent method. The second derivatives in the above equation are disre-

garded when estimating the Hessian. This is a reasonable estimate since the error (y−t)

is expected to be small. Further, we expect the values of (y − t) to have an approxi-

mately Gaussian distribution with mean zero. When summed over a large number of

training patterns the second terms are therefore likely to cancel out to a large extent.

Having obtained an approximation of the Hessian, the Newton-Raphson method

may be used to find the nearest zero of the error gradient. Two problems may arise.

Firstly, the local Hessian estimation may not be an adequaterepresentation of the un-

derlying function. Secondly, the second-order algorithm by itself may approach a

maximum or saddle point on the error surface, rather than a minimum. In order to

avoid these problems, the Levenberg-Marquardt method includes an additional gradi-

ent descent term. The weight adjustment vector is then givenby equation 2.39.

∆w = (H + λdiag(H))−1 g (2.39)

The parameterλ adjusts the relative weighting given to Newton’s method andto

gradient descent. If the error falls after applying the weight adjustment,λ is decreased.

If, on the other hand, the error increases, the weight changes are reversed,λ is increased

and the weight changes are re-calculated.

2.4 RBF centre selection

Forward selection of centres (FS) is a method used to choose the centres to be used

within hidden neurons of a RBF network. Candidate centres are restricted to the input

vectors of the training set. The task is to add one centre at a time from the available

centres, so as to give the greatest possible reduction in SSEafter each addition. This

section describes the mathematical underpinnings of the FSmethod.

2.4.1 Fully interpolated networks

Early work on RBF networks focused on fully-interpolated networks. These networks

contained the same number of hidden neurons as there were elements in the training
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set, with one centre corresponding to each input vector. Theoutput layer performed

a weighted sum of the radial basis function outputs, i.e. alloutput layer neurons had

linear transfer functions. We may express the hidden layer outputs as a square matrix

F, whose elementsFi j represent the output of thejth neuron given theith input. This

matrix is commonly called the ‘design matrix’ [176]. As described in section 2.1.2,

the outputs of radial basis functions depend upon the distance between the input and

weight vectors. For this reasonF is necessarily symmetric. The final outputs are

related to the hidden layer outputs by equation 2.40, in which w j are the hidden-output

weights.
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(2.40)

The output weights are then determined using equation 2.41,providedF has an

inverse.

w = F−1y (2.41)

Micchelli [177] has proved thatF is necessarily non-singular for a number of func-

tions, including multiquadratics, inverse multiquadratics and Gaussian functions (see

figure 2.2), provided that none of the input vectors are identical. An exact solution to

equation 2.41 must therefore exist.

2.4.2 Least squares solution

This section considers a situation in which only a subset of the available centres are

used, so the number of hidden neurons is less than the size of the training data. One

must now distinguish between the full design matrixF and the design matrix for the

network which we are considering,A. In this situationA is non-square and an exact

solution is not possible: the actual output vectory will not be identical to the target out-

put vectort. However, the pseudo-inverse gives the least squares solution to equation

2.40. This solution is given by equation 2.42 [176].

w =
(

ATA
)−1

ATt (2.42)

It would be possible to try all possible combinations of input vectors, calculate the

output weights and hence the final outputs before choosing the network with the lowest
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error function. However, there are efficient ways to calculate the reduction in error

upon adding a single neuron. First, the projection matrix,P, is calculated according

to equation 2.43. This matrix is called the ‘projection matrix’ because it projects the

vectors withinF, which for m input patterns arem-dimensional, into the space of the

ANN model, which forn hidden neurons isn-dimensional.

P = Im − A
(

ATA
)−1

ATt (2.43)

The SSE is then given by equation 2.44.

S = tTP2t (2.44)

2.4.3 Forward Selection

The use of the projection matrix does not in itself lead to an improvement in computa-

tional efficiency, since it is still necessary to invert an m-by-m matrix to obtain the SSE

for a network. However, when neurons are added one at a time, there is an efficient

method for updating the projection matrix, given by equation 2.45. In this equationfJ

is a column in the full design matrixF.

Pn+1 = Pn −
PnfJfT

J Pn

fT
J PnfJ

(2.45)

Further, the reduction in SSE upon adding the neuronJ to the network may be

obtained as equation 2.46. By running through all possible centres (J values) it is

possible to identify the one which will give the greatest reduction in SSE at each stage

[176].

Sn − Sn+1 =

(

tTPnfJ

)2

fT
J PnfJ

(2.46)

2.4.4 Orthogonal Least Squares

A further improvement in computational efficiency is achievable by factorisingF into

an orthogonal matrix̃F and an upper triangular matrix [104]. Each time a neuron is

added to the network an adjustment must be made toF̃ according to equation 2.47 in

order to keep the columns orthogonal to each other.
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F̃n+1 = F̃n −
f̃J f̃T

J F̃n

f̃T
J f̃J

(2.47)

The benefit is that the reduction in SSE may now be found without the computation

of the projection matrix, according to equation 2.48.

Sn − Sn+1 =

(

tT f̃J

)2

f̃T
J f̃J

(2.48)

2.5 Regularisation

Regularisation is very commonly introduced into the FS algorithm. During regulari-

sation, a penalty term is added to the error function in orderto avoid overfitting, indi-

cated by very large connection weights [98]. Thus, instead of minimising the SSE, one

would minimise the function in equation 2.49.P( f ) acts as a ‘stabiliser’, smoothing

the overall functionf .

S =
∑

i

(yi − ti)
2
+ λP ( f ) (2.49)

λ is a regularisation parameter, andP may take different forms. A commonly used

stabiliser is the sum of squared weights. The approach then has clear parallels with

the introduction of weight decay into gradient descent training of MLPs (see section

1.5.4). The solution that minimises the cost functionS is then given by equation 2.50,

in which I n is the n-by-n identity.

w =
(

ATA + λI n

)−1
ATt (2.50)

The reduction in SSE upon adding a single neuron may be calculated according to

equation 2.51 if using least squares or according to 2.52 within the orthogonal least

squares paradigm.

Sn − Sn+1 =

(

tTPmfJ

)2

λ + fT
J PnfJ

(2.51)

Sn − Sn+1 =

(

tT f̃J

)2

λ + f̃T
J f̃J

(2.52)
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2.6 Summary

This chapter has described a number of mathematical techniques that are involved in

the training of ANNs. Some techniques have particular relevance to later chapters in

this thesis:

• Back-propagation, the Levenberg-Marquardt algorithm and momentum terms

are used in the training of MLP networks described in Chapter 4.

• Forward selection with orthogonal least squares and regularisation are particu-

larly relevant to the training of RBF networks reported in Chapter 5.

• The Levenberg-Marquardt algorithm and Forward Selection with Orthogonal

Least Squares provide the basis for the GL-ANN algorithm described in Chapter

6.



Chapter 3

The CLASH Dataset

CLASH is the acronym for ‘Crest Level Assessment of coastal Structures by full scale

monitoring, neural network prediction and Hazard analysison permissible wave over-

topping’. It is a European Union funded project that includes thirteen partners in seven

different countries. One of its objectives is to develop a generic method for the predic-

tion of wave overtopping rates using artificial neural networks as a tool [171]. Over-

topping rates are quoted as mean rates over the period of a storm (usually about 2

hours for full-scale measurements) for a unit length of wall. They therefore have units

m3/s/m.

3.1 Data collection

As a first step towards the generic method a database has been created. This database

contains data from both laboratory scale-model tests and from full-scale measurements

at operational sea-walls. Data falls into two categories, hydraulic and structural. Hy-

draulic data describes the observed sea-state in terms of wave heights, wave periods,

wave steepnesses and angle of wave attack. In some cases datais available at the toe

of the structure and in other cases for deep water near the structure. Structural data

are a parameterised representation of the sea-wall in question. Individual variables are

mostly dimensions of parts of the structure, such asRc, the crest freeboard, orBh, the

berm width.

Much of the data in the database was collected before the start of the CLASH

project and in some cases did not contain all of the required parameters. It has there-

fore been necessary to calculate estimates of unknown parameters from known ones

[162]. There are three main gaps in the data. In some cases hydraulic data is only

62
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available in deep water. It is then necessary to run a numerical simulation in order to

obtain values at the toe of the structure. Processing by the ‘simulating waves nearshore’

(SWAN) program allows wave heights and periods at the toe of the structure to be es-

timated from their deep water counterparts plus information concerning the foreshore

characteristics [163]. In some casesTm−1,0,deep, the spectral wave period at deep water,

is not available either but other measurements of wave period have been measured.

This problem is solved more easily, sinceTm−1,0,deepand the peak wave periodTp,deep

are related approximately by the simple relationship of equation 3.1.

Tm−1,0,deep=
Tp,deep

1.1
(3.1)

Finally, there are different ways of calculating the significant wave height. In some

cases the significant wave height is quoted asH1/3,toe rather thanHm0,toe
1. The method

of Battjes and Groenendijk [178] is then used to calculate thetotal variance of the

water surface elevation,m0, from which H1/3,toe may be obtained using the simple

relationship of equation 3.2.

Hm0,toe = 4
√

m0 (3.2)

As we have seen, parameters at the toe of the structure may be calculated from their

deep water counterparts, but the opposite is not true. The deep water parameters there-

fore contain some gaps. For this reason, and also because deep water characteristics

affect wave overtopping only indirectly, it was decided that hydraulic parameters at the

toe of the sea-walls would be used in this study. This resultsin fifteen independent

parameters, of which four are hydraulic and eleven are structural. In addition, there are

thirteen composite parameters, which are combinations of some of the independent pa-

rameters. Finally each datum (set of variables) has a uniquename, a ‘reliability factor’

and a ‘complexity factor’. The reliability and complexity factors measure the accuracy

of the data. Data with a high reliability factor were measured using techniques with

considerable variability. High complexity factors indicate a complex sea-wall structure

that is not fully represented by the structural variables. Further details are provided in

section 3.2. The available input variables are listed in table 3.1 and illustrated in figure

3.1.

The database is currently at an interim stage. Due to the technical difficulties in

1H1/3,toe is defined as the average height of the highest third of the waves within a random wave-train
at the toe of the structure whereasHm0,toeis a wave height defined as four times the standard deviation
of a random wave-train and is obtained from spectral analysis
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Symbol Variable description
Hm0,toe significant wave height at the toe of the structure

Tm−1,0,toe mean wave period at the toe of the structure
β angle of wave attack relative to the normal
h water depth at the toe of the structure
ht water depth over the toe of the structure
Bt width of the toe of the structure
γ f roughness/permeability factor of the structure

cotαu mean cotangent of the slope, upward of the berm
cotαd mean cotangent of the slope, downward of the berm

Rc crest freeboard of the structure
Bh width of the berm
hB water depth over the berm
Ac armour crest freeboard of the structure
Gc width of the structure crest

sm−1,0 wave steepness
RF reliability factor
CF complexity factor

Table 3.1: Variables in the CLASH database

toe

still water level

ht

Bt

Bh

hb

Rc

Ac

Gc

berm

crest

.d

.u

Tm-1,0,toe

Hm0,toe

h

Figure 3.1: Cross-sectional view showing sea-wall structural parameters
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collecting data, parameter values are often highly variable. In some cases this has

resulted in very similar, or even identical, inputs having radically different measured

overtopping rates. A further problem is the existence of ‘white spots’. These are areas

of the data that represent viable structures, but for which little data is available. An

objective of the CLASH project is to rectify the problems of faulty data and white spots

by generating additional data. This will be achieved through numerical simulation and

through laboratory tests and should result in a ‘cleaner’ dataset. However, the database

as it stands is very ‘noisy’.

3.2 Data selection and pre-processing

Since some data is from small-scale models while other data is from full-scale proto-

types, there is a very large variation in raw parameter values. In order to prevent this

large variation from obscuring functional relationships,composite parameters were

used in ANN training. Lengths were converted to their ‘dimensionless’ counterparts

by dividing by the wave height at the toe of the structure,Hm0,toe. For this reason, this

parameter was omitted from training.

Wave period and overtopping rate were converted to dimensionless quantities us-

ing appropriate powers ofHm,o,toe and the acceleration due to gravity,g. The process

of creating dimensionless quantities is well-establishedand is commonly known as

‘Froude’s law scaling’, since it is based on Froude’s law of similarity. This states that

two systemsA andBhave dynamic similarity if the ratio of the inertia force to the grav-

itational force is equal for the two systems [27]. This law isusually stated in terms of

the Froude number,F, which is a constant (for dynamically similar systems) withthe

value given in equation 3.3, in whichu is a characteristic velocity,l is a characteristic

length andg is the gravitational acceleration.

F =
u

√

lg
(3.3)

The velocity in systemA is then related to the velocity in systemB by equation 3.4.

uA
√

lAgA

=
uB

√

lBgB

(3.4)

Given that velocity=length/time, the characteristic times in the two systems,τ, are

related according to equation 3.5.
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Figure 3.2: Saturation in a sigmoid transfer function

√

gA

lA
τA =

√

gB

lB
τB (3.5)

There have been some concerns as to the validity of this law when applied to fresh-

water laboratory tests and full-scale seawater scenarios (section 1.3). In particular, vis-

cosity and surface tension do not scale with physical dimensions. However, research

suggests that errors incurred from Froude law assumptions are likely to be small [27].

From this point onwards, the subscript 0 is used to indicate adimensionless quantity.

For exampleR0 is the dimensionless crest freeboard, equal toRc

Hm0,toe
.

Equation 3.5 implies that, if lengths are scaled according to some characteristic

length, times should be scaled proportional to the square root of that length divided

by
√

g. The non-dimensional mean wave periodT0 is therefore given by the quantity

Tm−1,0,toe

√

g
Hm0,toe

.

The wave overtopping rate has unitsm2s−1 and must therefore have a scaling factor

that is the product of the scaling factors for a length and fora velocity, i.e.
√

l3g. The

non-dimensional wave overtopping rateq0 is therefore given by q√
gH3

m0,toe

.

Some of the training variables were transformed before training in order to achieve

near-Normal distributions, since it is known that trainingis more effective with Nor-

mally distributed data [179]. Transformations consideredwere inverse and natural
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logarithm. Visual inspection was used to determine whetherto use one of these trans-

formations, resulting in the use of 1/T0, ln (ht0) andln (Bt0) as inputs andln (q0) as an

output. Normal probability plots for raw and transformed variables are given in figures

3.3-3.6.

All variables were linearly transformed (‘normalised’) inorder to give them a range

of [−0.8,0.8]. The result is that all input variables have a similar effect on weight

adjustments, rather than inputs with large values dominating training [180]. In addition

this technique avoids ‘saturation’ [179]. This phenomenonoccurs as a result of the

shape of sigmoid functions. These functions have the largest gradients when the net

input has a moderate value (close to zero). At more extreme values the gradient is very

low as illustrated by the red ellipses in figure 3.2. If training moves any of the neurons’

outputs into this area there is likely to be a reduction in training speed. In some cases

a neuron’s weights becomes completely stuck in one area, leading to a reduction in

predictive accuracy.

In order to reduce redundancy in the data and hence speed up training, not all of

the potential fifteen inputs were used in neural network training. The wave steepness,

sm−1,0 was not measured directly but was calculated from other parameters (see equa-

tion A.6 in Appendix A). It therefore contains no additionalinformation and was not

used in training.



CHAPTER 3. THE CLASH DATASET 68

20 40 60 80 100 120 140 160 180 200 220

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

T0

P
ro

ba
bi

lit
y

Normal Probability Plot for T0

(a)T0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

1/T0

P
ro

ba
bi

lit
y

Normal Probability Plot for 1/T0

(b) 1/T0

Figure 3.3: Raw and transformed Normal probability plots forT0



CHAPTER 3. THE CLASH DATASET 69

0 5 10 15 20

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

ht0

P
ro

ba
bi

lit
y

Normal Probability Plot for ht0

(a)ht0

−0.5 0 0.5 1 1.5 2 2.5 3

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

ln(ht0)

P
ro

ba
bi

lit
y

Normal Probability Plot for ln(ht0)

(b) ln (ht0)

Figure 3.4: Raw and transformed Normal probability plots forht0



CHAPTER 3. THE CLASH DATASET 70

0 2 4 6 8 10 12 14 16 18

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Bt0

P
ro

ba
bi

lit
y

Normal Probability Plot for Bt0

(a) Bt0

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

ln(Bt0)

P
ro

ba
bi

lit
y

Normal Probability Plot for ln(Bt0)

(b) ln (Bt0)

Figure 3.5: Raw and transformed Normal probability plots forBt0



CHAPTER 3. THE CLASH DATASET 71

0 0.02 0.04 0.06 0.08 0.1 0.12

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

q0

P
ro

ba
bi

lit
y

Normal Probability Plot for q0

(a)q0

−18 −16 −14 −12 −10 −8 −6 −4 −2

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

ln(q0)

P
ro

ba
bi

lit
y

Normal Probability Plot for ln(q0)

(b) ln (q0)

Figure 3.6: Raw and transformed Normal probability plots forq0



C
H

A
P

T
E

R
3.

T
H

E
C

LA
S

H
D

ATA
S

E
T

72

β ln (ht0) ln (Bt0) hb0 Bh0 Gc0 R0 1/T0 γ f cot(αd) Ac0 cot(αu) h0 ln (q0)
β 1.000 0.166 -0.064-0.005-0.011-0.1080.001 0.036 0.157 0.032 0.027 0.047 0.155-0.012

ln (ht0) 0.166 1.000 -0.327 0.130 0.107-0.1880.002 0.170 0.344 0.262 -0.034 0.182 0.857 0.095
ln (Bt0) -0.064-0.327 1.000 0.017-0.1220.216 0.088 0.049-0.316 -0.190 0.126 -0.074 -0.064-0.263

hb0 -0.005 0.130 0.017 1.000 0.423-0.029-0.0980.024 0.181 0.043 -0.076 0.039 0.200 0.169
Bh0 -0.011 0.107 -0.122 0.423 1.000-0.173-0.094-0.0060.223 0.161 -0.049 0.035 0.100 0.020
Gc0 -0.108-0.188 0.216 -0.029-0.1731.000-0.1590.045-0.636 -0.057 -0.244 0.009 -0.142-0.280
R0 0.001 0.002 0.088 -0.098-0.094-0.1591.000-0.1860.163 -0.097 0.928 -0.082 0.030-0.429

1/T0 0.036 0.170 0.049 0.024-0.0060.045-0.1861.000-0.066 -0.138 -0.191 -0.138 0.084-0.162
γ f 0.157 0.344 -0.316 0.181 0.223-0.6360.163-0.0661.000 0.156 0.206 0.129 0.261 0.381

cot(αd) 0.032 0.262 -0.190 0.043 0.161-0.057-0.097-0.1380.156 1.000 -0.081 0.820 0.197 0.097
Ac0 0.027 -0.034 0.126 -0.076-0.049-0.2440.928-0.1910.206 -0.081 1.000 -0.084 0.031-0.360

cot(αu) 0.047 0.182 -0.074 0.039 0.035 0.009-0.082-0.1380.129 0.820 -0.084 1.000 0.162 0.104
h0 0.155 0.857 -0.064 0.200 0.100-0.1420.030 0.084 0.261 0.197 0.031 0.162 1.000 0.067

ln (q0) -0.012 0.095 -0.263 0.169 0.020-0.280-0.429-0.1620.381 0.097 -0.360 0.104 0.067 1.000

Table 3.2: Correlation coefficients for the CLASH data parameters
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Input parameters Output parameter
Tm−1,0,toe

√

g/Hm0,toe

q√
gH3

m0,toe

β

ht/Hm0,toe

Bt/Hm0,toe

γ f

cotαd

Rc/Hm0,toe

Bh/Hm0,toe

hb/Hm0,toe

Gc/Hm0,toe

Table 3.3: Parameters used in ANN training

Three pairs of structural parameters were highly correlated with each other (σ >

0.8) and only one member of each pair was therefore included in training. These were

Rc andAc, h andht, andcot(αd) andcot(αu) (see table 3.2). The remaining parameters

are given in table 3.3.

One other interesting piece of information that may be extracted from the correla-

tion coefficients is the correlation with the outputln (q0). Predictive variables which

correlate highly with the output are likely to have greater predictive power. The input

variables come in the following order, with the variables with the largest values of
∣

∣

∣σq0

∣

∣

∣

first-

R0 > γ f > Ac0 > Gc0 > ln (Bt0) > hb0 > 1/T0 > cot(αu) > cot(αd) > ln (ht0) >

h0 > Bh0 > β

This information should be treated with care, since correlation coefficients only

measure the degree of linear correlation between variables. There may be non-linear

dependencies that are not revealed by this measure.

The complexity factor (CF) reflects the extent to which the parameterised represen-

tation within the database is an accurate description of thephysical structure. Approx-

imations have been made in the process of parameterisation.For example, the berm is

assumed to be horizontal. In cases where the berm is not horizontal, an approximation,

or ‘schematisation’, is made: the sloping berm is replaced by a horizontal berm, with

the slopes above and below the berm adjusted such that the positions of the crest and

toe of the wall are unchanged, as illustrated in figure 3.7 [163].

In cases where the strucure is simple and is accurately described by the database

parameters, the data is assigned a complexity factor (CF) of 1. However, when approx-

imations have been made during the parameterisation, CF may take values of 2, 3 or
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‘true’ structure

‘schematised’ structure

berm

crest

toe

Figure 3.7: Schematisation of a structure with a non-horizontal berm

4.

The reliability factor (RF) reflects the technique used to measure overtopping vol-

umes. For practical reasons this measurement may encounterconsiderable difficulties,

particularly for prototype measurements. RF may also take values between 1 and 4

inclusive. The detailed determination of CF and RF parametersis a complex process

and goes beyond the scope of this study. Further details are available in [163].

Data with high RF or CF factors have greater variability and aretherefore less

useful in neural network training. For the purposes of neural network training and

testing, only data with RF values of 1 or 2 and CF values of 1 have therefore been

used.

The aim of this study is to predict overtopping rates. For this reason, data with a

zero recorded overtopping rate has not been included. Therehas been some debate

concerning the meaning of ‘zero overtopping’, with some researchers treating values

below 10−6m3/m/s as zero. One reason for doing this is thatq values near or be-

low this rate are particularly difficult to measure accurately. However, 10−6m3/m/s is

considered to be the cutoff rate above which overtopping is considered dangerous to

high-speed vehicles and may cause damage to buildings (see figure 1.1). Given that

the primary practical use of wave overtopping prediction isin hazard warning systems

it seems foolish to exclude data in this region. All data witha recorded overtopping

rate above zero has therefore been included, although this increases the variability of
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the data.

Filtering the data such thatCF = 1,RF = 1 or 2 andq0 > 0 removes approximately

half of the data within the database. This leaves 3053 items of data, which is still

a large sample for ANN training and testing. Due to the high variability and high-

dimensionality of the data, however, a large sample size is seen to be very valuable.

3.3 The nature of the CLASH dataset

The preceding two sections have considered the collection,selection and pre-processing

of the data within the CLASH dataset. This section considers what the final dataset is

like. Firstly, the distribution of the data is considered. Section 3.3.1 examines the

marginal distributions with respect to individual parameters. Then section 3.3.2 in-

vestigates the overall multivariate distribution of the data - particularly the degree of

clustering within the data. The remaining subsections explore relationships between

the input and output parameters. Section 3.3.3 considers the extent to which this rela-

tionship may be approximated by a simple exponential relationship, while section 3.3.4

assesses how accurately the input-output relationship as awhole may be described by

linear regression, as a means of assessing the linearity (ornon-linearity) of the data.

3.3.1 Marginal distributions

Despite the transformations described in section 3.2, there remain some irregular fea-

tures of the dataset. An examination of the marginal distributions reveals the following-

• 95 % of the data has a wave attack angle,β, of 0◦. If neural networks are trained

with this data, their accuracy in predicting oblique wave attack is likely to be

quite poor.

• 78 % of the data has a zero toe width,Bt. Again, prediction for structures with

significant toe width is likely to be inaccurate.

• 85 % of the data has equal gradients above and below the berm. This explains the

high correlation coefficient for the two parameters, mentioned in the last section.

Only the cotangent of the slope below the berm,cot(αd), has been used in ANN

training and assessment.

• The roughness/permeability coeeficientγ f takes a limited range of values: 56%

of the data haveγ f=1.0, 21% haveγ f=0.55, 15% haveγ f=0.4 and only 8%
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have other values (between 0.55 and 1.0). Intermediate values ofγ f represent

a ‘white spot’ in the data, like the area of non-zeroβ and non-zeroBt. An aim

of the CLASH project is to fill in white spots in the data, by running additional

laboratory scale tests. It is to be expected that the final database will therefore

contain a fuller set of data, allowing more accurate prediction within these areas

[181, 182].

3.3.2 Data clustering

The distribution over marginal distributions has been considered in section 3.3.1. It

is more difficult to describe the multi-variate distribution as a whole.Lawrenceet al.

estimate the overall spread of the data by plotting k-nearest neighbour (K-NN) density

estimates for different datasets [183]. The K-NN technique takes an integer parameter

k. For each point within a dataset it finds thek nearest points. It then finds the volume

of the sphere required to contain these points,V, and estimates the data density around

each point ask/V [184].

Histograms of the data density may be plotted to indicate thespread of densities.

For evenly distributed data we expect such a graph to show a sharp peak, as the data

density is equal at all points in data-space. On the other hand, data that is clumped into

localised clusters with sparse areas between the clusters will show a wide variation in

data densities. The histograms of figure 3.8 are typical of highly clustered data. The

data densities have been scaled to have a median of 1.0. However, there is considerable

spread of densities between the values of 0.0 and 1.7, and a large tail of densities, with

over a third of the data having densities above 1.7.2

A physical interpretation of the clustering behaviour is possible. Data has been

collected from a wide variety of defensive structures, withsets of data usually collected

for each structure, or family of structures. We might therefore expect clusters to appear,

each one representing a different type of structure, e.g. smooth near-vertical wall,

rubble mound breakwater, etc.

Lawrenceet al. use the spread of the data to predict whether a dataset is moreap-

propriately modelled using neural networks with ‘local’ or‘global’ transfer functions.

They cite the interquartile range as a summary measure, withvalues over 1.2 favoured

by local functions and lower values favoured by global functions. The interquartile

2The large bar on the righthand side of the graphs (more visible on the linear graph than on the
logarithmically scaled graph) indicates data densities with values of 10 or above. This data has been
aggregated in order to fit it into the graphs while retaining areasonable scale.
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range for the CLASH dataset is 2.4, which indicates that it is strongly favoured by

local methods. This prediction is tested in the next two chapters, which model the

CLASH dataset using, respectively, global functions in the form of MLP networks and

local functions in the form of RBF networks.

3.3.3 Exponential relationships

When designing neural networks, it is often useful to build prior knowledge into the

training process, so that the network can concentrate on learning unknown structure in

the data. From past experience it is known that there are relationships between some

of the data variables. In particular, it is known that an exponential function gives a

reasonable fit to the dependence ofq0 onR0 andT0, represented by the Besley equation

described in section 1.3 and restated as equation 3.6 for convenience.

q0 = AT0exp

(

−BR0

T0

)

(3.6)

This relationship gives further justification to the process of taking the logarithm

of q0 and the inverse ofT0. These transformations were introduced in section 3.2 as a

means of achieving a near-Normal distribution. However, they could also be seen as a

way of buildinga priori information into the training process.

Figure 3.9 plots the predictions of the Besley equation against measured values of

q0. It is seen that an exponential function gives a reasonable estimate of the relationship

betweenR0/T0 andq0, although the particular values ofA andB tend to give a conser-

vative estimate of the overtopping rate, i.e. the overtopping rates predicted are usually

slightly higher than the measured rates. The remaining variance in the predictions may

be due to three factors-

• non-linearities in the functional relationship between the main variables (R0, T0

andq0).

• effects due to the other variables. In particular, we might expect the detailed

geometries of the defensive structures to have an effect that would appear as

if overlaid over the gross feature of the structure, i.e. thedimensionless crest

freeboardR0.

• variability in the measurements due to imprecision in measuring techniques and

the effects of factors not included in the parameterisation used.
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Figure 3.8: k-nearest neighbour density estimates for the CLASH dataset
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Figure 3.9: Besley predictions compared to measured overtopping rates

In using an ANN to model overtopping it is hoped that the first two features will be

identified due to the inherent non-linearity of the ANN approach. Further, the effects

of variability in the data should be minimised due to the ability of neural networks to

interpolate between noisy data.

3.3.4 Linearity of the CLASH dataset

The last section identified a relationship betweenln(q0) andR0/T0, while recognising

that there are additional factors that affect the input-output relationship. This section

aims to go further, by putting a value on the extent of non-linearity within the underly-

ing function and by considering the effect of all of the input variables.

Linear regression analysis was performed on the CLASH dataset. The data used

was selected and pre-processed as described in section 3.2.The resulting studentised

residuals are plotted against the fitted outputs , i.e. estimates of normalisedln(q0), in
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Figure 3.10: Plot of studentised residuals vs. estimatedq0 after linear regression on
the CLASH dataset

figure 3.10. For datasets which have an approximately linearinput-output relationship

we would expect the distribution of residuals to be independent of ln(q0). For the

CLASH dataset this is seen to be partly the case. However, the residuals are seen to

be higher for lowln(q0) values. TheR2 value obtained from regression analysis is

0.42. This may be interpreted as implying that about 42% of the variance in the data

may be ‘explained’ using linear combinations of the independent parameters, leaving

a considerable non-linear component of the function to be explained.

3.4 Summary

The treatment of the CLASH dataset in this chapter may be summarised as follows.

Data has been selected to remove the less reliable data and the variables with the most

explanatory power have been selected. All data has been normalised to allow for vari-

ability in the scale of different parameters and to allow comparisons between structures
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at widely different scales. Some parameters have also undergone mathematical trans-

formations in order to give near-Normal marginal distributions.

The characteristics of the CLASH dataset may be summarised asfollows. The

CLASH dataset is currently noisy and has a number of gaps, or ‘white spots’. There

is considerable clustering of the data. Some evidence points to a degree of linear-

ity within the data. However, there are also considerable non-linear elements in the

relationship between the independent parameters andln (q0).



Chapter 4

CLASH prediction using MLP

Networks

4.1 Introduction

The theory behind the training of MLP networks has been explained in detail in sec-

tions 1.5.4 and 1.5.5. As explained in section 1.6.3 there are a number of design issues

that have to be taken into account when creating neural networks. It is becoming in-

creasingly accepted that there is not a single ‘best’ approach to designing a neural

network, and that the optimum approach depends upon the dataset under consideration

[36]. This chapter therefore considers how MLP networks maybest be applied to the

specific problem of wave overtopping prediction.

Section 4.2 reports the results of a number of pilot studies,which were designed

to identify the optimum training parameters to be used in gradient descent training.

Section 4.3 describes the technique used to select the optimum architecture, while

section 4.4 describes the overall method used to train the networks. The results are

reported and discussed in section 4.5.

4.2 Gradient Descent Pilot Studies

The results of BP training are known to be dependent upon various training parame-

ters. In general, the optimum values of these parameters aredifferent for each dataset

and cannot be determined from theory alone. A series of pilotstudies were therefore

performed in order to identify the most effective parameters prior to the main study.

Each pilot study involved a series of tests aimed at narrowing down optimum, or near

82
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optimum, values for one or more of the following parameters-

• mode of weight updates (batch or stochastic)

• learning rate

• stopping criterion and maximum number of training epochs

• weight initialisation ranges

• linear vs. sigmoid output neuron

• momentum coefficient

4.2.1 Pilot study 1: Learning rates and weight update mode

In the first set of tests MLPs containing between 5 and 20 hidden neurons were created.

10 random splits of the data were made to create separate, equally sized training and

test sets. For each architecture a variety of learning rateswere applied to the networks

and each network was trained 10 times. Each of the 10 runs had the same starting

weights but used a different selection of the training data. All network weights were

initialised to small random values in the range [−0.1,0.1]. Training was continued for

5000 epochs and both training and test errors were recorded every 100 epochs.

Figures 4.1 and 4.2 show the MSEs on the test and training datasets, respectively.

A range of learning rates were applied in stochastic mode, and each learning rate is

represented by a different line on the graphs. MSE values are quoted in terms of the

normalised values ofq0, which have a range of [-0.8,0.8] (see section 3.2). The best

results are obtained with a learning rate of 0.02. The optimum hidden layer size is

13, with a resultant test MSE of 0.0136 (averaged over all 10 runs). This average

error, if applied equally to all datapoints, is equivalent to an error factor in the actual

(unnormalised) value ofq0 of 3.2.

When comparing figures 4.1 and 4.2 it is clear that the test and training errors

track each other very closely. The lines on the two graphs aretherefore almost exactly

parallel, with a difference between the training and test errors of approximately 0.002.

This suggests that the training error is a good guide to the test error. It also implies that

overtraining is not occurring to a great extent: if overtraining was ocurring, we would

expect networks that result in a low training error to have a high test error, as a result

of overfitting the training data.
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Figure 4.1: Average test MSEs for networks trained with stochastic weight updates and 4 different learning rates
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Figure 4.2: Average training MSEs for networks trained withstochastic weight updates and 4 different learning rates
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Figure 4.3: Progression in test errors with batch weight updates

In order to test whether stochastic weight updates were the best choice, batch up-

dates were also investigated. However, it proved difficult to find a satisfactory learning

rate. During batch updates, the weight updates calculated for each input vector are

accumulated and applied after all training vectors have been presented. Since there

are approximately 1500 training vectors, the accumulated values could be up to 1500

times the size of the stochastic weight updates. In order to achieve stability one might

expect the learning rate to be of the order of 1500 times smaller than that for stochastic

weight updates. However, there is substantial cancellation of gradient vectors when ac-

cumulated across all of the training vectors and the higheststable learning rate is found

to be 0.0002, about 100 times lower than that for stochastic weight updates. Higher

values ofη are seen to cause instability.

Unfortunately,η = 0.0002 results in slow learning. The progression in test errors

is shown in figure 4.3 for networks with 7 hidden neurons and istypical of the results

achieved. After 5000 epochs, the test errors are those shownin figure 4.4. These are

much higher than those achieved with stochastic weight updates, for all hidden layer

sizes. It was therefore decided that stochastic weight updates would be used in BP

training.
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Figure 4.4: Test errors achieved with batch weight updates andη = 0.0002

4.2.2 Pilot study 2: Stopping criterion

It is important to introduce a stopping criterion, in order to avoid the phenomenon of

‘overfitting’ illustrated in figure 1.8. Amariet al. [80] have shown that overfitting does

not occur when ANNs are in ‘asymptotic’ mode. The condition for this mode is given

by equation 4.1. In this equationm is the number of free parameters (weights) which,

for a MLP network withn inputs,h hidden layer neurons andp outputs is given by

equation 4.2.t is the number of training items.

t > 30m (4.1)

m= (n+ 1) h+ (h+ 1) p (4.2)

In the case of the CLASH data,t is approximately 1500,n is 10 andp is 1. The

asymptotic condition should therefore hold only if the number of hidden neurons is 4

or less. The networks considered here are all larger than this and will therefore not be

in asymptotic mode.

Since the networks are not in asymptotic mode a stopping criterion is important.

Three different stopping criteria were considered-
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• cross-validation using a verification dataset.

• introduction of a convergence criterion that assesses whether the test error has

converged, without reference to a verification dataset.

• setting a maximum number of epochs after which training is terminated.

Cross-validation has the disadvantage that it requires the setting aside of data from

the training set, so less data is available for training purposes. Cross-validation is a

useful technique when the training error is a poor guide to the test error. However,

figures 4.1 and 4.2 show that this is not the case. For these reasons, cross-validation

was ruled out as a stopping criterion.

The next approach considered was the introduction of a convergence criterion.

Convergence was defined as the point at which 5 previous measurements of training

error (MSE), equivalent to 500 epochs, showed no reduction in the error greater than

1% of the overall error. Table 4.1 shows the percentage of networks that converged

after 5000 epochs or less, given different learning rates and hidden layer sizes. Table

4.2 shows the average number of epochs required to achieve convergence. For the pur-

poses of this table, the convergence epoch of networks that have not converged within

5000 epochs has been set as 5100. In general it is seen that convergence occurs quicker

when a higher learning rate is applied and the hidden layer size is small.

In order to assess the effectiveness of the convergence criterion, it is necessary to

find out whether it is a good guide to thetest error, i.e. the error achieved with data not

used in training. The test error was therefore recorded at the same times as the training

error, and its progress evaluated. The results are given in tables 4.3 and 4.4.

The results using the test sample of the dataset indicate that convergence occurs at

an earlier point for the test than for the training sample, with an average gap between

training convergence and test convergence of approximately 700 epochs. The effect of

this phenomenon is illustrated in figure 4.5. This shows the average number of epochs

required to achieve convergence for networks with between 5and 20 hidden neurons

with the optimum learning rate (0.02).

The disparity between the convergence of training and test errors implies that the

convergence criterion may not be an effective predictor of minimum test error. An in-

vestagation into the detailed behaviour of the training andtest errors suggests a further

problem. Figure 4.5 suggests that the test error converges after approximately 2000

epochs and the training error after approximately 2500 epochs. However, care must be

taken not too terminate training too early. In many cases thetest error is seen to fall off
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hidden layer size η = 0.01 η = 0.02 η = 0.05 η = 0.1
5 100 100 100 100
6 100 100 100 100
7 100 100 100 100
8 90 90 100 100
9 100 100 100 100
10 100 100 100 100
11 80 100 100 100
12 90 90 100 100
13 100 100 100 100
14 100 100 100 100
15 100 90 100 100
16 90 100 100 100
17 90 100 100 100
18 80 100 100 100
19 90 90 100 100
20 100 100 100 100

Table 4.1: Percentage of training errors that have converged within 5000 epochs

hidden layer size η = 0.01 η = 0.02 η = 0.05 η = 0.1
5 2910 1900 1620 1490
6 2730 2370 1400 1470
7 3320 2880 1620 1380
8 3330 2610 1810 1550
9 3020 2030 1630 1570
10 3150 2160 1670 1100
11 3350 2530 1660 1190
12 3140 2630 1410 1370
13 3250 2680 2020 1360
14 2700 1900 1470 1450
15 3430 2990 1730 1140
16 3560 2350 1490 1420
17 3340 2070 1760 1370
18 3570 1910 1600 1130
19 3820 3020 1500 1140
20 2640 2650 1540 1300

Table 4.2: Number of epochs required for convergence in training error, averaged over
10 runs
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hidden layer size η = 0.01 η = 0.02 η = 0.05 η = 0.1
5 100 100 100 100
6 100 100 100 100
7 100 90 100 100
8 90 100 100 100
9 90 100 100 100
10 80 100 100 100
11 90 90 100 100
12 100 100 100 100
13 100 100 100 100
14 100 100 100 100
15 100 100 100 100
16 100 100 100 100
17 100 100 100 100
18 100 100 100 100
19 90 90 100 100
20 100 100 100 100

Table 4.3: Percentage of test errors that have converged within 5000 epochs

hidden layer size η = 0.01 η = 0.02 η = 0.05 η = 0.1
5 2250 1610 1290 1170
6 1910 1790 1170 1300
7 2270 1820 1300 1080
8 2310 1900 1280 1250
9 2450 1810 1400 1390
10 2630 1850 1520 1010
11 2490 1990 1440 1020
12 2610 1940 1180 1280
13 2700 1780 1660 1000
14 2420 2040 1240 1180
15 2790 1960 1200 1090
16 2840 1870 1260 1260
17 2510 1790 1320 1120
18 2520 1840 1530 1110
19 2980 1880 1310 1110
20 2310 2180 1460 1040

Table 4.4: Number of epochs required for convergence in testerror, averaged over 10
runs
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Figure 4.5: Number of epochs required for convergence, assuming optimum learning
rate and stochastic weight updates

training speed hidden layer size η

slow 20 0.01
medium 13 0.02

fast 5 0.1

Table 4.5: Training parameters for slow, medium and fast convergence

after convergence has first occurred. Figures 4.6-4.8 show the progression in training

and test errors for three different scenarios, described by the parameters in table 4.5.

The three scenarios correspond to slow, medium and fast training regimes. They

illustrate the difference between different learning rates: higher learning rates lead to

quicker convergence but less stability in the training process, whereas lower learning

rates result in lower convergence rates but greater stability. Despite these differences

in learning behaviour, the graphs share the following common features-

• Although convergence occurs before 5000 epochs for nearly all of the individ-

ual networks, the average training and test errors continueto show a downward

tendency for some time.

• The error curves for both training and test datasets are seento level off towards

5000 epochs.
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• The overfitting area of training, indicated by a sharp increase in the test error,

does not appear to have been reached within 5000 epochs.

These results suggest that training for a fixed number of epochs gives satisfactory

results, provided the number of epochs is appropriate. Training for 5000 epochs ap-

pears to be effective, with test errors appearing to have reached a plateauregion without

going beyond this region into an overfitted regime. This technique was therefore used

to train all MLP networks.
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Figure 4.6: Training progression within a slow training regime
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Figure 4.7: Training progression within a medium training regime
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Figure 4.8: Training progression within a fast training regime
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Figure 4.9: Average test MSEs for different weight initialisation ranges

4.2.3 Pilot study 3: weight initialisation range

Having ascertained the optimum learning rate, weight update mode and stopping crite-

rion, the issue of weight initialisation was addressed. It is known that the initial range

of weights can have a large effect on training efficiency. If very large initial weights are

used there is a danger that neurons will be driven into saturation (see figure 3.2). On

the other hand, if very small weights are used the outputs will all be very close to zero,

leading to very low average gradients, and therefore slow training and poor coverage

of the available weight space [35].

All tests so far used small initial weights within the range [−0.1,0.1]. To see

whether larger weights would lead to quicker convergence and/or lower MSEs, weights

were initialised to values in the range [−1.0,1.0]. Test MSE values are shown in figure

4.9, for a range of architectures. It is seen that the ANNs with a larger range of initial

weights generally gave lower test MSEs.

A disadvantage in using a wider range of initial weights is that convergence occurs

more slowly, as illustrated by figure 4.10. One explanation for this observation is

that larger initialisation ranges result in a search through a greater proportion of the

weight space. This takes slightly longer but results in lower MSE values. Due to the

improved generalisation performance, it was decided that the wider range of initial
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Figure 4.10: Number of epochs required to achieve convergence for different weight
initialisation ranges

weights would be used for all ANNs.

The optimum range of initial weights is in line with the findings of Wessels and

Barnard [185]. They found that the net inputs to all neurons should ideally be ini-

tialised to have a mean of zero and standard deviation of 1. Assuming that the in-

puts are randomly and uniformly distributed across the range [−1.0,1.0], this may be

achieved by using uniform random weights within the range [−3/
√

fi ,3/
√

fi], where

fi is the number of inputs (fan-in) to uniti [172]. For the ANNs created here, the

number of inputs to the hidden layer neurons is 10 and the number of inputs to the

output neuron varies between 1 and 20. Taking the fan-in as 10gives an ideal range of

[−0.95,0.95], very close to the range used in the above tests.

4.2.4 Pilot study 4: Output neuron transfer function

There are two reasons for preferring a linear to a sigmoid output neuron. Firstly, linear

output neurons are commonly used for regression problems inorder to allow extrap-

olation into areas outside the range of the training data. Secondly, the RBF networks

used in this study have linear output functions (see Chapter 5), so comparisons between

the two types of network have increased validity if the MLPs also have linear output

functions.
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Figure 4.11: Average test MSEs for different output neuron transfer functions

However, in order to test whether a sigmoid transfer function could give a better

approximation to the underlying function the linear outputneuron was replaced with

a sigmoid neuron. The results are illustrated in figure 4.11 and show that a sigmoid

output function gives improved generalisation performance, as measured by test MSE.

It was decided that the main study would include investigations using both sig-

moid and linear output functions, in order to give the best possible results for a MLP

(sigmoid function) and a fair comparison with other types ofANN (linear function).

4.2.5 Pilot Study 5: Momentum coefficient

The introduction of monemtum into gradient descent training is intended to speed up

training and allow a more accurate determination of the error minimum (see sections

1.5.4 and 2.2.3). When networks contain only linear neurons it is possible to calcu-

late optimum values for the learning rate parameterη and the momentum coefficient

α [186]. However, when sigmoid transfer functions are used,η andα are usually de-

termined experimentally. It was decided that a full search across all possible values

of η andα was impractical, and the value ofη was therefore fixed at its optimal value

without momentum, 0.02. In order to retain stability,α cannot exceed 1.0. The trial

values were therefore chosen as 0.1, 0.5 and 0.9.
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Figure 4.12: Number of epochs required to achieve convergence with and without
momentum

Figure 4.12 shows that the introduction of higher values ofα generally led to

quicker convergence, although the results are variable. The resultant test MSEs are

shown in figure 4.13, with the corresponding results withoutmomentum included for

comparison. It is seen that lower values ofα gave better results, withα = 0.1 giving

results which are similar to those without momentum.

Overall, the introduction of momentum does not appear to be useful. Although

convergence occurs more quickly, the increased stepsize appears to make it more dif-

ficult to approach a reasonable error minimum. In the case ofα = 0.9 the algorithm

verges on instability. Since a satisfactory value ofα could not be found, it was decided

that momentum would not be used in the training of MLPs.

4.2.6 Pilot Study 6: Levenberg-Marquardt method

The Levenberg-Marquardt method uses second-order gradient information in order to

perform more efficient gradient descent (see sections 1.5.5 and 2.3). One of the advan-

tages of this technique is that it does not require the setting of as many parameters as

first-order gradient descent methods. A pilot study was run to see whether use of the
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Figure 4.13: Average test MSEs with and without momentum

L-M algorithm would lead to quicker convergence as expected, and whether lower test

MSEs could be achieved through its use. Figure 4.14 shows theaverage training and

test MSEs achieved for ANNs of different sizes, with a linear output neuron, trained

for 200 epochs with the L-M algorithm. A range of hidden layersizes are seen to

result in test errors averaging below 0.0120, suggesting that the L-M algorithm does

generally result in better performance than the BP algorithm. The latter only gave such

low errors for two hidden layer sizes.

Figure 4.15 shows the progress of the test errors, averaged over 10 networks each

containing 8 hidden layer neurons. Similar graphs are obtained for networks of differ-

ent sizes. They show similar features to those obtained for gradient descent training

(see figure 4.7), with errors falling off during early epochs, before levelling out. It

is seen that the L-M algorithm leads to much quicker convergence, with errors level-

ling out after about 150 epochs, rather than after approximately 3000 epochs with the

BP algorithm. There is a danger that the test error could startto increase if training

is continued for some time after this level region. For this reason, L-M training was

terminated after 200 epochs.
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4.3 Model selection method

This section considers the method used to select the ‘best’ network architecture. In par-

ticular the task is to identify the optimum number of hidden neurons. This process of

model selection is closely intertwined with three design issues that are also discussed-

• data division

• stopping criteria

• assessment criteria

We can see how these are issues are related when we consider the method of cross-

validation (see section 1.5.4 and [187]). A widely used variant of cross-validation is

the method of multi-fold cross-validation. In this method afixed subset of the data is

used for test purposes. The remaining data are divided inton equal subsets. A series of

n networks are then trained for each potential architecture usingn−1 of the subsets for

training and the remaining subset for verification. Stone [187] originally used subsets

containing just one item of data. However, this creates large computational demands,

particularly for large datasets. Recent studies commonly split the data into 10 equal

subsets. The optimum model is identified by averaging the verification errors across all

networks and the test error must also be averaged across all networks with the optimum

architecture.

Cross-validation requires a three-fold division of data into training, validation and

test subsets [35]. The validation subset may have two purposes: locating a stopping

point and determining the optimum model size. The test subset is used to assess the

trained networks. Multi-fold cross-validation is commonly applied to small datasets.

It has been shown that as the data size tends towards infinity,the fraction of data used

in training must tend towards 1, i.e. an infinite amount of data must be used for train-

ing, with a diminishing number held back for verification [188]. For large datasets the

method may therefore require excessive computational requirements. A further prob-

lem with multi-fold cross-validation is that it tends to produce over-complex models.

This study has used a method known as ‘Monte Carlo cross-validation’ (MCCV)

[189]. In this method test data is set aside and the remainingdata are randomly parti-

tioned into training and verification subsets. Partitioning is repeated several times and

network training is performed on each one [190, 188], as in multi-fold cross-validation.

It is seen experimentally that using a relatively high proportion of the data for verifica-

tion purposes usually gives optimum results [190]: approximately equal sized training
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and verification sets are effective in most cases. Further, theory demonstrates that as

the data size tends towards infinity the ratio of training to verification data has to tend

towards 0.

The MCCV method appears to be better adapted to the particular requirements of

the CLASH dataset. As mentioned in Chapter 3, this dataset is very noisy. In order to

see the effect of the noise on the generalisation properties of the ANNs, a further pilot

study was performed. This involved training sets of networks with the same hidden

layer size and using the same training-test split. Hidden layer sizes were chosen as

6, 10 and 14. These architectures were chosen because they give average test MSEs

that are different from each other. For each network size and dataset, 5 networks were

trained. The starting weights for each network were individually randomised and every

network was trained for 200 epochs using the L-M algorithm. The resultant test MSEs

are shown in table 4.6.

These results were analysed using a two-way ANOVA [191] in order to identify the

source of variance in the test errors. Two sources of the variance were identified, both

with p-values below 0.01: the choice of model (hidden layer size) and an interaction

between the model and the dataset splits. The first finding is unsurprising, since we

expect the model size to have an effect on the observed error. The second finding

implies that certain dataset splits give better results with particular network sizes, while

other splits might be better suited to different network sizes.

The effect of the choice of data appears to lie in the high noise levelof the data.

When using a single test set for assessment, the assessed error is highly dependent on

the items within the test dataset. Often a small number of data can have a drastic effect

on the calculated error. In this case the calculated error isunlikely to reflect the error

of the population as a whole.

In order to reduce the effect of dataset selection, it was decided that the data would

be split in 30 different ways and a separate network trained with each data split. The

errors may then be averaged over the 30 networks. An advantage of the MCCV method

is that it can be adapted so that not only the training and verification sets but also the

test sets can be randomly assigned. When the test error is averaged across all ANNs

with a particular architecture, it is then less likely to be biased as the result of ‘rogue’

items within a particular test set.

The variation within a particular condition seen in table 4.6 is due to the initiali-

sation of network weights. In order to minimise this effect as much as possible, the
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data split 6 hidden neurons 10 hidden neurons 14 hidden neurons
0.01308 0.01249 0.01117
0.01386 0.01158 0.01142

1 0.01309 0.01117 0.01127
0.01587 0.01218 0.01086
0.01370 0.01137 0.01049
0.01455 0.01213 0.01167
0.01713 0.01068 0.01151

2 0.01699 0.01090 0.01057
0.01385 0.01315 0.01136
0.01704 0.01171 0.01107
0.01268 0.01257 0.01113
0.01296 0.01185 0.01222

3 0.01394 0.01266 0.01172
0.01384 0.01216 0.01144
0.01394 0.01198 0.01272
0.01335 0.01126 0.01192
0.01267 0.01202 0.01123

4 0.01423 0.01194 0.01173
0.01385 0.01242 0.01162
0.01470 0.01241 0.01216
0.01352 0.01179 0.01086
0.01344 0.01370 0.01202

5 0.01341 0.01341 0.01230
0.01363 0.01631 0.01244
0.01683 0.01320 0.01193

Table 4.6: Test MSEs for different hidden layer sizes and training-test splits
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weights are initialised to different weights for every network and the results are there-

fore averaged across different weight initialisations as well as different data splits.

The MCCV method used within this study may be summarised as follows-

• The available data is randomly split 30 times into training,verification and test

sets, in the ratio 50:25:25.

• A series of networks with different architectures are created. For each architec-

ture, training is performed 30 times, once with each training set.

• The alternative network architectures are assessed. The objective function is the

MSE on the verification data, averaged across all 30 networks.

• The test error is obtained. This is the average MSE on the testdata.

4.4 Method

This section summarises the method used to train and assess the ANNs. The reasons

for various design choices have been explained in the preceding sections.

30 random splits of the data were made, to give training, verification and test sets

in the ratio 50:25:25. All networks were created with weights initialised to random

values in the range [−1.0,1.0]. Training was performed for 5000 epochs in the case of

simple gradient descent and 200 epochs for Levenberg-Marquardt training.

ANNs were created and trained with varying hidden layer sizes, starting with 5

neurons and increasing one at a time until the verification error averaged across all

30 networks showed a consistent increase. The bipolar sigmoid function of equation

2.7 was used for all hidden layer neurons. Separate networkswere created with linear

transfer functions and sigmoid transfer functions for the single output neuron.

Verification errors were obtained for each network in order to identify the best

performing networks. The final performance measure was the error obtained using the

‘unseen’ test data. The results are given in the next section.

4.5 Results and Discussion

This section gives the results upon training MLP networks with various architectures

and using either the back-propagation or Levenberg-Marquardt algorithms. Having
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obtained the results for each individual network, they may be averaged in one of two

ways-

• The results for a particular architecture and network size may be averaged across

all 30 training-test splits. This process allows the identification of the individual

architecture that is most effective at generalising the underlying function.

• For each training-test split and family of networks, the optimum hidden layer

size may be identified. This allows the comparison of the ‘best’ result for a

particular training method and network family. For example, the effectiveness

of the L-M algorithm may be compared with that of the BP algorithm. In later

sections such comparisons will be extended to a comparison with other types of

network, such as RBF networks.

The two methods may be summarised by stating that the first method compares

networks with a ‘fixed’ architecture, while the second allows a ‘variable’ architecture.

In this study, results are quoted in both ways, in order to identify the best architecture

and the best method.

4.5.1 Back-propagation

Linear output neuron

Table 4.7 shows the training, verification and test errors for a series of networks con-

taining a linear output neuron and between 1 and 30 hidden neurons. All results are

averaged across 30 different networks, each trained with a different split of the data,

i.e. using a fixed architecture. The minimum verification error occurs with 26 hidden

neurons and results in a MSE for the test data of 0.01199.

Figure 4.16a displays the same results. This graph has features commonly seen in

ANN training, with the errors falling up to a certain layer size, before starting to rise

as a result of overfitting. It is clear from the graph that the verification error is a good

guide to the test error.

Table 4.8 presents the same results from the point of view of the dataset splits. For

each split, the network resulting in the lowest verificationerror is identified and the per-

formance of that network is assessed using the test dataset,i.e. a variable architecture

is allowed.

Since the optimum network size has been chosen each time, theaverage verifica-

tion error is lower than it is when averaged across networks of any particular network
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Hidden layer size Training error Verification error Test error
1 0.02230 0.02326 0.02317
2 0.01731 0.01852 0.01850
3 0.01507 0.01689 0.01683
4 0.01383 0.01588 0.01607
5 0.01288 0.01510 0.01527
6 0.01206 0.01440 0.01451
7 0.01145 0.01382 0.01401
8 0.01081 0.01339 0.01340
9 0.01076 0.01329 0.01339
10 0.01052 0.01292 0.01315
11 0.01033 0.01282 0.01303
12 0.01032 0.01277 0.01312
13 0.01001 0.01266 0.01272
14 0.00976 0.01220 0.01257
15 0.00986 0.01247 0.01276
16 0.00955 0.01229 0.01244
17 0.00964 0.01228 0.01265
18 0.00962 0.01207 0.01240
19 0.00963 0.01227 0.01256
20 0.00941 0.01207 0.01231
21 0.00955 0.01211 0.01239
22 0.00909 0.01179 0.01208
23 0.00916 0.01208 0.01223
24 0.00920 0.01195 0.01219
25 0.00906 0.01176 0.01198
26 0.00907 0.01171 0.01199
27 0.00919 0.01182 0.01214
28 0.00941 0.01220 0.01243
29 0.00972 0.01240 0.01257
30 0.00906 0.01175 0.01218

Table 4.7: Average errors for MLP with linear output neuron and BP training
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Figure 4.16: Training, verification and test errors after BP training
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Data split Verification error Test error Optimum hidden
layer size

1 0.01154 0.00974 21
2 0.01127 0.00986 19
3 0.01101 0.01183 25
4 0.01138 0.01037 27
5 0.01074 0.01277 17
6 0.01073 0.01107 29
7 0.00972 0.01281 30
8 0.01069 0.01101 20
9 0.01142 0.01195 27
10 0.01099 0.01120 27
11 0.01070 0.01214 28
12 0.01071 0.01162 22
13 0.01155 0.01401 19
14 0.01069 0.01196 27
15 0.01011 0.01037 25
16 0.01031 0.01234 24
17 0.00954 0.01131 29
18 0.01187 0.01031 22
19 0.01155 0.01102 29
20 0.00981 0.01136 25
21 0.01182 0.01043 22
22 0.01138 0.00954 29
23 0.01008 0.01113 30
24 0.01155 0.01154 26
25 0.01236 0.01137 15
26 0.01049 0.01314 24
27 0.01038 0.01311 27
28 0.01103 0.01099 30
29 0.01145 0.01070 24
30 0.01008 0.01348 23

average 0.01090 0.01148 24.7

Table 4.8: Optimum errors for MLP with linear output neuron and BP training
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Hidden layer size Training error Verification error Test error
1 0.02223 0.02313 0.02311
2 0.01676 0.01803 0.01814
3 0.01463 0.01645 0.01655
4 0.01339 0.01552 0.01566
5 0.01223 0.01433 0.01449
6 0.01143 0.01382 0.01399
7 0.01059 0.01332 0.01312
8 0.01022 0.01278 0.01283
9 0.01019 0.01256 0.01275
10 0.00972 0.01219 0.01244
11 0.00964 0.01219 0.01230
12 0.00933 0.01204 0.01213
13 0.00916 0.01160 0.01189
14 0.00920 0.01171 0.01187
15 0.00913 0.01171 0.01207
16 0.00890 0.01163 0.01179
17 0.00879 0.01132 0.01161
18 0.00882 0.01144 0.01161
19 0.00888 0.01158 0.01170
20 0.00873 0.01152 0.01169

Table 4.9: Average errors for MLP with sigmoid output neuronand BP training

size. The test error is seen to be correspondingly enhanced,with an average value of

0.001148.

Sigmoid output neuron

The results with a sigmoid transfer function in the output neuron may be treated in the

same way. Table 4.9 gives the errors averaged across data splits (fixed architecture)

and table 4.10 gives the optimum errors for each dataset (variable architecture). The

optimum hidden layer size (the one with lowest average verification error) is found

to be 17 neurons, with a corresponding average test error of 0.01161. The optimum

test error when a variable architecture is permitted is 0.01116 (averaged across the 30

datasets).

In comparison with the results using a linear output neuron,the optimum layer

size is smaller and the optimum achievable error is lower. Itcan be concluded that,

when using BP training, the sigmoid transfer function is moreeffective at fitting the

underlying function.
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Data split Verification error Test error Optimum hidden
layer size

1 0.01118 0.00993 13
2 0.01101 0.00916 20
3 0.01097 0.01122 13
4 0.01205 0.01083 13
5 0.01025 0.01179 18
6 0.01059 0.01107 19
7 0.00976 0.01174 13
8 0.00979 0.01184 20
9 0.01063 0.01248 17
10 0.01097 0.00963 16
11 0.01068 0.01185 13
12 0.01080 0.01152 18
13 0.01099 0.01265 13
14 0.01100 0.01166 19
15 0.01022 0.00974 18
16 0.00985 0.01087 20
17 0.00991 0.01217 15
18 0.01124 0.01058 20
19 0.01110 0.01086 13
20 0.01001 0.01131 20
21 0.01262 0.01023 17
22 0.01155 0.01019 17
23 0.00956 0.01123 17
24 0.01180 0.01129 13
25 0.01151 0.01052 17
26 0.00981 0.01210 18
27 0.00992 0.01283 20
28 0.01114 0.01027 19
29 0.01164 0.01054 18
30 0.00908 0.01271 20

average 0.01072 0.01116 16.9

Table 4.10: Optimum errors for MLP with sigmoid output neuron and BP training
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Hidden layer size Training error Verification error Test error
5 0.01351 0.01612 0.01635
6 0.01130 0.01425 0.01428
7 0.01006 0.01322 0.01326
8 0.00944 0.01341 0.01305
9 0.00973 0.01292 0.01318
10 0.00828 0.01197 0.01225
11 0.00782 0.01218 0.01193
12 0.00859 0.01277 0.01287
13 0.00719 0.01236 0.01177
14 0.00705 0.01150 0.01168
15 0.00665 0.01203 0.01184
16 0.00650 0.01199 0.01215
17 0.00590 0.01251 0.01169
18 0.00580 0.01224 0.01173
19 0.00577 0.01236 0.01169
20 0.00556 0.01182 0.01149

Table 4.11: Average errors for MLP with linear output neuronand L-M training

4.5.2 Levenberg-Marquardt training

The results using the L-M algorithm have been analysed in thesame manner as those

from BP training. Again results are quoted in terms of MSEs averaged across networks

with the same hidden layer size and then as optimum MSEs for each dataset, allowing

the network size to vary.

Linear output neuron

The optimum sized network when using a linear output neuron and L-M training is

seen from table 4.11 to be 14, with a corresponding average test error of 0.01168. The

L-M algorithm has therefore achieved lower errors using smaller networks than the BP

algorithm (see section 4.5.1).

From table 4.12 the optimum test MSE, allowing variable architectures, is 0.01107.

Again this result is lower than that achieved using BP training.

Sigmoid output neuron

The average errors using a sigmoid output neuron and L-M training are a slight im-

provement on those using a linear output neuron. The minimumverification MSE
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Data split Verification error Test error Optimum hidden
layer size

1 0.01118 0.01016 11
2 0.01067 0.01105 17
3 0.01060 0.01178 12
4 0.01053 0.01140 14
5 0.01156 0.01366 20
6 0.00973 0.01148 20
7 0.00990 0.00911 18
8 0.00927 0.01110 18
9 0.00939 0.01124 17
10 0.01123 0.01015 13
11 0.01141 0.01269 17
12 0.01087 0.00986 19
13 0.00879 0.00897 20
14 0.01145 0.00945 20
15 0.01117 0.00927 16
16 0.00972 0.01076 12
17 0.01138 0.01118 12
18 0.01087 0.01247 16
19 0.00956 0.01127 14
20 0.00928 0.01220 20
21 0.01126 0.01050 18
22 0.01121 0.00984 15
23 0.01015 0.01101 19
24 0.00948 0.01304 10
25 0.01100 0.01101 17
26 0.01002 0.01238 16
27 0.00990 0.01099 15
28 0.00991 0.01286 14
29 0.00959 0.01080 16
30 0.01002 0.01050 18

average 0.01037 0.01107 16.1

Table 4.12: Optimum errors for MLP with linear output neuronand L-M training
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Hidden layer size Training error Verification error Test error
1 0.02464 0.02561 0.02565
2 0.01856 0.01979 0.01976
3 0.01538 0.01711 0.01739
4 0.01297 0.01537 0.01522
5 0.01160 0.01435 0.01440
6 0.01082 0.01369 0.01375
7 0.00995 0.01295 0.01300
8 0.00917 0.01267 0.01258
9 0.00851 0.01230 0.01209
10 0.00809 0.01177 0.01214
11 0.00773 0.01150 0.01208
12 0.00724 0.01136 0.01143
13 0.00699 0.01102 0.01139
14 0.00675 0.01120 0.01129
15 0.00640 0.01115 0.01142
16 0.00613 0.01109 0.01099
17 0.00611 0.01114 0.01133
18 0.00571 0.01095 0.01104
19 0.00549 0.01077 0.01114
20 0.00518 0.01106 0.01131

Table 4.13: Average errors for MLP with sigmoid output neuron and L-M training

occurred with 19 hidden layer neurons, resulting in a corresponding test error of of

0.01114 (see table 4.13). Again the verification error was seen to be a fairly good

guide to test error, as illustrated in figure 4.17b.

The results when variable network sizes are allowed are reported in table 4.14.

The average test MSE, 0.01071, is better than that achieved using any other methods

investigated so far.

4.5.3 Results summary

Table 4.15 summarises the results of this chapter. The parameters used in the table are

defined as follows-

• Optimum layer size. The number of hidden layer neurons in thenetworks that

give the lowest verification error, when averaged over 30 networks, i.e. fixed

architecture.

• Best average error. The average test error from the networks identified as having
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Figure 4.17: Training, verification and test errors after L-M training
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Data split Verification error Test error Optimum hidden
layer size

1 0.01041 0.00919 17
2 0.01013 0.01042 16
3 0.00920 0.01208 20
4 0.01011 0.01176 13
5 0.01064 0.01063 19
6 0.01097 0.01175 17
7 0.00887 0.00979 17
8 0.00966 0.01029 14
9 0.00913 0.01106 17
10 0.00992 0.00889 17
11 0.01040 0.01067 18
12 0.00940 0.00922 18
13 0.00906 0.00894 13
14 0.01040 0.00986 13
15 0.01091 0.00970 16
16 0.00905 0.01096 15
17 0.01015 0.00977 16
18 0.01061 0.01131 11
19 0.00964 0.01186 16
20 0.00963 0.01052 20
21 0.01056 0.01035 11
22 0.01071 0.01009 14
23 0.01009 0.01097 19
24 0.00962 0.01219 12
25 0.01057 0.01035 14
26 0.00987 0.01261 13
27 0.01020 0.01089 17
28 0.00895 0.01054 20
29 0.00985 0.01302 13
30 0.00990 0.01149 13

average 0.00995 0.01071 15.6

Table 4.14: Optimum errors for MLP with sigmoid output neuron and L-M training
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Training regime
Optimum layer

size
Best average

error
Optimum

error
Linear output (BP) 26 0.01199 0.01148

Sigmoid output (BP) 17 0.01161 0.01116
Linear output(L-M) 14 0.01168 0.01107

Sigmoid output (L-M) 19 0.01114 0.01071

Table 4.15: Summary statistics for MLP training

the optimum layer size.

• Optimum error. The average test error for the set of networksthat give the lowest

verification errors for each dataset. This set may include networks with different

hidden layer sizes, i.e. variable architecture.

Overall it is seen that the L-M algorithm gives superior results to the BP algorithm

and that a sigmoid output function is superior to a linear transfer function.

4.5.4 Speed and memory comparisons

Both the BP and L-M algorithms have been implemented in the Javaprogramming

language. It is known that the speed of the BP algorithm scalesapproximately linearly

with network size, whereas the L-M algorithm is approximately proportional to the

square of the network size. It is therefore difficult to compare the speeds of the two

algorithms. The time taken to train a set of networks was measured. The set used was

the same in each case: 20 networks containing between 1 and 20hidden layer neurons.

The time taken to train a set of networks using the L-M algorithm was found to be

approximately 45 minutes, running on a personal computer (PC) containing an AMD

Athlon 2100+ chip with a clock-speed of 1.74 GHz. The time taken to train a set of

networks with the BP algorithm on the same PC was 110 minutes. The total develop-

ment time for the BP algorithm was also increased by the need toperform pilot studies

in order to ascertain training parameters including learning rate, weight update mode

and momentum coefficient. The development of the L-M algorithm was relatively

straightforward.

The L-M algorithm requires considerably greater quantities of working memory

(RAM) than the BP algorithm. However, it was found that the algorithm could be

implemented in the Java programming language without allocating any memory in

addition to the default maximum of 64 MB. This level of memory allocation is unlikely
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to present a problem, even when running the program on an average PC.



Chapter 5

CLASH prediction using RBF

networks

This chapter investigates the use of RBF networks with the CLASHdataset. Following

a pilot study to identify the optimum RBF steepness (section 5.1) and a description of

methods (section 5.2), section 5.3 reports the results of training various types of RBF

network with the CLASH data. In addition to the standard method of forward selection,

training is performed using forward selection with regularisation and forward selection

with gradient descent optimisation. The results are summarised and compared with

those obtained using MLP networks in section 5.4.

5.1 Width Pilot Study

The method used to train RBF networks was Forward Selection with Orthogonal Least

Squares (FS-OLS). This method has been described in section2.4. Unlike the BP algo-

rithm it does not require the setting of various training parameters. The only parameter

that needs to be chosen is the width of the radial basis functions used in the hidden

layer neurons. The steepness parameter,σ, was introduced in section 2.1. Rather than

dealing with this parameter directly, it is convenient to think in terms of the ‘width’ or

‘spread’ of a neuron. This is defined as the distance from the centre of the neuron that

will give an output value of 0.5 and is related to the steepness parameter by equation

5.1, in whichs is the spread of a neuron.

s=

√
−ln (0.5)
σ

(5.1)

119
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In order to find the optimum RBF width, 10 runs were carried out using different

data splits for widths between 0.2 and 1.2 (in units of 0.2). At this stage, only the

verification errors were assessed - the test errors were not used in the determination

of optimum RBF width. The variation in verification error with hidden layer size

is shown in figure 5.1. This figure shows that the error declines quicker for wider

spreads, but that very large spreads lead to an increase in verification error at an earlier

point. These observations may be explained by considering what occurs during the

training process. When using wider radial functions, each function covers a wider

range of input values, so small numbers of neurons can give a reasonable estimate of

the outputs. As training proceeds, additional neurons attempt to identify increasingly

local features in the underlying function, which affect fewer and fewer input vectors.

Wider functions are less able to identify local variation inthe function and therefore

do less well at this stage. It is expected that there is an optimal spread value for the

CLASH dataset, and from figure 5.1 it appears to be 0.4 or 0.6.
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Figure 5.1: Variation in verification error with hidden layer size for RBF networks with various spread values
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RBF width Optimum layer size Best average error Optimum error
0.2 250 0.01448 0.01446
0.4 247 0.00992 0.00973
0.6 202 0.00990 0.00955
0.8 237 0.01052 0.00998
1 197 0.01048 0.00993

1.2 139 0.01128 0.01035

Table 5.1: Verification errors for networks containing RBFs ofvarious widths, aver-
aged for networks of the same size

Table 5.1 summarises the results of this pilot study. The statistics are the same

as those reported for MLP networks. ‘Optimum layer size’ is the best network size

for each spread and the corresponding errors, averaged across all 10 networks, are

recorded as the ‘best average error’. The ‘optimum error’ isfound by allowing the

network size to vary across datasets and averaging the corresponding test errors across

all 10 datasets.

Figures 5.2 and 5.3 display this information graphically. The first graph indicates

that a spread of 0.6 results in the lowest verification errors, with s= 0.4 giving slightly

higher errors. Given a considerable degree of variation in the results, the difference in

average results may not be statistically significant. A decision was taken to train fam-

ilies of networks with spreads of both 0.4 and 0.6. Figure 5.3shows that the optimum

layer size generally decreases as the spread increases. As the radial basis functions

have larger spheres of influence fewer of them are needed to cover the input space.

5.2 Method

The same 30 data splits were used to train RBF networks as were used for MLP net-

works (see section 4.4), in order to allow fair comparisons between the two types of

network. All RBF networks were trained until they contained 250 RBF neurons. Re-

sultant MSEs were obtained for all intermediate networks, so that ANNs of different

sizes could be compared. Although verification errors were used to identify the best

networks, or family of networks, the performance measures in the next section refer to

errors obtained with the ‘unseen’ test data.

In addition to training networks with the basic FS-OLS algorithm, some networks

were trained with the inclusion of regularisation. This technique, as described in sec-

tion 2.5, reduces the extent of overfit by introducing a penalty term which is linked to
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a regularisation parameter,λ. This term has the effect of reducing the weights between

hidden and output neurons and so smoothing the overall function. A variety ofλ val-

ues were used, varying exponentially between 10−10 and 1, in units of 102. The results

obtained using Forward Selection with Regularisation are given in section 5.3.2.

Finally, section 5.3.3 gives the results of training RBF networks with a combined

training algorithm. This involves two steps: the construction of networks using FS-

OLS followed by a gradient descent optimisation step. The optimisation step was per-

formed using the Levenberg-Marquardt algorithm, as described in section 2.3. Train-

ing at this stage was performed for 50 epochs, which was foundto be sufficient to

achieve convergence. Networks trained with the FS-OLS algorithm are expected to

have near-optimum weights, so the gradient descent step is quick compared to the

training of pure MLP networks. The latter have randomly initialised weights and re-

quire approximately 200 epochs to converge (see section 4.2.6).

The improvement in results brought about by the introduction of a gradient descent

optimisation step into RBF training has been pointed out by Schwenkeret al [192]. A

similar technique is used in the training of GL-ANNs, as described in Chapter 6. One

reason for including the technique here is to allow a comparison between the results

for networks containing just RBF transfer functions and thosefor hybrid networks

reported in Chapter 7.

5.3 Results and Discussion

5.3.1 Results without regularisation

The progression in average errors as RBF neurons are added to the networks is shown

in figure 5.4. In order to maintain a reasonable scale, results start at 25 hidden neurons.

Spreads of both 0.4 and 0.6 result in a minimum verification error at approximately

200 hidden neurons, after which overfitting occurs.

The best results achieved, based on verification errors, with networks containing

transfer functions with the two different spreads are given in table 5.2. This shows that

the lowest test errors are obtained when the spread value is 0.4.

It is noticeable when comparing the results for the two spreads that the verification

errors are a better guide to the test errors for the narrower spread. Since neither set was

‘seen’ by the networks during training there is no obvious reason for this observation,

and must lie in the particular selections of data-splits. The implication is that averaging
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Figure 5.4: Training, verification and test errors for RBF networks with 2 different
spreads
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Spread Averaging technique
Verification

Test MSE
Hidden layer size

MSE size

0.4
Fixed layer size 0.01023 0.01060 198

Variable layer size 0.00972 0.01021 227.9

0.6
Fixed layer size 0.00998 0.01075 203

Variable layer size 0.00958 0.01050 206.9

Table 5.2: Best errors achievable with RBF networks

over 30 different data-splits has not completely eliminated the interactions between

data-splits and model performance mentioned in section 4.3.

5.3.2 Results with regularisation

When regularisation was applied, networks were initially created with up to 200 neu-

rons, since this was the approximate size of the optimum sized networks without reg-

ularisation. Figure 5.5 shows the dependence of the minimumerror, averaged across

fixed sized networks, for various regularisation parameters. The minimum error is

achieved usingλ = 10−4, for widths of both 0.4 and 0.6. However, the minimum ver-

ification error is seen to occur in both cases with 200 neurons, or very close to this

number. This suggests that the minimum error has not yet beenachieved, so training

was continued further withλ = 10−4.

Figures 5.6 and 5.7 show the progression in errors, averagedacross 30 networks,

for networks containing radial basis functions with widthsof 0.4 and 0.6, respectively,

and a regularisation parameter of 10−4. Training was stopped when 450 neurons, ap-

proximately 30% of the available centres, had been added, because the training had

become very slow. At this stage the verificiation and test errors are levelling out, al-

though they have not yet reached a minimum. The average test MSEs obtained at this

point are 0.00938 and 0.00930 for widths of 0.4 and 0.6, respectively.

The effect of regularisation is that the addition of extra neurons does not lead to

overfitting, even with extremely large networks, if an appropriate choice ofλ is made.

This makes it difficult to identify an optimum sized network, when averaging across all

networks. However, when looking at networks trained with each data-split individu-

ally, it is possible to identify network sizes which result in minimum verification errors.

These are seen to occur with somewhat fewer than 450 hidden layer neurons, as shown

in tables 5.3 and 5.4. The optimum test errors achieved when variable architectures are

allowed are 0.00939 withs= 0.4 and 0.00930 withs= 0.6.
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Data split Verification error Test error Optimum hidden
layer size

1 0.00921 0.00765 434
2 0.00937 0.00917 402
3 0.00932 0.00947 447
4 0.00994 0.00915 446
5 0.00791 0.00978 375
6 0.00826 0.00892 442
7 0.00791 0.01002 437
8 0.00955 0.01086 370
9 0.00836 0.01007 404
10 0.00856 0.00886 445
11 0.00854 0.01012 405
12 0.00992 0.00944 448
13 0.01062 0.01113 413
14 0.00996 0.00933 410
15 0.00755 0.00857 405
16 0.00852 0.00971 380
17 0.00821 0.00920 420
18 0.00902 0.00884 383
19 0.01054 0.01030 360
20 0.00791 0.00869 438
21 0.00956 0.00905 446
22 0.00885 0.00703 425
23 0.00743 0.00938 438
24 0.00976 0.00884 360
25 0.00918 0.01018 371
26 0.00841 0.01002 441
27 0.00727 0.01010 437
28 0.00910 0.00881 407
29 0.00982 0.00799 373
30 0.00735 0.01106 448

Average 0.00886 0.00939 413.7

Table 5.3: Optimum errors for RBF networks with spread=0.4 trained with regularisa-
tion
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Data split Verification error Test error Optimum hidden
layer size

1 0.00942 0.00818 316
2 0.01023 0.00828 319
3 0.00924 0.00900 398
4 0.00944 0.00897 389
5 0.00778 0.00963 381
6 0.00804 0.00942 357
7 0.00822 0.01020 279
8 0.00950 0.01062 418
9 0.00808 0.01000 449
10 0.00879 0.00936 446
11 0.00848 0.00985 346
12 0.00999 0.00942 296
13 0.00991 0.01192 417
14 0.00970 0.01026 241
15 0.00794 0.00808 330
16 0.00834 0.00844 421
17 0.00786 0.00884 314
18 0.00936 0.00928 241
19 0.00954 0.00976 449
20 0.00797 0.00791 450
21 0.01015 0.00915 422
22 0.01022 0.00767 416
23 0.00730 0.00961 419
24 0.00916 0.00855 301
25 0.00911 0.00946 321
26 0.00808 0.00961 450
27 0.00774 0.01053 449
28 0.00919 0.00870 342
29 0.00957 0.00768 320
30 0.00733 0.01071 442

Average 0.00886 0.00930 371.3

Table 5.4: Optimum errors for RBF networks with spread=0.6 trained with regularisa-
tion
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Figure 5.8: Verification errors for RBF networks trained with an optimisation step

5.3.3 Results with gradient descent optimisation

Gradient descent optimisation was found to be a slow process. For this reason it was

impractical to optimise all possible RBF networks. Initially10 networks were opti-

mised for network sizes up to 90 hidden neurons, in steps of 5 neurons, with starting

RBF spreads of 0.4 or 0.6. The resulting verification errors areshown in figure 5.8.

From this graph it is apparent that gradient descent optimisation has a particularly

favourable impact upon smaller networks, resulting in a shift in the optimum network

size from approximately 200 neurons without optimisation down to 85 neurons with

optimisation. The best results appear to be achieved with a starting spread of 0.4.

For a hidden layer size of 85 and spread of 0.4, all 30 networkswere optimised.

When averaged across all 30 networks, the resulting test error was 0.00956. These

results are a considerable improvement on the results without optimisation. Further,

they are achieved using much smaller networks.
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5.3.4 Speed and memory comparisons

Like the algorithms used to train MLP networks, the FS-OLS algorithm was imple-

mented in Java and run on a PC containing an AMD Athlon 2100+ chip with a clock-

speed of 1.74 GHz. The time taken to train a series of RBF networks containing be-

tween 1 and 250 neurons using the FS-OLS algorithm was approximately 23 minutes.

This is about half the time taken to train a set of MLP networksusing the L-M algo-

rithm and approximately a fifth of the time taken by the BP algorithm.

Introduction of a regularisation parameter had no appreciable impact on training

speeds. However, larger networks were created when regularisation was introduced.

Since the training time increases approximately proportionally to the square of the

network size, this led to considerable costs in training times. Training a series of

networks containing 450 hidden layer neurons took approximately 95 minutes. This is

less than the amount of time taken to train a seies of MLP networks using BP, but more

than the time taken by the L-M algorithm.

The FS-OLS algorithm requires greater RAM allocation than the L-M or BP algo-

rtihms. However, the requirement does not exceed 100 MB, and therefore appears to

pose few problems if running the algorithm on a modern computer.

Gradient descent optimisation of large networks using the L-M algorithm is slow.

For networks of the optimum size, containing 85 hidden neurons, it takes approxi-

mately 38 minutes to optimise each network. It is therefore necessary to be selective

when choosing which networks to optimise (see section 5.3.3). An alternative would

be to use a different algorithm to perform optimisation when large networks are in-

volved. First-order gradient descent, as described in section 2.2.2, is a possible choice.

However, the conjugate gradient method (see Appendix B) might be a more effective

algorithm, and is considerably quicker than the L-M algorithm for large networks.

Gradient descent optimisation does not require the allocation of memory in addition to

the 64 MB automatically allocated by the Java virtual machine.

5.4 Summary and a comparison with MLP networks

Table 5.5 summarises the results achieved using RBF networks.Also included are the

results for MLP networks trained with the L-M algorithm, obtained in chapter 4, for

comparison. The best results are obtained using transfer functions with a spread of

0.6 and a regularisation parameter of 10−4 and they are a considerable improvement on
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those obtained with MLP networks. These results may be regarded as the best achiev-

able using variants of the forward selection algorithm on the CLASH dataset. The

results obtained using this algorithm are not subject to thesetting of various training

parameters , as are those obtained for MLP networks. It may bethat better optimi-

sation of training parameters could improve the results forMLP networks somewhat.

However, it seems unlikely that they would improve to such anextent that they could

compete with the results obtained with RBF networks.

RBF networks generally require many more neurons than MLP networks to achieve

comparable results. The reason for this is that each neuron only has a significant effect

upon a small volume of the input-space. A large number of neurons are therefore

required to cover this input-space particularly when thereare a large number of inputs,

as there are here.

In terms of training time the network size does not present a problem, with to-

tal training times comparable for MLP and RBF networks. However, from the point

of view of function approximation the RBF approach appears to have some draw-

backs. Firstly, the function created has an extremely complex funtional form. From a

Bayesian point of view such a function has a low ‘likelihood’.Instinctively, one feels

that the highly complex functions produced by the RBF networkscannot represent the

‘true’ underlying function.

There are also practical reasons for preferring a simpler function. One use of the

research reported in this study would be to derive symbolic meaning from the neural

network weights, possibly in the form of a regression tree. If the produced ANNs are

extremely complex, the derived tree is unlikely to provide useful symbolic information.

A further reason for having reservations concerning RBF networks is that it is known

that they are poor at interpolating between clusters of datainto empty areas of input

space. As shown in section 3.3.2 the CLASH data is highly clustered. One would like

to be able to interpolate between clusters so that predictions may be made concerning

previously unknown structures. For this reason, it may be valuable to incorporate

information from MLP networks.

Chapter 6 describes an algorithm that creates a hybrid MLP-RBF network, with the

aim of combining the advantages of MLP networks - small network size and extrap-

olation ability - with the advantages of RBF networks - local function approximation

and accurate output prediction. The training algorithm forthese hybrids incorporates

a gradient descent optimisation step. Section 5.3.3 showedthat the introduction of this

step results in a substantial reduction in optimum hidden layer size and is therefore
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beneficial for the reasons given above.
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Training technique
Best hidden
layer size

Best test error
with fixed

architecture

Best test error
with variable
architecture

FS-OLS,s= 0.4 198 0.01060 0.01021
FS-OLS,s= 0.6 203 0.01075 0.01050

FS-OLS,s= 0.4, λ = 10−4 450 0.00938 0.00939
FS-OLS,s= 0.6, λ = 10−4 449 0.00930 0.00930

FS-OLS, then L-M
optimisation

85 0.00956 -

MLP L-M, linear 14 0.01168 0.01107
MLP L-M, sigmoid 19 0.01114 0.01071

Table 5.5: Summary of the results of training RBF networks withthe CLASH dataset



Chapter 6

GL-ANN theory and algorithm

6.1 Background

The need for machine learning techniques to identify globaland local features sepa-

rately has been recognised for some time. Minsky and Papert noted in 1969 that [66]

the appraisal of any particular scheme of parallel computation cannot

be undertaken rationally without tools to determine the extent to which the

problems to be solved can be analyzed into local and global components.

This chapter describes a scheme for developing global-local artificial neural net-

works (GL-ANNs). GL-ANNs have an architecture containing neurons with both

sigmoidal and RBF transfer functions. Associated with this hybrid architecture is a

training algorithm which is designed to give good generalisation properties and rapid

training.

The aim of the GL-ANN method is to separate the global and local features of an

unknown multivariate function. Recent support for such a separation comes from three

main areas: mathematical analysis, cognitive psychology and developments within

computer science.

6.1.1 Mathematics

Donoho and Johnstone [193] have shown that kernel-based andprojection-based func-

tions have complementary properties. In particular, they show that ‘ancillary smooth-

ness’ in the target function may be used to reduce the effective dimensionality of the

136
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data. They define an angularly smooth function as one that varies slowly with an-

gle, while a function with radial smoothness shows small local variations in value.

Projection-based functions are seen to respond well to angular smoothness while kernel-

based functions respond well to radial smoothness. For complex, high-dimensional

functions one expects to find aspects of both types of smoothness. In order to achieve

optimum results with the smallest possible network it therefore seems advisable to use

neurons with both projection-based and kernel-based functions.

6.1.2 Cognitive psychology

As well as having a sound mathematical basis hybrid networksmay have more bio-

logical validity than pure multi-layer perceptron (MLP) networks [99, 194]. There is

considerable evidence that the human brain processes information in a modular way

[195]. For example, global and local aspects of visual stimuli are processed by different

parts of the brain, suggesting the specialisation of neurons for these different purposes

[196, 197]. Further, brain development often occurs in stages, with each stage de-

pendent upon the completion of previous stages [198]. The architectural structure of

GL-ANNs is similarly reflected in a stepwise training alogorithm [195].

6.1.3 Computer Science

As computing power increases computer scientists are dealing with larger, higher-

dimensioned datasets and, presumably, more complex underlying functions. Hrycej

believes that there is a need to use more complex models such as modular ANNs in

order to satisfactorily model these functions [195]. Each module within a network may

then be assigned a different task, or sub-task, according to the particular architecture

of that module or the training method applied to it. One advantage in using a stepwise

modular approach is that the effectiveness of each step may be assessed individually,

enabling some information to be extracted from the ‘black box’ of ANN training.

Poggio and Girosi have suggested the use of networks containing both Gaussian

and other functions in a single layer. These networks are extensions of traditional

RBF networks called ‘HyperBFs’ [199]. They contain a single hidden layer containing

Gaussian functions of variable width and additional non-radial functions. Girosiet

al. [200] have demonstrated mathematically the close relationship of HyperBFs to

regularisation theory. GL-ANNs may be seen as an implementation of HyperBFs, with

a particular emphasis on the separation of global and local variations in the regression
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function.

Moody has highlighted the difficulty in identifying both the coarse structure and

the fine detail of an input-output relationship [201]. His multi-resolution technique

uses RBF neurons of differing widths to solve this scaling problem. The GL-ANN

approach builds on this work, allowing extra flexibility in the choice of RBF widths

and the addition of sigmoid functions to map features of the function that are more

suited to this geometric form.

GL-ANNs have similarities with the hybrid and modular approaches described in

section 1.5.8 such as PRBFNs and mixtures-of-experts. They also share some features

with Orr’s regression tree derived RBF (RT-RBF) approach (section 1.5.7). However

PRBFNs, mixtures-of-experts and RT-RBFs all cluster the training data prior to net-

work training. The GL-ANN approach uses all training data inall phases of training,

keeping the variance low [202]. It also avoids a number of known problems with clus-

tering, namely-

• Clustering may reflect the distribution of the available datarather than the un-

derlying functionality.

• Clustering generally reflects the distribution of the input data, but does not take

into account the distribution of the output data [180]. Thisis a problem for highly

non-linear data such as the wave overtopping data, for whichsmall changes in

the inputs sometimes cause large changes in the output.

• Unsupervised clustering can lead to very large, and therefore overfitted, net-

works [203].

One hybrid approach that does not use clustering is the genetic algorithm approach

of Yang [127], described in section 1.5.8. Yang uses GAs to search model space for

the optimum sigmoid-RBF hybrid architecture. His work concentrates on the choice

of model, with basic Levenberg-Marquardt training used to train each network. This

study may be seen as complementary to that of Yang. It uses a fairly ‘brute force’

approach to model selection, creating series of networks for all possible architectures,

but employs a fairly sophisticated method of training individual networks.

6.2 The ideas behind GL-ANNs

MLP and RBF networks have complementary properties. While bothare theoretically

capable of approximating a function to arbitrary accuracy using a single hidden layer
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[204, 205], their operation is quite different [35]. MLP networks have a fixed architec-

ture and are usually trained using a variant of gradient descent, as described in sections

2.2 and 2.3. They invariably incorporate neurons with sigmoid activation functions.

Their response therefore varies across the whole input space and weight training is

affected by all training points. RBF networks, on the other hand, are most commonly

created using a constructive algorithm. Gradient descent training is usually replaced by

deterministic, global methods such as Forward Selection ofCentres with Orthogonal

Least Squares (FS-OLS). This method has been described in detail in section 2.4.

Whereas MLPs are effective at identifying global features of the underlying func-

tion, RBF networks have the capacity to identify local variation in the function [195,

180, 206]. MLPs are more distributive in their representation of the input-output rela-

tionship, since little meaning can be attached to the weights of any individual neuron.

For this reason they may be seen as more ‘emergent’ and opaque[195, 207].

On the other hand RBF centres are deliberately selected, oftenfrom the training

set, as representatives, or prototypes, of the entire training set. Since each neruon

within a RBF network may be seen as a prototype for the whole dataset, RBF networks

are slightly more transparent and are easier to interpret symbolically than are MLP

networks [195].

The training of RBF networks is generally faster, as seen in Chapter 5. The main

reason for this is that RBF networks generally contain linear output neurons and fixed

hidden layer neurons. The optimisation algorithms used therefore involve the solving

of linear rather than non-linear equations [208, 176]. However, RBF networks often

contain many more neurons than the corresponding MLP networks, partly offsetting

the advantage in computational efficiency [206], as reported in section 5.3.4.

A hybrid ANN containing both sigmoidal and radial neurons may have the advan-

tages of both RBF and MLP ANNs, i.e. computational efficiency, good generalisation

ability and a compact network architecture. GL-ANNs approximate on a global level

first using a MLP and then add RBF neurons using FS-OLS, in order to add local de-

tail to the approximating function. Identifying coarse structure before fine detail makes

sense from a computational point of view [201]. This sequential process may also mir-

ror the operation of biological brains: there is considerable evidence from cognitive

psychology that humans identify global features of visual stimuli before local features

[209] and that the global features affect the interpretation of the local features [210].

The training process is completed with an optimisation stepthat adjusts the weights of

all neurons, including RBF centres and widths.
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(a) Sigmoid neurons only (b) Hybrid with fixed RBFs (c) Hybrid with adjustable RBFs

Figure 6.1: Diagrammatic representation of the GL-ANN training process

The three-step training process is illustrated in figure 6.1. After the first step, an

ANN containing just sigmoid neurons is created. The sigmoidfunctions approximate

a stepwise function (see figure 2.1) and therefore partitionthe input space into regions.

After the second step, detail has been added over the top of these partitions, using RBF

functions. Finally, the positioning of the sigmoid functions and the locations and sizes

of the RBF functions are optimised, allowing RBFs of variable widths.

6.3 GL-ANN Algorithm

At each stage of GL-ANN training attempts have been made to select a training method

that is efficient in terms of computational power, given the architecture of the network.

Chapter 4 indicated that the Levenberg-Marquardt method is an efficient means of

training MLP networks containing up to approximately 20 hidden neurons, and this

method is used in the first stage of training GL-ANNs. In orderto use this procedure

local partial derivatives are first calculated for the inputweights (including bias weight)

using equation 6.1. Local inputs and weights are given byik andwk, respectively and

y is the pertinent neuron’s output. The Hessian matrix may then be approximated as

described in section 2.3.

∂y
∂wk
=

1− y2

2
ik (6.1)

In the second stage RBF neurons are added using a variant of the FS-OLS algo-

rithm described in section 2.4. The RBF neurons employ symmetrical radial functions

with fixed widths at this stage. The FS-OLS requires some modifications to make it

applicable to hybrid networks. If the training data containsm items, each is regarded as
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a potential RBF centre and the full design matrix,F, is an m-by-m matrix containing

the outputs of each RBF neuron given each input. The design matrix for a network

containingp RBF centres,A, is a m-by-p matrix containing columns selected from

F. If the target outputs are given byt the optimal output weights,w, may then be

determined from equation 6.2, giving the minimum least square error.

w =
(

ATA
)−1

AT t (6.2)

An efficient method for solving this problem, first reported by Chenet al. [104], has

been described fully in section 2.4. It requires thatF is factorised into an orthogonal

matrix F̃ and an upper triangular matrix. The columns inF̃ must be kept orthogonal to

each other whenever a RBF neuron is added to the network. If the column vector inF̃

corresponding to that neuron is denoted byf̃J, the alteration may be stated as equation

6.3.

F̃n+1 = F̃n −
f̃J f̃T

J F̃n

f̃T
J f̃J

(6.3)

In GL-ANNs the hidden layer contains RBF and sigmoidal neurons, both of which

provide outputs that are passed on to the output neuron. The outputs of both the sig-

moid and the RBF neurons must be ‘orthogonalised’ when calculating the error reduc-

tion. This requires the following modifications:

• The addition of extra columns to the full design matrix, to represent the outputs

of the sigmoid neurons.F is therefore non-square, containing, form training

items andn sigmoid neurons,m rows andm+ n columns.

• Before any RBF neurons are added, the design matrix must be orthogonalised

by carrying out the orthogonalisation of equation 6.3 for each existing sigmoid

neuron, so ensuring that only the components orthogonal to the existing neurons’

outputs are considered.

In the final training stage all weights, including hidden layer weights and each

RBF steepness, are optimised using L-M training. The local partial derivatives for

RBF weights (centres) and steepness are given, respectively,by equations 6.4 and 6.5.

ik, wk andy are used as in 6.1 whiled is the distance between the input vectori and the

weight vectorw (see equation 2.8).σ is the RBF steepness.
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For RBF input weights (centres):

∂e
∂wk
= 2yσ2 (ik − wk) (6.4)

For RBF bias weight (steepness):

∂e
∂wk
= −2σd2y (6.5)

Given the local partial derivatives, the Hessian may be estimated as described in

section 2.3 and second-order gradient descent performed onthe hybrid network.

6.4 Summary

This chapter has described the background to the GL-ANN algorithm. It has been

shown that support for the use of hybrid networks exists in the areas of mathemat-

ical optimisation, cognitive psychology and within computer science. The key idea

behind GL-ANNs is the combination of sigmoid and RBF neurons. Associated with

the hybrid architecture is a hybrid training algorithm thatcombines gradient descent

training with forward selection. The algorithm has been described in detail in section

6.3 and is illustrated in figure 6.2. The aim in using this algorithm is to separately and

sequentially identify global and local components of an unknown function. Chapters

7 and cha:benchmarkDatasets look at the effectiveness of the algorithm in modelling,

respectively, the behaviour of the CLASH data and of a number of benchmark datasets.
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Create MLP networks and train them using the L-M algorithm.
Networks containing up to 10 bipolar sigmoid neurons are created
first. Larger networks are created if the best results on the test
data are obtained using 10 neurons.

Add RBF neurons to the MLP networks using the modified
FS-OLS algorithm. Up to 10 RBF neurons with spreads between
0.2 and 1,0 are added first. More neurons are added or greater
spreads are tried only if the largest networks or greatest spreads
give the best results on the test data. As RBF neurons are added
the output weights are automatically optimised by the FS-OLS
algorithm.

Optimise all weights by training with the LM algorithm. With
medium data sets and network sizes all hybrid networks are
optimised. With large data sets and large networks only a
selection of networks (those containing a multiple of 5 hidden
layer neurons) are optimised, in order to reduce the time taken.

Figure 6.2: Flow chart summarising the GL-ANN algorithm



Chapter 7

CLASH prediction using GL-ANN

algorithm

This chapter reports the results of training GL-ANN networks with the CLASH dataset.

Section 7.1 describes the method used to train the networks.Section 7.2 gives the re-

sults of training two-step GL-ANNs, three-step GL-ANNs andhybrid networks trained

with regularisation. Comparisons are made with the corresponding RBF networks and

between the three types of hybrid network. Section 7.3 summarises the results.

7.1 Method

This section describes the method used to train series of networks to map the underly-

ing function within the CLASH dataset with the GL-ANN algorithm. As described in

Chapter 6 this is a three-step algorithm.

The first step involves the training of MLP networks. The results of this step have

been reported in Chapter 4. Some of the networks described in that chapter were used

as starting networks in the second training stage. However,only networks containing

a linear output neuron were used. A linear output function isrequired, since the sec-

ond step involves the use of the FS-OLS algorithm, which can set the hidden-output

weights, but only if the output neuron has a linear transfer function. 30 different splits

of the data were used, as reported in chapter 4.

In the second training step, RBF neurons were added to the trained MLP networks.

Up to 250 RBF neurons were added to the MLP networks. Initially only 10 networks

were trained for each architecture. The most promising architectures were then trained

with all 30 data splits and the test errors averaged across all 30 networks.

144
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Figure 7.1: Progression in test error during the optimisation of hybrid networks con-
taining 5 sigmoid neurons and 85 RBF neurons

The networks created with the CLASH dataset were very large and the optimisa-

tion step was slow. Networks were therefore selectively optimised, following a search

procedure designed to locate the optimum network architecture. In this stage, only

10 networks were trained for each architecture. The resultswere used to successively

narrow down the optimum architecture and only the optimum architecture was tested

using all 30 data splits.

Due to the time taken to train the large networks, gradient descent optimisation

was only carried out for 50 epochs, rather than the 200 epochsused to train MLP

networks (see section 4.2.6). The starting networks have weights that are fairly close

to their optimum values, since they have been produced by least squares optimisation.

This contrasts with the situation during MLP training, whenweights are initialised

randomly. 50 epochs was therefore seen to be sufficient to achieve a levelling-off in

the test error, as illustrated by figure 7.1. This shows the error progression for networks

containing 5 sigmoid and 85 RBF neurons, averaged across 10 runs. Similar patterns

of behaviour are seen for alternative architectures.

As an alternative to gradient descent optimisation, regularisation was introduced to

the training of hybrid networks. This technique has also been used in the training of

RBF networks, as described in Chapter 5. Again the regularisation parameter,λ, was
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set to values between 1.0 and 10−10, and RBF neurons with spreads of 0.4 or 0.6 were

added.

In order to allow a fair comparison with pure RBF networks the networks created

after the second training step are compared with RBF networks trained with FS-OLS,

in section 7.2.1. The results of training with the full three-step algorithm are compared

with RBFs trained with a two-step algorithm, including a gradient descent optimisation

step, in section 7.2.2. Finally, the results of introducingregularisation are discussed in

section 7.2.3. Again comparisons are made with pure RBF networks.

7.2 Results

7.2.1 Two-step algorithm

In creating hybrid networks, information obtained from thetraining of RBF networks

was used to guide the choice of networks to create. For this reason attention was

focussed upon RBF neurons with spreads of 0.4 or 0.6.

In the first stage, networks were trained with 6, 10 or 14 sigmoid neurons and up to

250 RBF neurons. The results from these architectures suggested that networks with

fewer sigmoid neurons gave lower MSEs. Further hybrid networks were therefore

created containing 5, 7, 8 and 9 sigmoid neurons. Again the networks contained up to

250 RBF neurons. The results averaged over 10 networks are illustrated in figures 7.2-

7.5. The first two figures show the results with RBF spreads of 0.4and, respectively,

fixed and variable hidden layer sizes. Figures 7.4 and 7.5 show the corresponding

results with a spread of 0.6.

The best results are seen to occur with a spread of 0.4 and with6 or 8 sigmoid

neurons. All 30 networks were trained with these architectures. The results are given

in table 7.1. They show that the best architecture contains 6sigmoid neurons and 207

RBF neurons, resulting in a test error of 0.00999. The best results obtained when the

number of RBF neurons is allowed to vary for different data splits are obtained with

networks containing 8 sigmoid neurons and an average of 198.8 RBF neurons. The

resultant test MSEs average 0.00992.

These results are an improvement on those obtained using pure RBF networks

or pure MLP networks. A comparison of the hidden layer sizes of hybrid networks

obtained from the two-step GL-ANNs and pure RBF networks showsthat they are of

similar size (see section 5.3)
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Figure 7.2: Errors for hybrid networks with spread 0.4 averaged across fixed architec-
tures
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Figure 7.3: Errors for hybrid networks with spread 0.4 averaged across variable archi-
tectures
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Figure 7.4: Errors for hybrid networks with spread 0.6 averaged across fixed architec-
tures
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Figure 7.5: Errors for hybrid networks with spread 0.6 averaged across variable archi-
tectures
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Number of sigmoid
Averaging technique Test MSE

Number of RBF
neurons neurons

6
Fixed layer size 0.00999 207

Variable layer size 0.00993 211.2

8
Fixed layer size 0.01028 250

Variable layer size 0.00992 198.8

Table 7.1: Best errors achievable with two-step GL-ANN
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Figure 7.6: Errors for three-step GL-ANNs with near optimumarchitectures

7.2.2 Three-step algorithm

In selecting which hybrid networks to optimise, the resultsfrom the training of RBF

networks were again used as guidance. The optimum hidden layer size for pure RBF

networks was reduced by gradient descent optimisation fromabout 200 to 85. It was

assumed that optimisation of hybrid networks would similarly reduce the optimum

size of the networks. Only networks with up to 100 hidden layer neurons (in steps of

5) were therefore optimised. The number of sigmoid neurons in the GL-ANNs was

varied between 5 and 10 inclusive and the starting RBF width was0.4. The results are

illustrated in figure 7.6. This figure focuses upon the architectures that gave the lowest

test MSEs, which contained between 70 and 90 hidden neurons.

The best results are seen to be obtained with 6 sigmoid neurons and 80 hidden

neurons, i.e. 6 sigmoid neurons and 74 RBF neurons. The test error obtained with this
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architecture is 0.00952.

A comparison between the results of the two-step and three-step algorithms shows

that the introduction of gradient descent leads to further improvements in performance

as well as a substantial reduction in network size. The good performance of GL-ANNs

may be attributed in part to the hybrid architecture, but also in part to the hybrid al-

gorithm. For the CLASH dataset it appears that a combination of the deterministic

method of FS-OLS and the more stochastic process of gradientdescent leads to ef-

fective generalisation. When compared with the results obtained using RBF networks

optimised with gradient descent (section 5.3.3), there is seen to be only a small reduc-

tion in error upon using the hybrid architecture. This suggests that the hybrid training

method accounts for most of the improvement in the performance of three-step GL-

ANNs, with the hybrid architecture playing a lesser role.

The errors obtained with three-step GL-ANNs are almost as low as those obtained

when pure RBF networks are trained with regularisation. The effect of regularisation

on hybrid networks is reported in the next section.

7.2.3 Hybrid networks trained with regularisation

Investigation of the effect of regularisation on hybrid networks focused upon the archi-

tectures most likely to yield effective networks, i.e. those with 6 sigmoid neurons and

a RBF spread of 0.4. As with the training of pure RBF networks with regularisation,

networks were originally trained with up to 200 RBF neurons. The results are shown

in figure 7.7. As with pure RBF networks, the best results are obtained withλ = 10−4,

and again the verification errors are still seen to be fallingafter the addition of 200

neurons (compare section 5.3.2). As with pure RBF networks, training was continued

until 450 RBF neurons had been added, using the optimum regularisation parameter,

i.e.10−4.

The minimum verification MSE was achieved with 439 RBF neurons,equivalent

to a total of 445 hidden neurons, and the test error, averagedacross 30 networks, was

0.00936. The results obtained when each data split is allowed to ‘choose’ its own

preferred architecture (number of RBF neurons) are given in table 7.2. The results are

very close to those achieved with pure RBF networks. Since the optimum architectures

contain very large numbers of RBF networks, they dominate the networks and the

sigmoid neurons have little effect on the network size or the generalisation ability of the

networks. The combination of regularisation and hybrid networks does not therefore

appear to be a useful technique.
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Data split number Verification error Test error Optimum number
of RBF neurons

1 0.00856 0.00779 448
2 0.00909 0.00985 445
3 0.00886 0.00890 400
4 0.00900 0.00833 302
5 0.00726 0.00985 337
6 0.00884 0.00920 420
7 0.00827 0.01027 385
8 0.00887 0.01011 438
9 0.00863 0.01020 346
10 0.00865 0.00813 373
11 0.00881 0.01138 391
12 0.00918 0.00894 334
13 0.00941 0.01059 445
14 0.01113 0.00934 450
15 0.00768 0.00843 345
16 0.00889 0.00854 400
17 0.00777 0.00905 348
18 0.01021 0.00791 309
19 0.00970 0.00892 450
20 0.00803 0.00792 441
21 0.00942 0.00927 449
22 0.00971 0.00850 338
23 0.00787 0.00997 324
24 0.00938 0.00837 301
25 0.00811 0.00908 291
26 0.00800 0.00954 418
27 0.00745 0.01151 378
28 0.00904 0.00921 430
29 0.01013 0.00723 439
30 0.00714 0.01290 450

Average 0.00877 0.00931 387.5

Table 7.2: Optimum errors for hybrid networks with spread=0.4 containing 6 sigmoid
neurons trained with regularisation
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Figure 7.7: Verification errors for hybrid networks trainedwith regularisation

The effect of regularisation may be compared with that of gradient descent opti-

misation. Both techniques aim to improve upon the results obtained using the basic

FS-OLS algorithm, and the best MSEs obtained using the two techniques are similar:

0.00936 with regularisation and 0.00952 with gradient descent optimisation. The most

significant difference between the two techniques is the size of the networkscreated.

The best results are obtained with regularisation by increasing the size of the networks

(compared to the optimum size without regularisation). On the other hand, gradient

descent optimisation appears to favour much smaller networks.

Examination of the network weights between the hidden and output layer sug-

gests that GL-ANNs automatically incorporate a degree of regularisation. The average

weight between the RBF neurons and the output neuron in an optimally sized pure

unregularised RBF network is 18.8. The corresponding value for the RBF neurons in

the most effective two-step GL-ANNs is 4.00 and for three-step GL-ANNs is just 1.29.

Since themodus operandiof the regularisation procedure is to reduce the size of the

hidden-output weights it appears that regularisation is not needed for GL-ANNs. This

observation may be explained by considering the process of function-fitting. When

RBF neurons are added to a hybrid network, an approximate input-output function is

already simulated within the network via the sigmoid neurons. The difference between

this approximate function and the ‘true’ function is fairlysmall and it is this difference
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that the RBF neurons are intended to approximate. Since the RBF neurons have a rel-

atively minor role in reducing the MSE they are likely to be assigned small weights

by the FS-OLS algorithm which always sets the hidden-outputweights to produce the

lowest possible MSE.1

7.2.4 Speed and memory comparisons

The FS-OLS procedure used to create two-step GL-ANNs and regularised hybrid net-

works is the same as that used to build pure RBF networks and therefore runs at the

same speed. However, the required size of the networks is much smaller, if gradient

descent optimisation is to be performed. To create a series of hybrid networks con-

taining up to 100 RBF networks takes approximately 31
2 minutes when running on a

PC containing an AMD Athlon 2100+ chip with a clock-speed of 1.74 GHz. This

compares favourably with the 23 minutes required to producea series of pure RBF

networks containing up to 250 neurons.

The gradient descent step is much slower. To optimise a network containing 80

hidden neurons takes 23 minutes. It is therefore necessary to be selective in choosing

which networks to optimise, as described in section 7.2.2. In the future it might be

wise to replace the L-M algorithm with the conjugate gradient algorithm (Appendix

B), which has much lower computational cost.

Both the L-M and FS-OLS procedures have substantial memory requirements, but

these never exceed 100 MB and do not therefore present a difficulty to a modern com-

puter.

7.3 Summary

This section aims to sum up all of the research involving the use of ANNs with the

CLASH dataset, including the results from Chapters 4 and 5 as well as this chapter.

Comparisons are also made with traditional methods of predicting overtopping rates.

Table 7.3 summarises the results obtained using MLP, RBF and hybrid networks.

Also included are the best results from training RBF networks with regularisation and

with gradient descent optimisation. In addition to the average normalised test MSEs,

the average error factor and average absolute error are given. Both of these values

1Orr has observed that regularisation is generally not useful when adding neurons with narrower
spreads to those with wider spreads [211]. This observationis similar to that made here concerning the
addition of RBF neurons to hybrid networks.
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Network type Normalised MSE Error factor Absolute error
MLP (linear output) 0.01168 6.99 2.54× 10−3

MLP (sigmoid output) 0.01114 8.93 1.52× 10−3

RBF 0.01060 5.61 1.29× 10−3

RBF with regularisation 0.00930 6.03 1.15× 10−3

RBF with gradient descent 0.00956 6.15 1.37× 10−3

GL-ANN 0.00952 5.59 1.51× 10−3

Table 7.3: Performance indicators for MLP, RBF and GL-ANN networks, averaged
across 30 networks

are obtained using the de-normalised values ofq0, i.e. the normalisation process de-

scribed in section 3.2 has been performed in reverse. The error factor, EF, is defined

by equation 7.1.

EF =















q0,predicted/q0,target if q0,predicted> q0,target

q0,target/q0,predicted if q0,predicted≤ q0,target

(7.1)

It is interesting to note that the ‘best’ architecture, determined from the average

normalised test MSE, does not correspond to the most effective architecture on all

performance measures. RBF and GL-ANN networks out-perform MLP networks on

all measures, but the relative performance of RBF networks andGL-ANN networks

vary according to performance measure. RBF networks give a lower average error, but

GL-ANNs give lower normalised MSEs and lower error factors.

With the MLP networks, a sigmoid output neuron performs beston the first two

measures, whereas a linear output neuron gives a lower errorfactor. The introduc-

tion of regularisation or gradient descent optimisation into RBF training reduces the

measured MSE, but increases the error factor.

In order to make comparisons with traditional methods of predicting overtopping

rates and in an attempt to analyse the results in more detail,a single network was

chosen for each architecture. In each case this was the network which gave the lowest

normalised test MSE. The results for these individual networks are given in table 7.4.

Also included are the equivalent figures using numerical simulation. These results

are taken from Huet al [28]. They used a high-resolution, finite-volume model to

solve the non-linear shallow water equations (see section 1.4). Data used included 40

items of laboratory test data using regular waves overtopping smooth walls with slopes

between 1:3 and 1:5. Also included were 11 tests using a laboratory test model of Great

Yarmouth outer harbour, under varying sea conditions. The data used by Hu is taken
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Network type Normalised MSE Average error Error factor
MLP 0.00842 1.49× 10−3 2.60
RBF 0.00871 1.10× 10−3 2.75

GL-ANN 0.00739 0.92× 10−3 2.48
Numerical modelling - 2.29× 10−3 1.89

Table 7.4: Performance indicators for the best performing MLP, RBF and GL-ANN
networks

from a narrower range of structures and sea conditions than the CLASH data. However,

their work is representative of the type of approach used in numerical modelling, and

is provided here as a guide to the accuracy attainable with such methods.

When assessed in terms of average error, the ANNs perform better than numerical

simulation, even though they have a much wider range of applicability. When the

error factors are considered, numerical simulation out-performs the ANNs, with the

GL-ANN coming closest to the simulated results in accuracy.

Figures 7.8-7.10 show the ratioq0,predicted/q0,target for the individual data items within

the CLASH dataset for the best performing individual ANNs with, respectively, MLP,

RBF and GL-ANN architectures. As expected from the error factors in table 7.4, the

GL-ANN gives results which lie closest to ideal, i.e.q0,predicted/q0,target = 1, although

the difference in error factors between the networks is small.

All three networks show a tendency to overpredict low overtopping rates and to un-

derpredict high overtopping rates. This may be partly a result of the ANN technique,

which favours areas in which data density is high. In areas oflow data density, the re-

sults are therefore likely to be less accurate. There may be asecond factor operating at

low overtopping rates. When overtopping rates are low, it is difficult to obtain accurate

measurements, so the training data is likely to show a high degree of variability in this

region.
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Figure 7.8:q0,predicted/q0,target vs. targetq0 for the best-performing MLP network
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Figure 7.9:q0,predicted/q0,target vs. targetq0 for the best-performing RBF network
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Figure 7.10:q0,predicted/q0,target vs. targetq0 for the best-performing GL-ANN network



Chapter 8

GL-ANN Evaluation using

Benchmark Datasets

This chapter introduces a number of benchmark datasets thathave been used to assess

the GL-ANN architecture and algorithm. The first aim in usingthese datasets is to find

out whether the GL-ANN method is especially useful when applied to certain types of

data. On the other hand, the use of benchmark datasets may identify types of dataset

for which GL-ANNs are not a useful tool.

The second aim is to find out about the nature of the architectures created by the

GL-ANN process. Architectures are differentiated in terms of number of hidden neu-

rons and optimum RBF spread. Comparisons are made with the corresponding MLP

and RBF networks.

The datasets used are all readily available and they have therefore been used previ-

ously by other researchers. In many cases it is therefore also possible to compare the

results of the GL-ANN method with additional techniques such as regression trees.

Section 8.1 describes the datasets, using tools to assess the linearity and clustering

behaviour of the datasets. Section 8.2 explains the methodsused to train various types

of network using these datasets. Section 8.3 reports the results of this training. Section

8.4 summarises this chapter.

8.1 Description of the benchmark datasets

The datasets used for benchmarking fall into two categories: synthetic and measured.

Each of the synthetic datasets is generated using some mathematical function, usu-

ally with random noise added to the output. They have two mainadvantages. Firstly

159
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the amount of noise may be easily altered, allowing the effect of noise on different

approaches to be compared. Secondly an exact solution is available, since ‘clean’ sam-

ples are easily generated. The extent to which different techniques approach a ‘correct’

solution is therefore easily assessed.

The measured datasets have been obtained from a number of ‘real’ scenarios. For

this reason they contain unknown quantities of noise and theconcept of a ‘correct’

solution is less easily defined. However, they represent more realistic problems than

the synthetic datasets. They contain data of higher dimensionality and the regression

solution is generally more complex in mathematical form than for the synthetic data.

8.1.1 Synthetic Datasets

Four synthetic benchmark datasets were employed. As with the CLASH dataset, the

target values are real-valued. The aim of ANN training is therefore to achieve accurate

function approximation in each case. The tests are taken from Cohen and Intrator’s

2002 paper[107], in which comparisons are made with a numberof other approaches.

For this reason the treatment varies between the different datasets. While this creates

some inconsistency it allows the consideration of a varietyof datasets and permits

comparison with a number of alternative methods. The approach used by Cohen and

Intrator is to use separate training and test sets, but no verification set. This makes it

necessary to use the test set both to identify the optimum architecture and as the final

performance measure. In order to be consistent with earlierwork, the same procedure

is followed in this study.

The first function is the 1-D sine wave of equation 8.1, withx randomly selected

from [0,1] and f (x) corrupted by Gaussian noise with standard deviation (s.d.) of 0.1

and a mean of 0. The training and test sets both contain 50 samples[176]. Given the

noisy data, there is a theoretical minimum value for the testMSE, equal to 0.01.

f (x) = sin(12x) (8.1)

The second function is the 2D sine wave of equation 8.2, withx1 = [0,10] and

x2 = [−5,5]. The training data is made up of 200 randomly selected items,again

corrupted with Gaussian noise of standard deviation 0.1 andmean 0. However, clean

data is used for testing purposes, arranged in a 20 by 20 grid to cover the entire input

space. The test set therefore contains 400 data items.
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f (x) = 0.8sin
( x1

4

)

sin
( x2

2

)

(8.2)

The third function is a simulated alternating current used by Friedman in the evalu-

ation of multivariate adaptive regression splines (MARS) [212]. It is given by equation

8.3, in whichZ is the impedance,R the resistance,ω the angular frequency,L the

inductance andC the capacitance of the circuit. The input ranges areR = [0,100],

ω = [40π,560π], L = [0,1] andC =
[

1× 10−6,11× 10−6
]

. 200 random samples, with

Gaussian noise of standard deviation 175 and zero mean applied to Z, are used for

training. 5000 random clean samples are used for testing.

Z(R, ω, L,C) =
√

R2 + (ωL − 1/ωC)2 (8.3)

The fourth function is the Hermite polynomial of equation 8.4, with x randomly

selected fromw = [−4,4]. 100 random samples corrupted by Gaussian noise of stan-

dard deviation 0.1 and zero mean are used for training purposes. 100 clean samples

are used for testing. This function was first used by Mackay[94].

f (x) = 1+ (1− x+ 2x2)e−x2
(8.4)

The synthetic datasets have been analysed using two tools, k-nearest neighbour

data density estimates and linear regression analysis. Bothtools are described in detail

in section 3.3.

The data density estimates for the four datasets are shown infigures 8.1-8.4. The

data densities for the sine 2D dataset display a sharp peak. This indicates a homo-

geneous distribution that is likely to favour MLP networks.The Hermite dataset, in

contrast, shows a wide distribution of data densities, indicating substantial clustering.

This dataset would be expected to perform better with RBF networks. The remaining

two datasets show a moderate variation in data densities. The interquartile ranges of

the data densities are 1.6 for the sine 1D dataset and 1.4 for the impedance dataset.

These values are just above the boundary of 1.2 used by Lawrence[183] and indicate a

slight preference for RBF networks.

Figures 8.5-8.8 present an analysis of linear regression. They plot studentised resid-

uals against estimates of the target outputs in order to givean indication of the linearity,

or non-linearity of the datasets. Figure 8.6 suggests that the sine 2D dataset may be

partially fitted by linear regression, with some deviation from linearity. The graphs for

all of the other datasets indicate that the size of the residuals depends strongly upon
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Figure 8.1: Data densities for the sine 1D dataset
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Figure 8.2: Data densities for the sine 2D dataset
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Figure 8.3: Data densities for the impedance dataset
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Figure 8.4: Data densities for the Hermite dataset
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Figure 8.5: Plot of studentised residuals vs. estimatedq0 for the sine 1D dataset

the output value, and that the input-output relationship istherefore highly non-linear.

This is confirmed by theR2 values given in table 8.1. This table summarises various

properties of the synthetic datasets used, including interquartile ranges (IQRs) of the

data densities andR2 statistics from regression analysis.

8.1.2 Measured Datasets

The measured datasets were all obtained from the Universityof California, Irvine

(UCI). This university maintains a substantial number of datasets in a ‘machine learn-

ing repository’. These datasets are useful because they present non-linear, noisy data

that are suitable for machine learning tasks. They may be downloaded from the In-

ternet and have been widely used as benchmark tests when assessing ANNs and other

machine learning techniques.

The first dataset, ‘housing’, is a compilation of house prices and factors that may

affect these prices. The task is to predict median house prices of suburbs in the Boston

area from the values of 13 independent variables, includingthe following:

• per capita crime rate

• proportion of residential land zoned for lots over 25,000f t2
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Figure 8.6: Plot of studentised residuals vs. estimatedq0 for the sine 2D dataset
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Figure 8.7: Plot of studentised residuals vs. estimatedq0 for the impedance dataset
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Figure 8.8: Plot of studentised residuals vs. estimatedq0 for the Hermite dataset

Table 8.1: Summary of the synthetic benchmark datasets

Name Sine 1D Sine 2D impedance Hermite

Source Orr/Cohen Orr/Cohen Friedman/Cohen Mackay/Cohen

Number of inputs 1 2 4 1

Training data size 50 200 200 100

Test data size 50 400 5000 100

Training noise s.d. 0.1 0.1 175 0.1

Test noise s.d. 0.1 0.0 0.0 0.0

IQR of density 1.6 0.76 1.4 3.4

R2 value 0.17 0.71 0.19 0.001
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• nitric oxide concentrations (in parts per million)

• pupil-teacher ratio

• percentage of the population of ‘lower status’

• weighted distances to five employment centres

• average number of rooms per dwelling

• proportion of homes built before 1940

It contains 506 data items, and was first used by Harrison and Rubinfeld[213] in

1978.

The second dataset, ‘servo’, was first used by Quinlan[214] in 1992. It aims to

predict the rise time of a servomechanism as a function of twogain settings and two

discrete choices of mechanical linkages. There are therefore 4 independent variables

in total, and the dataset contains 167 instances.

The third dataset, ‘cpu’, contains the following information for a number of com-

puters: vendor name, machine cycle time, minimum and maximum main memory size,

cache memory, and minimum and maximum channels. From this information the task

is to predict the published relative performance. The size of the dataset is 209, and for

the purposes of this study the vendor name was not used, so thenumber of inputs was

6. This dataset was first used by Ein-Dor and Feldmesser in 1987[215].

The final dataset, ’auto-mpg’ contains information concerning car models includ-

ing number of cylinders, year of manufacture, horsepower, weight and acceleration.

From these parameters the aim is to predict the petrol consumption, in miles per gal-

lon. Like the ‘servo’ dataset, it was first used by Quinlan[214].

Figures 8.9-8.12 show density distributions for the measured benchmark datasets.

The housing and cpu datasets exhibit considerable clustering behaviour, with a wide

range in data densities. On the other hand, the servo datasetis spread more evenly

and shows a sharp peak around a normalised density of 1. The auto-mpg dataset is

intermediate, showing some variation in data densities. The interquartile ranges of

the data densities for each dataset are given in table 8.2, along with other summary

statistics for the measured datasets.

Figures 8.13-8.16 illustrate the degree of linearity of themeasured datasets. Table

8.2 includesR2 values, which also give an indication of the degree of linearity. Of the

four datasets, only ‘servo’ has aR2 value considerably less than 1. Study of figure 8.14
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Figure 8.9: Data densities for the housing dataset
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Figure 8.10: Data densities for the servo dataset
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Figure 8.11: Data densities for the cpu dataset
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Figure 8.12: Data densities for the auto-mpg dataset
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Figure 8.13: Plot of studentised residuals vs. estimatedq0 for the housing dataset

shows that there are clusters of data which deviate considerably from linear behaviour

for this dataset. This observation is interesting since it appears to contradict the find-

ings of the data density analysis. While data density analysis focusses primarily on

distribution of the input data, regression analysis considers the relationship between

the input and output values. The servo dataset has evenly distributed inputs, but the

responses produced behave in a highly non-linear way.

Table 8.2 shows that all of the measured datasets have high dimensionality. One

can also assume that they have a fairly high noise level, since they are taken from

‘real’ situations which involve a large number of independent parameters, only some

of which are included in the data representation used.

All of the datasets were split into equal sized training and test sets. In order to

simplify interpretation, and to maintain a uniform approach between the synthetic and

measured datasets, a verification set was not used.

8.2 Method

The datasets trained were the following-

• 1D sine
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Figure 8.14: Plot of studentised residuals vs. estimatedq0 for the servo dataset
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Figure 8.15: Plot of studentised residuals vs. estimatedq0 for the cpu dataset
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Figure 8.16: Plot of studentised residuals vs. estimatedq0 for the auto-mpg dataset

Table 8.2: Summary of the measured benchmark datasets

Name housing servo cpu auto-mpg

Source UCI/Harrison UCI/Quinlan UCI/Ein-Dor UCI/Quinlan

Number of inputs 13 4 6 7

Training data size 253 83 104 196

Test data size 253 84 105 196

IQR of density 1.8 0.15 2.6 1.2

R2 0.74 0.50 0.86 0.82
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• 2D sine

• impedance

• Hermite

• housing

• servo

• cpu

• auto-mpg

GL-ANNs were created using the three-step process described in Chapter 6.

In the first step MLP networks were trained with the L-M algorithm. All networks

had bipolar sigmoid functions in the hidden layer and a linear function in the out-

put layer. Initially, networks were trained containing between 1 and 10 hidden layer

neurons, but in cases where the minimum error was achieved with 10 neurons, larger

networks were also trained. In each case 10 different splits of the data were made.

In the second step up to 10 RBF neurons were added intitially, and more were

added if the results indicated that 10 RBF neurons gave the bestresults. Different

widths of RBF were used. Widths between 0.2 and 1.0, in steps of 0.2, were tried first.

If a width of 1.0 was seen to give the best results, greater spreads were tried.

In the third step, nearly all of the hybrid networks created were optimised using the

Levenberg-Marquardt algorithm. An exception was made withthe impedance dataset.

The optimum sized hybrid networks were large for this dataset and gradient descent

performed slowly. Only networks with a hidden layer size that was a multiple of 5

were therefore optimised.

When making comparisons with MLP networks, the networks produced by step 1

were considered. Separate RBF networks were created using theFS-OLS algorithm.

Again networks with up to 10 RBF neurons were trained first and larger networks were

only built if the lowest MSEs were achieved with 10 neurons. Similarly, networks with

spreads between 0.2 and 1.0 were trained first, and larger spreads were used only if

s= 1.0 gave the lowest MSEs.

The optimum networks were selected based on the lowest test MSEs, averaged

over all 10 data-splits. Only fixed architectures were considered - datasets were not

permitted to ‘choose’ the most favourable architecture individually.
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Table 8.3: Mean square errors for the synthetic benchmark datasets

1D sine 2D sine impedance Hermite

MLP 0.0175 0.00128 0.102 0.00214

RBF 0.0119 0.00095 0.152 0.00141

GL-ANN 0.0120 0.00111 0.098 0.00130

8.3 Results

8.3.1 Test errors

The best test MSEs obtained with the synthetic benchmark datasets are summarised in

table 8.3. In the case of the ‘impedance’ dataset, the MSEs obtained have been divided

by the variance of the test data. This practice was introduced by Friedman when he

first used the dataset[216] and allows easier comparison with other methods.

The MSEs indicate that the GL-ANN algorithm is a useful tool for the impedance

and Hermite datasets. These datasets have high dimensionality and are highly non-

linear. The impedance dataset also has high noise levels. Both datasets display some

level of clustering, particularly the Hermite dataset.

The 2-D sine function gives best results with a pure RBF network, while the 1-

D sine function gives comparable results with pure RBF networks and GL-ANNs.

The good performance of RBF networks in mapping the sine functions is perhaps

unsurprising when one considers the similarity in shape between sine and Gaussian

functions, illustrated in figure 8.17. In this graph the sinefunction has been translated

to give a maximum atx = 0 and the width of the Gaussian function has been chosen

such that the outputs of the functions coincide atf (x)=0.5.

The GL-ANN algorithm seems to find it difficult to approximate functions which

are purely ‘radial’ in nature. The reason for this may be thatthe GL-ANN algorithm

starts with a MLP containing sigmoid neurons. The function present within this net-

work is likely to be an obstruction when radial functions areadded in step 2.

On the other hand, functions which are very well described byMLP networks do

not present a problem for GL-ANNs. In cases where radial functions can make little

contribution the output weights from the RBF neurons will be set to low values by

the FS-OLS algorithm, and it will be apparent that the addition of RBF neurons is not

reducing the network error, so training will cease.

The degree of non-linearity within a dataset appears to be a good guide to the
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Figure 8.17: Graph showing a Gaussian function (blue) and a shifted sine curve (red)

Table 8.4: Mean square errors for the measured benchmark datasets

housing servo cpu auto-mpg

MLP 21.6 0.590 5561 8.54

RBF 15.2 0.664 3316 7.94

GL-ANN 15.9 0.512 5153 8.38

effectiveness of the GL-ANN algorithm. The sine 2D dataset is described quite well

by a linear model (R2 = 0.71) and does not perform well with GL-ANNs, whereas

the remaining datasets have much lowerR2 values and perform relatively well with

GL-ANNs.

Table 8.4 gives test MSEs for networks trained with the measured benchmark

datasets. Two of the datasets, housing and cpu, give much better results with RBF

than with MLP networks. This could have been predicted from the high interquartile

range of the data denstites, suggesting that the data is highly clustered. Neither of these

datasets give particularly good results with the GL-ANN algorithm. This observation

may be compared with that with the sinewave datasets: for datasets that are very well

described by radial functions, the presence of sigmoid functions is an obstruction.

On the other hand, the GL-ANN algorithm gives good results for the servo dataset.

This dataset gives slightly better results with MLP than RBF networks - again this

would have been predicted from the interquartile range of data densities which is low,
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Table 8.5: Number of hidden layer neurons for the synthetic benchmark datasets

1D sine 2D sine impedance Hermite

S R T S R T S R T S R T

MLP (L-M) 12 0 12 5 0 5 5 0 5 14 0 14

FS-OLS 0 6 6 0 13 13 0 48 48 0 7 7

GL-ANN 1 6 7 1 16 17 3 3 6 1 2 3

Table 8.6: Number of hidden layer neurons for the measured benchmark datasets

housing servo cpu auto-mpg

S R T S R T S R T S R T

MLP (L-M) 2 0 2 10 0 10 2 0 2 1 0 1

FS-OLS 0 50 50 0 16 16 0 9 9 0 11 11

GL-ANN 1 39 40 3 26 29 2 3 5 1 4 5

implying a homogeneous data distribution. The results withthe hybrid architecture are

superior to those from either pure network, suggesting thatthe RBF neurons are able

to add substantial detail to the function identified by the sigmoid neurons.

The auto-mpg dataset has an intermediate range of data densities, indicating little

preference for MLP or RBF networks. Further, theR2 value does not indicate a high

degree of non-linearity, which would favour GL-ANNs. The MSEs for this dataset are

similar for the 3 types of network.

As with the synthetic datasets, the degree of linearity within the datasets is a good

indication of the relative performance of pure and hybrid architectures. The datasets

which haveR2 values above 0.6 perform better with pure networks, whereasthe only

dataset with a lowerR2 value, servo, gives a lower MSE with GL-ANNs.

8.3.2 Optimum architectures

Table 8.5 gives the number of hidden layer neurons in optimally sized MLPs, RBF

networks and GL-ANNs for the synthetic benchmark datasets,while table 8.6 gives

the corresponding information for the measured datasets. In all cases ‘S’ refers to the

number of sigmoid neurons, ‘R’ to the number of RBF neurons and ‘T’ to the total

number of hidden layer neurons.
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In most cases the optimum size of the GL-ANN networks is smaller than the corre-

sponding size for pure RBF networks. In the case of the 1D sine and Hermite datasets

it is also smaller than the optimum size for a MLP network.

With the sinewave and housing datasets the GL-ANNs are unable to improve upon

the RBF networks. However, they imitate the RBF networks by usingthe smallest

possible number of sigmoid neurons, i.e. 1.

For the more complex synthetic functions the GL-ANNs perform better than the

RBF networks and create significantly different networks. The GL-ANN uses just 3

hidden neurons to reproduce the Hermite function and 6 for the impedance function.

In the case of the servo dataset, the GL-ANN also discovers a novel hybrid function.

With the cpu dataset, the GL-ANN appears unable to imitate the high-performing

RBF architecture. Instead it adopts an architecture similar to the best performing MLP

network - with 2 sigmoid neurons - with the addition of a smallnumber of RBF neu-

rons. The unusual results with this dataset are discussed further in section 8.3.3.

These results confirm the observation made in Chapter 7 that GL-ANNs are parsi-

monious in their use of hidden neurons. They also show that they are able to discover

types of function that are not available to pure RBF or MLP networks when they are

advantageous, but will imitate pure networks when a hybrid function cannot reduce the

MSE.

8.3.3 RBF spreads

Tables 8.7 and 8.8 give the spreads of the RBF neurons used in themost successful

RBF and GL-ANN networks when trained with the synthetic and measured datasets,

respectively. In the case of the GL-ANN networks, these are the average finishing

spreads, after alteration by the third training step. Theseresults suggest two trends-

• The spreads generally increase as the dimensionality of theinput data increases.

This is to be expected, since greater spreads are required tocover a higher-

dimensional space.

• The GL-ANNs usually have comparable or narrower spreads than the RBF net-

works. This confirms the idea that the presence of the sigmoidal neurons frees

the RBF neurons to concentrate on local variation in the input-output function.1

1The phenomenon of reduced RBF spread is seen when a fixed bias is introduced into RBF networks,
since the radial functions do not have to fit the global bias, only local detail.[211]. The observation made
here concerning hybrid networks may be seen in the same way.
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Table 8.7: Synthetic datasets: optimum RBF spreads for pure RBF and hybrid net-
works

1D sine 2D sine impedance Hermite

FS-OLS 0.45 0.8 2.4 0.1

GL-ANN 0.4 0.9 1.0 0.17

Table 8.8: Measured datasets: optimum RBF spreads for pure RBF and hybrid net-
works

housing servo cpu auto-mpg

FS-OLS 1.6 0.8 3.6 1.4

GL-ANN 1.2 0.4 0.4 0.22

As we have seen, GL-ANNs performed particularly poorly withthe cpu dataset.

One noticeable feature of the results for this dataset is thevery large spread value (3.6)

for the optimum RBF networks. A possible explanation is that the RBF neurons have

a different mode of working with this dataset than is usual. The very wide spreads

suggest that the RBF neurons are acting over a much wider regionthan is common

and therefore map the global features of the function. In theGL-ANN this option is

not available to the RBF neurons, since the sigmoid neuron, or neurons, present in

the network have already adopted that role. The best result is obtained by adding a

small number of RBF neurons with narrow spread. These cause a slight reduction in

MSE compared to that obtained by MLPs, but the generalisation abilities of the hybrid

cannot approach those of the pure RBF network.

8.3.4 RBF output weights

Table 8.9 shows the average weights between RBF and output neurons in the most suc-

cessful networks, for the datasets that gave a better performance with GL-ANNs than

with pure RBF networks. It is seen that the weights are generally much smaller for

the GL-ANNs than the RBF networks. The same observation was made regarding the

Table 8.9: Output weights of RBF neurons in pure RBF and GL-ANN networks

impedance Hermite servo

FS-OLS 2700 0.55 1.60

GL-ANN 54.2 0.88 0.27
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CLASH dataset in section 7.2.3, where it was suggested that GL-ANNs automatically

incorporate a degree of regularisation. The Hermite dataset is an exception. For this

dataset, the GL-ANN contains wider RBF neurons than the pure RBF network, sug-

gesting that those neurons have not been relegated to their usual role in describing only

local variations in the function. They have greater importance in this network than in

most GL-ANNs and the weights connecting these neurons to theoutput are therefore

larger than usual.

8.4 Summary

The main aims of the studies reported in this chapter were

• to identify the strengths and weaknesses of the GL-ANN algorithm. In particular

the objective was to define criteria that could be used to identify datasets likely

to give low MSEs with a GL-ANN, compared to MLP or RBF networks.

• to find out more about the architectures created by the GL-ANNprocess.

The findings may be summarised as follows.

The results using synthetic datasets indicate that higher-dimensional, noisy datasets

perform well with the GL-ANN algorithm. However the measured datasets are all

high-dimensional and noisy, but the performance of GL-ANNsvaries substantially

between them. These datasets may be differentiated by their relative performances

with MLP and RBF networks, and by their degree of non-linearity.

Datasets that show a strong preference for RBF over MLP networks, as evidenced

by test MSEs, do not tend to perform well with the GL-ANN algorithm. These datasets

are indicated by the spread (interquartile range) of the data densities. Higher interquar-

tile ranges indicate more clustered data, which is likely tobe fitted better by RBF

networks.

However, this measure should not be relied upon too heavily.The CLASH dataset

has a high interquartile range of data densities (see section 3.3.2), but test MSEs with

MLPs are almost as low as those from RBF networks. A possible explanation for this is

that there are quite strong interactions between different clusters of data, approximated

by the exponential relationship between crest freeboard and overtopping rate (see sec-

tion 3.3.3). The CLASH dataset therefore has some features that are modelled well by

MLP networks as well as other features that are modelled wellby RBF networks.
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The degree of non-linearity within a dataset seems to be the best available indicator

of performance with GL-ANNs. If theR2 value obtained from linear regression is

below 0.6, the dataset appears to perform well with the GL-ANN algorithm.

GL-ANNs are generally smaller than the corresponding RBF networks. In some

cases they are also smaller than the optimum MLP networks. Insituations where

GL-ANNs give much lower MSEs than networks containing a single type of transfer

function in the hidden layer, it is generally the result of identifying a novel function

that is not available to ‘pure’ networks. When such a functionis not available, the

best-performing GL-ANN is usually seen to imitate a pure network as closely as it

can.

RBF spreads within GL-ANN networks are generally similar to orless than those

for pure RBF networks. The weights connecting RBF neurons to output neurons in

GL-ANNs are also generally less than the corresponding weights in pure RBF net-

works. This confirms the idea that the RBF neurons in GL-ANNs aremainly confined

to identifying local features within the input-output function.



Chapter 9

Conclusions and further work

9.1 Summary and conclusions

The findings of this research may be summarised under four headings:

• the nature of the CLASH dataset (Chapter 3)

• the results of training various neural networks to approximate the wave overtop-

ping rate through training with the CLASH dataset (Chapters 4,5 and 7)

• methods for identifying datasets for which the GL-ANN method would be ben-

eficial (Chapters 7 and 8)

• description of the architectures created by the GL-ANN algorithm and of the

manner in which the GL-ANN method operates (Chapters 7 and 8)

In addition, background material has been provided in the form of:

• a review of previous research in the areas of hydroinformatics, artificial neural

networks and the links between the two (Chapter 1)

• a description of the relevant mathematical methods used in neural network train-

ing (Chapter 2)

• a description of the novel algorithm used for training Global-Local Artificial

Neural Networks (Chapter 6)

The nature of the CLASH dataset may be summarised thus. It is a large, highly

noisy dataset with considerable redundancy in the data. There are substantial ‘white

181
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spots’ in the data used in this study, although this should beremedied in later versions

of the dataset. The dataset can be made more homogeneous using Froude scaling and

mathematical transformations of some input parameters. However, even with these

transformations, the relationship between the independent parameters and the wave

overtopping rate is highly non-linear. Nevertheless, there is evidence of some rela-

tionships that hold globally throughout the data, in particular an approximately linear

relationship betweenR0, T0 andln(q0).

The training of MLP networks with the CLASH dataset revealed arange of in-

formation. Stochastic weight updates were much more effective than batch weight

updates. Sigmoid output neurons were found to give slightlybetter results than linear

output neurons and the Levenberg-Marquardt algorithm performed better than back-

propagation. The introduction of momentum into the latter was found not to be bene-

ficial.

RBF networks trained with the FS-OLS algorithm were found to give lower errors

than MLP networks, although they require substantially more hidden layer neurons.

Further improvements in performance were seen to occur withthe introduction of ei-

ther regularisation or a gradient descent optimisation step. The former produces the

best results using networks that are larger than standard RBF networks, whereas the

latter produces the best results using smaller networks.

GL-ANNs were seen to give errors comparable to those obtained from RBF net-

works trained with regularisation, with the CLASH data. However, the former use

substantially fewer neurons than the latter. A comparison of hybrid networks trained

with a two-step and a three-step algorithm suggests that thegood performance of GL-

ANNs is partly due to their hybrid architecture and partly due to their hybrid training

algorithm.

Datasets which are likely to benefit from use of a GL-ANN have certain character-

istics. They generally have high-dimensional inputs and are corrupted by high levels

of noise. They are also likely to be highly non-linear. TheR2 statistic obtained from

linear regression appears to be a good guide to non-linearity, with values below 0.6

performing well with the GL-ANN technique. The clustering behaviour of datasets

(measured as the interquartile range of the estimated data densities) gives an indication

of their relative performances with MLP and RBF networks. Thismay then be used as

a guide to performance under GL-ANNs: networks that show a strong preference for

RBF networks are unlikely to perform well with GL-ANNs.
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GL-ANNs are generally smaller than the corresponding RBF networks. They usu-

ally have narrower RBF spreads and lower hidden-output weights. The optimum hid-

den layer size and spread for a RBF network may be used as a guide when creating

GL-ANNs since they represent an upper bound on the corresponding parameters in

GL-ANNs.

GL-ANNs usually operate by identifying coarser features ofthe input mapping

before finer details. This process leads to an automatic regularising effect, as shown by

the size of network weights.

Overall, it appears that datasets that perform well with GL-ANNs have some inter-

parameter relationships that operate on a global level, andare therefore benefitted by

the use of sigmoid neurons and gradient descent training, and others that operate on a

local level, and are benefitted by radial basis functions anda deterministic selection of

centres.

GL-ANNs are not appropriate for all datasets, but they appear to be a useful tool

for datasets with highly complex relationships. A suggested course of action when

trying to create an ANN for a previously unseen dataset is thefollowing-

1. Assess the clustering behaviour of the data, as describedin section 3.3.2. Highly

clustered data (roughly that with an interquartile range greater than 1.2) is likely

to be favoured by RBF networks.

2. Assess the linearity of the data, as described in section 3.3.4. Strongly non-

linear data (R2 < 0.6) is likely to perform well with GL-ANNs, although highly

localised data, as indicated by the previous step, may create problems for the

GL-ANN algorithm.

3. Decide upon candidate architectures.

4. Train the candidate networks. If RBF networks are trained first, their optimum

network parameters may be a useful guide to the training of GL-ANNs. When

training GL-ANNs, MLP networks must be created as an intermediate step, as

must hybrid networks (two-step GL-ANNs). If the performance is satisfactory

at one of these intermediate stages, training may be stoppedearly.

9.2 Original contributions

The original contributions made by this research may be summarised thus:
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• A detailed study has been carried out into the efficacy of different architectures

and training algorithms in fitting the underlying function within the CLASH

dataset. To the best of my knowledge, RBF networks have not previously been

trained with this dataset. I believe that comparisons between linear and sigmoid

output neurons and between the back-propagation and Levenberg-Marquardt al-

gorithms have also not been performed previously with this dataset. I believe that

the comparisons between different RBF algorithms, including forward selection

with regularisation and forward selection with gradient descent optimisation, are

further new areas of study with respect to the CLASH dataset.

• An algorithm that combines gradient descent training with forward selection of

centres has been developed. This algorithm results in the creation of hybrid

networks containing pseudo-linear and radial basis function neurons in a single

hidden layer. I have called these networks ‘global local artificial neural net-

works’ (GL-ANNs). To the best of my knowledge this algorithmis previously

unreported.

• Criteria for predicting the efficacy of GL-ANN training have been developed.

These use a variety of information, including performance with pure networks,

interquartile ranges of data densities andR2 values from linear regression.

• Typical properties of GL-ANNs have been assessed and described in terms of

network architecture, radial basis function spread valuesand hidden-output we-

ight sizes.

9.3 Further work

As pointed out in Appendix A, many curve fitting approaches suffer from the drawback

that they cannot predict zero overtopping discharges for any finite crest freeboard.

Since logarithmic values ofq0 are used to train the neural networks in this study, this

research has the same difficulty. One solution that is likely to be investigated in the

future is to introduce a filtering network. This would act on the input data and make a

decision whether zero overtopping would be likely to occur with the given inputs. If

zero overtopping was identified the inputs would not then be fed into the main neural

network.

Future work could involve the use of a greater range of overtopping data. The less

reliable data in the CLASH database has been excluded in this study. Other workers
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have included all available data, but weighted the data, so that data with low RF and

CF values are presented to the networks more then once [164]. Asimilar approach

could be investigated.

The final version of the CLASH database has recently become available. It is

intended that future research will incorporate the data from this database. Two ap-

proaches are possible. The first is to use the data that is newly available in the updated

database as a ‘blind’ input to the networks trained in this study. Since the new database

contains some data that fills in white spots in the data record, this would give evidence

concerning the abilities of the networks to interpolate into sparsely populated areas of

the input space. A second approach would be to train a new set of networks using

the updated data. The new data is ‘cleaner’ than the data usedin this study, since the

results of some unreliable tests have been replaced with more reliable data. One would

therefore expect the performance of all networks to be improved.

A related development would be the use of GL-ANNs with further data from other

subject areas. Since Chapter 8 has shown that the GL-ANN method may be usefully

applied to datasets other than the CLASH dataset, one would expect this to be a fruitful

area of research. Data that is highly non-linear and noisy, such as weather conditions

or stock market fluctuations, should be the target for futureinvestigations.

Improvements to the GL-ANN algorithm may be available. The gradient descent

optimisation step is often slow, as the networks created arelarge. The possibility of

replacing Levenberg-Marquardt training with back-propagation (section 2.2.2) or con-

jugate gradient training (Appendix B) should be investigated.

A further problem is encountered in the identification of theoptimum size of net-

works. After the second stage of training, very large networks give the lowest errors.

However, after the third step much smaller networks often perform better. For this rea-

son, the training of large networks in step two often proves to be wasteful. A method

that can approximate the optimum size of GL-ANN networks before conducting gra-

dient descent optimisation would therefore be very useful.

An important area for further research is the extraction of symbolic information

from the networks created, possibly through the construction of regression trees. This

is a popular area of research generally amongst the ANN community. However, GL-

ANNs may have a specific role to play, since they are parsimonious in their use of

neurons, For this reason, any symbolic information extracted from them is likely to be

easier to interpret than information extracted from RBF networks.

It would be valuable if confidence levels could be attributedto the predictions made
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by neural networks. A frequentist approach has been used by Pozuetaet al [164].

They trained 500 networks with identical architectures andaveraged the outputs in

order to predict wave overtopping rates. The range of outputs from the 500 networks

was then used to create confidence levels for each prediction, resulting in error bars

to indicate, for example, 95% confidence levels. An alternative would be to take a

Bayesian approach (see section 1.5.6). This would involve the explicit modelling of

data distributions and would allow the comparison of different architectures, choices

of inputs and training methods in a unified way.

The research described in this thesis has concentrated on the development of a

novel algorithm for the training of individual networks. The search for the optimum

architecture has generally been performed in a fairly crudemanner. It might be ad-

vantageous to combine the GL-ANN method with a global searchprocedure such as

a genetic algorithm or Bayesian analysis. The global procedure could then perform a

search across architectures while the GL-ANN algorithm would optimise the individ-

ual networks.
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Appendix A

Empirical Curve-Fitting

A.1 Besley

A commonly used curve used for estimating overtopping volumes is due to Besley

[26]. It was given in section 1.3 and is repeated as equation (A.1) for convenience.

q0 = AT0exp

(

−BR0

T0

)

(A.1)

whereq0=q/(gHm0,toe)0.5 is the dimensionless overtopping discharge,R0=Rc/Hm0,toe

is the dimensionless freeboard,T0=Tm−1,0toe
(

g/Hm0,toe
)0.5 is the dimensionless mean

wave period,q is the mean overtopping discharge rate inm3/s/m, Rc is the crest free-

board,Hm0,toe is the significant wave height at the toe of the wall,Tm−1,0toe is the mean

wave period at the toe of the wall andg is the acceleration due to gravity.

This equation may be applied to smooth impermeable walls with slopes between

1:1 and 1:5 with normal wave approach. Besley follows Allsopet al. [217] in using

different equations for vertical walls. First he defines a parameter h∗, designed to

determine whether waves are mainly impacting or reflecting.

h∗ = 2π

(

h2
0

T2
0

)

(A.2)

whereh0 is the dimensionless water depth at the toe of the wall. Ifh∗ is greater

than 0.3, reflecting waves predominate and the dimensionless discharge is given by

equation A.3

q0 = 0.05e−2.78R0 (A.3)
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If h∗ is less than or equal to 0.3, impacting waves predominate andthe dimension-

less discharge is described by equation A.4.

q0

h2
∗
= 0.000137

(

R0

h∗

)−3.24

(A.4)

Modifications are introduced for angled wave attack and for composite vertical

walls. Again the exponential form of the equations is retained.

A.2 Van der Meer and Janssen

Van der Meer and Janssen [218] distinguish the behaviour of 2different types of wave

breaking on sloping structures. They define a ‘breaker parameter’ ξ by

ξ =
tan(α)
√

s
(A.5)

whereα is the structure slope ands is the wave steepness, calculated using

s=
2πHm0,toe

gT2
m−1,0toe

(A.6)

For values ofξ less than 2 plunging waves predominate and overtopping volumes

are determined by equation A.7, in whichQb andRb are dimensionless quantities re-

lated toq0 andR0 by equations A.8 and A.9 and theγ values are empirical reduction

factors for the berm width, water depth at the toe, friction and angle of wave attack.

Qb = 0.06e−4.7Rb (A.7)

Qb = q0

√

s
tan(α)

(A.8)

Rb = R0

√
s

γbγhγ fγβtan(α)
(A.9)

For values ofξ greater than 2 surging waves predominate and the relationship of

equation A.10 holds.

Qn = 0.2e−2.3Rn (A.10)

In this equationQn is identical toq0 andRn is defined by equation A.11.
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Rn =
R0

γbγhγ fγβ
(A.11)

A.3 Hedges and Reis

As the examples above show, it is possible to make different choices of dimensionless

quantities. These quantities may be indicated genericallyby an asterisk subscript,

e.g. R∗, Q∗. Further, some researchers have used a power relationship rather than an

exponential relationship betweenR∗ andQ∗, resulting in relationships in the form of

equation A.12 [6, 219, 220].

Q∗ = AR−B
∗ (A.12)

However, all of the approaches described thus far have 2 drawbacks-

• The parametersA andB are determined entirely empirically. No ‘meaning’ may

be attached to these parameters, and there is no theoreticaljustification for their

choice, or for the mathematical form taken by the predictiveequations.

• Known boundary conditions are not met. Specifically, infinite overtopping rates

are predicted by equation A.12 asR∗ approaches 0, while zero overtopping levels

are not predicted for any finite levels ofR∗ by equations A.1, A.7, A.10 or A.12.

Hedges and Reis attempted to solve these problems by forming amodel based upon

a two-step process [6]. In the first step, the water surface elevationη is calculated. If

this exceeds the crest freeboardRc, the instantaneous overtopping rateq is then calcu-

lated using the weir formula of equation A.13, in whichCd is a discharge coefficient.

q =
2
3

Cd

√

2g (η − Rc)
3/2 (A.13)

Hedges and Reis approximated the wave shape by a saw-tooth andestimated a

mean overtopping rate. This may be expressed in the form of equation A.14, in which

Q∗ is the dimensionless overtopping rate ,q/
√

gR3
max. R∗ is the dimensionless crest

freeboard defined by equation A.15 andRmax is the maximum run-up induced by the

waves. The latter is defined by equation A.16, in whichC is a coefficient that is de-

pendent upon the wave conditions.C may adopt different values, allowing for random

wave conditions.
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Q∗ =















A (1− R∗)
B if R∗ < 1

0 if R∗ ≥ 1
(A.14)

R∗ =
Rc

Rmax
(A.15)

Rmax= CHm0,toe (A.16)

The coefficientB may also be related to the shape of the waves. In the case of saw-

tooth waves it adopts the value 2.5, but different values may be applicable to alternative

wave conditions. The value ofA is the expected dimensionless overtopping rate given

a crest freeboard of zero.

The Hedges and Reis equation (equation A.14) has a number of advantages. The

coefficientsA, B andC have some theoretical justification and may be understood ina

physical sense. Overtopping volumes are predicted to be zero if the maximum run-up

does not exceed the crest freeboard. Finally,Q∗ does not tend towards∞ whenR∗ is

very low, but is constrained to be less than or equal toA.

The results obtained using this equation are similar to those obtained with the

Besley equation (equation A.1), except for low overtopping rates, where the Hedges

and Reis equation gives lower predictions, which are generally closer to the measured

overtopping rates. The approach of Hedges and Reis may be considered an improve-

ment on earlier approaches. However, it still suffers from the drawbacks shared by all

curve-fitting approaches, i.e. it is only applicable to a limited range of structures and

is still constrained by the form of the predictive equation used.



Appendix B

The Conjugate Gradient Method

The conjugate gradient method [221, 85, 86] aims to provide more efficient gradient

descent than the back-propagation algorithm, by ensuring that each weight change is

made in a direction that is conjugate to all previous steps, with respect to the approxi-

mating function.

In order for the current search directions to be conjugate to the previous search

direction r the condition of equation B.1 must be met, in whichH is the Hessian

matrix for the weights with respect to the error.

rTHs = 0 (B.1)

However, it possible to calculate conjugate search directions without explicitly cal-

culating the Hessian. If the error gradient at the current point is gi, a search direction

that is conjugate to the previous search direction,si, is that described by equations

B.2-B.3. Thus each search direction is a combination of the current steepest gradient

and the previous search directions. For this reason, the newsearch direction is orthog-

onal toall previous gradients and search directions, and gradient descent will not be

repeated along previous search directions.

γ =
(gi − gi−1) · gi

gi−1 · gi−1
(B.2)

si = gi + γsi−1 (B.3)

The distance to travel along the search direction may be calculated using line min-

imisation. One way to do this would be to use Newton’s method to find the minimum

error along the search direction, as in equations B.4-B.5.
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α = − g · s
sTHs

(B.4)

∆w = αs (B.5)

However, a method that is computationally less expensive isto approximate the

error surface around the minimum by a parabola and then use Brent’s method [222].

This successively narrows the bounds of the line search until the error is sufficiently

close to a minimum value.

The conjugate gradient method is not a full second-order method, like the Levenberg-

Marquardt method, but it uses second-order information to guide both the search di-

rection and the distance to move along the search direction.The number of epochs

required to achieve convergence is therefore substantially less than that required by

back-propagation, but the memory and computational power requirements are much

less than those for the Levenberg-Marquardt algorithm.



Appendix C

Comparisons with alternative methods

In the main body of this work, the results obtained from GL-ANNs have been com-

pared with those from traditional neural networks: MLP and RBFnetworks. In this

appendix, comparisons are made with other methods. The synthetic datasets used in

Chapter 8 were used by Cohen and Intrator to test their perceptron radial basis nets

(PRBFNs) [107]. The measured datasets in the same chapter wereused by Quinlan to

test the effectiveness of combined model-based and instance-based approaches [214].

The rest of this appendix briefly describes the approaches used in the earlier papers

and compares their results with those obtained from the GL-ANN method.

C.1 Synthetic datasets

Cohen and Intrator’s method for creating hybrid networks hasbeen described in section

1.5.8. They cluster the available data and then choose either a sigmoid or RBF neuron

to describe the data within each cluster. The splits betweentraining and test data that

they used were duplicated in the work reported in Chapter 8, socomparison between

GL-ANNs and PRBFN is straightforward. Cohen and Intrator also quote results using

Orr’s regression tree-RBF method. Table C.1 gives the errors for PRBFN and RT-RBF

reported by Cohen and Intrator. GL-ANN results are also repeated for convenience.

The GL-ANNs are seen to give lower errors than the other two methods with all

but the 1-D sinewave. However, due to the noise added to the test data this dataset has

a theoretical minimum error of 0.01. The results quoted by Cohen and Intrator cannot

therefore be taken at face value.
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Table C.1: MSEs for the synthetic datasets obtained using PRBFN, RT-RBF and GL-
ANN algorithms

1D sine 2D sine impedance Hermite

PRBFN 0.0066 0.00128 0.150 0.00150

RT-RBF 0.0088 0.00228 0.112 0.00152

GL-ANN 0.0120 0.00111 0.098 0.00130

Minimum error 0.01 - - -

Table C.2: Relative error, as a percentage, for the measured benchmark datasets,
trained using Quinlan’s methods and GL-ANNs

housing servo cpu auto-mpg

Regression tree 18.6 28.7 17.2 14.7

Tree+instances 16.5 16.5 12.0 16.0

Neural network 13.6 11.4 11.0 12.5

Network+instances 12.9 10.6 11.1 13.4

GL-ANN 12.1 6.3 9.3 12.1

C.2 Measured datasets

Quinlan was interested in combining prediction based on models, such as regression

trees and neural networks, with methods based on instances,or prototypes. He ob-

served that the incorporation of prototype information often improves the performance

of model-based approaches. This phenemenon is analogous tothe improved perfor-

mance of GL-ANNs over MLPs, since the RBF model is similar to a prototype app-

roach (see section 6.2). The neural networks used were MLPs.

Quinlan used a tenfold cross-validation method and reported his results in terms

of the ‘relative error’. This was defined as the mean squared error divided by the

variance of the target values, and was expressed as a percentage. In order to allow

a fair comparison between methods, a new set of GL-ANNs have been developed,

using the same procedure. The results are reported in table C.2, with the results from

Quinlan’s paper [214].

The GL-ANNs are seen to outperform the regression trees substantially on all

datasets. When compared to the MLPs reported in Quinlan’s paper, the results us-

ing GL-ANNs are seen to be a slight improvement in most cases,with a substantial

performance increase for the servo dataset. These results are similar to those obtained
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using the alternative MCCV method, reported in Chapter 8.



Appendix D

Published Papers

There follow three papers that have been published or are currently in press:

D. Wedge, D. Ingram, D. McLean, C. Mingham and Z. Bandar. On Neural Network

Architectures and Wave Overtopping. InMaritime Engineering, 158 (MA3), pp.123-

133. Thomas Telford, London. September 2005.

D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar. A Global-Local

Artificial Neural Network with Application to Wave Overtopping Prediction. In W.

Duch et al. (editors)Proceedings of the International Conference on Artificial Neural

Networks, pp.109-114. Springer-Verlag, Berlin Heidelberg. Warsaw,Poland, Septem-

ber 11-15, 2005.

D. Wedge, D. Ingram, D. McLean, C. Mingham, and Z. Bandar. On Global-

Local Artificial Neural Network for Function Approximation. In IEEE Transactions

on Neural Networks. 2006 (in press)
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