Wave Overtopping Prediction Using
Global-Local Artificial Neural Networks

A Thesis Submitted in Partial Fulfilment of the
Requirements for the Degree of Doctor of Philosophy.

March 2006

By
David Christopher Wedge
Department of Computing and Mathematics
Manchester Metropolitan University



Contents

List of Tables

List of Figures
Abstract
Declaration
Acknowledgements
Notation
Abbreviations used

1 Introduction

vii

Xii

Xiii

Xiv

XV

XViii

1.1 HistoricalOverview . . . . . . . . . . . . e
1.2 Hazard Levels and Wave OvertoppingRates . . . . . ... ... .. 3
1.3 Empirical Curve-fitting . . . . . ... .. ... ... ... . ...,
1.4 NumericalModelling . . . . . . ... .. .
1.5 Artificial Neural Networks . . . . . . ... .. ... ... L.
151 Introduction. . . . . .. . .. ... ...

1.5.2 Applications of ANNs

153 EarlyResearchinANNs . . . ... ... .. .........
1.5.4 Multi-layer Perceptrons . . . . . ... ... ... ... ...
15,5 Alternative trainingmethods . . . . . . ... ... ......
1.5.6 Globaltrainingmethods . .. .. ... ... .........
1.5.7 Radial Basis Functionnetworks . . . . ... ... ... ...
1.5.8 Hybrid NeuralNetworks . . . . .. ... ... ........
1.6 Artificial Neural Networks in Hydroinformatics . . . . . .... . .. 34



1.6.1 Freshwater Applicationsof ANNs . . . . ... ... ... .. 34
1.6.2 Coastal Applicationsof ANNs . . . . ... ... ....... 38
1.6.3 Designlssues . . . . .. ... ... ... 40
1.7 CLASH and the development of a hybrid neural network . . ..... 42
1.8 OVerview . . . . . . . e 44
Mathematical Techniques for Neural Networks 46
2.1 TransferFunctions . . .. .. ... .. ... .. .. ... .. ... 46
2.1.1 Pseudo-linear transfer functions . . . . ... ... ... .. 47
2.1.2 Radial basis transfer functions . . . . .. ... ... ..... 48
2.2 GradientDescent . . . .. .. .. . ... .. ... 50
2.2.1 Adaptivelinearelements . . . .. ... ... ... .. ..., 50
2.2.2 Multi-layerperceptrons .. . . . . .. ... ... 53
2.2.3 Modifications to back-propagation . . . . .. ... ... ... 4 5
2.3 Levenberg-Marquardt method . . . ... ... ... ......... 56
24 RBFcentreselection . . ... .. ... ... ... ... .. ..., 57
2.4.1 Fullyinterpolated networks . . . . ... ... ... ..... 57
2.4.2 Leastsquaressolution . ... ... .. ... ..., 58
243 Forward Selection . . ... ... ... ... .. ... 59
2.4.4 Orthogonal LeastSquares . . . .. .. .. .. ........ 59
2.5 Regularisation . . . . . . ... 60
2.6 Summary ... .. e e e e e e 61
The CLASH Dataset 62
3.1 Datacollection . ... ... ... .. .. .. 62
3.2 Data selection and pre-processing . . . . . . . .. ... ... 65
3.3 Thenature ofthe CLASHdataset. . . . . ... ... ... ...... 75
3.3.1 Marginal distributions . . . . ... ... ... ... ... 75
3.3.2 Dataclustering . . ... .. ... .. .. .. ... ... 76
3.3.3 Exponential relationships . . . . .. .. ... .. ....... 77
3.3.4 Linearity ofthe CLASHdataset . . .. .. .......... 79
3.4 Summary . o.o.o.o. . e e 80
CLASH prediction using MLP Networks 82
4.1 Introduction . . . . . . . . ... 82
4.2 Gradient Descent Pilot Studies . . . . . .. ... ... ... ... 82



4.2.1 Pilotstudy 1: Learning rates and weight update mode . . 83

4.2.2 Pilot study 2: Stopping criterion . . . . . .. ... ... ... 78
4.2.3 Pilot study 3: weight initialisationrange . . . . . .. ... 96
4.2.4 Pilot study 4: Output neuron transfer function . . . ...... 97
4.2.,5 Pilot Study 5: Momentum cigient . . . . ... ... ... 98
4.2.6 Pilot Study 6: Levenberg-Marquardt method . . . . .. .. Q9

4.3 Model selectionmethod . . . . .. ... ... ... ..........

44 Method . ... .. .. . . . . 105

45 Resultsand Discussion . . . . . . ..o
45.1 Back-propagation. . .. .. .. .. ... ... .. .. ... 106
4.5.2 Levenberg-Marquardttraining . . . .. ... ... ... ... 211

453 Resultssummary . . ... ... ... .. .. o0
4.5.4 Speed and memory comparisons . . . . .. .. ... ...

CLASH prediction using RBF networks 119
51 WidthPilotStudy . . . ... ... ... .. . ... ... ... 119
52 Method . ... ... . . ... ... 122
5.3 ResultsandDiscussion . . . . ... ... .. ... ... .. ...
5.3.1 Results without regularisation . . . ... ... ........ 412
5.3.2 Results with regularisation . . . . .. .. .. ... ......
5.3.3 Results with gradient descent optimisation . . . ... ... 131
5.3.4 Speed and memory comparisons . . . . ... ... ... ...
5.4 Summary and a comparison with MLP networks . . . . . . .. .. 132
GL-ANN theory and algorithm 136
6.1 Background . . . ... ... ... 136
6.1.1 Mathematics . ... ... ... . . ... ... 136
6.1.2 Cognitive psychology . . . . . ... ... .. ... ..... 137

6.1.3 ComputerScience . ... ... .. ... ... o
6.2 Theideasbehind GL-ANNs . . . . . ... .. ... ... ......

6.3 GL-ANN Algorithm . . . . . . . .. ... 140
6.4 SummMary . . . . ... e 142
CLASH prediction using GL-ANN algorithm 144

7.1 Method . . ... .. . . .. 144
7.2 Results. . . .. ... 146



7.2.1 Two-stepalgorithm . . . . . . ... ... ... ... ... .. 146

7.2.2 Three-stepalgorithm . . . ... .. ... .. ......... 149
7.2.3 Hybrid networks trained with regularisation . . . . . . .. 150
7.2.4 Speed and memory comparisons . . . . . . . .. ... ..
7.3 SUMMaAry . ... .o e e 153
8 GL-ANN Evaluation using Benchmark Datasets 159
8.1 Description of the benchmark datasets . . . . ... .. ... ...159
8.1.1 SyntheticDatasets . .. ... .. ... ... ......... 160
8.1.2 MeasuredDatasets . . . ... .. ... ... ... ... ... 164
8.2 Method . ... ... ... . . .. 170
83 Results. . . .. .. 174
8.3.1 Testerrors. . . . . . . . . ... 174
8.3.2 Optimum architectures . . . . .. ... ... ... ...... 176
833 RBFspreads . .. .. .. .. ... ... .. .. .. ..., 177
8.3.4 RBFoutputweights . ... ... ............... 178
8.4 Summary . .. ... 179
9 Conclusions and further work 181
9.1 Summaryandconclusions . ... .. .. .. ... .......... 181
9.2 Original contributions . . . . . . .. ... ... ... .. ... . 83
9.3 Furtherwork . . . .. .. . . .. 184
Bibliography 187
Appendices 208
A Empirical Curve-Fitting 208
Al Besley . . . . . e 208
A.2 VanderMeerandJanssen. . . . . ... ... ... ... ...
A.3 HedgesandReis . ... .. ... .. .. ... .. ... .. ..., 210
B The Conjugate Gradient Method 212
C Comparisons with alternative methods 214
C.1 Syntheticdatasets . . . . . ... .. .. ... . .. .. ... 214

C.2 Measureddatasets . . . . . . . . . . .o



D Published Papers 217

Vi



List

3.1
3.2
3.3

4.1
4.2

4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
414
4.15

5.1

5.2
5.3

of Tables

Variables inthe CLASH database . . . . . . .. ... ... ... ... 64
Correlation cocients for the CLASH data parameters . . . . . . . . 72
Parameters used in ANN training . . . . . . ... ... ... ..... 3 7

Percentage of training errors that have convergedm&000 epochs . 89
Number of epochs required for convergence in trainingreaveraged

over10runs . . . . .. 89
Percentage of test errors that have converged withi@ 8p6chs . . . 90
Number of epochs required for convergence in test eaveraged over

10runNsS . . . L e e 90
Training parameters for slow, medium and fast convergen . . . . 91
Test MSEs for dierent hidden layer sizes and training-test splits . . . 104
Average errors for MLP with linear output neuron and Biihtreg . . 107

Optimum errors for MLP with linear output neuron and Bimireg . 109
Average errors for MLP with sigmoid output neuron and Bithing . 110
Optimum errors for MLP with sigmoid output neuron and Bining 111
Average errors for MLP with linear output neuron and lis&lning . 112
Optimum errors for MLP with linear output neuron and Ltfdining . 113
Average errors for MLP with sigmoid output neuron anilliraining 114
Optimum errors for MLP with sigmoid output neuron anltraining 116
Summary statistics for MLP training . . . . . .. .. ... .... 117

Verification errors for networks containing RBFs of vasowidths,

averaged for networks of the samesize . . . . . ... ... ... .. 2 12
Best errors achievable with RBF networks . . . . . ... ... ... 26 1
Optimum errors for RBF networks with spredd4 trained with regu-
larisation . . . . .. 129

Vii



5.4

5.5

7.1
7.2

7.3

7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

C1l

C.2

Optimum errors for RBF networks with spredd6 trained with regu-

larisation . . . . .. 130
Summary of the results of training RBF networks with the CHAS
dataset . . . . . . . . ... 135
Best errors achievable with two-step GL-ANN . . . . . . .. ... 149
Optimum errors for hybrid networks with spredd4 containing 6 sig-

moid neurons trained with regularisation . . . . . . ... ... ... 151
Performance indicators for MLP, RBF and GL-ANN networkssra
agedacross30networks . . . ... ... oL L 154
Performance indicators for the best performing MLP, RB& &ih.-
ANNnetworks . . . . . . . . . 155
Summary of the synthetic benchmark datasets . . . . . ... .. 166
Summary of the measured benchmark datasets . . . . . .. ..... 172
Mean square errors for the synthetic benchmark datasets . . . . 174
Mean square errors for the measured benchmark datasets. . . . 175

Number of hidden layer neurons for the synthetic benckmlatasets 176
Number of hidden layer neurons for the measured benéhdadasets 176
Synthetic datasets: optimum RBF spreads for pure RBF anddhybr

networks . . . . . . .. 178
Measured datasets: optimum RBF spreads for pure RBF andihybri
networks . . . . . . .. 178

Output weights of RBF neurons in pure RBF and GL-ANN network7.8

MSEs for the synthetic datasets obtained using PRBFN, RT-RBF a

GL-ANN algorithms . . . . . . . . ... ... ... 215
Relative error, as a percentage, for the measured benklla@sets,
trained using Quinlan’s methods and GL-ANNs . . . . . .. .. .. 152

viii



List of Figures

1.1 Safeovertoppinglimits . . . .. .. .. ... ... .. .. .. ...
1.2 Diagram of an artificialneuron . . . . ... ... ... .......

1.3 Diagram of an artificial neuronnetwork . . . . ... ... .....

1.4 Diagram showing the neural network training process .. .. .. . . .
1.5 Hopfield network architecture . . . .. ... ... .. ... .. ..
1.6 Graph of a bipolar sigmoid function . . . ... ... ........
1.7 Overfitting caused by oversized networks

1.8 Overfitting caused by overtraining . . . . .. ... ... ... ...

1.9 Cascade correlation architecture . . . . . .. ... ... ... ..
1.10 Graph of a Gaussian radial basis function e
1.11 The three-step training process used by GL-ANNs . . . . . . ..
1.12 The interaction between dataand models . . . . . .. .. .. ..

2.1 Linear and pseudo-linear transfer functions

2.2 Radial basis transfer functions . . . . . . .. ... ... ... ...

3.1 Cross-sectional view showing sea-wall structural patams . . . . .
3.2 Saturation in a sigmoid transfer function . . . . .. ... . ... .
3.3 Raw and transformed Normal probability plotsTer. . . . . . . ..
3.4 Raw and transformed Normal probability plotstegy . . . . . . . ..
3.5 Raw and transformed Normal probability plotsBy . . . . . . . . .
3.6 Raw and transformed Normal probability plotségr . . . . . . . ..
3.7 Schematisation of a structure with a non-horizontaioer. . . . . .
3.8 k-nearest neighbour density estimates for the CLASHsdata. . . .
3.9 Besley predictions compared to measured overtoppiegrat . . . .
3.10 Plot of studentised residuals vs. estimajedfter linear regression on
the CLASHdataset . . . . .. .. .. ... ... .. ... .....

78
79



4.1 Average test MSEs for networks trained with stochasgigim updates

and 4 diferent learningrates . . . . . ... ... ... ... .. ... 84
4.2 Average training MSEs for networks trained with stoticageight

updates and 4 fferent learningrates . . . . . .. ... .. ... .. 85
4.3 Progression in test errors with batch weight updates . . . . . . . 86
4.4 Test errors achieved with batch weight updatesgad.0002 . . . . 87
4.5 Number of epochs required for convergence, assumimgopt learn-

ing rate and stochastic weightupdates . . . . .. .. .. ... ... 1 9
4.6 Training progression within a slow trainingregime . . . ... .. 93
4.7 Training progression within a medium training regime .. ... . . . 94
4.8 Training progression within a fast trainingregime . . ... . ... 95
4.9 Average test MSEs forflierent weight initialisation ranges . . . . . . 96
4.10 Number of epochs required to achieve convergencefferelint weight

initialisationranges . . . . . .. ..o 97
4.11 Average test MSEs forftierent output neuron transfer functions . . . 98
4.12 Number of epochs required to achieve convergence wdhadthout

MOMENTUM . . . . . . . . o e e 99
4.13 Average test MSEs with and without momentum . . . . . . . ... 100
4.14 Average training and test MSEs with Levenberg-Mardualgorithm 101
4.15 Progression in test errors during Levenberg-Marquaaghing of a

MLP network containing8 neurons . . . . .. ... ... ...... 101
4.16 Training, verification and test errors after BP training . . . . . . . 108
4.17 Training, verification and test errors after L-M traigi . . . . . . . . 115

5.1 Variation in verification error with hidden layer size ®BF networks

with various spreadvalues . . . . . . .. ... ... ... ... ... 121
5.2 Dependence of verification errors on spread parameter. .. ... . . 123
5.3 Dependence of hidden layer size on spread parameter ........ . 123
5.4 Training, verification and test errors for RBF networkdwétdifferent

spreads . .. .. 125
5.5 \Verification and test errors of RBF networks as a functioregtilari-

sationparameter . . . . . . .. L 127
5.6 Error progression for RBF network with spread 0.4 and10* . . . 128
5.7 Error progression for RBF network with spread 0.6 ard10™* . . . 128

5.8 \erification errors for RBF networks trained with an op8ation step 131



6.1
6.2

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

Diagrammatic representation of the GL-ANN traininggass . . . . 140
Flow chart summarising the GL-ANN algorithm . . . . . . .. .. 143

Progression in test error during the optimisation ofrtd/betworks

containing 5 sigmoid neurons and 85 RBF neurons . . . . .. .. .. 145
Errors for hybrid networks with spread 0.4 averagedsscfixed ar-
chitectures . . . . . . . . . .. 147
Errors for hybrid networks with spread 0.4 averaged sscx@riable
architectures . . . . . . ... 147
Errors for hybrid networks with spread 0.6 averaged sscfixed ar-
chitectures . . . . . . . . . .. 148
Errors for hybrid networks with spread 0.6 averaged ssck@riable
architectures . . . . . . . . ... 148
Errors for three-step GL-ANNs with near optimum arcttilees . . . 149
Verification errors for hybrid networks trained with végrisation . . 152

o, predicted do,target VS. targety for the best-performing MLP network . 156
Qo,predicted Jo,target VS. targety for the best-performing RBF network . 157
Qo,predicted Jo.target VS. target for the best-performing GL-ANN network158

Data densities for the sine 1D dataset . . . . . . .. .. ... ... 162
Data densities forthe sine2D dataset . . . . . .. ... ... ... 162
Data densities for the impedance dataset . . . . . .. .. .. .. 163
Data densities for the Hermite dataset . . . . .. ... ... ...163

Plot of studentised residuals vs. estimaijgtbr the sine 1D dataset . 164
Plot of studentised residuals vs. estimajgtbr the sine 2D dataset . 165
Plot of studentised residuals vs. estimajgtbr the impedance dataset 165
Plot of studentised residuals vs. estimajgtbr the Hermite dataset . 166

Data densities for the housing dataset . . . . . ... .. .. ... 168
Data densities for the servodataset . . . . .. .. .. ... ... 168
Data densities forthecpudataset . . . . . . ... ... ... ... 169
Data densities for the auto-mpg dataset . . . . . . ... .. ... 169
Plot of studentised residuals vs. estimajefibr the housing dataset . 170
Plot of studentised residuals vs. estimajefbr the servo dataset . . 171
Plot of studentised residuals vs. estimajefbr the cpu dataset . . . 171

Plot of studentised residuals vs. estimajefbr the auto-mpg dataset 172
Graph showing a Gaussian function (blue) and a shiftedcsirve (red) 175

Xi



Abstract

The construction of sea walls requires accurate predtairhazard levels. These
are commonly expressed in terms of wave overtopping ratdarge amount of data
related to wave overtopping has recently become availdbse of this data has al-
lowed the development of artificial neural networks, whietvdnthe aim of accurately
predicting wave overtopping rates. The available datarcaveide range of structural
configurations and sea conditions. The neural networkdentdherefore constitute a
unified, generic approach to the problem of wave overtoppnegiction.

Neural network models are developed using two standarcappes: multi-layer
perceptron (MLP) networks and radial basis function (RBFwogts. A novel hy-
brid approach is then developed. The hybrid networks coenttia properties of MLP
and RBF networks. This is achieved firstly through a hybrid ieckure, which con-
tains artificial neurons of the types used in both MLP and RBWworts. Secondly,
the hybrid networks are trained using a hybrid algorithmalkhtombines the gradi-
ent descent method usually associated with MLP networkis avimore determinis-
tic forward-selection-of-centres method commonly use®RBF networks. The hy-
brid networks are shown to have better generalisation ptiegevith the overtopping
dataset than have basic MLP or RBF networks. They have beendngiobal-local
artificial neural networks’ (GL-ANNS) to reflect their altylito model both global and
local variation in an input-output mapping.

The properties of GL-ANNs are explored further through tse aof a number of
benchmark datasets. It is shown that GL-ANNSs often contivef neurons than the
corresponding RBF networks and have less need of regulansatien setting inter-
neuronal weights. Some criteria for determining whether @L-ANN approach is
likely to be beneficial for a particular dataset are also bgped. Such datasets are
seen to be those that have inter-parameter relationstapsplerate on both a local and
global level. The overtopping dataset used within this ygtisdseen to be typical of
such datasets.
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Notation

Vector and matrix quantities are indicatedtmld type. Where possible, the use of the
same symbol for more than one purpose has been avoided. Egwecases where
the same symbol is widely used in more than one area of stuslgymbol has been
retained. The symbols concerned &re, u, v, a, 7, 1 ando. When these symbols are
used the intended meaning should be clear from the context.

A empirically determined cdicient in parametric regression

A design matrix of a partly interpolated neural network

Ac armour crest freeboard of a structure

B empirically determined cdgcient in parametric regression

Bn width of berm of a structure
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Cq discharge coécient
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Chapter 1

Introduction

1.1 Historical Overview

In England and Wales it is estimated that 1.8 million homes 540,000 commercial
properties are in areas at risk of flooding or coastal erddiprThe value of the assets
at potential risk has been estimated at £237 billion [2]. &ldz range from damage to
property and vehicles [3] to threats to human life - betwe@®9land 2002 at least 12
lives were lost as a result of individuals being swefpicoastal paths, breakwaters and
seawalls [4]. In addition, flooding has ‘intangibleffects on the peopleffected. A
recent report from the Department for Environment Food anéRAffairs (DEFRA)
found that they experienced considerable health problparsicularly psychological
effects [5].

Considerable time and money is devoted to the constructidmaaintenance of
sea defences - the expected cost on infrastucture in EnglashdVales for the year
2005-6 is £320 million [2]. This investment is likely to riss a result of the increase
in mean sea levels and in the frequency of storm surges cdaysgtbbal warming
[1]. However, due to the cost and the environmental impaseafwalls it is important
not to over-engineer sea defences, so accurate method®tbcting the icacy of a
particular design are essential [6, 4].

Concern with the construction of sea defences is not new. Eodieds of years
it has been considered necessary to protect human adiaitid property from the
destructive power of the oceans.

In 1014 a ‘great sea flood’ hit a broad area along the South GQddshgland.
This storm is recorded in the ‘Anglo-Saxon Chronicle’ [7]. cikused major land-
slides at Portland and many towns were washed away. WatelslgvLondon rose
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to unprecedented levels [8].

In 1607, high water levels in the Bristol Channel caused flogpdwver an area of
520kn? in South-West England and South Wales, killing around 2086pte [8]. It
is not known whether the water levels were caused by a storge sar by a tsunami
[9, 10, 11]. Shortly afterwards, Lord Coke declared that is wee responsibility of the
state to defend the population against the sea.

by the Common Law ... the King of Right ought to save and defend
his Realm, as well against the Sea, as against the Enemiesh¢hsame
be not drowned or wasted [12]

The ‘great storm’ of 1703 caused enormous damage to progedyhe ferocity of
the storm inspired Daniel Defoe to write his first book, ‘Theré’ [13], the following
year [14]. Hundreds of ships were destroyed resulting indéegths of at least 8000
seamen [14]. Wind-speeds are thought to have been in thenredil20 mph [15].
They caused enormous damage to buildings, destroying 40@miils and blowing
down thousands of chimney-stacks and millions of treest tiee Plymouth coast,
the recently completed Eddystone Lighthouse was destréyledg its builder Henry
Winstanley [16]. Storm surges caused major flooding at Bristaol Brighton. The
estimated costs of repairs in the United Kingdom was egemtab £10 billion today
[14].

On 31 January 1953 strong winds, low pressure and high tateslstorm surges
along the East coast of England, reaching a height of nearigtBes at King's Lynn.
Flood defences were breacheffeating coastal towns in Lincolnshire, Norfolk, Suf-
folk, Essex and Kent. Over 300 people died and 24000 homes fleerded [17]. The
clean-up operation took weeks and is estimated to havelomstjuivalent of £5 billion
today [18]. The &ect on the Netherlands was even more devastating: 50 dykss bu
and over 1800 people were killed. Following on from this flptite British govern-
ment put in place a storm warning system [19]. However, by318%eport found that
41% of these were in ‘moderate or significant’ need of regii.[In response to this
report the Environment Agency was created in 1996, withaoasibility for flood de-
fences and flood warnings [18]. The British Government isentty developing a new
strategy for flood and coastal changes within the contexusfasnable development
and climate change [21].

On an international level there have been two major coastadifl in the last year.
On 26 December 2004 an earthquake occurf@dhe Indonesian coast. This trig-
gered tsunami waves thatected thirteen countries including Indonesia, Thailamd, S
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Lanka, India and Somalia. Over 200,000 people were killetdzamillion made home-
less by the tsunami. An Indian Ocean early warning systerouwshbeing designed at
an estimated cost of $20 million [22]. On 29 August 2005, agkhurricane hit New
Orleans. The water depth of Lake Pontchatrain rose draailgtias a result of heavy
rainfall and a storm surge. This caused some of the cityisds\to break, resulting in
flooding to a depth of 6 metres in some parts of the city. Thelbmrmof deaths is not
yet accurately known but is expected to run into thousanaid,tlee cost of repair is
likely to be tens of billions of dollars [23].

1.2 Hazard Levels and Wave Overtopping Rates

Adequate defences require accurate predictions offteeteveness of a particular de-
sign. One way to do this is to estimate the volume of watenyike ‘overtop’ a
sea-wall, given information concerning the structure efwall, the sea-state and me-
teorological information. This value is generally recatdes an average overtopping
rate per metre of seawall, over the period of a storm. Safaawaing rates have been
estimated by Owen [24]. [erent hazard levels have been identified for pedestrians,
vehicles and buildings, as illustrated in figure 1.1. Frg@&p has further dierentiated
hazard levels according to the type of seawall.

There have been doubts expressed as to the accuracy of neréoping rates as
a predictor of hazard level [4]. Maximum instantaneous mygring rates or velocities
are likely to be a better guide to hazard level. However, ttegliption and measure-
ment of peak instantaneous overtopping volumes is pronertsiderable variability at
the current time, so mean overtopping rates are still the ocosemonly used predictor
of hazard levels. In recent years two paradigms have eméngégdroduce an estimate
of this quantity: curve-fitting and numerical simulation.

Curve-fitting is an empirical approach. It takes results ioleté from laboratory
tests on scale models and uses them to set parameters withinametric regression
model. It has the advantage that, once the parameters haneaék the resulting curve
may be used to predict results instantly for previously wwkmscenarios. The process
involved is essentially one of interpolation. However, émopl curve-fitting requires
the generation of large amounts of accurate data from latmgréests. It is therefore
time-consuming and expensive. Further, each parametehmonly applicable to a
limited range of structures, necessitating the generafiarseries of alternative curves.

Numerical simulation yields results for a particular saemanore quickly than
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do laboratory models. Further, it gives a time-dependestupe of the progress of a
storm. Itis therefore able to provide information in adalitto mean overtopping rates,
such as instantaneous water pressure. However, this matbodhas its drawbacks.
The results of the computational approach are not easilgrgésed. Whereas the
empirical approach results in a curve that may be used ferpotation, numerical
simulation must be repeated for each individual scenario.

When used to predict overtopping at ‘real’ seawalls, bothre@gghes involve the
use of certain approximations. The empirical approach peddent on laboratory-
scale data, and their validity therefore depends upon thkalsitity of results from
freshwater scale-models to full-scale seawater sites.apbeoximations made during
the scaling process are discussed in section 1.3. The nuahapproach requires
the parameterisation of very complex scenarios. In ordena&e the mathematical
models tractable it is necessary to make assumptions amoxapgations, as described
in section 1.4,

This thesis presents a new approach to wave overtoppingchogdusing artificial
neural networks (ANNs). ANNs were originally envisaged asdels of the mam-
malian brain. However, for the purposes of this study they beaseen as a method for
achieving non-parametric (or semi-parametric) regressihey share the advantage
of the curve-fitting approach: once their internal paramsdtave been set to appropri-
ate values, they are able to interpolate (and in some casepebate) to values that
were not used in setting their parameters. However, unfigectirve-fitting approach,
ANNSs are not limited by the choice of any particular mathaosfunction. A single
ANN may therefore be used as a generic prediction tool aaagsle range of sea-
walls and sea-conditions. ANNs have the further advantagethey perform well in
the presence of ‘noisy’ data. This means that an ANN maysetiiata from full-scale
sites measured under a variety of conditions.

The rest of this chapter reviews the existing state of rebeito wave overtop-
ping prediction and relates it to the research presentddmiiis thesis. Section 1.3
describes the empirical curve-fitting approach. Sectidrekplains the use of numer-
ical simulation techniques. Section 1.5 is a detailed hystd ANNs. Section 1.6
reviews previous uses of neural networks in the area of yfinonatics. Section 1.7
provides an outline of a new type of hybrid neural networke@besented in this the-
sis. Section 1.8 concludes this chapter and explains thetste of the rest of this
thesis.
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1.3 Empirical Curve-fitting

The most well-established method of predicting mean waestopping rates is that
of empirical curve-fitting. This is a parametric approackvimch the form of the rela-
tionship between the independent parameters and the ppértprate is assumed. A
small number of free parameters are then deduced by mimgéscost function, usu-
ally mean square error. This method is invariably linkedriegperimental approach,
in which results are obtained from scale models. These ma#lerally contain sim-
ple idealised structures and flumes that give normal waeelatt

Besley [26] assumed an approximately exponential relatiprisetween crest free-
board and mean overtopping discharge, following on from ©y2]. He obtained
empirical constanté andB for smooth, impermeable walls of various slopes to obtain
the best fit for equation 1.1.

o = AToexp(ﬂ) (1.1)
To

In this equatiorgy=0q/(g Hf;o,toe)of’ is the dimensionless overtopping dischaiges
Re/Hmo.oe is the dimensionless freeboah=Tm-1.0w0e (9/Hmo10e) " iS the dimension-
less mean wave period, q is the mean overtopping dischatgéna’/s/m, R. is the
crest freeboardi o 0e IS the significant wave height at the toe of the Wal}, 1 ot IS
the mean wave period at the toe of the wall gnd the acceleration due to gravity.

The method is only intended to be applied to smooth imperieeedlls with slopes
between 1.1 and 1:5, to waves of period less than 10 secomqmieaghing normal
to the structure, and to values Bf/To between 0.05 and 3.0. Further, predictions
are likely to be accurate only to within a factor of 10 [26]. dudations to the basic
equation allow modifications for angled wave attack, bermvatls, rough slopes and
wave return walls. However, the basic exponential form ef filnction is retained
throughout. Details of the adaptations made to the basiatemy as well as alternative
equations used by other researchers, are given in Appendix A

The curve-fitting approach has the advantage that predgtwe obtained very
easily once the free parameters have been determined.eEufth input-output rela-
tionship is explicit and easy to understand. However, alleditting approaches ier
from certain drawbacks.

e The parametric approach is inherently limited in its scope Bequires knowl-
edge of the relationship between the independent parasragtidithe overtopping
rate on the part of the modeller.
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e Predictions are limited to idealised structures, due tosthall number of free
parameters.

e The dependence on laboratory techniques means that thimarebappropriate
data is time-consuming and expensive.

e The use of experimental data in predicting ‘real’ stormgeelpon the valid-
ity of the scaling process. There are substantial appraxamsinvolved in the
assumptions that surface tension and viscosity scale wigh $\ specific dif-
ficulty related to the use of freshwater in experimentalstésis been described
by Bullock et al. [27]. Saltwater has higher aeration levels than freshwaater
therefore displays greater compressibility and lower iobpsessures. This ef-
fect is particularly noticeable for violent situations, iainlead to large amounts
of trapped air.

1.4 Numerical Modelling

The mathematical modelling approach runs a numerical sitiom of wave motion,
within constraints including equations governing the ulyieg physics, given initial
conditions such as water velocity and boundary conditioict ss wall and bed slope
geometry. The usual starting point is the Navier-Stokesggus, which are an expres-
sion of the fundamental laws of conservation of mass, monme@ind energy. Solution
of these equations for any but the simplest of scenariostisreely computationally
expensive [28]. However, in situations in which the depthhef water is small com-
pared to the wavelength of the waves the non-linear ShallaeWEquations (SWES),
given in equation 1.2, are known to provide a good approxongd29].

al P o i 9 o
5| AU |t ax| eu e 3 puv 1.2)
Y puv OV + p?/2
In this equatioru andv are the velocity components in the horizontal plapés
the geopotentiaih, g is the acceleration due to gravity ahas the water depth.
These may be derived from the Navier-Stokes equations lyrasg that the ver-
tical velocity is small compared to the horizontal velocifihis is equivalent to the

assumption of hydrostatic pressure. When waves are imgadtirs assumption is
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incorrect. However it has been shown that the SWEs give redd®maccuracy even
under certain breaking conditions [30, 31].

Numerical schemes have been designed for solving thesdi@ugia Typical is
the approach in Het al. [28], which uses a finite-volume solver with a Godunov-
type upwind scheme. Such a scheme may be used to model farscanarios with
considerable accuracy, terms being added to allow for fastach as bed stress or bed
dryness [32]. The wall and bed geometry are included in thdahasing appropriate
boundary conditions.

Mathematical modelling typically gives results within &tlar of 2 of the measured
overtopping discharges [28]. This is a considerable imgmoent on the curve-fitting
regime. This is expected, since modelling is applied to sqdar scenario rather than
a family of scenarios.

Such schemes have so far been applied only to near-idead walhboratory-
controlled tests, mainly due to the great computationat cbsunning such simu-
lations. It is to be expected that mathematical modellingredl’ scenarios would
require additional terms, and therefore computer time riteoto achieve similar ac-
curacy. The number of uncontrolled variables in ‘real’ ssdlsalso affect the accuracy
of predictions made by numerical solvers.

The underlying mathematical model used within numericatlelicng normally
contains a number of assumptions, such as shallow watescidvilow, in order to
reduce the high computational cost of running the simutatidModelling ‘real’ sce-
narios requires more accurate models and leads to greatBased computation time.
Shiachet al. [31] made comparisons between a numerical model (basedecBithl-
low Water Equations) and experimental observations. Tlewnd that for strongly
impacting waves the model was too inaccurate to be of pedaige and a more de-
tailed model had to be employed. Under these circumstanalesné of Fluid (VOF)
models [33] or free surface capturing models [34] had to bpleyed, resulting in a
dramatic increase in computational cost.

A further disadvantage of the numerical simulation appindachat it is situation-
specific. A detailed knowledge of both the sea wall geometd/the exact sea condi-
tions is required, so a small design change necessitatanle® rerun of the simu-
lation.
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1.5 Artificial Neural Networks

1.5.1 Introduction

Artificial Neural Networks (ANNs) were originally devised@ anodels of the human
brain. It was hoped that ANNs could reveal useful informatabout the structure
of the brain and the processes that occur within the braine 0de of ANNs as a
tool for exploring brain function has become increasingigegpread within cognitive
psychology and neurophysiology in recent years. HoweVes, study is primarily

interested in ANNSs as a tool for solving mathematical protde In particular, ANNs

are used to identify unknown multivariate functions fronmgdes of data. Aspects
concerning the biological validity of an ANN architectureaf a training algorithm

are only occasionally considered.

In a biological neuron, electrical signals are passed fre@uron to neuron via
synaptic connections. The strength of the incoming elegtsignal is moderated by
the excitatory or inhibitory nature of the synaptic coniatt Several incoming signals
may be combined within the main cell body. The overall ougghal from a neuron
then passes along a long axon. The signal strength is maotalong much of the
axon’s length and may activate neighbouring neurons. Egittese neurons therefore
receives roughly the same signal.

In an ANN a neuron is represented by a simple processinghatitias three func-
tions: it takes one or more inputs, performs a mathematiaakformation on these in-
puts and outputs the resulting value. From a signal prooggsiint of view it therefore
has the essential features of a biological neuron [35]. Témestormation performed
by the neuron is known by several names. Throughout thig/stud referred to as
a ‘transfer function’. Transfer functions may take many meaatical forms, and the
formula chosen will often have a larg&ect on the computational algorithms used,
the problems which an ANN can solve and the speed with whittitisas may be ob-
tained. This thesis is particularly concerned with thiéedence between local transfer
functions that only have significant outputs across a snudilie of input space and
more difuse transfer functions. Radial basis and sigmoidal funstare representa-
tive of these two types of function, and are described inidgtaection 2.1. Their
associated training algorithms are described in sectich 5.

Like a human brain, ANNs contain a number of neurons that neagtlerconnected
in various ways. When a connection is present, the interamalisignal is moderated
by a synaptic ‘weight’. In figure 1.2, are the inputs to the neurow, are the input
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Figure 1.2: Diagram of an artificial neuron
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Figure 1.3: Diagram of an artificial neuron network

weights andf is the transfer function.

The neurons are generally arranged in layers, making thertission of informa-
tion through a network easier to track. The layers includ@put layer, an output layer
and may contain one or more intermediate layers (figure I'Bg latter are usually
referred to as ‘hidden’ layers, since they do not hold infation that may be immedi-
ately interpreted in a symbolic way. However, the hiddertayeurons perform much
of the processing that makes ANNs such powerful mathematioks.

Human brains are known to develop through three processeggrowth of new
neurons, the loss of older neurons and an alteration of thegth of synaptic connec-
tions. The first two processes have artificial equivalentsoinstructive and pruning
algorithms for resizing ANNs. Some of these will be discualssedetail in future sec-
tions. They include the cascade-correlation algorithmfansard selection of centres
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in RBF networks. However, the learning process on which newetliork research
has been primarily focused is the process of weight adaptati

Humans learn from experience. Physiological knowledge&eonnng the neuronal
structure of the brain indicates how this learning comesuaibdarticular patterns
of neuronal activity correspond to particular psycholagiesponses. When we find
ourselves in a specific situation, the same neurons thatexerted last time we were
in a similar situation will ‘fire’ again. Our behaviour at atigne is therefore governed
to a large extent by our behaviour at previous times. Howeherstrength of synaptic
connections is being adjusted all the time in response &reatstimuli. For example,
if a particular action has achieved the desired ends, thaptinconnections firing at
that time are likely to be strengthened. If, on the other handaction is unsuccessful,
an inhibitory dfect will be induced. The state of our synaptic connectioangths at
any one time may therefore be seen as the result of our resptmall of our previous
experiences [36].

The strength of a synaptic weight is represented in an ANNdpnaection weight.
In order for an ANN to learn, these weights must be adjustéearn’ is used here
to mean ‘give an improved response’. Humans learn by adaphieir responses to
their environment. By introducing an assessment functiorcareensure that ANNs
learn by improving their score on this assessment functiva.can now see that the
ANN learning process is a series of weight adjustments, mabelé by an assessment
function. Due to the introduction of an assessment functleprocess is also referred
to as ‘training’. The training process is illustrated daagmmatically in figure 1.4.

When there are a large number of neurons, the ANN method sesuibe deter-
mination of a large number of free parameters (the intergr@al weights). It may be
seen as a method for performing non-parametric regresaiggss: the large number
of free parameters meanfiextively that there is no assumption concerning the func-
tional form of the input-output relationship. This may benttasted with curve fitting
approaches in which an overall functional form is assumedtffe relationship be-
tween the variables. The small number of free parametenrgcim @pproaches imposes
a considerable restriction on the possible approximatingtions produced.

Unlike statistical methods such as linear regression, Alidésalmost invariably
non-linear. Their non-linearity arises from the use of tioear transfer functions
within individual neurons. The parallel structure of a reuretwork means that the
overall input-output relationship may be a highly compleon-linear function al-
though the individual transfer functions represent fagilyple non-linearities.
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The training of ANNs has proven to be a complex process. Mitlodtraining are
highly varied: some attempt to approximate the processésotfgical neurons but
many diverge greatly from them in an attempt to find more caatnally dficient
methods to achieve optimal or near-optimal weights. Aparmfthe method used to
train them, ANNs may be fierentiated in many ways. The following perspectives
give alternative ways of classifying ANNs, although we slsale that the dierent
perspectives are intertwined in complex ways-

¢ Choice of transfer function [37].
e Selection of assessment function [38].
e Choice of network architecture [38].

The next sub-section (1.5.2) describes some of the apipinsadf ANNS. The rest
of this section details the historical development of nbieaworks. This development
may be seen as constituted from a number of strands. 1.5cBilkes early research
into ANNSs (pre 1985). 1.5.4 describes the development offrtbst widely used ANN,
the ‘multi-layer perceptron’ (MLP). 1.5.5 details some moyements to the basic MLP
method, while section 1.5.6 describes some global methardsdining these types of
networks. 1.5.7 describes the development of an altem&tithe MLP, known as a
‘radial basis function’ (RBF) network. Finally, 1.5.8 de$®s some hybrid networks
that combine the MLP and RBF approaches.

1.5.2 Applications of ANNs

This section aims to give a review of the practical applaagi of ANNs. These ap-
plications may be split into three main classes: patteraaason, pattern recognition
and function approximation. These areas will be treatednm. t

Pattern Association

A neural network may be trained to act as an ‘associative mgmdhe process of
training stores a set of patterns (vectors), which may kréevetd from the network.
The aim may be to retrieve a clean pattern when a noisy veididhe pattern is
presented to the network (‘auto-association’). Altewedi, the aim may be to retrieve
a pattern that is dlierent from the input pattern, but has been paired with thaitjodar
pattern (‘hetero-association’). Association is a perirmaodel for memory within the
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human brain [36, 39]. It has been applied within the areasarket basket analysis
[40], information retrieval [41, 42], syntax analysis [48)d image recognition [44].

Pattern Recognition

During pattern recognition, an ANN is required to identihetclass to which an in-
put pattern belongs. During this task, neural networksdeivip ‘decision space’ into
regions, each one corresponding to a single class. Agasntbdel is analogous to
processes within the human brain, such as the process by wigicdentify familiar
objects despite variation in viewing angle, lighting cdimis and other distortions
to our visual inputs [45]. There are two ways in which the sifigation may be
performed. During unsupervised learning the network disc® clusters in the data
itself. Alternatively, a supervised learning approach rbayapplied. In this case a
network is trained to reproduce known outputs (categqriesin which it may then
generalise to unseen inputs. Applications of pattern neitiog techniques include fin-
gerprint identification [46], optical character recogmiti OCR) [47] and number plate
identification [48, 49]. The NETTalk program is a well-knowrogram that converts
written language into phonemes, allowing a computer tanléarspeak’ [50]. Other
applications of pattern recognition include medical diagja [51] and financial risk
assessment [52].

Function Approximation

Within function approximation, tasks may be divided intodriling and forecasting.
In the latter, time series data is available and the aim isedipt future data from past
data. Examples include exchange rate prediction [53], dipuise indexing [54] and
solar activity prediction [55]. Modelling tasks have coseia wide range of topics in-
cluding domestic energy consumption [56] and various a@sp®aontrol engineering
including vehicle manoeuvre, electric power, chemicaleagring and blood pressure
management [57, 58].

The main application investigated within this thesis, wavertopping prediction,
comes into the category of modelling. Systems that have teexlioped for predicting
overtopping levels and other hydraulic parameters areidgsd in section 1.6.
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1.5.3 Early Research in ANNs

McCulloch and Pitts are widely credited with founding the reodANN tradition with
their 1943 paper, ‘A Logical Calculus of Ideas Immanent in\eis Activity’ [59].
They used neurons with net inputs equal to a simple weighted af their inputs.
They used a stepped threshold transfer function: if a nettimas positive the output
was 1, otherwise it was 0.

They showed that, given flicient neurons and correctly set weights, a network
made up of such neurons could compute any computable fumctio

Hebb [60] noted that the strength of a synaptic connectiancieased if the neu-
rons on either side of the connection are activated syncusiy. He used this obser-
vation as the basis of a learning rule that could adjust synagights. Later authors
[61, 62] added the converse rule that the connection stnaegtecreased if the neu-
rons on either side of the synapse fire asynchronously. Fair ajfoconnected neurons,
their connection weight is therefore increased if bothvations deviate from their
mean values in the same direction and decreased if the @mtisaleviate in opposite
directions.

In 1956 von Neumann [63] introduced the idea of redundanagurll networks
contain a large number of neurons that collectively repreaa individual concept.
The overall system is robust in the sense that one or moreafébirons may be faulty,
giving an ‘incorrect’ output, and yet the system as a whole sl give a ‘correct’
response.

Rosenblatt invented the perceptron in 1958 [64]. His peroeps an ensemble
of neurons arranged in a single layer. Each neuron has a figsdrbaddition to the
applied inputs. The outputs from the neuron are again steijoe have values1 and -
1. Rosenblatt demonstrated that a single neuron could sepapats into two separate
classes given any linearly separable function, resultirgni output of+1 for one class
and -1 for the other. By using more than one neuron, the inpatslme divided into
more than two classes flectively a single-neuron perceptron creates a hyperplane i
input space, which separates the inputs into two categafiben training the network,
it is therefore necessary that the investigator inputsdhget category into the system
alongside the input vector.

The perceptron training rule is the first example of a sugedyitraining rule. In
supervised training, target outputs are presented to thd ANl the ANN attempts to
reduce the error between the actual and the target outpuats éfectively position the
decision surface, starting from a position with all weigbd$ to zero or from a random
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position, in a finite number of training steps [64]. The weighanges at each step are
proportional to the output of the neuron in question and &diterence between the
target and the actual output. The weights will thereforeydrd adjusted if the target
and actual weights areftierent, i.e. the ANN is misclassifying the input pattern. lcac
of the input vectors is presented in turn. If the inputs arecoorectly classified at this
point, the process is repeated until classification is cbrigach presentation of the set
of all input patterns is known as an ‘epoch’.

Widrow and Hdt [65] introduced a new training rule, often described as kbast
squares rule’, and used it to train an ANN they called an adafinear element, or
‘ADALINE’. This is related to the perceptron training ruleut the error is calculated
as the diference between the net input and the target output, ratheittie diference
between the stepped output and the target output. This ntleainlearning will occur
even when the classification of an input pattern is corredtlaarning is therefore
quicker. The name ‘least squares rule’ has arisen becaussdtleads to convergence
to the least mean square solution. A full mathematical tneat is given in section
2.2.1.

In 1969 Minsky and Papert’'s book ‘Perceptrons’ cast serttmugt on the potential
development of neural networks [66]. They pointed out mahthe limitations of
Rosenblatt’'s perceptrons and stated their belief that sray@r perceptrons would not
be able to overcome these limitations. The result of thikbeas that research into
neural networks virtually disappeared during the 1970sesmty 1980s.

There were a few exceptions. In 1982 Kohonen described AMisHhe called
self-organising maps (SOMs) [67]. (A similar idea had beesatibed by Willshaw
and von der Marlsburg in 1976, but their model received leggést [68]). SOMs are
examples of unsupervised ANNSs that are used for detectiagesprganisation within
input data. The neurons within a SOM are conceptually aedrig a grid, usually of
1 or 2 dimensions. Before training, neurons weights areaiised randomly. After
training, each neuron responds strongly only to inputs iwithparticular region of
input space and neurons that are ‘close’ to each respondilasareas of the input
space. The weights may therefore be viewed as centres tteat aearby inputs. A
SOM therefore creates a topological map of its inputs. Ihasl@gous to certain areas
of the human brain that respond to sensory inputs [69, 70,Fdf each input vector,
the SOM training algorithm undergoes three phases-

e Competition. The neuron that has the weight vector with thallest Euclidean
distance from the input vector is selected.
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e Co-operation. Within the conceptual grid, or ‘feature spaaaeighbourhood
around the centre of the winning neuron is identified. Thigmeourhood is
described by a mathematical function that peaks at the n&uposition within
the grid and falls away with distance to reach zero at infidigtance. A typ-
ical function is the Gaussian function. As training proceetie width of the
neighbourhood is reduced, usually in an exponential fashio

e Adaptation. The weights (centres) of all neurons are aegusd bring them
closer to the input pattern. The neurons that are closestetaovinning neuron
(in feature space) will beftected to a greater extent due to the radial decline of
the neighbourhood function.

Both the neighbourhood widttr and the learning rate decrease as the number
of epochs n increases. To achieve full convergenosust be kept at a constant rate
of about 0.01 towards the end of training in order to achiedecbnvergence of the
algorithm.

Once a SOM is trained, the weights of the network represefaadure map’, in
that they map the input space onto a conceptual feature .spdeeposition of each
neuron within feature space corresponds to a particulamadfgror feature of the input
domain. The SOM may be seen as an encoder, that encodes pawet into feature
space. The final position of the weight vectors gives useforimation concerning the
distribution of the input vectors. This may be used to cfgsaputs according to their
corresponding positions in feature space or to identifysili@ces of variation within
a population, in a manner analogous to principal componaalyais.

The Hopfield network [72], introduced in 1982, is a recurnmegtivork. It contains
a single layer of neurons and the output of each neuron isdell imto the ANN as
an input to all of the other neurons. The weight matrix is syeti, i.e. w;; = w;
for all pairs of neurongsandj. Other than these fierences, Hopfield neurons act like
perceptrons, giving outputs efl or -1 according to the sign of the weighted sum of
the inputs.

Hopfield networks may be used as content addressable merAdtigt training
they are able to retrieve a correct vector given a faulty ooimplete input vector. In
training, or ‘storage’ as it is more accurately describbd,weights of the network are
set in a deterministic way, by the application of linear &lge There is no need to use
iterative methods such as gradient descent.

During retrieval an incorrect or partial vector is introéddo the network. A single
neuron is selected randomly and its net input is calculdfélls is positive, the neuron
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Figure 1.5: Hopfield network architecture

will switch its output to+1. Conversely, if the net input is negative, the output will be
set to -1. If the net input is zero, the state of the neuronichanged. The process is
continued until there are no more changes. The output shbeitdcorrespond to one
of the patterns originally stored in the network.

1.5.4 Multi-layer Perceptrons

All of the networks considered in the last subsection comgidirect links between
input and output neurons, without a hidden layer. Most oirtladso used stepwise or
linear transfer functions. In 1986 Rumelhart and McClellar@] jpresented a training
algorithm that would allow the use of one or more hidden lay&r neurons and a
variety of transfer functions. The only condition was tha transfer function was
differentiable, i.e. one could calculate a gradient for thetfancat all points. This
rules out stepwise functions and led to the use of more stiqdtisd transfer functions.
A step towards the use of more flexible transfer functions beagnade by extend-
ing the least squares rule [74]. Widrow andfHoonsidered the dependence of the net
input on the weight vector. However, when using the sum oaseplierrors (SSE) as
the objective function it is more appropriate to consider ¢iect of the weights on
a neuron’s output. It is possible to do this provided fiedentiable transfer function
Is used. The output from the transfer function is dependpaotuhe net inputv and
may therefore be expressed fs). However, the net input is in turn a function of
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the input weightsv and the size of the inpuis Using diferentiation it is therefore
possible to obtain the gradient of the output as a functiaheinput weights and the
input vector.

When dealing with an ANN with more than one hidden layer, tipeita to a hidden
layer may come from a further hidden layer. They are theeafi@pendent on the trans-
fer functions of the previous layer. Provided these trarfsfiections are dierentiable
functions it is possible to apply the chain rule to the neyefeof neurons. By succes-
sive application, the error is ‘back-propagated’ so thatdependence of the error on
each of the weights in the network may be calculated. Havbtgined partial gradi-
ents with respect to all of the weights within the networle tletwork’s weights may
then be adjusted in the direction of steepest gradient desdéis method was first
used by Werbos [75]. The name ‘back-propagation’, or simfipR’, became widely
used following the publication of ‘Parallel Distributeddeessing’ by Rumelhart and
Williams in 1986 [73]. This book led to a resurgence of reskanto ANNSs that is
still ongoing.

The back-propagation algorithm may be applied to any ANN@ioimg neurons
with differentiable transfer functions. However, it has been veogaly associated
with a family of functions collectively known as sigmoid fctions, due to their S-
shape. These functions accept a net input, which is a waelghtm of all inputs to
the neuron and therefore describes a hyperplane througit smace. An additional
input called a ‘bias’ is also used. The use of a bias was firsitioreed by Rosenblatt
in his description of a single layer perceptron [64]. Thisarsinput of fixed value
(usually -1) and allows the hyperplane to take any possibsitipn. Specifically, it is
not constrained to pass through the origin. Sigmoid fumstimansform the net input,
softening it towards its more extreme values so that the Goglut is constrained to
lie between maximum and minimum values, as illustrated unrédL.6.

All sigmoid functions share the following properties-

e They are diferentiable at all points.
e They approach linear behaviour in their middle region.
o At their extremities they ‘level &', approaching fixed values asymptotically.

They therefore combine the properties of linear and stepwisctions: they vary
monotonically but have fixed maximum and minimum values.n®igl functions are
described in more detail in section 2.1.
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Figure 1.6: Graph of a bipolar sigmoid function

The term ‘multi-layer perceptron’ (MLP) is used to descrd@articular type of
network. It has the following properties-

e Itis a ‘feedforward’ network. This means the network is mageof fixed lay-
ers - an input layer, an output layer and one or more hiddegrsayThere are
no connections within a layer, but each layer is usuallyyfabbnnected to the
subsequent layer.

e |tis trained using the BP algorithm.

e MLP is usually assumed to refer to an ANN containing only sighmeurons,
with the possible exception of the output layer which maytaomlinear neurons.

Despite the name, multi-layer perceptrons have little imemwn with Rosenblatt’'s
perceptron on the surface: they haveféedlent transfer function and aftérent training
algorithm. However, they are seen as being in the sameitradis their earlier cousin
since they aim to predict output vectors given input vectora a knowledge base
represented by stored weights that are adjusted with awapditraining algorithm.

The gradient of the error with respect to the weights vargginuously across the
weight space. The direction of weight changes is tangetatitde error surface at the
point reached by the last iteration. Since the step sizetigfinitesimally small, the
BP algorithm must be an approximation to the method of steepasient descent.
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By making the step size smaller the approximation is madesclddowever, this is

likely to result in slower learning. A larger step size, oe tither hand, will lead to

faster learning, but may cause the algorithm to oscillatbauit approaching an error
minimum, or even diverge.

The obvious solution is to introduce a variable learning.r&umelhart, Hinton and
Williams suggested an elegant way to achieve this by intimgdpua momentum term
[76]. At the nth epoch this term adds a fraction of the-{ 1)th update to the change
in the weights. If the two updates are in a similar directidarger step will be taken,
whereas if they are in opposing directions a smaller stepeitaken. The introduction
of momentum causes the BP algorithm to converge quicker atutes oscillation
around a minimum gradient. A derivation of the BP algorithnthwhomentum was
presented by Hagiwara in 1992 [77]. The algorithm is desctimathematically in
section 2.2.2.

A second aspect to be considered is the way in which weigbtsipdated. Net-
work weights may be adjusted after the presentation of egulit ipattern, a process
known as ‘stochastic’ weight updates. Alternatively, dgrthe ‘batch’ process, the
calculated weight updates may be stored for each input bytssimmed and applied
after the presentation of every item within the training ®stch weight updates give
more reliable gradient information than stochastic weigittates. However, stochastic
weight updating has two advantages-

e The memory requirements are much smaller for stochastightvepdates.

e Stochastic updates are better able to avoid small localmnainn the error sur-
face.

Stochastic weight updates are therefore preferred for ndatgsets, particularly
noisy ones. Several authors have shown th@edint learning rates should be applied
to each layer of neurons, in order to give optimum traininges. In particular, larger
learning rates should be applied to the later than to theeedalyers [78, 35]. Some
authors go further, suggesting that every weight in a ndtvetiould have its own
learning parameter and that learning parameters shoujdfk@n one epoch to the
next [79].

Another factor in the fectiveness of BP is the initialisation of weights. Weights
are usually set randomly to small values, such-#x1, 0.1] before training. However,
it has been shown [78] that the outcome of training is usuatly dependent on the
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starting weights. Alternative means for the initialisatiof weights may involve the
inclusion ofa priori knowledge.

The selection of network size (model selection) is also gomoiant factor in BP
training. The approach most commonly used is to train a s@fiéddNNs containing
different numbers of hidden neurons. As more neurons are aduee/ror on the
training data generally falls monotonically. However,asted with data not used in
training, the assessed error is typically seen to fall asareare added, before starting
to rise after a certain point, as illustrated schematidalfyggure 1.7.

This phenomenon is the result of ‘overfitting’ the undertyfanction. When there
are too many free parameters within the network it startsttthd errors within the
training data in addition to the underlying function, withesulting increase in the test
error.

Another type of overfitting occurs if a network is trained too many epochs.
Again, the error on unseen data is seen to rise after a cextam (figure 1.8). One
way to avoid this type of overfitting is to stop training eaffis may be achieved with
the use of a validation set. The available data is partilané training, validation
and test sets. Training is stopped when an increase in tbeferrthe validation set is
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Figure 1.8: Overfitting caused by overtraining

observed. The generalisation properties of the networktimaty be assessed using the
test dataset.

The need for early stopping depends upon the size of the MhRarPet al. [80]
have shown that early stopping may be valuable in cases whenatio of free pa-
rameters to training samples is greater than 30, but willbgobeneficial otherwise.
This issue is investigated further in section 4.2 in the exindf the wave overtopping
dataset.

Related to the early stopping method is the method of crokdat@n, which is
often used when the size of the available dataset is smathisrmethod, the data is
first divided into training and test data and the test datetisiside. The training data
is divided into a number of equal sized segments. ANNSs arettiagned on all but one
of the segments. The remaining segment is used as a vedficsgt to determine an
early stopping point. It may also be used to assess the optiANN architecture, i.e.
the optimum number of hidden neurons. Once training is cetapthe test set is used
to assess the performance of the network.

Overtraining may also be avoided through the use of weigbayl¢81]. In this
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procedure a penalty is attached to the use of large weightsmeothing the overall
approximating function. Typically, the penalty is proponal to the sum of the square
of the weights. Weight decay is underpinned by the theorggfilarisation within the
field of numerical optimisation.

Related to the technique of weight decay is the network pgupmcedure. Rather
than limiting the size of the network weights, this methat&to reduce the number
of weights within a network. Training therefore takes plactevo steps-

1. Create and train a fully-connected network, i.e. one inctvl@ach neuron is
connected to every neuron in the layers both before andiafter

2. Remove connections between neurons that make littleibatitm to the final
outputs of the network.

An effective algorithm is that of the ‘optimal brain surgeon’, doeHassibi and

network connection. A Taylor series of the error with resgedhe weights is con-
structed. Assuming that a fully trained network has an egradient with respect to
the weights of zero, the most important term is thereforerdzkto be the second order
term, involving the Hessian matri§§. The weight that gives the smallest increase in
this term is set to zero, i.e. the connection is removed frioenrtetwork, and the re-
maining weights recalculated. The process may be repeatéa large error increase
Is observed.

To summarise, BP training of MLPs may be adapted through tiegef a num-
ber of modes and parameters, including-

e Learning rates

e Momentum cofficients

Stopping criteria

Weight initialisation

Choice of batch or stochastic weight updates

Model selection

Weight decay parameter

Network pruning
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Each of theseféects the outcome of training, and the selection of thesenpeteas
Is often intuitive rather than systematic. This has led santéors to search for more
automated and predictable training methods, some of whiell@scribed in the next
section.

1.5.5 Alternative training methods

Two problems with BP training are the dependence on initiagfats and the tendency
to become trapped in local minima. Simulated annealing iatempt to overcome
these dificulties. It uses a more stochastic approach than BP. Thirgrrdtan mak-
ing weight changes in the direction of steepest descenghvehanges are assigned a
probability. This probability is dependent on a notionahfiperature’. At high temper-
atures, the ANN can jump out of valleys in the error surface: b lower temperatures
the weights become more constrained to lower ‘energy s{@®}s If AE, the change
in training error, is negative the weight change will take place. IfAE is posi-
tive the change would result in an error increase. The asw®utiveight change may
be made, with a probability dependent upon a ‘temperaflireThe temperature is
decreased exponentially as training proceeds. The pridlpadfi an error-increasing
change therefore drops and training eventually settlesamhinimum. If a stficiently
slow cooling schedule is chosen, the algorithm should t&twhole of the weight
space sfiiciently often that the global minimum is identified. The nettatical de-
tails of simulated annealing are given in section 2.2.3.

Cascade correlation is a constructive algorithm that gro®léto an optimum
size [84]. Neurons are added one at a time and fheiency of training is improved
by ‘freezing’ the weights of existing neurons. The weightsle new neuron are
then trained on the remaining error of the ANN. Each new neis@added in a new
layer and accepts outputs from preceding neurons as inpwddition to the original
network inputs. This results in a deep network, in which daghr is a single neuron
that identifies successively finer detail in the approxingfunction (see figure 1.9).

Training is usually stopped when a minimum error has beechesh It is usually
performed with the ‘quickprop’ algorithm. This takes intccaunt the gradient vector
during the previous weight update and therefore resultsveriable learning rate in a
similar way to a momentum term. (See section 2.2.3 for matttieal details.)

An important alternative to basic gradient descent metiwtte family of second-
order gradient descent methods. These are derived frometdeofinumerical optimi-
sation, in which the aim is to optimise an unknown non-lifeaction (the error) with
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Figure 1.9: Cascade correlation architecture

respect to a number of unknown independent parametersthieenetwork weights.
The approach in these methods is to find a point at which trdiggraof the error sur-
face is zero. This point will correspond to a minimum, pr@ddrecautions are taken
to avoid identifying a maximum or saddle point in the errorface.

In the conjugate gradient method [85, 86], each weight ceamgrade in a direc-
tion that is conjugate to all previous steps, with respethéocapproximating function.
Further, the step size is optimised using line minimisatiéior these reasons, this
method is much moreficient than standard back-propagation. In order to find the
conjugate direction it would usually be necessary to oliteérHessian of the network
weights with respect to the observed error. However, by ntakiach weight adjust-
ment a linear combination of the previous weight adjustnaemwt the current gradient
vector it is possible to obtain a new search direction witleplicit calculation of the
Hessian [85]. Further details are provided in Appendix B.

The conjugate gradient method avoids calculating the ldassiue to the high
computational cost involved. The Levenberg-Marquardthoét on the other hand,
calculates an approximation of the Hessian matrix [86]héintuses a combination of
gradient descent and Newton’s method to find the zero of ttee gradient [87].

The Levenberg-Marquardt algorithm is a veryegtive heuristic, reaching satis-
factory minima in a small fraction of the number of epochauiesf by basic gradient
descent, for most datasets. However it has some drawbacks-
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e The construction of the Hessian involves a large numberlotitations for large
ANNSs, scaling with the number of training patterns and theesg of the number
of network weights. This can lead to long training times aadjé memory
requirements in spite of thefeciency of the algorithm.

e The error measure used must be the mean square error. Thistgnsidered to
be a major limitation by most authors since this is the mostroonly used error
measure [87]. However, other error measures are considesedtion 1.6.3.

A mathematical treatment of the Levenberg-Marquardt algor is given in sec-
tion 2.3. The &ectiveness of this algorithm is discussed in the contexhefwave
overtopping dataset in Chapter 4 and in the context of vaitiisr datasets in Chap-
ter 7.

1.5.6 Global training methods

The Levenberg-Marquardt may be seen as a ‘global’ trainieghod, since it takes
into account the gradients of all weights within an ANN sitankeously. However, the
individual gradients are local, the underlying assumpliemg that the error gradient
of one weight is largely independent of the other weightse Thvenberg-Marquardt
method therefore finds a local error minimum and the closenéshis minimum to
the global minimum is dependent upon the (randomly chostm)irsy point. The
simulated annealing method is designed to search the wheatghtnspace and therefore
is potentially a global method. However, the method idfiogent, requiring several
visits to each location in weight space in order to settle the global minimum. In this
section two further ‘global’ methods are explained, gematgorithms and Bayesian
data analysis. In both cases, they are global in two serfs®gate capable of globally
searching the weight-space of a particular neural netwozhitcture. In addition
they are able to search the space of possible architectutfeshe aim of identifying
the most appropriate one.

Genetic algorithms

Genetic algorithms (GAs) are search algorithms based uperptocess of natural
selection. Invented by Holland in the 1960s [88], they waitslly used as search and
optimisation techniques. More recently they been usedinvitie machine learning
paradigm, including neural network training.
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The GA algorithm acts upon a population of ‘genotypes’. Ehase encodings
for possible solutions to the problem in question, or ‘phigpes’. Typically they are
strings of numbers or binary digits. The population of ggpes are ‘evolved’ through
a number of ‘generations’. This process is analogous to rimditional training of
ANNSs through a series of epochs. However, GAs operate on dewjapulation of
neural networks, rather than on a single network. The primluof each generation
involves three steps-

1. Reproduction. In this step, genotypes are copied to the generation. The
number of @fspring created will depend upon the fitness of the parent,ees m
sured by an evaluation function. For ANNSs this will typigdtie the mean square
error of the corresponding phenotype.

2. Crossover. Pairs of genotypes are mated randomly. Dunisgstep the pairs
of genotypes are split at a random position and each half ocedbwith the
appropriate half from the other genotype.

3. Mutation. This involves the random alteration of indivéd values (‘alleles’)
within the genotypes. The probablity of random mutatiorysdally very low -
about 0.001.

Since success in the reproduction step is dependent upovahragon function,
there will be a tendency to move towards phenotypes that are fit for purpose.
Since a large population is used the available search-gbeced be covered more ef-
fectively than with traditional ANN training, but the membef the population should
converge towards an optimal solution, or solutions, givgfigent generations. [89]

The encoding used within GAs may include any propertiescssdeby the re-
searcher. Within the field of neural networks, the encodegenties fall mainly into
three categories: connection weights, neural architestand learning rules [90, 91].
There has been little research into the evolution of trarfgfections. Some exceptions
are included in section 1.5.8. When optimising network wesghis often found that
GAs are dfective at identifying regions that contain minima but lefedive at per-
forming local search within these regions. Several re$emschave therefore adopted
hybrid algorithms, in which GAs are followed by gradient dexst training in order to
pinpoint the location of minima [92].

Bayesian methods

Bayesian data analysis takes place in three steps [93]:
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Set up a full probability model for all observable and unatsable quantities in
a problem.

Condition on the observed data. This involves calculatiregabsterior distribu-
tion of the unobserved quantities in which we are interesiae@n the observed
data and the chosen probability model.

Evaluate the fit of the model. If one is dissatisfied with thedelpthe three steps
may be run again, allowing the comparison dfelient models.

In the context of neural networks, a neural network architecrepresents a statis-
tical model, whose inputs are explanatory variables andseloaitputs are data points

which we hope to predict using the statistical model. Thevoet weights are model
parameters that may be adjusted to improve the ‘fit’ of the @hod/ithin a Bayesian
framework, it is possible to make inferences concerningptaasibility of a particular

model (ANN architecture), a particular set of parameteu®al(network weights) or
specific predictions made by the model. These inferencéd&ih the form of proba-
bility statements - usually probability density functiqipsifs). By making some or all

of the inputs to a network the subject of Bayesian analysis atso possible to assess
the usefulness of fferent inputs in terms of their explanatory power within thedel

[94].

The Bayesian approach has a number of advantages over mefskstatd methods
for ANN training-

It has a sound conceptual and mathematical basis.

The assumptions made in constructing the explanatory navdedtated explic-
itly.

Bayesian methods automatically incorporate the principl®ocam’s razor’.
This means that they favour smaller networks with smallaghis, and there is
no need to introduce smoothing terms such as weight decaynesers (section
1.5.4) or regularisation parameters (section 1.5.7) iacahocway.

It allows global optimisation of network parameters.

It permits the comparison of flierent models, including the selection of network
architectures and of network inputs.
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e Error bars may be estimated, allowing confidence levels tass&gned to a par-
ticular model, to network weights or to network outputs.

1.5.7 Radial Basis Function networks

At a similar time to the re-emergence of MLPs following Runaetls exposition of
the BP algorithm, the theory of RBF networks was developed. Peweveyed early
work on radial basis functions in 1985 [95]. They were oradiy conceived not as
neural networks but as solutions to ill-posed hyper-se@rfe@construction problems.
Radially symmetric functions were used as a ‘basis’ with \wHiz construct an un-
known function. The purpose of the basis functions was t@edghe inputs into a
high-dimensional space, by using a number of functionstgrehan the dimension-
ality of the inputs. The reason for transforming the input® ia higher dimensional
space was Cover’'s theorem on the separability of patterns966 Cover [96] proved
that a pattern-classification task was more likely to bedrifyeseparable if cast in a
high-dimensional space. The transformed high-dimensiopats were then passed
through a linear transformation to obtain the final outputs.

Broomhead and Lowe [97] placed the radial basis function @ggr within the
context of neural networks. Each basis function now becém¢ransfer function of a
hidden layer neuron, while the output neurons had lineasstea functions. However,
the neural network was seen within the context of functittm§i. From this view-
point, network training is equivalent to hypersurface restauction and generalisation
is equivalent to multivariable interpolation.

Broomhead and Lowe start from the perspective of strict paiation, in which
the overall approximating function is constrained to pdssugh all of the training
points. Form training patterns this may be achieved by creatimpidden neurons,
each with weights coinciding with one training point. Radalsis functions have
the same number of free parameters as sigmoid functions etowthe input weight
vector is usually interpreted as a ‘centre’ and the bias tedg a ‘steepness’. This
is because a radial basis function calculates its net inpuh@ Euclidean distance
between its input and its weights. This net input (or dis&gris then input into a
function that depends only on the bias (or steepness). Taelbvesult is a radially
symmetric function, as illustrated by the Gaussian fumctibfigure 1.10. Alternative
radial basis functions are described in section 2.1.

RBF networks invariably use a linear output neuron, which §raptputs a weigh-
ted sum of its inputs. As a result, the hidden-to-output Wesighat will give the lowest
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Figure 1.10: Graph of a Gaussian radial basis function

mean squared error may be calculated using linear algebheaeTs no need to use the
gradient descent techniques common to MLPs.

Broomhead and Lowe proceed to situations in which only a fuddgbe training
patterns are used as RBF centres. The justification for doiisgighto reduce the
number of degrees of freedom and so reduce the risk of owagfitin this situation the
design matrixA, which contains the outputs of all hidden neurons given edche
applied inputs, is non-square and the pseudo-inverse thiedeast squares solution.

Broomhead and Lowe point out that the use of a subset of thertgailata as RBF
centres results in a smoothinffext, or ‘regularisation’ [97, 98]. However, it has been
common to introduce additional regularisation in orderetuce the size of the output
weights obtained from the least squares solution. Regataiswas used by Tikhonov
as a means of solving ill-posed problems [35, 99, 100]. Tioblpm for ANNS is to
approximate the input-output function. This problem isalded as ‘ill-posed’ for two
reasons-

¢ In areas of sparse data, there is iffigient information to uniquely identify the
underling function.

¢ Noise in the data means that distinct input or output valuag not be identifi-
able and there may be apparent discontinuities in the fomcti

lll-posed problems may be made well-posed through thednirton ofa priori
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assumptions. These assumptions are smoothness cosstrainthey assume that the
function is not fully local, so that values at one point may &t a guide to values at
nearby points. Constraints are included as an additionatifum These smoothness
constraints have a similar mode of operation and have aaimdfect to the introduc-
tion of weight penalties in the weight decay technique dised in section 1.5.4.

Poggio and Girosi[99] have provided an alternative jusdtfan for the use of regu-
larisation with datasets of high dimensionality. Data rssegily becomes sparse when
it is of high dimensionality. This is the well-known ‘cursé dimensionality’ [101].
The sparse data results in a large number of possible saduéind in order to choose
between them it is necessary to make smoothness assumdioiee RBF networks
transform the input space into a high-dimensional spaapjlagsation may be par-
ticularly applicable to them. A mathematical treatmentegularisation is provided
in section 2.5. The issue of regularisation is discussecktaildin the context of the
results obtained using the overtopping dataset in Chapter 5.

While Broomhead and Lowe suggest the use of a subset of thenggalata as RBF
centres, they give little guidance on the procedure for mgki selection. Moody and
Darken selected centres using k-means clustering [102, EQ&her, they allowed the
centres and steepnesses to alter as the result of gradsaidéraining.

In 1991 Cheret al. [104] introduced the forward selection (FS) algorithm fioe t
selection of centres. This is a network growing techniquenttoduces a computa-
tionally efficient method for calculating the errors of the series of nekw created by
successively adding a single neuron from the training de¢. réduction in error after
each addition may be calculated using an orthogonal leastreg (OLS) procedure.
An RBF network may therefore be grown one neuron at a time, wgghnieuron se-
lected at each the stage being the ‘best’ choice at that tuneher details are provided
in section 2.4,

In the late 1990s Kubat and Orr [105, 106] introduced metHodseriving RBF
centres from regression trees. Regression trees partii@nitto hyper-rectangles. A
RBF neuron may be derived from each hyper-rectangle, wittreitére at the centroid
of the hyper-rectangle and its width proportional to theunmaé of the hyper-rectangle.
Orr considers nodes atftkrent levels of the regression tree, which therefore have
differing widths. Nodes are selected for inclusion in the RBF ndtyweith preference
given to wider nodes. As a result wider radial basis funditand to be added early
on, with more localised functions built into the system todgathe end of training.
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1.5.8 Hybrid Neural Networks

Hybrid neural networks, containing both sigmoidal and ahtiasis transfer functions
in the same layer, have been suggested by Poggio and GigpsH6wever, there have
been only a few reported implementations of them.

Cohen and Intrator create hybrid networks which they calt®atron Radial Basis
Nets (PRBFN). Their approach is to cluster the data and themxose a neuron, either
sigmoidal or radial-based, that approximates the locattian within each cluster
[107]. Their method is compared with a novel algorithm idwoed in this study in
Appendix C.

Flake’s ‘square unit augmented, radially extended MLP’ (B®E-MLP) app-
roach may also be seen as a hybrid approach [108]. Flake asbséthe inputs to
a network twice. One is used as a raw input, while the secoes e square of the
original value. The hidden layer neurons all have sigmaidaisfer functions. How-
ever, when the sigmoidal functions are applied to the sguamguts, the final output
functions are similar in form to the Gaussian functions camliy used as radial basis
functions. A SQUARE-MLP is therefore similar to a hybrid sigish-RBF ANN, with
the constraint that the number of RBF-type and sigmoidal meunaust be equal.

Genetic algorithms were introduced in section 1.5.6. Treelspecific application
in the area of hybrid networks, since they are able to sedrelspace of possible
architectures, avoiding the need to trial all possible coiions of transfer functions.
Liu and Yao used a GA to search through architectures witmglesihidden layer
containing both sigmoid and RBF neurons, applying their tssalthe classification of
heart disease patients [109]. Jiagtaal. used a simlar method to model concrete stress
[110]. Both studies used a GA only for the selection of arditees, with network
weights determined by variants on gradient descent.

Hybrid neural networks may be contrasted with modular rewgtworks, popu-
larised by the work of Jordan and Jacobs [111]. Their *hhvimal mixture of experts’
(ME) approach partitions data and creates separate nedvimrleach partition. The
outputs of the networks are then combined using a ‘softnggtiinction. While Jor-
dan and Jacobs only consider MLP networks as candidatdsgfandividual networks,
subsequent authors have admitted the possibility fééidint types of neuron [112].



CHAPTER 1. INTRODUCTION 34

1.6 Artificial Neural Networks in Hydroinformatics

As described in section 1.4 numerical modelling incurs gdatomputational cost,
while empirical curve-fitting incurs a large experimentatlay (section 1.3). Both
methods have limited applicability, due to these costs. duree-fitting approach is
further limited by any particular choice of free parametend mathematical function.
For this reason there has been recently a growing interdbeinise of ANNs as an
alternative method of predicting various hydraulic pareeree  Whereas the curve-
fitting approach uses parametric regression, the ANN agprogy be seen as method
of non-parametric regression. The large number of freempaters means, infiect,
that no assumption is made concerning the mathematicaktsteuof the input-output
relationship.

1.6.1 Freshwater Applications of ANNs

Within hydroinformatics, rainfall-run® modelling is the area in which there has been
the most interest in ANNs. The aim of modelling is to predie tevel of rundt given
known rainfall rates which may vary spatially or temporadigd hence to predict when
flooding may occur [113]. This process has clear parallets thie prediction of wave
overtopping rates, in terms of both the functional and care$ationships between the
input and output variables.

Smith and Eli [114] demonstrated the feasibility of usingAdN to make such
a prediction. They used simulated data from a 5-by-5 gridedfsao which were
applied variable rainfall rates. They trained a back-pgap@n network to predict
the time and level of peak discharge. Shamseldin [115] fahad the inclusion of
seasonal information as an input improved the performah@d\dls, across a range
of catchment areas.

Hsuet al. [116] used a series of time-delayed rainfall measuremenfsddict
rundf levels using measured data from the Leaf River Basin in Miggss They
obtained results that are superior to those from back-gatan by using a two-step
training algorithm, known as linear least squares simal&8SIM). In this algorithm
the input-hidden weights are determined first, using a rstétit simplex algorithm
[116]. A linear output neuron is employed. In the second,step hidden-output
weights may therefore be determined using a linear leastrequoptimisation pro-
cedure, rather than with gradient descent. The LLSSIM &lgorhas considerable
similarity to the orthogonal least squares (OLS) algoritbemmonly used to train
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RBF networks (see section 1.5.7). It is found that this trgnechnique gives results
that are an improvement on back-propagation.

Masonet al. [117] used synthetic data that included rainfall intensitymulative
rainfall and derivative of rainfall intensity as inputs. &hfound that RBF networks
trained considerably faster than MLP networks. Fernandalagawardena [118, 119]
found the same advantage in training speed when using RBF rthidie MLP net-
works. Again the OLS method explains the observed trainfligency (section 1.5.7).
Dawson and Wilby [120] found the same advantage in trainpged. However, in
their study MLPs gave greater prediction accuracy, with RBi#sg accuracy com-
parable to that from linear models.

Dibike et al. [121] compared the performance of various types of ANN onfegii
rundf prediction. They found that RBF networks trained the fasbegtgave relatively
high MSEs. MLPs gave reasonable results, with comparabldtsefrom three dfer-
ent methods: BP training with either a unipolar or bipolamnsid transfer function,
and Levenberg-Marquardt training. A recurrent Elman nekweas found to train the
slowest but also gave the lowest MSE.

Senthil Kumaret al. [122] recently compared the ability to model rainfall-rdiho
scenarios of RBF networks with MLP networks trained using LIS heir conclu-
sions are quite complex, with the mosieztive network dependent on flow conditions:
RBF networks give lower errors for medium and high flows, whileR8 give better
results for low flow conditions.

Some attempts have been made to automate the search formomgdayer size.
Cascade-correlation ANNs have been applied to streamflodighi@ens by various
authors [123, 124, 125, 126]. Thriumalaiah and Deo [124Foked that the cascade
correlation algorithm gives much shorter training timearnthback-propagation, with
comparable error values. Muttiah al. [126] created an ANN that could predict peak
discharges from a range of watersheds throughout the USites. Yang [127] used
a method that combined a genetic algorithm, to perform aajledarch, with gradient
descent, to locate local minima. This was applied to flooédasting and to water
quality estimation. Abrahart al. [128, 129] used pruning techniques and genetic
algorithms to find optimum sized networks for river flow foasting.

Standard MLP networks have also been used for streamflovicpicedby several
researchers [130, 131, 132]. Generally it has been founigtteamflow exhibits very
different behaviour under high, low and medium flow-rate coondgj and traditional
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ANNSs have had diiculty predicting the three types of behaviour within a sengét-
work [113].

Hsu et al. [133] used a self-organising feature map (SOM) to group tipeits
before using linear regression to make rfinedictions for each subset identified. In
addition to giving reasonable prediction accuracy andtdhaining times this method
yielded information concerning the division of data int@gps exhibiting dierent
types of flow behaviour. Furundzic [134] also used a SOM taigrdata, before in-
putting the groups of data into three separate MLP netwdrsiperature was used as
an input variable, in addition to previous rainfall and réin@lues. Prediction accuracy
was found to be superior to that from linear regression.

See and Openshaw [135, 136, 137] have used a similar teehtoggroup data
with a SOM. After creating a trained MLP for each subset ofdata, the outputs are
recombined using fuzzy logic. A genetic algorithm was usedftimise the if-then
rules used. The partitioning of data may therefore be seép#t§ and the separate
ANNSs may be seen as parts of an overall modular network.

Zhang and Govindaraju [138] used a mixture of experts (MEyaach [111] to
create a modular network. Each module is an ANN that takesfdhe inputs. The
outputs of all networks are then combined as a weighted sinardlative weights are
determined individually for each datum by a ‘gating netwoM/eights within each
network are determined within a Bayesian theoretical fraotkwRather than using
gradient descent, the Bayesian approach is to maximise sterpw likelihood of a
set of weights. The ME approach is an extension of the softtjpaing of See and
Openshaw, in which the weights assigned to the outputs d¢f ratwork vary from
one input to another in a non-linear fashion.

Maier and Dandy [139] have investigated th&eet of adjusting various training
parameters in the back-propagation algorithm. They usprédiction of river salinity
using time-lagged inputs as a test case. The most signifiicaing is that choice of
transfer function has a strongfect on both training speed and generalisation ability,
with the hyperbolic tangent function clearly superior te timipolar sigmoid function
and linear function.

Abrahart and others have investigated the choice of inputsinfall-rundt predic-
tion using saliency analysis [140, 141]. He also considezs¢lated problem of data
selection. It is pointed out that rainfall-rufiaata is very noisy and that any particular
partitioning into training, validation and test sets tlere introduces considerable bias
into the training process. Abrahart’s solution is to useaottrap’ approach, in which
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data is regularly resampled during the training proces&][1#inally, various error
measures are discussed in addition to Mean Square Error \ME&Eding maximum
over-prediction and maximum under-prediction [141].

Hsieh and Tang [143] consider the problems of overfittingadselection and
knowledge extraction in the context of ANN models in metémgyg and oceanog-
raphy. Suggested solutions to overfitting are ensemblegirey, early stopping, net-
work pruning and weight decay, while the number of inputs fpayeduced through
application of principal component analysis (PCA). Speetnalysis is suggested as a
means of approximating the non-linear component of an topitput relationship.

Overall, studies on the use of ANNs in freshwater flow predichave a number
of features in common-

e The aim is invariably to predict future flow, or dischargeesausing past flow
rates. Within wave overtopping prediction, this is the @agh used by nu-
merical simulation. It is not used within this study, whidma only to predict
time-averaged overtopping rates, but it would be possidgpply a time-varying
approach to wave overtopping prediction.

e Flow rates are seen to exhibit verytérent behaviour under various conditions.
As a result, standard MLP networks often hav@dilty making generic predic-
tions across a range of conditions. It has become increlgssngimon to use a
modular approach. Sub-networks are then assigned the taskanstructing a
particular part of the input-output function or a subsethef training data.

e Constructive algorithms, such as cascade correlation or, @eS8erally give
quicker training times than BP. The resultant test errorsaughly compara-
ble to those obtained from BP, although results are highlplpro-dependent.

¢ An optimum transfer function has yet to be identified.ffBient studies give
preference to either sigmoid or RBF functions.

¢ Various studies have identified the importance of consigefurther criteria
when designing ANNSs for hydroinformatic simulation. Théselude stopping
criteria, model size, input parameter selection and ddé&xisen. These issues
are discussed further in section 1.6.3.
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1.6.2 Coastal Applications of ANNSs

Applications of neural networks in coastal hydroinforroatare much rarer than fresh-
water studies. The first published paper in this area was tsebtal. [144], published
in 1995. This predicted the stability of rubble-mound breaters using structural pa-
rameters, such as a permeability parameter, as well agaeargormation including
water depth and wave steepness.

A number of authors have used previous tide levels to prédiate tidal levels,
with methods similar to those used in streamflow predictidd$, 146]. ANN out-
puts have also been combined with harmonic analysis to peobiung-term tidal pre-
dictions [147]. Deo and Sridhar Naidu [148] used previousevaeights to predict
their future values. They found that the cascade correlatigorithm was superior to
back-propagation in terms of accuracy and training timeo &red Kiran Kumar [149]
similarly found that the cascade correlation algorithm efi€ient in interpolating
between monthly mean wave heights to obtain weekly values.

Tsaiet al. [150] predicted wave heights and periods at one coastastaging val-
ues from a series of other stations within Taichung harbfaiwan. Similarly, Huang
and Murray [151] used water levels at a series of locationmédict tidal currents at
an inlet of Long Island, New York. Both studies used a basic Mli&karynskyy [152]
predicted wave heights and periods at one locatidithe Irish coast using measure-
ments at nearby locations.

Tanganget al. [153] used ensemble averaging to predict sea surface tatopes
from previous sea level pressure values. In ensemble aaugragrumber of dferent
networks are trained, with fierent starting weights [154, 155]. In the study by Tan-
gang diferent samples of training data were used to train each nletwidre overall
output of the system was then computed by averaging the wuftmum all of the net-
works. The aim of ensemble averaging is to reduce the vagianerent in any single
neural network [156].

Recently, attempts have been made to predict wave paranusiagsindependent
variables, rather than related measurements at earlies timnearby locations. D&t
al. [157] predicted wave height and wave period by using wincdp®m/er a previous
period of time as inputs to a MLP. They found thaftelient ANNs were required for
fair weather and monsoon conditions. Deo and Jagdale [188]qied the heights and
period of breaking waves from values of the deep water waighheleep water wave
period and sea bed slope. They used laboratory measuretoénatis a MLP network.
El-Shazly [159] used values of temperature, pressure and ta predict monthly
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mean sea levels at Alexandria over a 7-year period. Bestisesale obtained using
a general regression neural network (GRNN). This is a typeaagsle width RBF

network in which there is a neuron centred at every pointiwithe training data
[160].

The European CLASH project has compiled a large databasevaf axeertopping
data, which is used within this study (see Chapter 3. MemkeisecCLASH project
have published a number of relevant papers. Medirad. [161] used an ANN to pre-
dict wave overtopping at Zeebrugge breakwater from thet éresboard and a small
number of hydraulic parameters. Training data was obtaus#ty scale models, but
testing with prototype data gave mixed results. The tramaaral network was used
to simulate new data, which was used to create a pseudoieatpormula with ex-
ponential form, similar to equation 1.1. Verhaeghael. carried out an in-depth study
of the data within the CLASH database [162, 163]. Pozet®. have very recently
developed MLPs for predicting overtopping dischargesgiie database [164]. They
use an ensemble approach, with bootstrap resampling frerddata. Pozueta’s study
uses an updated version of the CLASH database that was ntatldeait the time that
the research reported in this thesis was performed. It &ded that the findings of
this study will be tested further using the most recent degalat a future time (see
section 9.3).

Several authors have commented on the desirability of éxtigasymbolic infor-
mation from neural networks or inserting known relatiopshinto ANNs [165, 166].
Dibike et al. [167] showed that a neural network could ‘learn’ the pardidierential
equations representing wave behaviour, and that these¢i@ugsiaould be reproduced
from a trained ANN. The ANN is able to perform a time-step inraté-diference
scheme; given water depths arranged in a grid at time t, wiafeths at time#t1 may
be predicted for a simple flume.

Overall, research on coastal applications has been moiexhviiian that on fresh-
water applications. There has been more attempt to preejpraient variables from
independent variables, rather than using time-series dathauthors have been more
adventurous in their choice of network architecture. Dudh&sparsity of research in
this area however, a consensus has yet to appear on theffiecsite architectures and
training algorithms. The next section discusses thesesssu
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1.6.3 Design Issues

When designing neural networks, there are a number of isba¢should be taken
into account [35]. While there have not beerimient studies in the area of coastal
engineering to enable generalisations to be made, a nurhaetitmrs have considered
design issues in the context of ANN use for freshwater stuf88, 120, 122]. The
issues fall into the following categories, which are disagsin turn:

e Performance criteria

Data pre-processing

Choice of inputs

Determination of network architecture

Choice of training algorithm
e Stopping and validation criteria

The most commonly used performance criteria are predietoaracy and training
speed, both of which depend primarily on the choice of tragralgorithm. Prediction
accuracy is most commonly assessed as mean square erroy, @t8&ugh alternative
measures such as maximum over-prediction and maximum-anddiction have been
used on occasion [141, 168]. Even in cases where alterratioemeasures have been
employed, the training algorithms used have minimised tI8EMWhile researchers
within the ANN community usually assume that MSE is the besireneasure, many
coastal engineers are accustomed to using alternativeragasures such as average
error factor or average absolute error [31], which are jikelgive more useful infor-
mation when designing sea-walls. The approach used intinity $s to use MSE as
the error measure while developing of ANNs. This allows tke of standard train-
ing methods and makes comparisons with alternative ANN austistraightforward.
After various types of neural network have been develoges}, are compared using
alternative error measures, in section 7.3.

Input data should be scaled so thdtelient inputs have similar importance in train-
ing. When using sigmoid output functions, the output dataukhalso be scaled to
avoid training in the extreme ‘flat’ areas. In the case of l@psigmoid functions
this means that a range such as [-0.8,0.8] should be usehingranay also be more
effective if data with near-normal distribution is used.
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Using too many inputs is likely to slow down training and l¢adver-large net-
works [38]. It is therefore important to pre-select datedbbetraining. However, inputs
must be carefully selected on the basis of their informatmmtent to avoid discarding
useful information. Parameter selection methods inclugbeiori knowledge, cross-
correlation analysis and principal component analysise iilimber of samples to be
used in training is a related issue. Attempts have been nuaéstimate the optimum
training-test ratio. Kearns has suggested that a fixed cdt80:20 gives reasonable
results across a range of datasets [169, 35]. Amari [80] agesmula that depends
upon the size of the dataset relative to the number of freenpaters within the ANN.
Amari’s theory is discussed in section 4.2.

Data needs to be carefully selected to ensure its relipbilthile ANNSs are toler-
ant to some degree of noise, they will havéidulty identifying an underlying function
in the presence of very high variability. A particular prefw occurs in the presence of
systematic errors, which are likely to be incorporated th®approximating function
since ANNSs cannot distinguish between ‘true’ trends andesyatic errors.

Network size is discussed in some detail by Maier and Dan8ljy [Bhey point out
that small networks have greater generalisation abikiyuire less storage space, train
and respond more quickly and make rule extraction simplewéver, they also have
a more complex error surface, with more local minima. Langetworks generally
require fewer training epochs, can form more complex decisegions and are better
able to avoid local minima. However, they are computatilyretpensive and require
large training samples to give good generalisation abilty seen in the last section,
some authors have utilised pruning or constructive algoritin order to automate the
process of network size selection.

Senthil Kumatret al. [122] concern themselves with a comparison of MLP and RBF
networks. Their conclusions are inconclusive. RBF networkd@und to train faster
and to give lower errors using some measures and particalarégimes. However,
MLP networks give better results using alternative measure

MLPs have three alternative families of training algorithmfirst order gradient
descent, second order gradient descent and global metfbdsadvantages and dis-
advantages of these methods have been discussed in degdtions 1.5.4 and 1.5.5.
RBF networks have alternative algorithms available to thesdiscussed in section
1.5.7. In addition, as we have seen, some authors have useabdive training algo-
rithms, including cascade correlation and LLSSIM.
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Amariet al. have proved that early stopping should not be required viorks are
of reasonable size, i.e. if the ratio of training samplesdonection weights exceeds
30 [80]. However, for smaller datasets it is expected they estopping will improve
generalisation performance. This issue is discussedeuimhsection 4.2.

Consideration should be taken of the need to partition thiedla data into train-
ing and test data. Further partitioning of the training data training and verification
sets is also often performed, in order that a verificatiorissavailable to identify the
optimum network architecture or the time at which to stomtrey. The manner and
proportions in which the partitioning is performed is dissed with reference to the
wave overtopping dataset in section 4.3

Chapters 3-5 describe the methods used to pre-process antdsth, and to train
and assess various types of ANN. One of the aims in thesearisaptto demonstrate
that the design issues raised in this section have been tateenonsideration when
conducting that research. It is to be hoped that the resgitsried in this study will
reflect back on some of these design issues, providing esgdemncerning the design
of ANNSs for hydroinformatics. Specifically, observationg anade concerning

¢ the selection of data and itffect on network outputs
¢ the dfectiveness of various training algorithms
e choice of transfer function and it$fect on generalisation ability

e model size selection and its relationship to training atpars and stopping cri-
teria

1.7 CLASH and the development of a hybrid neural
network

As shown in section 1.6.2, coastal applications of ANNs hasen quite rare. The
main reason for this is that large amounts of data are redjtirérain ANNs and this
data was not widely available at the time. However, from #moad half of the 1990s
onwards attempts were made to collect and collate coasta) dad to utilise it in

ANN training. One such scheme is the European CLASH projedd,[171], which

has collected large amounts of overtopping data from bottien@and prototype sites.
This data covers a wide range of defensive structures andeimtcwave conditions
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Initialise and Train MLP network (Levenberg-Marquardt)

v

Add RBF neurons (Forward Selection with OLS)

;

Optimise all weights (Levenberg-Marquardt)

Figure 1.11: The three-step training process used by GL-&NN

and therefore provides an ideal basis for the training of ANNsigned for generic
prediction across a range of scenarios.

This study uses the CLASH database to train a wide range of Ald&iding
MLPs and RBF networks. A variety of training algorithms haveresed, including
variants on gradient descent and least squares optirms&irom this investigation has
emerged a hybrid network architecture with a corresponlytgid training algorithm,
which gives superior results to those from simpler architexs and training methods.

The hybrid ANN reported here contains both sigmoid and RBForeurThe train-
ing method involves a three-step training algorithm (figlukl). First a MLP network
is created and trained. RBF neurons are then selected foradtitthe network. The
output weights of both sigmoid and RBF neurons are chosen sathhey minimise
the mean square error of the network. Finally, all weightsluding RBF centres and
steepnesses, are optimised using gradient descent.

Sigmoid neurons areffective at identifying global features of an unknown func-
tion, whereas RBF neurons are able to represent more locatieas within the func-
tion. The training process used by the hybrid networks foeeadentifies the global
aspects of the function before identifying the more locatdees. For this reason we
call our networks ‘global-local artificial neural netwotK&L-ANNS). The results re-
ported in Chapter 7 suggest that GL-ANNSs are able to estimate @ccurately than
either pure RBF networks or MLP networks the input-outputtrefeship within the
CLASH data. Further, GL-ANNSs are seen to be parsimoniouseir tise of neurons,
at least when compared to RBF networks.

GL-ANNs were also tested using a range of other datasets. e Sdrthese are
small, synthetic datasets with few inputs, while otherslarger datasets with several
inputs and, sometimes, large amounts of noise. From thétsedfuthese tests it has
been possible to determine areas in which GL-ANNs perforrth agewell as some



CHAPTER 1. INTRODUCTION 44

Development/Analysis
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Data Models
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Figure 1.12: The interaction between data and models

of the limitations on their use. Some of the results also leado discussions of
various issues related to the training of hybrid networks, RBfworks and of ANNs
in general. These issues are:

¢ the need for regularisation when setting output weights

¢ the determination of optimum RBF steepnesses

the value of mixed training algorithms involving both detémistic methods and
gradient descent training

criteria for model selection, i.e. the choice of type and banof neurons

the choice of stopping criteria in training algorithms.

1.8 Overview

This section describes how the strands of wave overtoppidgaural network theory
are related within this thesis. The relationship may be ssean interaction between
data and the models used to analyse the data. This relafohak two elements:
development (or ‘analysis’) and assessment (see figuré. Di2ing development, the
wave overtopping data acts as the stimulus for a study ofaheetwork architectures.
In this phase a narrow range of datasets is considered @sLtASH dataset), but
a wide range of ANN architectures. In the assessment pHas@rocess is reversed.
A single architecture (GL-ANNS) is assessed in terms offfisotiveness in modelling
various datasets with fierent characteristics. The aim of the assessment phase is
to determine the strengths and limitations of the GL-ANNhé&szture and training
process.

This thesis may be seen as being in four parts: background]ajement, assess-
ment and conclusion. This chapter has provided a backgrautite fields of wave
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overtopping prediction and artificial neural networks, adlas describing some pre-
vious research that brings together the two fields. Chapteovges further back-

ground material, in the form of a number of mathematical méshused in neural
network training.

Chapters 3-6 present the developriamalysis phase of the research. Chapter 3
describes the CLASH dataset, including the pre-procesdintata and selection of
input parameters. The process of developing MLPs and thetsesf training MLPs
with variations on gradient descent are described in Chdpt€hapter 5 includes the
results of training RBF networks with the CLASH dataset and audision of these
results. Chapter 6 describes in detail the GL-ANN traininghad and the theory
behind it.

Chapters 7-8 describe the assessment phase. Chapter 7 givestils of training
GL-ANN with the CLASH data. Comparisons are made with RBF netwakd with
MLP networks trained with the Levenberg-Marquardt aldornt Also included are
extensive discussions of several issues arising from tiessdts. Chapter 8 describes
a number of benchmark datasets used to explore the apflicaidithe GL-ANN
architecture and algorithm and reports the results ofitrgiMLP, RBF and GL-ANN
networks with these datasets. Criteria are developed ferméating whether the GL-
ANN approach is likely to be fruitful for a particular datase

Finally, Chapter 9 concludes the thesis and makes suggsd$topossible future
areas of research.



Chapter 2

Mathematical Technigues for Neural
Networks

This chapter describes in detail the mathematical methgdsl within this thesis.

These are all techniques related to the training of ANNs. éliminary section (sec-

tion 2.1) introduces various transfer functions commordgdi by neural networks.
Section 2.2 introduces the algorithms and equations uspdrform gradient descent
optimisation, including back-propagation and severalrmapments to the basic BP
algorithm. Section 2.3 describes the Levenberg-Marqualgtirithm and gives the
equations utilised within the algorithm. Section 2.4 presehe Forward Selection
(FS) procedure used to build RBF networks. This section iredutetailed treatments
of the Least Squares and Orthogonal Least Squares methedisausptimise the out-

put weights during the FS procedure. Section 2.5 gives aenadltical treatment of
regularisation within the context of FS.

2.1 Transfer Functions

As we have seen in Chapter 1 each neuron in an ANN has a transfetidn. This
Is a simple mathematical function that takes a number oft;ypad transforms them
into a single output. Each transfer function has a numbedjpistable parameters that
correspond to the input weights of the neuron. This sectestdbes two families of
transfer functions: pseudo-linear transfer functions raaliial basis transfer functions.
Duch and Jankowski have provided a full survey of transfacfions, including com-
binations of pseudo-linear and radial based functionghi@interested reader [37].

46
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2.1.1 Pseudo-linear transfer functions

The transformation performed by pseudo-linear transfections takes place in two
steps. Firstly, the net inpu¥, is calculated as a weighted sum of the inputs, as given
by equation 2.1. The sum starts with dfsuof 0 rather than 1 to allow for a fixed bias
in addition to the variable inputs (see section 1.5.4).

P
V= inW, (2.1)
n=0

A true linear function then passes on the net input unchaigesl figure 2.1a).
However, if all the neurons in an ANN have linear transferctioms the overall output
of a multi-layer network must be a linear combination of thputs [172]. In order to
make neural networks more versatile non-linearity mushbeduced into some or all
of the transfer functions. This non-linearity generallyranluces limits on the possible
outputs of the transfer function, usually, [J or [-1,1]. This is often convenient
mathematically, since the target function may have a lichigange of possible outputs.
It also has some biological validity, since the ouput of bgatal neurons is restricted
in range [36]. Some commonly used linear and pseudo-limaaster functions are
defined by equations 2.2 - 2.7 and illustrated in figure 2.1.

Equations 2.3 and 2.4 introduce hard-limited thresholdedtrict the output range.
These functions are illustrated in figures 2.1b and 2.1c. réh@aining functions are
sigmoid functions, so called because of their S-shape. eraksave the advantage
that they are dierentiable at all points. This is essential to the operatiogradient
descent methods (see sections 1.5.4 and 2.2).

Linear function:

f(vy=v (2.2)
Threshold function:
1 ifv>0
f(v) = - 2.3
V) { -1 ifv<O (2:3)
Piecewise linear function:
1 ifv>1
fvy=4q v if-1<v<1 (2.4)

-1 ifv<-1
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Logistic function:

f(v) = 1+1e—V (2.5)
Hyperbolic tangent function:

f (v) = tanh(v) (2.6)
Bipolar sigmoid function: B

szi;Zv 2.7)

2.1.2 Radial basis transfer functions

As with pseudo-linear functions, the outputs of radial bdishctions are calculated in
two steps. The first step calculates the Euclidean distaihbetween the input and the
neuron weights, according to equation 2.8. In order to €inthe two quantities have
to be expressed as vectoandw. The subscripf indicates the individual dimensions
of the input.

(2.8)

The Euclidean distance is then used as the net input to tremetihe output of
the neurony, is calculated as a function of this net input using a trarfsiiection f, as
in equation 2.9. Since the final output depends only upon tleidean distancd, it
must be radially symmetric and centred upon the weight vexetd-or this reason, the
weight vector is commonly described as a centre and the $iaftan replaced with a
‘steepness’ parameter, since it controls the steepness of the function

y(i,w) = f(d) (2.9)

Various functions may be used in equation 2.9. Some commasdy functions
are described by equations 2.10-2.15 and illustrated imdigL2 [35].
Triangular function:

0 ifd<-1
fdy={ 1-1d if-1<d<1 (2.10)
0 ifd>1
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5 1
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Figure 2.1: Linear and pseudo-linear transfer functions
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Thin plate spline:

f(d) = d?In|d| (2.11)
Multiquadratic function:
f(d) = Vd? + o? (2.12)
Inverse multiquadratic function:
F(d)= —— (2.13)
Vd?2 + w? '
Gaussian function:
f(d)=e”® (2.14)
Radial hyperbolic tangent function:
f (d) = 1 tanh(d?) (2.15)

2.2 Gradient Descent

2.2.1 Adaptive linear elements

During gradient descent training, the error gradient wébpect to the weights in a
network is calculated and weight changes are made in thetidineof the error gra-
dient. The error gradient is a vector quantity. It is therefoecessary to calculate
the individual partial gradients with respect to each nekweeight. As long as the
steps made during each weight update are small the direxfttoavel should be in the
direction of the steepest gradient.

The simplest possible network contains neurons with lirseivation functions
and no hidden layer. Such networks have been described &stiagllinear elements’
(ADALINE) [173]. The inputs pass directly to the output nens and, for a particular
inputX, the output of each output neuron is given by equation 2.ir&eSADALINES
contain no hidden layer, the local input vectas identical to the input to the network,
X. Equation 2.16 is therefore identical to equation 2.1 ekémpthe replacement af
by X.

p
Y= XaWy (2.16)
n=0
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Figure 2.2: Radial basis transfer functions
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The function to be minimised by ADALINE'’s is the squared eyie. If the target
output for the output neuron tsthe squared error is defined by equation 2.17.

E=(t-y)? (2.17)

Substituting fory and dtferentiating with respect to the weight vectorgives
the error gradien% of equation 2.18. The vector gradient may be separated into
individual partial gradientg’wij, given by equation 2.19.

dE
v =2(t-y)x (2.18)
OoE
8_W,- =-2(t-y) X (2.19)

In order to minimise the error, we wish to move in the oppadittection to the error
gradient. If we introduce a learning rajethe individual weight updates are then given
by equation 2.20, in whicly is a positive real number. The algorithm incorporating
this weight update is known as the ‘least squares rule’ sintas been shown that it
will lead to convergence to the least squares solutionhgareappropriate choice gf
[65].

AW; = 7 (t-y) (2.20)

The discussion so far has considered a single input vectoenbnsideringn
input patterns, the relevant error function is the sum ofased errorsS, defined by
equation 2.21. The overall error gradient is given by equa#.22 and the weight
updates by equation 2.23.

Sw) = (ti-y)’ (2.21)
i=1
ds m
G = —2; (t - y) % (2.22)
AW =7 " (t = Vi) X ] (2.23)
i=1

The reader’s attention is drawn to thétdrence between equation 2.20 and equa-
tion 2.23. The latter implies that the weight changes froimpatterns should be
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summed before being applied to the network. This processas/ik as ‘batch’ we-
ight updating. The alternative procedure, representedgbteon 2.20, is commonly
described as ‘stochastic’ weight updating. It is to be eigubthat the batch update
procedure will converge to the global minimum more quicklye to superior gradi-
ent information. However, the stochastic method is oftexfgered when solving real
problems. This issue has been discussed in section 1.5hdsake choice of learning
rate.

2.2.2 Multi-layer perceptrons

Transfer functions in most MLPs are not restricted to linkeactions. In order to
extend gradient descent, the least squares rule must belexit¢o allow for a variety

of transfer functiond. The gradient of the SSE with respect to the input weights of
an output neuron is then expressed by equation 2.24, in whishhe net input to the
given neuron given thieh input.

ds 4 )
= 221] (t — i) " (W)X (2.24)

When compared to equation 2.22 it is seen that an extra téifw), has been
introduced, to reflect the dependency of the outputs on Hrester function. When
using stochastic weight updates, the individual weightistiipents may be expressed
as in equations 2.25-2.26.

6=(t-y)f (v) (2.25)

AWj = 7]6Xj (226)

Equation 2.25 shows that there is a factoicommon to the updates of all weights
of a particular neuron. For this reason this training rulebecome known as the ‘delta
rule’. The weight updates are also seen to be proportiorthktéocal input vectok.

The greatest diculty with the use of multiple layers was the problem of ctedi
assignment, first identified by Minsky in 1961 [174]. The gevb may be seen as one
of identifying the extent to which a particular weight in awerk is responsible for
the final output of the network. This is required in order teess the degree to which
a particular weight should be adjusted during training. pDtiheurons have a direct
effect on output values, and hence on SSEs. Hidden neurons maweit@ct éfect on
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outputs, in that theyfect the inputs to the output neurons. Itis therefore mdtecdlt
to calculate their fect on the final output values.

Provided the hidden and output neurons hav&ed@ntiable functions, there is a
solution to the problem, using the chain rule. Equation 3f&6ved that output neuron
weight updates that achieve steepest gradient descembg@a@ fional to local gradients
and to the local input vector. In a multi-layer network, théstor is no longer the same
as the overall input to the network and is therefore denoyeidrather thark, leading
to equation 2.27.

AWJ' = 7]5ij (227)

i is in turn dependent on the outputs from the previous layereofons. Applica-
tion of the chain rule yields the dependence of the SSE onitlaeh layer neurons,
and hence the weight updates required for steepest gratksoént. These are given
in equations 2.28-2.29, in whighandu are the transfer function and net input, respec-
tively, of the jth hidden layer neuron.

5j =g (W) ) dwig (2.28)
k

Aw; = 76,% (2.29)

Aw;; is the weight update for théh weight of thejth neuron in the hidden layer.
The k subscript refers to the neurons in the output layer. Thusdméribution of the
hidden neuron to each of the output neurons is summed.

The ¢ values calculated using equation 2.28 may in turn be passekl to the
previous layer if there are two hidden layers, and so on. Irsrreason, the training
rule has been described as the generalised delta rule [@dGhartraining algorithm is
commonly known as back-propagation of error or ‘BP’.

2.2.3 Modifications to back-propagation

This section gives a mathematical treatment of some motiditato BP, as described
in sections 1.5.4 and 1.5.5.
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Momentum

The introduction of momentum into gradient descent tragrépeeds up convergence
by introducing a variable learning rate. When successivaigsdre in the same direc-
tion the algorithm emphasises the weight changes. On tlee bénd, when successive
weight changes are in opposing directions, the size of thates is reduced. At theh
epoch, the weight updates are given by equation 2.30, inhwhi¢ (n) andAw; (n — 1)
are the current and previous weight updates, respectively.

Aw; (n) = s (n) X (N) + cAw; (N - 1) (2.30)

The momentum cd&cienta is constrained such thata < 1. The dfect of this
term is therefore to add a fraction of the last update to tmeeatiupdate.

Weight Decay

Weight decay aims to reduce network overfitting by addingreafig term to the error
function [81]. The penalty term is commonly chosen to be then ©f squares of
the network weights. The error function is then given by eigua2.31 and the error
gradient for thath weight is given by equation 2.32. The weight decay parameter
controls the level of weight decay, or ‘regularisation’paed during training.

1
E=Eo+ E/IZW? (2.31)

6 = 8o — AW, (2.32)

Simulated Annealing

Simulated annealing tries to avoid becoming trapped inllecar minima by using a
fairly high learning rate, but disallowing some weight cges. In order to encourage
convergence a pseudo-temperatlirés introduced. This parameter determines the
probability of a weight change being made. The temperasureduced during training
and the probability of a weight change being performed ismgby equation 2.33.

p(Aw) = &1 (2.33)

An annealing schedule must be introduced. This commonlydas an exponen-
tial drop in temperature, with training stopping when a fixesnber of epochs have
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led to no reduction in error [83].

Quickprop

Quickprop was introduced by Fahlman [84] and has been péatly associated with
the cascade correlation algorithm. The weight updates @amilated according to
equation 2.34, in which(t) andg(t— 1) are the current and previous values of the error
derivative.

_ g(t) _
Aw (t) = gi—1)- g(t)AW (t-1) (2.34)

Its operation is similar to that of gradient descent with neotam, with the previ-
ous weight update taken into account when calculating theectupdate.

2.3 Levenberg-Marquardt method

The Levenberg-Marquardt method is a second-order methdsl @6]. Rather than
finding the error minimum directly it aims to locate the zefale error gradient. The
zeroa of a univariate functionf may be found using the Newton-Raphson method
according to the iterative formula of equation 2.35.

_ f(an)
f/ (an)
When extended to a multivariate functianbecomes a vector and the derivative

(2.35)

ant1 = An

of the function is now a vector derivative, as in equatior62.3

f (an)
V (an)

In the case of neural network optimisation, we wish to find 2beo of the error
gradientg with respect to the network weights. Singes a vector quantity and is itself

(2.36)

Uny1 = An —

a derivative, we have to work with the Hessian makiixequation 2.37).

g(wWn)
H (wn)

Each element in the Hessian contains second derivativekeoérror function,

Wn+1 = Wn - (2.37)

summed over all training patterns. However, the error nredsius related to the out-
puts and target outputs by equation 2.17. The elementsniiitiei Hessian therefore
contain values like that in equation 2.38, summed acrogeaaling patterns.
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One can calculate local values of the first derivatives. &lae thes values used
in the gradient descent method. The second derivativegialibve equation are disre-
garded when estimating the Hessian. This is a reasonabteagsince the erroyt)
is expected to be small. Further, we expect the valuey eft] to have an approxi-
mately Gaussian distribution with mean zero. When summedalerge number of
training patterns the second terms are therefore likelatael out to a large extent.

Having obtained an approximation of the Hessian, the Nes®aphson method
may be used to find the nearest zero of the error gradient. Taldgms may arise.
Firstly, the local Hessian estimation may not be an adeqegi@sentation of the un-
derlying function. Secondly, the second-order algorithynitself may approach a
maximum or saddle point on the error surface, rather thanrenmim. In order to
avoid these problems, the Levenberg-Marquardt methoddes an additional gradi-
ent descent term. The weight adjustment vector is then diyerguation 2.39.

AW = (H + Adiag(H))*g (2.39)

The parameten adjusts the relative weighting given to Newton’s method tnd
gradient descent. If the error falls after applying the weagdjustmenty is decreased.
If, on the other hand, the error increases, the weight cleaigereversed, is increased
and the weight changes are re-calculated.

2.4 RBF centre selection

Forward selection of centres (FS) is a method used to chbeseentres to be used
within hidden neurons of a RBF network. Candidate centres atgated to the input

vectors of the training set. The task is to add one centre iate@ftom the available

centres, so as to give the greatest possible reduction ina88Eeach addition. This
section describes the mathematical underpinnings of thaéiSod.

2.4.1 Fully interpolated networks

Early work on RBF networks focused on fully-interpolated natike. These networks
contained the same number of hidden neurons as there wenergkein the training
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set, with one centre corresponding to each input vector. oliteut layer performed

a weighted sum of the radial basis function outputs, i.eoatput layer neurons had
linear transfer functions. We may express the hidden laygguts as a square matrix
F, whose elements;; represent the output of theh neuron given théth input. This
matrix is commonly called the ‘design matrix’ [176]. As ddabed in section 2.1.2,
the outputs of radial basis functions depend upon the distartween the input and
weight vectors. For this reasdnis necessarily symmetric. The final outputs are
related to the hidden layer outputs by equation 2.40, in imhicare the hidden-output
weights.

Y1 Fi1--- Fim Wy
=l i s (2.40)
Ym le U me Wm
The output weights are then determined using equation pri/jdedF has an
inverse.

w=F1y (2.41)

Micchelli [177] has proved thdt is necessarily non-singular for a number of func-
tions, including multiquadratics, inverse multiquadcatand Gaussian functions (see
figure 2.2), provided that none of the input vectors are idahtAn exact solution to
equation 2.41 must therefore exist.

2.4.2 Least squares solution

This section considers a situation in which only a subsehefavailable centres are
used, so the number of hidden neurons is less than the sibe ¢faining data. One
must now distinguish between the full design ma#iand the design matrix for the
network which we are considering,. In this situationA is non-square and an exact
solution is not possible: the actual output vegtavill not be identical to the target out-
put vectort. However, the pseudo-inverse gives the least squaresmototequation
2.40. This solution is given by equation 2.42 [176].

w=(ATA) ATt (2.42)

It would be possible to try all possible combinations of inpectors, calculate the
output weights and hence the final outputs before choosagetwork with the lowest
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error function. However, there ardfieient ways to calculate the reduction in error
upon adding a single neuron. First, the projection mafixis calculated according
to equation 2.43. This matrix is called the ‘projection matbecause it projects the
vectors withinF, which forminput patterns arexdimensional, into the space of the
ANN model, which forn hidden neurons is-dimensional.

P=ln—A(ATA) ATt (2.43)

The SSE is then given by equation 2.44.

S=t"P%t (2.44)

2.4.3 Forward Selection

The use of the projection matrix does not in itself lead toraprovement in computa-
tional dficiency, since it is still necessary to invert an m-by-m mettiobtain the SSE
for a network. However, when neurons are added one at a thmes ts an ficient
method for updating the projection matrix, given by equao45. In this equatiofy
is a column in the full design matrix.

Panf‘-JrPn
Further, the reduction in SSE upon adding the neuldn the network may be
obtained as equation 2.46. By running through all possibigres (J values) it is

possible to identify the one which will give the greatestuetibn in SSE at each stage
[176].

(2.45)

Pni1=Pn—

(tT Pan)2

2.46

Sh—Shi1 =

2.4.4 Orthogonal Least Squares

A further improvement in computationaffeiency is achievable by factorisirtginto

an orthogonal matri¥ and an upper triangular matrix [104]. Each time a neuron is
added to the network an adjustment must be madeaocording to equation 2.47 in
order to keep the columns orthogonal to each other.
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The benefit is that the reduction in SSE may now be found wittieicomputation
of the projection matrix, according to equation 2.48.

(2.47)

v ) (2.48)

fIf

Sh—Sni =
J

2.5 Regularisation

Regularisation is very commonly introduced into the FS atgor. During regulari-
sation, a penalty term is added to the error function in otdewoid overfitting, indi-
cated by very large connection weights [98]. Thus, instdadinimising the SSE, one
would minimise the function in equation 2.49(f) acts as a ‘stabiliser’, smoothing
the overall functionf.

S= (i~ )+ AP(f) (2.49)

A is aregularisation parameter, aRdanay take diferent forms. A commonly used
stabiliser is the sum of squared weights. The approach therclear parallels with
the introduction of weight decay into gradient descenntrgy of MLPs (see section
1.5.4). The solution that minimises the cost funct®is then given by equation 2.50,
in whichl, is the n-by-n identity.

w=(ATA +1,) ATt (2.50)

The reduction in SSE upon adding a single neuron may be eadolibccording to
equation 2.51 if using least squares or according to 2.5Rinvthe orthogonal least
squares paradigm.

(tT P f J)2

= 2.51

Sn - Sn+1

()

S =Sz 2 2.52
T T AT, (2:52)
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2.6 Summary

This chapter has described a number of mathematical tasbsitipat are involved in
the training of ANNs. Some techniques have particular seiee to later chapters in
this thesis:

e Back-propagation, the Levenberg-Marquardt algorithm amsnentum terms
are used in the training of MLP networks described in Chapter 4

e Forward selection with orthogonal least squares and regaten are particu-
larly relevant to the training of RBF networks reported in Cleapt

e The Levenberg-Marquardt algorithm and Forward Selectiath Wrthogonal
Least Squares provide the basis for the GL-ANN algorithntdieed in Chapter
6.



Chapter 3

The CLASH Dataset

CLASH is the acronym for ‘Crest Level Assessment of coastaicBtres by full scale
monitoring, neural network prediction and Hazard analgsipermissible wave over-
topping’. Itis a European Union funded project that inclsitt@rteen partners in seven
different countries. One of its objectives is to develop a gemeethod for the predic-
tion of wave overtopping rates using artificial neural netsgoas a tool [171]. Over-
topping rates are quoted as mean rates over the period ofra &isually about 2
hours for full-scale measurements) for a unit length of whlley therefore have units
m3/s/m.

3.1 Data collection

As a first step towards the generic method a database has teed¢ed: This database
contains data from both laboratory scale-model tests amd full-scale measurements
at operational sea-walls. Data falls into two categorigsgrdulic and structural. Hy-
draulic data describes the observed sea-state in termswvef eghts, wave periods,
wave steepnesses and angle of wave attack. In some cases aeddable at the toe
of the structure and in other cases for deep water near thetste. Structural data
are a parameterised representation of the sea-wall inigonegtdividual variables are
mostly dimensions of parts of the structure, suclRgghe crest freeboard, @, the
berm width.

Much of the data in the database was collected before the cftéine CLASH
project and in some cases did not contain all of the requiegdmeters. It has there-
fore been necessary to calculate estimates of unknown péeesrfrom known ones
[162]. There are three main gaps in the data. In some casealiipddata is only

62
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available in deep water. It is then necessary to run a nualesiculation in order to
obtain values at the toe of the structure. Processing bytimilating waves nearshore’
(SWAN) program allows wave heights and periods at the toaestructure to be es-
timated from their deep water counterparts plus infornmationcerning the foreshore
characteristics [163]. In some casgs 104eep the spectral wave period at deep water,
is not available either but other measurements of wave gdrave been measured.
This problem is solved more easily, SiNnCg-104eepand the peak wave perion, geep
are related approximately by the simple relationship ofatign 3.1.

Tpd
Tm—l,O,deep: —;_ ;_ep (3.1)

Finally, there are dierent ways of calculating the significant wave height. Ingom
cases the significant wave height is quotedHas e rather tharHo0e'. The method
of Battjes and Groenendijk [178] is then used to calculatettt& variance of the
water surface elevatiom, from which Hy310e may be obtained using the simple
relationship of equation 3.2.

HmO,toe = 4\/ﬂ (3.2)

As we have seen, parameters at the toe of the structure majydodeded from their
deep water counterparts, but the opposite is not true. Téje water parameters there-
fore contain some gaps. For this reason, and also becaugevdéer characteristics
affect wave overtopping only indirectly, it was decided thadiaulic parameters at the
toe of the sea-walls would be used in this study. This resualfgteen independent
parameters, of which four are hydraulic and eleven aretsiraic In addition, there are
thirteen composite parameters, which are combinationsroésf the independent pa-
rameters. Finally each datum (set of variables) has a umguoee, a ‘reliability factor’
and a ‘complexity factor’. The reliability and complexitgdtors measure the accuracy
of the data. Data with a high reliability factor were measuusing techniques with
considerable variability. High complexity factors indiea complex sea-wall structure
that is not fully represented by the structural variablagthier details are provided in
section 3.2. The available input variables are listed itet84l and illustrated in figure
3.1

The database is currently at an interim stage. Due to theniteadhdifficulties in

1H, 310 is defined as the average height of the highest third of thesvaithin a random wave-train
at the toe of the structure whereldsooeiS @ wave height defined as four times the standard deviation
of a random wave-train and is obtained from spectral aralysi
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D

Symbol Variable description
Hmo.toe significant wave height at the toe of the structure
Tr-1.0t0e mean wave period at the toe of the structure
B angle of wave attack relative to the normal
h water depth at the toe of the structure
hy water depth over the toe of the structure
B: width of the toe of the structure
Vi roughnespermeability factor of the structure
cotay mean cotangent of the slope, upward of the berm
coteg | mean cotangent of the slope, downward of the be
R: crest freeboard of the structure
B width of the berm
hg water depth over the berm
Ac armour crest freeboard of the structure
Ge width of the structure crest
Sm-10 wave steepness
RF reliability factor
CF complexity factor

Table 3.1: Variables in the CLASH database

Figure 3.1: Cross-sectional view showing sea-wall stratfp@arameters

64
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collecting data, parameter values are often highly vaeiabh some cases this has
resulted in very similar, or even identical, inputs haviagdically diferent measured
overtopping rates. A further problem is the existence ofitarbpots’. These are areas
of the data that represent viable structures, but for white data is available. An
objective of the CLASH projectis to rectify the problems aififtg data and white spots
by generating additional data. This will be achieved thtongmerical simulation and
through laboratory tests and should result in a ‘cleanddskt. However, the database
as it stands is very ‘noisy’.

3.2 Data selection and pre-processing

Since some data is from small-scale models while other ddtain full-scale proto-
types, there is a very large variation in raw parameter \&llie order to prevent this
large variation from obscuring functional relationshipsmposite parameters were
used in ANN training. Lengths were converted to their ‘disienless’ counterparts
by dividing by the wave height at the toe of the structittggce. FOr this reason, this
parameter was omitted from training.

Wave period and overtopping rate were converted to dimatess quantities us-
ing appropriate powers dfimo10e and the acceleration due to gravity, The process
of creating dimensionless quantities is well-establisaed is commonly known as
‘Froude’s law scaling’, since it is based on Froude’s lawiofikrity. This states that
two system#\ andB have dynamic similarity if the ratio of the inertia force teetgrav-
itational force is equal for the two systems [27]. This lawssially stated in terms of
the Froude numbeF;, which is a constant (for dynamically similar systems) with
value given in equation 3.3, in whiahis a characteristic velocity,is a characteristic
length andy is the gravitational acceleration.

F=—L (3.3)

N

The velocity in systenA\is then related to the velocity in systdBrby equation 3.4.

Ua Ug

Viaga  +/Ie0s
Given that velocitylengthtime, the characteristic times in the two systemsre
related according to equation 3.5.

(3.4)
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Figure 3.2: Saturation in a sigmoid transfer function

%TA = %TB (35)
[a lg

There have been some concerns as to the validity of this laenwapplied to fresh-
water laboratory tests and full-scale seawater scenagasion 1.3). In particular, vis-
cosity and surface tension do not scale with physical dimass However, research
suggests that errors incurred from Froude law assumpti@nikely to be small [27].
From this point onwards, the subscript O is used to indicatemgensionless quantity.
For exampleR, is the dimensionless crest freeboard, equ%.

Equation 3.5 implies that, if lengths are scaled accordmgame characteristic
length, times should be scaled proportional to the squaseabthat length divided
by /0. The non-dimensional mean wave peribglis therefore given by the quantity
Tm—l,O,toe Hmooe "

The wave overtopping rate has umités * and must therefore have a scaling factor
that is the product of the scaling factors for a length andafeelocity, i.e. \/@ The
non-dimensional wave overtopping rakeis therefore given by\/g%m.

Some of the training variables were transformed beforeitrgiin order to achieve
near-Normal distributions, since it is known that trainisgnore éfective with Nor-

mally distributed data [179]. Transformations considevezie inverse and natural
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logarithm. Visual inspection was used to determine whetiheise one of these trans-
formations, resulting in the use of T, In (hy) andIn (By) as inputs andh (go) as an
output. Normal probability plots for raw and transformeda&hles are given in figures
3.3-3.6.

All variables were linearly transformed (‘normalised’)arder to give them a range
of [-0.8,0.8]. The result is that all input variables have a similéfieet on weight
adjustments, rather than inputs with large values dommgataining [180]. In addition
this technique avoids ‘saturation’ [179]. This phenomepcaours as a result of the
shape of sigmoid functions. These functions have the lagyaslients when the net
input has a moderate value (close to zero). At more extretuesshe gradient is very
low as illustrated by the red ellipses in figure 3.2. If tragpimoves any of the neurons’
outputs into this area there is likely to be a reduction imtrey speed. In some cases
a neuron’s weights becomes completely stuck in one aredinig@o a reduction in
predictive accuracy.

In order to reduce redundancy in the data and hence speedinmdy, not all of
the potential fifteen inputs were used in neural networking. The wave steepness,
Sn-10 Was not measured directly but was calculated from othempeiexs (see equa-
tion A.6 in Appendix A). It therefore contains no additiomadlormation and was not
used in training.
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Table 3.2: Correlation cdicients for the CLASH data parameters
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Input parameters | Output parameter

Tm—l,o,toe \/ g/ Hmo,toe
B
ht/ HmO,toe
Bt/ HmO,toe
Vi g
cotyg V930100
Rc/ HmO,toe
Bh/ HmO,toe
hb/ HmO,toe
Gc/ HmO,toe

Table 3.3: Parameters used in ANN training

Three pairs of structural parameters were highly corrdlatigh each otherd >
0.8) and only one member of each pair was therefore includédining. These were
R. andA., h andhy, andcot(aq) andcot(ay) (see table 3.2). The remaining parameters
are given in table 3.3.

One other interesting piece of information that may be exécfrom the correla-
tion codficients is the correlation with the outplm(qy). Predictive variables which
correlate highly with the output are likely to have greatexdictive power. The input
variables come in the following order, with the variablethihe largest values (11f-q0|
first-

Ry > vi > A > G > IN(Byg) > hy > 1/To > cot(ay) > cot(ag) > In(hyg) >
hg > B > B

This information should be treated with care, since coti@bacosficients only
measure the degree of linear correlation between variabllesre may be non-linear
dependencies that are not revealed by this measure.

The complexity factor (CF) reflects the extent to which theapaaterised represen-
tation within the database is an accurate description gbllysical structure. Approx-
imations have been made in the process of parameteris&oexample, the berm is
assumed to be horizontal. In cases where the berm is nooinéaiz an approximation,
or ‘schematisation’, is made: the sloping berm is replaged horizontal berm, with
the slopes above and below the berm adjusted such that thimps®f the crest and
toe of the wall are unchanged, as illustrated in figure 3.3]16

In cases where the strucure is simple and is accuratelyideddny the database
parameters, the data is assigned a complexity factor (CF)ldbdvever, when approx-
imations have been made during the parameterisation, CF akayalues of 2, 3 or
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‘true’ structure

crest

- == = SChematised’ structure

toe

Figure 3.7: Schematisation of a structure with a non-hotaidoerm

The reliability factor (RF) reflects the technique used to snea overtopping vol-
umes. For practical reasons this measurement may encaomgiderable diiculties,
particularly for prototype measurements. RF may also takeegabetween 1 and 4
inclusive. The detailed determination of CF and RF paraméeasomplex process
and goes beyond the scope of this study. Further details/aialale in [163].

Data with high RF or CF factors have greater variability and tagrefore less
useful in neural network training. For the purposes of nenedwork training and
testing, only data with RF values of 1 or 2 and CF values of 1 hagesfore been
used.

The aim of this study is to predict overtopping rates. Fos tieiason, data with a
zero recorded overtopping rate has not been included. Tiesdeen some debate
concerning the meaning of ‘zero overtopping’, with somesagshers treating values
below 10°m?/m/s as zero. One reason for doing this is tlgatalues near or be-
low this rate are particularly flicult to measure accurately. However; 4®3/m/sis
considered to be the cutaate above which overtopping is considered dangerous to
high-speed vehicles and may cause damage to buildings ¢(gee fi.1). Given that
the primary practical use of wave overtopping predictiomisazard warning systems
it seems foolish to exclude data in this region. All data vathecorded overtopping
rate above zero has therefore been included, althoughnitrigases the variability of
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the data.

Filtering the data such th@tF = 1, RF = 1 or 2 andjp > 0 removes approximately
half of the data within the database. This leaves 3053 iteintata, which is still
a large sample for ANN training and testing. Due to the highaality and high-
dimensionality of the data, however, a large sample sizedsa $ be very valuable.

3.3 The nature of the CLASH dataset

The preceding two sections have considered the colled@ection and pre-processing
of the data within the CLASH dataset. This section considdratwthe final dataset is
like. Firstly, the distribution of the data is consideredecfon 3.3.1 examines the
marginal distributions with respect to individual paraeret Then section 3.3.2 in-
vestigates the overall multivariate distribution of theéadaparticularly the degree of
clustering within the data. The remaining subsectionsagptelationships between
the input and output parameters. Section 3.3.3 considermsxient to which this rela-
tionship may be approximated by a simple exponential matatiip, while section 3.3.4
assesses how accurately the input-output relationshimmdmke may be described by
linear regression, as a means of assessing the linearitp(olinearity) of the data.

3.3.1 Marginal distributions

Despite the transformations described in section 3.2etl@main some irregular fea-
tures of the dataset. An examination of the marginal distitins reveals the following-

¢ 95 % of the data has a wave attack anglegf O°. If neural networks are trained
with this data, their accuracy in predicting oblique waviaek is likely to be
quite poor.

e 78 % of the data has a zero toe widBy, Again, prediction for structures with
significant toe width is likely to be inaccurate.

¢ 85 % of the data has equal gradients above and below the b&imexplains the
high correlation coficient for the two parameters, mentioned in the last section.
Only the cotangent of the slope below the becwt(aq), has been used in ANN
training and assessment.

e The roughnegpermeability coeeficient; takes a limited range of values: 56%
of the data have;=1.0, 21% havey;=0.55, 15% have/+=0.4 and only 8%
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have other values (between 0.55 and 1.0). Intermediatesaltly; represent
a ‘white spot’ in the data, like the area of non-zgrand non-zerds;. An aim
of the CLASH project is to fill in white spots in the data, by riummadditional
laboratory scale tests. It is to be expected that the finalbdeste will therefore
contain a fuller set of data, allowing more accurate préasictvithin these areas
[181, 182].

3.3.2 Data clustering

The distribution over marginal distributions has been aered in section 3.3.1. It
is more dificult to describe the multi-variate distribution as a whdlawrenceet al.
estimate the overall spread of the data by plotting k-neéaesghbour (K-NN) density
estimates for dferent datasets [183]. The K-NN technique takes an integanpeter

k. For each point within a dataset it finds theearest points. It then finds the volume
of the sphere required to contain these poiMtsand estimates the data density around
each point a&/V [184].

Histograms of the data density may be plotted to indicatesgitead of densities.
For evenly distributed data we expect such a graph to shovarp gieak, as the data
density is equal at all points in data-space. On the othed lgata that is clumped into
localised clusters with sparse areas between the clustkéshaw a wide variation in
data densities. The histograms of figure 3.8 are typical giilgiclustered data. The
data densities have been scaled to have a median of 1.0. ldgweere is considerable
spread of densities between the values of 0.0 and 1.7, amgeat&l of densities, with
over a third of the data having densities above?1.7.

A physical interpretation of the clustering behaviour isgble. Data has been
collected from a wide variety of defensive structures, \sels of data usually collected
for each structure, or family of structures. We might therefexpect clusters to appear,
each one representing afférent type of structure, e.g. smooth near-vertical wall,
rubble mound breakwater, etc.

Lawrenceet al. use the spread of the data to predict whether a dataset isapore
propriately modelled using neural networks with ‘local“global’ transfer functions.
They cite the interquartile range as a summary measure vaities over 1.2 favoured
by local functions and lower values favoured by global fiored. The interquartile

2The large bar on the righthand side of the graphs (more eigibl the linear graph than on the
logarithmically scaled graph) indicates data densitieh walues of 10 or above. This data has been
aggregated in order to fit it into the graphs while retainirrgasonable scale.
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range for the CLASH dataset is 2.4, which indicates that itrisngly favoured by
local methods. This prediction is tested in the next two t&&p which model the
CLASH dataset using, respectively, global functions in threnf of MLP networks and
local functions in the form of RBF networks.

3.3.3 Exponential relationships

When designing neural networks, it is often useful to buildpknowledge into the
training process, so that the network can concentrate onifgpunknown structure in
the data. From past experience it is known that there argaeships between some
of the data variables. In particular, it is known that an exgial function gives a
reasonable fit to the dependenceebn Ry andT,, represented by the Besley equation
described in section 1.3 and restated as equation 3.6 feen@nce.

_BP") (3.6)

To

This relationship gives further justification to the prose$ taking the logarithm
of go and the inverse of,. These transformations were introduced in section 3.2 as a
means of achieving a near-Normal distribution. Howeveazyttould also be seen as a
way of buildinga priori information into the training process.

Figure 3.9 plots the predictions of the Besley equation agjanmeasured values of
Jo- Itis seen that an exponential function gives a reasonatilaate of the relationship
betweerR,/ Ty andqg, although the particular values AfandB tend to give a conser-
vative estimate of the overtopping rate, i.e. the overtogpates predicted are usually
slightly higher than the measured rates. The remainingree in the predictions may
be due to three factors-

(o = ATpex p(

e non-linearities in the functional relationship betweea thain variablesR,, Ty
andqo).

¢ effects due to the other variables. In particular, we might ekfee detailed
geometries of the defensive structures to have féecethat would appear as
if overlaid over the gross feature of the structure, i.e. dlmensionless crest
freeboardR,.

¢ variability in the measurements due to imprecision in maaguechniques and
the dfects of factors not included in the parameterisation used.
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Figure 3.8: k-nearest neighbour density estimates for theSH dataset
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Besley output vs measured output
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Figure 3.9: Besley predictions compared to measured oygrtgpates

In using an ANN to model overtopping it is hoped that the fingi features will be
identified due to the inherent non-linearity of the ANN ammb. Further, thefects
of variability in the data should be minimised due to theiggbdf neural networks to
interpolate between noisy data.

3.3.4 Linearity of the CLASH dataset

The last section identified a relationship betwé#iy) andR,/To, while recognising
that there are additional factors thafeat the input-output relationship. This section
aims to go further, by putting a value on the extent of noednity within the underly-
ing function and by considering théfect of all of the input variables.

Linear regression analysis was performed on the CLASH datd$e data used
was selected and pre-processed as described in sectiohti®2esulting studentised
residuals are plotted against the fitted outputs , i.e. eséisnof normaliseth(qp), in
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studentised residual
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Figure 3.10: Plot of studentised residuals vs. estimggealter linear regression on
the CLASH dataset

figure 3.10. For datasets which have an approximately limgart-output relationship
we would expect the distribution of residuals to be independfIn(qy). For the
CLASH dataset this is seen to be partly the case. Howevergtiduals are seen to
be higher for lowln(gp) values. TheR? value obtained from regression analysis is
0.42. This may be interpreted as implying that about 42% efvdriance in the data
may be ‘explained’ using linear combinations of the indefstt parameters, leaving
a considerable non-linear component of the function to Ipda@ixed.

3.4 Summary

The treatment of the CLASH dataset in this chapter may be suis@dbas follows.
Data has been selected to remove the less reliable dataemdrtables with the most
explanatory power have been selected. All data has beeratisea to allow for vari-
ability in the scale of dferent parameters and to allow comparisons between stesctur
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at widely diferent scales. Some parameters have also undergone matatinans-
formations in order to give near-Normal marginal distribos.

The characteristics of the CLASH dataset may be summarisédllas’s. The
CLASH dataset is currently noisy and has a number of gaps, loitévgpots’. There
Is considerable clustering of the data. Some evidence ptanta degree of linear-
ity within the data. However, there are also considerablelimear elements in the
relationship between the independent parametersrg(og).



Chapter 4

CLASH prediction using MLP
Networks

4.1 Introduction

The theory behind the training of MLP networks has been émxethin detail in sec-
tions 1.5.4 and 1.5.5. As explained in section 1.6.3 theze@arumber of design issues
that have to be taken into account when creating neural me$wdt is becoming in-
creasingly accepted that there is not a single ‘best’ amgpraa designing a neural
network, and that the optimum approach depends upon theedatader consideration
[36]. This chapter therefore considers how MLP networks ivest be applied to the
specific problem of wave overtopping prediction.

Section 4.2 reports the results of a number of pilot studidsch were designed
to identify the optimum training parameters to be used irdigma descent training.
Section 4.3 describes the technique used to select the wptiarchitecture, while
section 4.4 describes the overall method used to train thweonks. The results are
reported and discussed in section 4.5.

4.2 Gradient Descent Pilot Studies

The results of BP training are known to be dependent uponwsti@ining parame-
ters. In general, the optimum values of these parametediféeeent for each dataset
and cannot be determined from theory alone. A series of gilaties were therefore
performed in order to identify the mosffective parameters prior to the main study.
Each pilot study involved a series of tests aimed at narrgwiown optimum, or near

82
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optimum, values for one or more of the following parameters-
e mode of weight updates (batch or stochastic)
e |earning rate
e stopping criterion and maximum number of training epochs
e weight initialisation ranges
e linear vs. sigmoid output neuron

e momentum cogicient

4.2.1 Pilot study 1: Learning rates and weight update mode

In the first set of tests MLPs containing between 5 and 20 madéerrons were created.
10 random splits of the data were made to create separaia@)yesized training and
test sets. For each architecture a variety of learning vagées applied to the networks
and each network was trained 10 times. Each of the 10 runsheadame starting
weights but used a flerent selection of the training data. All network weightseve
initialised to small random values in the rang®[1, 0.1]. Training was continued for
5000 epochs and both training and test errors were recokaey £00 epochs.

Figures 4.1 and 4.2 show the MSEs on the test and trainingelataespectively.
A range of learning rates were applied in stochastic mode,each learning rate is
represented by a fierent line on the graphs. MSE values are quoted in terms of the
normalised values dfy, which have a range of [-0.8,0.8] (see section 3.2). The best
results are obtained with a learning rate of 0.02. The optinmidden layer size is
13, with a resultant test MSE of 0.0136 (averaged over alluk®). This average
error, if applied equally to all datapoints, is equivalemén error factor in the actual
(unnormalised) value afy of 3.2.

When comparing figures 4.1 and 4.2 it is clear that the test emding errors
track each other very closely. The lines on the two graphsharefore almost exactly
parallel, with a diference between the training and test errors of approxignate02.
This suggests that the training error is a good guide to ttesteor. It also implies that
overtraining is not occurring to a great extent: if overtrag was ocurring, we would
expect networks that result in a low training error to havegh hest error, as a result
of overfitting the training data.
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Figure 4.3: Progression in test errors with batch weighttgs]

In order to test whether stochastic weight updates wereekedhoice, batch up-
dates were also investigated. However, it provefialilt to find a satisfactory learning
rate. During batch updates, the weight updates calculated&ch input vector are
accumulated and applied after all training vectors haven lpresented. Since there
are approximately 1500 training vectors, the accumulasdges could be up to 1500
times the size of the stochastic weight updates. In ordechge stability one might
expect the learning rate to be of the order of 1500 times smidan that for stochastic
weight updates. However, there is substantial cancetiatigradient vectors when ac-
cumulated across all of the training vectors and the higstabte learning rate is found
to be 0.0002, about 100 times lower than that for stochastight updates. Higher
values ofp are seen to cause instability.

Unfortunately, = 0.0002 results in slow learning. The progression in test srror
is shown in figure 4.3 for networks with 7 hidden neurons artgipgcal of the results
achieved. After 5000 epochs, the test errors are those shofigure 4.4. These are
much higher than those achieved with stochastic weighttegdéor all hidden layer
sizes. It was therefore decided that stochastic weighttepdaould be used in BP
training.
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Figure 4.4: Test errors achieved with batch weight updatdsa 0.0002

4.2.2 Pilot study 2: Stopping criterion

It is important to introduce a stopping criterion, in orderatvoid the phenomenon of
‘overfitting’ illustrated in figure 1.8. Amaret al. [80] have shown that overfitting does
not occur when ANNs are in ‘asymptotic’ mode. The conditionthis mode is given
by equation 4.1. In this equationis the number of free parameters (weights) which,
for a MLP network withn inputs, h hidden layer neurons amngl outputs is given by
equation 4.2t is the number of training items.

t > 30m (4.1)

m=(n+h+(h+1)p (4.2)

In the case of the CLASH datajs approximately 1500n is 10 andp is 1. The
asymptotic condition should therefore hold only if the nenbf hidden neurons is 4
or less. The networks considered here are all larger tharatid will therefore not be
in asymptotic mode.

Since the networks are not in asymptotic mode a stoppingrimit is important.
Three diferent stopping criteria were considered-
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e cross-validation using a verification dataset.

¢ introduction of a convergence criterion that assesseshghde test error has
converged, without reference to a verification dataset.

e setting a maximum number of epochs after which trainingrimieated.

Cross-validation has the disadvantage that it requiresatieg aside of data from
the training set, so less data is available for training pses. Cross-validation is a
useful technique when the training error is a poor guide &tést error. However,
figures 4.1 and 4.2 show that this is not the case. For thesensacross-validation
was ruled out as a stopping criterion.

The next approach considered was the introduction of a cgewee criterion.
Convergence was defined as the point at which 5 previous measuts of training
error (MSE), equivalent to 500 epochs, showed no reductighe error greater than
1% of the overall error. Table 4.1 shows the percentage afaré&s that converged
after 5000 epochs or less, giverffdrent learning rates and hidden layer sizes. Table
4.2 shows the average number of epochs required to achiavergence. For the pur-
poses of this table, the convergence epoch of networks #vatmot converged within
5000 epochs has been set as 5100. In general it is seen thatg@ence occurs quicker
when a higher learning rate is applied and the hidden lagerisismall.

In order to assess théfectiveness of the convergence criterion, it is necessary to
find out whether it is a good guide to ttest error;, i.e. the error achieved with data not
used in training. The test error was therefore recordedeagdime times as the training
error, and its progress evaluated. The results are givableg 4.3 and 4.4.

The results using the test sample of the dataset indicatedhsergence occurs at
an earlier point for the test than for the training samplehwain average gap between
training convergence and test convergence of approxign@@g epochs. Thefiect of
this phenomenon is illustrated in figure 4.5. This shows tlegage number of epochs
required to achieve convergence for networks with betweandb20 hidden neurons
with the optimum learning rate (0.02).

The disparity between the convergence of training and testeimplies that the
convergence criterion may not be ategtive predictor of minimum test error. An in-
vestagation into the detailed behaviour of the trainingtastierrors suggests a further
problem. Figure 4.5 suggests that the test error convefftgsapproximately 2000
epochs and the training error after approximately 2500 lefpddowever, care must be
taken not too terminate training too early. In many casesasiserror is seen to fallb
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hidden layer size|| n=0.01| =002 | n=0.05| n=0.1
5 100 100 100 100
6 100 100 100 100
7 100 100 100 100
8 90 90 100 100
9 100 100 100 100
10 100 100 100 100
11 80 100 100 100
12 90 90 100 100
13 100 100 100 100
14 100 100 100 100
15 100 90 100 100
16 90 100 100 100
17 90 100 100 100
18 80 100 100 100
19 90 90 100 100
20 100 100 100 100

Table 4.1: Percentage of training errors that have condengghin 5000 epochs

Table 4.2: Number of epochs required for convergence initrgierror, averaged over

10 runs

hidden layer size|| n=0.01 | =002 | n=0.05| =01
5 2910 1900 1620 1490
6 2730 2370 1400 1470
7 3320 2880 1620 1380
8 3330 2610 1810 1550
9 3020 2030 1630 1570
10 3150 2160 1670 1100
11 3350 2530 1660 1190
12 3140 2630 1410 1370
13 3250 2680 2020 1360
14 2700 1900 1470 1450
15 3430 2990 1730 1140
16 3560 2350 1490 1420
17 3340 2070 1760 1370
18 3570 1910 1600 1130
19 3820 3020 1500 1140
20 2640 2650 1540 1300
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hidden layer size|| n=0.01| =002 | n=0.05| n=0.1
5 100 100 100 100
6 100 100 100 100
7 100 90 100 100
8 90 100 100 100
9 90 100 100 100
10 80 100 100 100
11 90 90 100 100
12 100 100 100 100
13 100 100 100 100
14 100 100 100 100
15 100 100 100 100
16 100 100 100 100
17 100 100 100 100
18 100 100 100 100
19 90 90 100 100
20 100 100 100 100

Table 4.3: Percentage of test errors that have convergédtwva000 epochs

hidden layer size|| n=0.01 | =002 | n=0.05| =01
5 2250 1610 1290 1170
6 1910 1790 1170 1300
7 2270 1820 1300 1080
8 2310 1900 1280 1250
9 2450 1810 1400 1390
10 2630 1850 1520 1010
11 2490 1990 1440 1020
12 2610 1940 1180 1280
13 2700 1780 1660 1000
14 2420 2040 1240 1180
15 2790 1960 1200 1090
16 2840 1870 1260 1260
17 2510 1790 1320 1120
18 2520 1840 1530 1110
19 2980 1880 1310 1110
20 2310 2180 1460 1040

Table 4.4: Number of epochs required for convergence iretest, averaged over 10

runs
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Figure 4.5: Number of epochs required for convergence naisguoptimum learning
rate and stochastic weight updates

training speed | hidden layer size| n
slow 20 0.01
medium 13 0.02
fast 5 0.1

Table 4.5: Training parameters for slow, medium and fastemence

after convergence has first occurred. Figures 4.6-4.8 shewrogression in training

and test errors for threeflerent scenarios, described by the parameters in table 4.5.
The three scenarios correspond to slow, medium and fastrigaregimes. They

illustrate the diference between fiierent learning rates: higher learning rates lead to

quicker convergence but less stability in the training pes; whereas lower learning

rates result in lower convergence rates but greater gialidespite these ffierences

in learning behaviour, the graphs share the following comfeatures-

¢ Although convergence occurs before 5000 epochs for nelrbf the individ-
ual networks, the average training and test errors contmséow a downward
tendency for some time.

e The error curves for both training and test datasets aretsdewel df towards
5000 epochs.
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e The overfitting area of training, indicated by a sharp insesi the test error,
does not appear to have been reached within 5000 epochs.

These results suggest that training for a fixed number oftepgives satisfactory
results, provided the number of epochs is appropriate.nif@ifor 5000 epochs ap-
pears to beféective, with test errors appearing to have reached a plagggon without
going beyond this region into an overfitted regime. This téghe was therefore used
to train all MLP networks.
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Figure 4.9: Average test MSEs fortiirent weight initialisation ranges

4.2.3 Pilot study 3: weight initialisation range

Having ascertained the optimum learning rate, weight ugodaide and stopping crite-
rion, the issue of weight initialisation was addresseds Known that the initial range
of weights can have a largéect on training #iciency. If very large initial weights are
used there is a danger that neurons will be driven into si@darésee figure 3.2). On
the other hand, if very small weights are used the outputsaWibe very close to zero,
leading to very low average gradients, and therefore slaimitrg and poor coverage
of the available weight space [35].

All tests so far used small initial weights within the rangé[L, 0.1]. To see
whether larger weights would lead to quicker convergendéaitower MSEs, weights
were initialised to values in the rangell.0, 1.0]. Test MSE values are shown in figure
4.9, for a range of architectures. It is seen that the ANNB wilarger range of initial
weights generally gave lower test MSEs.

A disadvantage in using a wider range of initial weights &t ttonvergence occurs
more slowly, as illustrated by figure 4.10. One explanationthis observation is
that larger initialisation ranges result in a search thloaggreater proportion of the
weight space. This takes slightly longer but results in IOM&E values. Due to the
improved generalisation performance, it was decided thatwider range of initial
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Figure 4.10: Number of epochs required to achieve converyéor diferent weight
initialisation ranges

weights would be used for all ANNSs.

The optimum range of initial weights is in line with the finds of Wessels and
Barnard [185]. They found that the net inputs to all neurorsukhideally be ini-
tialised to have a mean of zero and standard deviation of kurAsg that the in-
puts are randomly and uniformly distributed across the edrd.0, 1.0], this may be
achieved by using uniform random weights within the rangﬁ;/[\/Ti, 3/ \/Ti], where
fi is the number of inputs (fan-in) to unit[172]. For the ANNs created here, the
number of inputs to the hidden layer neurons is 10 and the pumibinputs to the
output neuron varies between 1 and 20. Taking the fan-in @gv&8 an ideal range of
[-0.95,0.95], very close to the range used in the above tests.

4.2.4 Pilot study 4: Output neuron transfer function

There are two reasons for preferring a linear to a sigmoigdututeuron. Firstly, linear
output neurons are commonly used for regression problerosdier to allow extrap-
olation into areas outside the range of the training dataoisa#ly, the RBF networks
used in this study have linear output functions (see Chaptep®omparisons between
the two types of network have increased validity if the MLP®@ave linear output
functions.
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Figure 4.11: Average test MSEs forfidirent output neuron transfer functions

However, in order to test whether a sigmoid transfer fumctiould give a better
approximation to the underlying function the linear outpatiron was replaced with
a sigmoid neuron. The results are illustrated in figure 4rid show that a sigmoid
output function gives improved generalisation perforngams measured by test MSE.

It was decided that the main study would include investayetiusing both sig-
moid and linear output functions, in order to give the bessgae results for a MLP
(sigmoid function) and a fair comparison with other type@\diN (linear function).

4.2.5 Pilot Study 5: Momentum codficient

The introduction of monemtum into gradient descent trgjngintended to speed up
training and allow a more accurate determination of theremaimum (see sections
1.5.4 and 2.2.3). When networks contain only linear neurbisspossible to calcu-
late optimum values for the learning rate paramgtand the momentum céeient

a [186]. However, when sigmoid transfer functions are usgeahda are usually de-
termined experimentally. It was decided that a full searioss all possible values
of n anda was impractical, and the value gfwas therefore fixed at its optimal value
without momentum, 0.02. In order to retain stabilidycannot exceed 1.0. The trial
values were therefore chosen as 0.1, 0.5 and 0.9.
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momentum

Figure 4.12 shows that the introduction of higher valuesrajenerally led to
quicker convergence, although the results are variables réhultant test MSEs are
shown in figure 4.13, with the corresponding results withnotmentum included for
comparison. It is seen that lower valuesaoflave better results, with = 0.1 giving
results which are similar to those without momentum.

Overall, the introduction of momentum does not appear todsefull Although
convergence occurs more quickly, the increased stepspaspto make it more dif-
ficult to approach a reasonable error minimum. In the case 0.9 the algorithm
verges on instability. Since a satisfactory valuer@ould not be found, it was decided
that momentum would not be used in the training of MLPs.

4.2.6 Pilot Study 6: Levenberg-Marquardt method

The Levenberg-Marquardt method uses second-order gtadfermation in order to
perform more #icient gradient descent (see sections 1.5.5 and 2.3). Ohe afiivan-
tages of this technique is that it does not require the gptifras many parameters as
first-order gradient descent methods. A pilot study was ousee whether use of the



CHAPTER 4. CLASH PREDICTION USING MLP NETWORKS 100

0.022

—e— N0 Momentum
momentum=0.1

—=— momentum=0.5

0.02 —a— momentum=0.9

0.021 ~

0.019 4

0.018 1 I
0.017 /
0.016

h%

Average test MSE

0.015 A

0.014 +

0.013 ~

0.012 ~

0.011

5 7 9 11 13 15 17 19

Hidden layer size
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L-M algorithm would lead to quicker convergence as expeaed whether lower test
MSEs could be achieved through its use. Figure 4.14 showavage training and
test MSEs achieved for ANNSs of fierent sizes, with a linear output neuron, trained
for 200 epochs with the L-M algorithm. A range of hidden lage&res are seen to
result in test errors averaging below 0.0120, suggestiagttie L-M algorithm does
generally result in better performance than the BP algorithine latter only gave such
low errors for two hidden layer sizes.

Figure 4.15 shows the progress of the test errors, averaggdl® networks each
containing 8 hidden layer neurons. Similar graphs are nbthifor networks of dier-
ent sizes. They show similar features to those obtainedrutignt descent training
(see figure 4.7), with errors fallingfioduring early epochs, before levelling out. It
is seen that the L-M algorithm leads to much quicker convargewith errors level-
ling out after about 150 epochs, rather than after appradin&@000 epochs with the
BP algorithm. There is a danger that the test error could &idrtcrease if training
is continued for some time after this level region. For tl@ason, L-M training was
terminated after 200 epochs.
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4.3 Model selection method

This section considers the method used to select the ‘betstank architecture. In par-
ticular the task is to identify the optimum number of hidderurons. This process of
model selection is closely intertwined with three desigués that are also discussed-

e data division
e stopping criteria
e assessment criteria

We can see how these are issues are related when we considegttiod of cross-
validation (see section 1.5.4 and [187]). A widely usedasairiof cross-validation is
the method of multi-fold cross-validation. In this methotix@d subset of the data is
used for test purposes. The remaining data are dividediatual subsets. A series of
n networks are then trained for each potential architectsiregun— 1 of the subsets for
training and the remaining subset for verification. Stor&/[Joriginally used subsets
containing just one item of data. However, this createslagmputational demands,
particularly for large datasets. Recent studies commonlytee data into 10 equal
subsets. The optimum model is identified by averaging thécation errors across alll
networks and the test error must also be averaged acroswabnks with the optimum
architecture.

Cross-validation requires a three-fold division of data imaining, validation and
test subsets [35]. The validation subset may have two pagydscating a stopping
point and determining the optimum model size. The test dubsesed to assess the
trained networks. Multi-fold cross-validation is commypmlpplied to small datasets.
It has been shown that as the data size tends towards inthetftraction of data used
in training must tend towards 1, i.e. an infinite amount obdaust be used for train-
ing, with a diminishing number held back for verification 8]8For large datasets the
method may therefore require excessive computationainegents. A further prob-
lem with multi-fold cross-validation is that it tends to plece over-complex models.

This study has used a method known as ‘Monte Carlo crossatadid (MCCV)
[189]. In this method test data is set aside and the remattategy are randomly parti-
tioned into training and verification subsets. Partitignis repeated several times and
network training is performed on each one [190, 188], as iltiffald cross-validation.

It is seen experimentally that using a relatively high pmtipo of the data for verifica-
tion purposes usually gives optimum results [190]: apprately equal sized training
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and verification sets ardfective in most cases. Further, theory demonstrates that as
the data size tends towards infinity the ratio of trainingedfication data has to tend
towards 0.

The MCCV method appears to be better adapted to the parti@dqairements of
the CLASH dataset. As mentioned in Chapter 3, this datasetysnasy. In order to
see the ffect of the noise on the generalisation properties of the ANNsrther pilot
study was performed. This involved training sets of netwaskth the same hidden
layer size and using the same training-test split. Hiddgerlaizes were chosen as
6, 10 and 14. These architectures were chosen because tieegvgrage test MSEs
that are diferent from each other. For each network size and datasetworks were
trained. The starting weights for each network were indigity randomised and every
network was trained for 200 epochs using the L-M algorithime Tesultant test MSEs
are shown in table 4.6.

These results were analysed using a two-way ANOVA [191] deoto identify the
source of variance in the test errors. Two sources of theaneg were identified, both
with p-values below 0.01: the choice of model (hidden layee)sand an interaction
between the model and the dataset splits. The first findingssinprising, since we
expect the model size to have afieet on the observed error. The second finding
implies that certain dataset splits give better resultk patrticular network sizes, while
other splits might be better suited tdférent network sizes.

The dfect of the choice of data appears to lie in the high noise lelvéle data.
When using a single test set for assessment, the assesseid aighly dependent on
the items within the test dataset. Often a small number @f dah have a drastidtect
on the calculated error. In this case the calculated erronli&ely to reflect the error
of the population as a whole.

In order to reduce thefiect of dataset selection, it was decided that the data would
be split in 30 diferent ways and a separate network trained with each data Epé
errors may then be averaged over the 30 networks. An advaafdlge MCCV method
is that it can be adapted so that not only the training andiwation sets but also the
test sets can be randomly assigned. When the test error mgaeeacross all ANNs
with a particular architecture, it is then less likely to bhaded as the result of ‘rogue’
items within a particular test set.

The variation within a particular condition seen in tablé & due to the initiali-
sation of network weights. In order to minimise thi$eet as much as possible, the
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data split | 6 hidden neurons| 10 hidden neurons| 14 hidden neurons
0.01308 0.01249 0.01117
0.01386 0.01158 0.01142
1 0.01309 0.01117 0.01127
0.01587 0.01218 0.01086
0.01370 0.01137 0.01049
0.01455 0.01213 0.01167
0.01713 0.01068 0.01151
2 0.01699 0.01090 0.01057
0.01385 0.01315 0.01136
0.01704 0.01171 0.01107
0.01268 0.01257 0.01113
0.01296 0.01185 0.01222
3 0.01394 0.01266 0.01172
0.01384 0.01216 0.01144
0.01394 0.01198 0.01272
0.01335 0.01126 0.01192
0.01267 0.01202 0.01123
4 0.01423 0.01194 0.01173
0.01385 0.01242 0.01162
0.01470 0.01241 0.01216
0.01352 0.01179 0.01086
0.01344 0.01370 0.01202
5 0.01341 0.01341 0.01230
0.01363 0.01631 0.01244
0.01683 0.01320 0.01193
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Table 4.6: Test MSEs for fierent hidden layer sizes and training-test splits
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weights are initialised to ffierent weights for every network and the results are there-
fore averaged acrossftirent weight initialisations as well asfiirent data splits.
The MCCV method used within this study may be summarised asnel

The available data is randomly split 30 times into trainingification and test
sets, in the ratio 50:25:25.

A series of networks with dierent architectures are created. For each architec-
ture, training is performed 30 times, once with each trajrget.

The alternative network architectures are assessed. Tletiwb function is the
MSE on the verification data, averaged across all 30 networks

The test error is obtained. This is the average MSE on thelétat

4.4 Method

This section summarises the method used to train and asseANNS. The reasons
for various design choices have been explained in the pregesdctions.

30 random splits of the data were made, to give trainingfigation and test sets
in the ratio 50:25:25. All networks were created with wegglhtitialised to random
values in the range-{1.0, 1.0]. Training was performed for 5000 epochs in the case of
simple gradient descent and 200 epochs for Levenberg-Maedlttraining.

ANNSs were created and trained with varying hidden layerssiztarting with 5
neurons and increasing one at a time until the verificatioareaveraged across all
30 networks showed a consistent increase. The bipolar sigfunction of equation
2.7 was used for all hidden layer neurons. Separate netwaeks created with linear
transfer functions and sigmoid transfer functions for tingle output neuron.

Verification errors were obtained for each network in oraerdentify the best
performing networks. The final performance measure wasrtioe @dtained using the
‘unseen’ test data. The results are given in the next section

4.5 Results and Discussion

This section gives the results upon training MLP networkihwarious architectures
and using either the back-propagation or Levenberg-Madjisgorithms. Having
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obtained the results for each individual network, they mayteraged in one of two
ways-

e The results for a particular architecture and network siag be averaged across
all 30 training-test splits. This process allows the idesdtion of the individual
architecture that is mosttective at generalising the underlying function.

e For each training-test split and family of networks, theimpim hidden layer
size may be identified. This allows the comparison of thet'besult for a
particular training method and network family. For example dfectiveness
of the L-M algorithm may be compared with that of the BP aldorit In later
sections such comparisons will be extended to a comparigbrotiher types of
network, such as RBF networks.

The two methods may be summarised by stating that the firdtodatompares
networks with a ‘fixed’ architecture, while the second alosv‘variable’ architecture.
In this study, results are quoted in both ways, in order totifiethe best architecture
and the best method.

4.5.1 Back-propagation
Linear output neuron

Table 4.7 shows the training, verification and test errorafseries of networks con-
taining a linear output neuron and between 1 and 30 hidderonsu All results are
averaged across 30ftlrent networks, each trained with dfdrent split of the data,
i.e. using a fixed architecture. The minimum verificatioroenccurs with 26 hidden
neurons and results in a MSE for the test data of 0.01199.

Figure 4.16a displays the same results. This graph hagésatommonly seen in
ANN training, with the errors falling up to a certain layeraj before starting to rise
as a result of overfitting. It is clear from the graph that tkeefication error is a good
guide to the test error.

Table 4.8 presents the same results from the point of vieWweoflaitaset splits. For
each split, the network resulting in the lowest verificagoror is identified and the per-
formance of that network is assessed using the test daiaset,variable architecture
is allowed.

Since the optimum network size has been chosen each timayéhage verifica-
tion error is lower than it is when averaged across netwoflesg particular network
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Hidden layer size | Training error | Verification error | Test error
1 0.02230 0.02326 0.02317
2 0.01731 0.01852 0.01850
3 0.01507 0.01689 0.01683
4 0.01383 0.01588 0.01607
5 0.01288 0.01510 0.01527
6 0.01206 0.01440 0.01451
7 0.01145 0.01382 0.01401
8 0.01081 0.01339 0.01340
9 0.01076 0.01329 0.01339
10 0.01052 0.01292 0.01315
11 0.01033 0.01282 0.01303
12 0.01032 0.01277 0.01312
13 0.01001 0.01266 0.01272
14 0.00976 0.01220 0.01257
15 0.00986 0.01247 0.01276
16 0.00955 0.01229 0.01244
17 0.00964 0.01228 0.01265
18 0.00962 0.01207 0.01240
19 0.00963 0.01227 0.01256
20 0.00941 0.01207 0.01231
21 0.00955 0.01211 0.01239
22 0.00909 0.01179 0.01208
23 0.00916 0.01208 0.01223
24 0.00920 0.01195 0.01219
25 0.00906 0.01176 0.01198
26 0.00907 0.01171 0.01199
27 0.00919 0.01182 0.01214
28 0.00941 0.01220 0.01243
29 0.00972 0.01240 0.01257
30 0.00906 0.01175 0.01218

Table 4.7: Average errors for MLP with linear output neurox 8P training
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Data split | Verification error | Test error | Optimum hidden
layer size
1 0.01154 0.00974 21
2 0.01127 0.00986 19
3 0.01101 0.01183 25
4 0.01138 0.01037 27
5 0.01074 0.01277 17
6 0.01073 0.01107 29
7 0.00972 0.01281 30
8 0.01069 0.01101 20
9 0.01142 0.01195 27
10 0.01099 0.01120 27
11 0.01070 0.01214 28
12 0.01071 0.01162 22
13 0.01155 0.01401 19
14 0.01069 0.01196 27
15 0.01011 0.01037 25
16 0.01031 0.01234 24
17 0.00954 0.01131 29
18 0.01187 0.01031 22
19 0.01155 0.01102 29
20 0.00981 0.01136 25
21 0.01182 0.01043 22
22 0.01138 0.00954 29
23 0.01008 0.01113 30
24 0.01155 0.01154 26
25 0.01236 0.01137 15
26 0.01049 0.01314 24
27 0.01038 0.01311 27
28 0.01103 0.01099 30
29 0.01145 0.01070 24
30 0.01008 0.01348 23
average 0.01090 0.01148 24.7
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Table 4.8: Optimum errors for MLP with linear output neurarddP training
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Hidden layer size | Training error | Verification error | Test error
1 0.02223 0.02313 0.02311
2 0.01676 0.01803 0.01814
3 0.01463 0.01645 0.01655
4 0.01339 0.01552 0.01566
5 0.01223 0.01433 0.01449
6 0.01143 0.01382 0.01399
7 0.01059 0.01332 0.01312
8 0.01022 0.01278 0.01283
9 0.01019 0.01256 0.01275
10 0.00972 0.01219 0.01244
11 0.00964 0.01219 0.01230
12 0.00933 0.01204 0.01213
13 0.00916 0.01160 0.01189
14 0.00920 0.01171 0.01187
15 0.00913 0.01171 0.01207
16 0.00890 0.01163 0.01179
17 0.00879 0.01132 0.01161
18 0.00882 0.01144 0.01161
19 0.00888 0.01158 0.01170
20 0.00873 0.01152 0.01169

Table 4.9: Average errors for MLP with sigmoid output neuaowl BP training

size. The test error is seen to be correspondingly enhaméttdan average value of
0.001148.

Sigmoid output neuron

The results with a sigmoid transfer function in the outpuino@ may be treated in the
same way. Table 4.9 gives the errors averaged across data(Bpéd architecture)
and table 4.10 gives the optimum errors for each datasatablararchitecture). The
optimum hidden layer size (the one with lowest average weatibn error) is found
to be 17 neurons, with a corresponding average test errol0@fl61. The optimum
test error when a variable architecture is permitted isT61(averaged across the 30
datasets).

In comparison with the results using a linear output neutba,optimum layer
size is smaller and the optimum achievable error is lowecait be concluded that,
when using BP training, the sigmoid transfer function is meffective at fitting the
underlying function.



CHAPTER 4. CLASH PREDICTION USING MLP NETWORKS

Data split | Verification error | Test error | Optimum hidden
layer size
1 0.01118 0.00993 13
2 0.01101 0.00916 20
3 0.01097 0.01122 13
4 0.01205 0.01083 13
5 0.01025 0.01179 18
6 0.01059 0.01107 19
7 0.00976 0.01174 13
8 0.00979 0.01184 20
9 0.01063 0.01248 17
10 0.01097 0.00963 16
11 0.01068 0.01185 13
12 0.01080 0.01152 18
13 0.01099 0.01265 13
14 0.01100 0.01166 19
15 0.01022 0.00974 18
16 0.00985 0.01087 20
17 0.00991 0.01217 15
18 0.01124 0.01058 20
19 0.01110 0.01086 13
20 0.01001 0.01131 20
21 0.01262 0.01023 17
22 0.01155 0.01019 17
23 0.00956 0.01123 17
24 0.01180 0.01129 13
25 0.01151 0.01052 17
26 0.00981 0.01210 18
27 0.00992 0.01283 20
28 0.01114 0.01027 19
29 0.01164 0.01054 18
30 0.00908 0.01271 20
average 0.01072 0.01116 16.9
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Table 4.10: Optimum errors for MLP with sigmoid output nauend BP training
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Hidden layer size | Training error | Verification error | Test error
5 0.01351 0.01612 0.01635
6 0.01130 0.01425 0.01428
7 0.01006 0.01322 0.01326
8 0.00944 0.01341 0.01305
9 0.00973 0.01292 0.01318
10 0.00828 0.01197 0.01225
11 0.00782 0.01218 0.01193
12 0.00859 0.01277 0.01287
13 0.00719 0.01236 0.01177
14 0.00705 0.01150 0.01168
15 0.00665 0.01203 0.01184
16 0.00650 0.01199 0.01215
17 0.00590 0.01251 0.01169
18 0.00580 0.01224 0.01173
19 0.00577 0.01236 0.01169
20 0.00556 0.01182 0.01149

Table 4.11: Average errors for MLP with linear output neuamal L-M training

4.5.2 Levenberg-Marquardt training

The results using the L-M algorithm have been analysed irséimee manner as those
from BP training. Again results are quoted in terms of MSEsayed across networks
with the same hidden layer size and then as optimum MSEs &r @éataset, allowing
the network size to vary.

Linear output neuron

The optimum sized network when using a linear output neurahlaM training is
seen from table 4.11 to be 14, with a corresponding averagierner of 0.01168. The
L-M algorithm has therefore achieved lower errors usinglenaetworks than the BP
algorithm (see section 4.5.1).

From table 4.12 the optimum test MSE, allowing variable aedtures, is 0.01107.
Again this result is lower than that achieved using BP tranin

Sigmoid output neuron

The average errors using a sigmoid output neuron and L-Mitrgiare a slight im-
provement on those using a linear output neuron. The minimeriiication MSE
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Data split | Verification error | Test error | Optimum hidden
layer size
1 0.01118 0.01016 11
2 0.01067 0.01105 17
3 0.01060 0.01178 12
4 0.01053 0.01140 14
5 0.01156 0.01366 20
6 0.00973 0.01148 20
7 0.00990 0.00911 18
8 0.00927 0.01110 18
9 0.00939 0.01124 17
10 0.01123 0.01015 13
11 0.01141 0.01269 17
12 0.01087 0.00986 19
13 0.00879 0.00897 20
14 0.01145 0.00945 20
15 0.01117 0.00927 16
16 0.00972 0.01076 12
17 0.01138 0.01118 12
18 0.01087 0.01247 16
19 0.00956 0.01127 14
20 0.00928 0.01220 20
21 0.01126 0.01050 18
22 0.01121 0.00984 15
23 0.01015 0.01101 19
24 0.00948 0.01304 10
25 0.01100 0.01101 17
26 0.01002 0.01238 16
27 0.00990 0.01099 15
28 0.00991 0.01286 14
29 0.00959 0.01080 16
30 0.01002 0.01050 18
average 0.01037 0.01107 16.1
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Table 4.12: Optimum errors for MLP with linear output neusord L-M training
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Hidden layer size | Training error | Verification error | Test error
1 0.02464 0.02561 0.02565
2 0.01856 0.01979 0.01976
3 0.01538 0.01711 0.01739
4 0.01297 0.01537 0.01522
5 0.01160 0.01435 0.01440
6 0.01082 0.01369 0.01375
7 0.00995 0.01295 0.01300
8 0.00917 0.01267 0.01258
9 0.00851 0.01230 0.01209
10 0.00809 0.01177 0.01214
11 0.00773 0.01150 0.01208
12 0.00724 0.01136 0.01143
13 0.00699 0.01102 0.01139
14 0.00675 0.01120 0.01129
15 0.00640 0.01115 0.01142
16 0.00613 0.01109 0.01099
17 0.00611 0.01114 0.01133
18 0.00571 0.01095 0.01104
19 0.00549 0.01077 0.01114
20 0.00518 0.01106 0.01131

Table 4.13: Average errors for MLP with sigmoid output neuamd L-M training

occurred with 19 hidden layer neurons, resulting in a cpoading test error of of
0.01114 (see table 4.13). Again the verification error wasge be a fairly good
guide to test error, as illustrated in figure 4.17b.

The results when variable network sizes are allowed arerteghan table 4.14.
The average test MSE, 0.01071, is better than that achiesiad any other methods
investigated so far.

4.5.3 Results summary

Table 4.15 summarises the results of this chapter. The pdeasused in the table are
defined as follows-

e Optimum layer size. The number of hidden layer neurons im#tevorks that
give the lowest verification error, when averaged over 30vogks, i.e. fixed
architecture.

e Best average error. The average test error from the netwaeksified as having
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Data split | Verification error | Test error | Optimum hidden
layer size
1 0.01041 0.00919 17
2 0.01013 0.01042 16
3 0.00920 0.01208 20
4 0.01011 0.01176 13
5 0.01064 0.01063 19
6 0.01097 0.01175 17
7 0.00887 0.00979 17
8 0.00966 0.01029 14
9 0.00913 0.01106 17
10 0.00992 0.00889 17
11 0.01040 0.01067 18
12 0.00940 0.00922 18
13 0.00906 0.00894 13
14 0.01040 0.00986 13
15 0.01091 0.00970 16
16 0.00905 0.01096 15
17 0.01015 0.00977 16
18 0.01061 0.01131 11
19 0.00964 0.01186 16
20 0.00963 0.01052 20
21 0.01056 0.01035 11
22 0.01071 0.01009 14
23 0.01009 0.01097 19
24 0.00962 0.01219 12
25 0.01057 0.01035 14
26 0.00987 0.01261 13
27 0.01020 0.01089 17
28 0.00895 0.01054 20
29 0.00985 0.01302 13
30 0.00990 0.01149 13
average 0.00995 0.01071 15.6
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Table 4.14: Optimum errors for MLP with sigmoid output nauend L-M training
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N . Optimum layer | Best average Optimum
Training regime .
size error error
Linear output (BP) 26 0.01199 0.01148
Sigmoid output (BP) 17 0.01161 0.01116
Linear output(L-M) 14 0.01168 0.01107
Sigmoid output (L-M) 19 0.01114 0.01071

Table 4.15: Summary statistics for MLP training

the optimum layer size.

e Optimum error. The average test error for the set of netwihrkisgive the lowest
verification errors for each dataset. This set may includeors with diferent
hidden layer sizes, i.e. variable architecture.

Overall it is seen that the L-M algorithm gives superior testo the BP algorithm
and that a sigmoid output function is superior to a lineandfaer function.

4.5.4 Speed and memory comparisons

Both the BP and L-M algorithms have been implemented in the gesgramming
language. It is known that the speed of the BP algorithm segdpsoximately linearly
with network size, whereas the L-M algorithm is approxinhatgroportional to the
square of the network size. It is therefordfidult to compare the speeds of the two
algorithms. The time taken to train a set of networks was omeds The set used was
the same in each case: 20 networks containing between 1 d@nddh layer neurons.

The time taken to train a set of networks using the L-M ald¢ponitvas found to be
approximately 45 minutes, running on a personal computgj @@ntaining an AMD
Athlon 2100+ chip with a clock-speed of 1.74 GHz. The time taken to trairtao$
networks with the BP algorithm on the same PC was 110 minutes.tdtal develop-
ment time for the BP algorithm was also increased by the nepdrform pilot studies
in order to ascertain training parameters including leaymate, weight update mode
and momentum cdicient. The development of the L-M algorithm was relatively
straightforward.

The L-M algorithm requires considerably greater quarditi® working memory
(RAM) than the BP algorithm. However, it was found that the athon could be
implemented in the Java programming language without afiog any memory in
addition to the default maximum of 64 MB. This level of memoltpeation is unlikely
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to present a problem, even when running the program on angeérC.



Chapter 5

CLASH prediction using RBF
networks

This chapter investigates the use of RBF networks with the CLA&tdset. Following

a pilot study to identify the optimum RBF steepness (secti@h &nd a description of
methods (section 5.2), section 5.3 reports the resultsaofitrg various types of RBF
network with the CLASH data. In addition to the standard metbidorward selection,

training is performed using forward selection with regidation and forward selection
with gradient descent optimisation. The results are sunserand compared with
those obtained using MLP networks in section 5.4.

5.1 Width Pilot Study

The method used to train RBF networks was Forward Selectidn@vithogonal Least
Squares (FS-OLS). This method has been described in s@cfiobnlike the BP algo-
rithm it does not require the setting of various traininggmaeters. The only parameter
that needs to be chosen is the width of the radial basis fumetused in the hidden
layer neurons. The steepness parametanas introduced in section 2.1. Rather than
dealing with this parameter directly, it is convenient tmkiin terms of the ‘width’ or
‘spread’ of a neuron. This is defined as the distance fromehnére of the neuron that
will give an output value of 0.5 and is related to the steepmasameter by equation
5.1, in whichsis the spread of a neuron.

S= —\/m (5.1)

(on
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In order to find the optimum RBF width, 10 runs were carried outgslifferent
data splits for widths between 0.2 and 1.2 (in units of 0.2}.thAs stage, only the
verification errors were assessed - the test errors wereseaok in the determination
of optimum RBF width. The variation in verification error withdden layer size
Is shown in figure 5.1. This figure shows that the error desligeicker for wider
spreads, but that very large spreads lead to an increasdfinatégon error at an earlier
point. These observations may be explained by considerimag wccurs during the
training process. When using wider radial functions, eaciction covers a wider
range of input values, so small numbers of neurons can gieasonable estimate of
the outputs. As training proceeds, additional neuronsrgdtéo identify increasingly
local features in the underlying function, whictiect fewer and fewer input vectors.
Wider functions are less able to identify local variatiortie function and therefore
do less well at this stage. It is expected that there is anmmaptspread value for the
CLASH dataset, and from figure 5.1 it appears to be 0.4 or 0.6.
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RBF width || Optimum layer size | Best average error| Optimum error
0.2 250 0.01448 0.01446
0.4 247 0.00992 0.00973
0.6 202 0.00990 0.00955
0.8 237 0.01052 0.00998

1 197 0.01048 0.00993
1.2 139 0.01128 0.01035

Table 5.1: Verification errors for networks containing RBFsvafious widths, aver-
aged for networks of the same size

Table 5.1 summarises the results of this pilot study. Thestitzs are the same
as those reported for MLP networks. ‘Optimum layer size’his best network size
for each spread and the corresponding errors, averagedsaallolO networks, are
recorded as the ‘best average error’. The ‘optimum errofoisd by allowing the
network size to vary across datasets and averaging thespording test errors across
all 10 datasets.

Figures 5.2 and 5.3 display this information graphicallireTirst graph indicates
that a spread of 0.6 results in the lowest verification ermith s = 0.4 giving slightly
higher errors. Given a considerable degree of variatiohemrésults, the dierence in
average results may not be statistically significant. Asleniwas taken to train fam-
ilies of networks with spreads of both 0.4 and 0.6. Figuresh@ws that the optimum
layer size generally decreases as the spread increasee Aadial basis functions
have larger spheres of influence fewer of them are needed/év tee input space.

5.2 Method

The same 30 data splits were used to train RBF networks as wedgfasMLP net-
works (see section 4.4), in order to allow fair comparisoasveen the two types of
network. All RBF networks were trained until they contained ZBF neurons. Re-
sultant MSEs were obtained for all intermediate networksthsit ANNSs of diterent
sizes could be compared. Although verification errors weeduo identify the best
networks, or family of networks, the performance measurdise next section refer to
errors obtained with the ‘unseen’ test data.

In addition to training networks with the basic FS-OLS altfon, some networks
were trained with the inclusion of regularisation. Thishieicjue, as described in sec-
tion 2.5, reduces the extent of overfit by introducing a pgrtarm which is linked to
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a regularisation parametelr, This term has thefBect of reducing the weights between
hidden and output neurons and so smoothing the overallibmcA variety of A val-
ues were used, varying exponentially between'48nd 1, in units of 18 The results
obtained using Forward Selection with Regularisation arergin section 5.3.2.

Finally, section 5.3.3 gives the results of training RBF neksavith a combined
training algorithm. This involves two steps: the constiarttof networks using FS-
OLS followed by a gradient descent optimisation step. Thewgation step was per-
formed using the Levenberg-Marquardt algorithm, as deedrin section 2.3. Train-
ing at this stage was performed for 50 epochs, which was faarizke stficient to
achieve convergence. Networks trained with the FS-OLSrdlgo are expected to
have near-optimum weights, so the gradient descent stepick gompared to the
training of pure MLP networks. The latter have randomlyialised weights and re-
quire approximately 200 epochs to converge (see sectio)4.2

The improvement in results brought about by the introduatiba gradient descent
optimisation step into RBF training has been pointed out bynv@citkeret al[192]. A
similar technique is used in the training of GL-ANNSs, as digsx in Chapter 6. One
reason for including the technique here is to allow a consparbetween the results
for networks containing just RBF transfer functions and thfmsehybrid networks
reported in Chapter 7.

5.3 Results and Discussion

5.3.1 Results without regularisation

The progression in average errors as RBF neurons are addezretthorks is shown
in figure 5.4. In order to maintain a reasonable scale, restdtt at 25 hidden neurons.
Spreads of both 0.4 and 0.6 result in a minimum verificatiooreait approximately
200 hidden neurons, after which overfitting occurs.

The best results achieved, based on verification errorg, matworks containing
transfer functions with the two fierent spreads are given in table 5.2. This shows that
the lowest test errors are obtained when the spread valué.is O

It is noticeable when comparing the results for the two spgehat the verification
errors are a better guide to the test errors for the narrgeverd. Since neither set was
‘seen’ by the networks during training there is no obvioussmn for this observation,
and must lie in the particular selections of data-splitse ifhplication is that averaging
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. . Verification Hidden layer size
Spread | Averaging technique MSE Test MSE sizg
04 Fixed layer size 0.01023 0.01060 198
' Variable layer size 0.00972 0.01021 227.9
06 Fixed layer size 0.00998 0.01075 203
' Variable layer size 0.00958 0.01050 206.9

Table 5.2: Best errors achievable with RBF networks

over 30 diterent data-splits has not completely eliminated the iotemas between
data-splits and model performance mentioned in sectian 4.3

5.3.2 Results with regularisation

When regularisation was applied, networks were initiallgated with up to 200 neu-
rons, since this was the approximate size of the optimunasieéworks without reg-
ularisation. Figure 5.5 shows the dependence of the minimor, averaged across
fixed sized networks, for various regularisation paransetéfFhe minimum error is
achieved using = 1074, for widths of both 0.4 and 0.6. However, the minimum ver-
ification error is seen to occur in both cases with 200 neyronsery close to this
number. This suggests that the minimum error has not yet ael@ieved, so training
was continued further with = 1074,

Figures 5.6 and 5.7 show the progression in errors, averageds 30 networks,
for networks containing radial basis functions with widdi®©.4 and 0.6, respectively,
and a regularisation parameter of 40Training was stopped when 450 neurons, ap-
proximately 30% of the available centres, had been addeduse the training had
become very slow. At this stage the verificiation and testrsrare levelling out, al-
though they have not yet reached a minimum. The average t8EsMbtained at this
point are 0.00938 and 0.00930 for widths of 0.4 and 0.6, xdy.

The dtect of regularisation is that the addition of extra neuroossdnot lead to
overfitting, even with extremely large networks, if an agpiate choice ofl is made.
This makes it diicult to identify an optimum sized network, when averagingas all
networks. However, when looking at networks trained witbhedata-split individu-
ally, itis possible to identify network sizes which resalininimum verification errors.
These are seen to occur with somewhat fewer than 450 hidgenraurons, as shown
in tables 5.3 and 5.4. The optimum test errors achieved waeable architectures are
allowed are 0.00939 with = 0.4 and 0.00930 witts = 0.6.
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Data split | Verification error | Test error | Optimum hidden
layer size
1 0.00921 0.00765 434
2 0.00937 0.00917 402
3 0.00932 0.00947 447
4 0.00994 0.00915 446
5 0.00791 0.00978 375
6 0.00826 0.00892 442
7 0.00791 0.01002 437
8 0.00955 0.01086 370
9 0.00836 0.01007 404
10 0.00856 0.00886 445
11 0.00854 0.01012 405
12 0.00992 0.00944 448
13 0.01062 0.01113 413
14 0.00996 0.00933 410
15 0.00755 0.00857 405
16 0.00852 0.00971 380
17 0.00821 0.00920 420
18 0.00902 0.00884 383
19 0.01054 0.01030 360
20 0.00791 0.00869 438
21 0.00956 0.00905 446
22 0.00885 0.00703 425
23 0.00743 0.00938 438
24 0.00976 0.00884 360
25 0.00918 0.01018 371
26 0.00841 0.01002 441
27 0.00727 0.01010 437
28 0.00910 0.00881 407
29 0.00982 0.00799 373
30 0.00735 0.01106 448
Average 0.00886 0.00939 413.7
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Table 5.3: Optimum errors for RBF networks with spre@d! trained with regularisa-

tion
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Data split | Verification error | Test error | Optimum hidden
layer size
1 0.00942 0.00818 316
2 0.01023 0.00828 319
3 0.00924 0.00900 398
4 0.00944 0.00897 389
5 0.00778 0.00963 381
6 0.00804 0.00942 357
7 0.00822 0.01020 279
8 0.00950 0.01062 418
9 0.00808 0.01000 449
10 0.00879 0.00936 446
11 0.00848 0.00985 346
12 0.00999 0.00942 296
13 0.00991 0.01192 417
14 0.00970 0.01026 241
15 0.00794 0.00808 330
16 0.00834 0.00844 421
17 0.00786 0.00884 314
18 0.00936 0.00928 241
19 0.00954 0.00976 449
20 0.00797 0.00791 450
21 0.01015 0.00915 422
22 0.01022 0.00767 416
23 0.00730 0.00961 419
24 0.00916 0.00855 301
25 0.00911 0.00946 321
26 0.00808 0.00961 450
27 0.00774 0.01053 449
28 0.00919 0.00870 342
29 0.00957 0.00768 320
30 0.00733 0.01071 442
Average 0.00886 0.00930 371.3
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Table 5.4: Optimum errors for RBF networks with spre@db trained with regularisa-

tion
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Figure 5.8: Verification errors for RBF networks trained withaptimisation step

5.3.3 Results with gradient descent optimisation

Gradient descent optimisation was found to be a slow prodessthis reason it was
impractical to optimise all possible RBF networks. Initiallp networks were opti-
mised for network sizes up to 90 hidden neurons, in steps @usams, with starting
RBF spreads of 0.4 or 0.6. The resulting verification errorssamvn in figure 5.8.
From this graph it is apparent that gradient descent opditiois has a particularly
favourable impact upon smaller networks, resulting in & siithe optimum network
size from approximately 200 neurons without optimisatiewd to 85 neurons with
optimisation. The best results appear to be achieved withrargy spread of 0.4.

For a hidden layer size of 85 and spread of 0.4, all 30 netwaee® optimised.
When averaged across all 30 networks, the resulting test eas 0.00956. These
results are a considerable improvement on the results withjgtimisation. Further,
they are achieved using much smaller networks.
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5.3.4 Speed and memory comparisons

Like the algorithms used to train MLP networks, the FS-OL§odathm was imple-
mented in Java and run on a PC containing an AMD Athlon 21€i@ip with a clock-
speed of 1.74 GHz. The time taken to train a series of RBF netvarktaining be-
tween 1 and 250 neurons using the FS-OLS algorithm was ajppatedy 23 minutes.
This is about half the time taken to train a set of MLP netwarkg the L-M algo-
rithm and approximately a fifth of the time taken by the BP alfon.

Introduction of a regularisation parameter had no appbéeianpact on training
speeds. However, larger networks were created when régatian was introduced.
Since the training time increases approximately propoéliy to the square of the
network size, this led to considerable costs in trainingeBm Training a series of
networks containing 450 hidden layer neurons took appratetg 95 minutes. This is
less than the amount of time taken to train a seies of MLP méiswasing BP, but more
than the time taken by the L-M algorithm.

The FS-OLS algorithm requires greater RAM allocation thanltfM or BP algo-
rtihms. However, the requirement does not exceed 100 MB, laeréfiore appears to
pose few problems if running the algorithm on a modern coeput

Gradient descent optimisation of large networks using té algorithm is slow.
For networks of the optimum size, containing 85 hidden nesirat takes approxi-
mately 38 minutes to optimise each network. It is theref@eessary to be selective
when choosing which networks to optimise (see section b.28 alternative would
be to use a dierent algorithm to perform optimisation when large netvgoake in-
volved. First-order gradient descent, as described inmse2t2.2, is a possible choice.
However, the conjugate gradient method (see Appendix B) inligla more fective
algorithm, and is considerably quicker than the L-M alduritfor large networks.
Gradient descent optimisation does not require the ailmtaf memory in addition to
the 64 MB automatically allocated by the Java virtual maehin

5.4 Summary and a comparison with MLP networks

Table 5.5 summarises the results achieved using RBF netwdidsincluded are the
results for MLP networks trained with the L-M algorithm, abited in chapter 4, for
comparison. The best results are obtained using transfetifuns with a spread of
0.6 and a regularisation parameter of4.@nd they are a considerable improvement on
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those obtained with MLP networks. These results may be degias the best achiev-
able using variants of the forward selection algorithm om @LASH dataset. The
results obtained using this algorithm are not subject tos#téng of various training
parameters , as are those obtained for MLP networks. It mahdiebetter optimi-
sation of training parameters could improve the result$yibP networks somewhat.
However, it seems unlikely that they would improve to suclestent that they could
compete with the results obtained with RBF networks.

RBF networks generally require many more neurons than MLPar&sxo achieve
comparable results. The reason for this is that each neunlgrhas a significantféect
upon a small volume of the input-space. A large number of oreuare therefore
required to cover this input-space particularly when tlegeea large number of inputs,
as there are here.

In terms of training time the network size does not presentodlpm, with to-
tal training times comparable for MLP and RBF networks. Howglrem the point
of view of function approximation the RBF approach appearsaeehsome draw-
backs. Firstly, the function created has an extremely cerfuintional form. From a
Bayesian point of view such a function has a low ‘likelihoobtistinctively, one feels
that the highly complex functions produced by the RBF netwoddnot represent the
‘true’ underlying function.

There are also practical reasons for preferring a simplectian. One use of the
research reported in this study would be to derive symbobamng from the neural
network weights, possibly in the form of a regression tréé¢hd produced ANNSs are
extremely complex, the derived tree is unlikely to providefull symbolic information.
A further reason for having reservations concerning RBF neksvis that it is known
that they are poor at interpolating between clusters of otaempty areas of input
space. As shown in section 3.3.2 the CLASH data is highly etest One would like
to be able to interpolate between clusters so that predtioay be made concerning
previously unknown structures. For this reason, it may Haealde to incorporate
information from MLP networks.

Chapter 6 describes an algorithm that creates a hybrid MLP-RBkamnk, with the
aim of combining the advantages of MLP networks - small netvgize and extrap-
olation ability - with the advantages of RBF networks - locaidtion approximation
and accurate output prediction. The training algorithmtf@se hybrids incorporates
a gradient descent optimisation step. Section 5.3.3 shdvatdhe introduction of this
step results in a substantial reduction in optimum hiddgerlaize and is therefore
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beneficial for the reasons given above.



Best test error

Best test error

Training technique Best hld_den with fixed with variable
layer size . :

architecture architecture
FS-OLS,s=04 198 0.01060 0.01021
FS-OLS,s=0.6 203 0.01075 0.01050
FS-OLS,s=04,1= 10" 450 0.00938 0.00939
FS-OLS,s=06,1=10"* 449 0.00930 0.00930

FS-OLS, then L-M 85 0.00956 :
optimisation

MLP L-M, linear 14 0.01168 0.01107
MLP L-M, sigmoid 19 0.01114 0.01071

Table 5.5: Summary of the results of training RBF networks withCLASH dataset
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Chapter 6

GL-ANN theory and algorithm

6.1 Background

The need for machine learning techniques to identify glaal local features sepa-
rately has been recognised for some time. Minsky and Papestinn 1969 that [66]

the appraisal of any particular scheme of parallel compartatannot
be undertaken rationally without tools to determine themeito which the
problems to be solved can be analyzed into local and gloapoaents.

This chapter describes a scheme for developing global-tiéicial neural net-
works (GL-ANNs). GL-ANNs have an architecture containingurons with both
sigmoidal and RBF transfer functions. Associated with thibridyarchitecture is a
training algorithm which is designed to give good geneadils properties and rapid
training.

The aim of the GL-ANN method is to separate the global andl liezdures of an
unknown multivariate function. Recent support for such asgjon comes from three
main areas: mathematical analysis, cognitive psychologl developments within
computer science.

6.1.1 Mathematics

Donoho and Johnstone [193] have shown that kernel-baseprajattion-based func-
tions have complementary properties. In particular, theynsthat ‘ancillary smooth-
ness’ in the target function may be used to reduce ffextve dimensionality of the

136
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data. They define an angularly smooth function as one thatssafowly with an-
gle, while a function with radial smoothness shows smalalo@riations in value.
Projection-based functions are seen to respond well toangmoothness while kernel-
based functions respond well to radial smoothness. For Emhigh-dimensional
functions one expects to find aspects of both types of smesthrin order to achieve
optimum results with the smallest possible network it tfemeeseems advisable to use
neurons with both projection-based and kernel-based ifurs:t

6.1.2 Cognitive psychology

As well as having a sound mathematical basis hybrid netwarkg have more bio-
logical validity than pure multi-layer perceptron (MLP)twerks [99, 194]. There is
considerable evidence that the human brain processesnafion in a modular way
[195]. For example, global and local aspects of visual stiiare processed by fierent
parts of the brain, suggesting the specialisation of neufonthese dierent purposes
[196, 197]. Further, brain development often occurs in esagvith each stage de-
pendent upon the completion of previous stages [198]. Ttleitactural structure of
GL-ANNSs is similarly reflected in a stepwise training alogjom [195].

6.1.3 Computer Science

As computing power increases computer scientists arerdgealith larger, higher-
dimensioned datasets and, presumably, more complex ymageflnctions. Hrycej
believes that there is a need to use more complex models sutio@ular ANNS in
order to satisfactorily model these functions [195]. Eadduaie within a network may
then be assigned aftirent task, or sub-task, according to the particular achite
of that module or the training method applied to it. One atlkvg@ in using a stepwise
modular approach is that théfectiveness of each step may be assessed individually,
enabling some information to be extracted from the ‘black b ANN training.
Poggio and Girosi have suggested the use of networks cargdioth Gaussian
and other functions in a single layer. These networks arenskins of traditional
RBF networks called ‘HyperBFs’ [199]. They contain a singledad layer containing
Gaussian functions of variable width and additional natiatafunctions. Girosiet
al. [200] have demonstrated mathematically the close relstipnof HyperBFs to
regularisation theory. GL-ANNs may be seen as an implenientaf HyperBFs, with
a particular emphasis on the separation of global and l@&tons in the regression
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function.

Moody has highlighted the fliculty in identifying both the coarse structure and
the fine detail of an input-output relationship [201]. Hisltrtesolution technique
uses RBF neurons of ftiering widths to solve this scaling problem. The GL-ANN
approach builds on this work, allowing extra flexibility ine choice of RBF widths
and the addition of sigmoid functions to map features of tiecfion that are more
suited to this geometric form.

GL-ANNSs have similarities with the hybrid and modular apgebes described in
section 1.5.8 such as PRBFNs and mixtures-of-experts. Theyshhre some features
with Orr’s regression tree derived RBF (RT-RBF) approach (secti5.7). However
PRBFNSs, mixtures-of-experts and RT-RBFs all cluster the tngimiata prior to net-
work training. The GL-ANN approach uses all training datalinphases of training,
keeping the variance low [202]. It also avoids a number ofdmproblems with clus-
tering, namely-

¢ Clustering may reflect the distribution of the available datier than the un-
derlying functionality.

e Clustering generally reflects the distribution of the inpataj but does not take
into account the distribution of the output data [180]. Tikia problem for highly
non-linear data such as the wave overtopping data, for wéntdll changes in
the inputs sometimes cause large changes in the output.

e Unsupervised clustering can lead to very large, and thexedgerfitted, net-
works [203].

One hybrid approach that does not use clustering is the igexigbrithm approach
of Yang [127], described in section 1.5.8. Yang uses GAs @&mcsemodel space for
the optimum sigmoid-RBF hybrid architecture. His work coricaties on the choice
of model, with basic Levenberg-Marquardt training usedainteach network. This
study may be seen as complementary to that of Yang. It usesha ‘taute force’
approach to model selection, creating series of netwonkalfpossible architectures,
but employs a fairly sophisticated method of training indidal networks.

6.2 The ideas behind GL-ANNSs

MLP and RBF networks have complementary properties. While aaglitheoretically
capable of approximating a function to arbitrary accuraspg a single hidden layer
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[204, 205], their operation is quiteftierent [35]. MLP networks have a fixed architec-
ture and are usually trained using a variant of gradientetgsas described in sections
2.2 and 2.3. They invariably incorporate neurons with sighaetivation functions.
Their response therefore varies across the whole inputespad weight training is
affected by all training points. RBF networks, on the other harel pagost commonly
created using a constructive algorithm. Gradient descaining is usually replaced by
deterministic, global methods such as Forward Selectidbenitres with Orthogonal
Least Squares (FS-OLS). This method has been describethihidesection 2.4.

Whereas MLPs arefkective at identifying global features of the underlying ¢un
tion, RBF networks have the capacity to identify local vaaatin the function [195,
180, 206]. MLPs are more distributive in their representadf the input-output rela-
tionship, since little meaning can be attached to the weighainy individual neuron.
For this reason they may be seen as more ‘emergent’ and ofilE@me207].

On the other hand RBF centres are deliberately selected, oéismthe training
set, as representatives, or prototypes, of the entireingaiset. Since each neruon
within a RBF network may be seen as a prototype for the wholesdgtRBF networks
are slightly more transparent and are easier to interprabslically than are MLP
networks [195].

The training of RBF networks is generally faster, as seen in @n&p The main
reason for this is that RBF networks generally contain linegpuat neurons and fixed
hidden layer neurons. The optimisation algorithms userktbee involve the solving
of linear rather than non-linear equations [208, 176]. He@veRBF networks often
contain many more neurons than the corresponding MLP nksypartly dfsetting
the advantage in computationdlieiency [206], as reported in section 5.3.4.

A hybrid ANN containing both sigmoidal and radial neuronsyrhave the advan-
tages of both RBF and MLP ANNSs, i.e. computationfilcéency, good generalisation
ability and a compact network architecture. GL-ANNs apprate on a global level
first using a MLP and then add RBF neurons using FS-OLS, in ocdadd local de-
tail to the approximating function. ldentifying coarseustiure before fine detail makes
sense from a computational point of view [201]. This segaéptocess may also mir-
ror the operation of biological brains: there is considexavidence from cognitive
psychology that humans identify global features of vistiahgli before local features
[209] and that the global featureffect the interpretation of the local features [210].
The training process is completed with an optimisation Htapadjusts the weights of
all neurons, including RBF centres and widths.
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O

(a) Sigmoid neurons only (b) Hybrid with fixed RBFs (c) Hybrid with adjustable RBFs

Figure 6.1: Diagrammatic representation of the GL-ANNIrthag process

The three-step training process is illustrated in figure &fter the first step, an
ANN containing just sigmoid neurons is created. The signfiercttions approximate
a stepwise function (see figure 2.1) and therefore partiiennput space into regions.
After the second step, detail has been added over the tops¢ thartitions, using RBF
functions. Finally, the positioning of the sigmoid funetand the locations and sizes
of the RBF functions are optimised, allowing RBFs of variablethsd

6.3 GL-ANN Algorithm

At each stage of GL-ANN training attempts have been maddéaistraining method
that is dficient in terms of computational power, given the architectf the network.

Chapter 4 indicated that the Levenberg-Marquardt methoah isfficient means of

training MLP networks containing up to approximately 20ded neurons, and this
method is used in the first stage of training GL-ANNS. In ortteuse this procedure
local partial derivatives are first calculated for the inpeights (including bias weight)
using equation 6.1. Local inputs and weights are giveiy landw, respectively and
y is the pertinent neuron’s output. The Hessian matrix may tieeapproximated as
described in section 2.3.

2
8% 1 —2y i 6.1)
In the second stage RBF neurons are added using a variant o65tid_5 algo-

rithm described in section 2.4. The RBF neurons employ syncaétadial functions
with fixed widths at this stage. The FS-OLS requires some fivations to make it
applicable to hybrid networks. If the training data consammtems, each is regarded as
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a potential RBF centre and the full design matfix,is an m-by-m matrix containing
the outputs of each RBF neuron given each input. The designxnfiatra network
containingp RBF centresA, is a m-by-p matrix containing columns selected from
F. If the target outputs are given kythe optimal output weightsy, may then be
determined from equation 6.2, giving the minimum least sgjearor.

w=(ATA) ATt (6.2)

An efficient method for solving this problem, first reported by Cheal. [104], has
been described fully in section 2.4. It requires tRas factorised into an orthogonal
matrix F and an upper triangular matrix. The columngimust be kept orthogonal to
each other whenever a RBF neuron is added to the network. Iblbena vector inF
corresponding to that neuron is denotedfhthe alteration may be stated as equation
6.3.

N 1 =

I:n+1 - I:n ﬂ—ﬂ (6.3)
In GL-ANNSs the hidden layer contains RBF and sigmoidal neurbog of which

provide outputs that are passed on to the output neuron. Tipeits of both the sig-

moid and the RBF neurons must be ‘orthogonalised’ when cdlagléhe error reduc-

tion. This requires the following modifications:

e The addition of extra columns to the full design matrix, tpresent the outputs
of the sigmoid neuronsF is therefore non-square, containing, fartraining
items andh sigmoid neurongn rows andm+ n columns.

o Before any RBF neurons are added, the design matrix must begortabsed
by carrying out the orthogonalisation of equation 6.3 farteaxisting sigmoid
neuron, so ensuring that only the components orthogonhétexisting neurons’
outputs are considered.

In the final training stage all weights, including hiddendaywveights and each
RBF steepness, are optimised using L-M training. The locdigdaterivatives for
RBF weights (centres) and steepness are given, respechyedyguations 6.4 and 6.5.
Ik, Wx andy are used as in 6.1 whikbis the distance between the input vedtand the
weight vectomw (see equation 2.8)r is the RBF steepness.
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For RBF input weights (centres):

e~ 2y (- w) (6.4

For RBF bias weight (steepness):

de ,

Given the local partial derivatives, the Hessian may bareged as described in
section 2.3 and second-order gradient descent perform#tediybrid network.

6.4 Summary

This chapter has described the background to the GL-ANNrigo. It has been
shown that support for the use of hybrid networks exists aheas of mathemat-
ical optimisation, cognitive psychology and within comg@uscience. The key idea
behind GL-ANNSs is the combination of sigmoid and RBF neuronssatiated with
the hybrid architecture is a hybrid training algorithm tleambines gradient descent
training with forward selection. The algorithm has beencdbégd in detail in section
6.3 and is illustrated in figure 6.2. The aim in using this alpm is to separately and
sequentially identify global and local components of annown function. Chapters
7 and cha:benchmarkDatasets look at tlieativeness of the algorithm in modelling,
respectively, the behaviour of the CLASH data and of a numbeeichmark datasets.
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Create MLP networks and train them using the L-M algorithm.
Networks containing up to 10 bipolar sigmoid neurons are created
first. Larger networks are created if the best results on the test
data are obtained using 10 neurons.

i

Add RBF neurons to the MLP networks using the modified
FS-OLS algorithm. Up to 10 RBF neurons with spreads between
0.2 and 1,0 are added first. More neurons are added or greater
spreads are tried only if the largest networks or greatest spreads
give the best results on the test data. As RBF neurons are added
the output weights are automatically optimised by the FS-OLS

algorithm.

Optimise all weights by training with the LM algorithm. With
medium data sets and network sizes all hybrid networks are
optimised. With large data sets and large networks only a
selection of networks (those containing a multiple of 5 hidden
layer neurons) are optimised, in order to reduce the time taken.

Figure 6.2: Flow chart summarising the GL-ANN algorithm



Chapter 7

CLASH prediction using GL-ANN
algorithm

This chapter reports the results of training GL-ANN netvgonkth the CLASH dataset.
Section 7.1 describes the method used to train the netw8Bedion 7.2 gives the re-
sults of training two-step GL-ANNS, three-step GL-ANNSs dytbrid networks trained
with regularisation. Comparisons are made with the cornedipg RBF networks and
between the three types of hybrid network. Section 7.3 suisesthe results.

7.1 Method

This section describes the method used to train series wbnlet to map the underly-
ing function within the CLASH dataset with the GL-ANN algdnih. As described in
Chapter 6 this is a three-step algorithm.

The first step involves the training of MLP networks. The tessaf this step have
been reported in Chapter 4. Some of the networks describ&airchapter were used
as starting networks in the second training stage. Howewdy, networks containing
a linear output neuron were used. A linear output functioreegiired, since the sec-
ond step involves the use of the FS-OLS algorithm, which edrhge hidden-output
weights, but only if the output neuron has a linear trangiacfion. 30 diferent splits
of the data were used, as reported in chapter 4.

In the second training step, RBF neurons were added to thetrdihP networks.
Up to 250 RBF neurons were added to the MLP networks. Initiatlly 40 networks
were trained for each architecture. The most promisingi@ctures were then trained
with all 30 data splits and the test errors averaged acrb36 aletworks.

144
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Figure 7.1: Progression in test error during the optimmsatf hybrid networks con-
taining 5 sigmoid neurons and 85 RBF neurons

The networks created with the CLASH dataset were very largettaa optimisa-
tion step was slow. Networks were therefore selectivelynoiped, following a search
procedure designed to locate the optimum network architectin this stage, only
10 networks were trained for each architecture. The resdte used to successively
narrow down the optimum architecture and only the optimuachiecture was tested
using all 30 data splits.

Due to the time taken to train the large networks, gradiesteet optimisation
was only carried out for 50 epochs, rather than the 200 eposéd to train MLP
networks (see section 4.2.6). The starting networks hawghigethat are fairly close
to their optimum values, since they have been produced Isy $emares optimisation.
This contrasts with the situation during MLP training, whegaights are initialised
randomly. 50 epochs was therefore seen to iecsent to achieve a levellingfbin
the test error, as illustrated by figure 7.1. This shows thar @rogression for networks
containing 5 sigmoid and 85 RBF neurons, averaged across $0 8imilar patterns
of behaviour are seen for alternative architectures.

As an alternative to gradient descent optimisation, regation was introduced to
the training of hybrid networks. This technique has alsonbeéged in the training of
RBF networks, as described in Chapter 5. Again the regulasisatirameter], was
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set to values betweendland 10°, and RBF neurons with spreads of 0.4 or 0.6 were
added.

In order to allow a fair comparison with pure RBF networks thevoeks created
after the second training step are compared with RBF netwaaksed with FS-OLS,
in section 7.2.1. The results of training with the full trhgtep algorithm are compared
with RBFs trained with a two-step algorithm, including a geadidescent optimisation
step, in section 7.2.2. Finally, the results of introdudiegularisation are discussed in
section 7.2.3. Again comparisons are made with pure RBF nkswor

7.2 Results

7.2.1 Two-step algorithm

In creating hybrid networks, information obtained from trening of RBF networks
was used to guide the choice of networks to create. For tlisore attention was
focussed upon RBF neurons with spreads of 0.4 or 0.6.

In the first stage, networks were trained with 6, 10 or 14 sigdmeurons and up to
250 RBF neurons. The results from these architectures seghstt networks with
fewer sigmoid neurons gave lower MSEs. Further hybrid neéta/overe therefore
created containing 5, 7, 8 and 9 sigmoid neurons. Again theanks contained up to
250 RBF neurons. The results averaged over 10 networks ast&ralled in figures 7.2-
7.5. The first two figures show the results with RBF spreads o&0d} respectively,
fixed and variable hidden layer sizes. Figures 7.4 and 7.% she corresponding
results with a spread of 0.6.

The best results are seen to occur with a spread of 0.4 andowoth8 sigmoid
neurons. All 30 networks were trained with these archit@stuThe results are given
in table 7.1. They show that the best architecture contasigr@oid neurons and 207
RBF neurons, resulting in a test error of 0.00999. The besttsesbtained when the
number of RBF neurons is allowed to vary foffdrent data splits are obtained with
networks containing 8 sigmoid neurons and an average oBIRBF neurons. The
resultant test MSEs average 0.00992.

These results are an improvement on those obtained usirgRBF networks
or pure MLP networks. A comparison of the hidden layer siZekybrid networks
obtained from the two-step GL-ANNSs and pure RBF networks shbasthey are of
similar size (see section 5.3)
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Figure 7.2: Errors for hybrid networks with spread 0.4 agedhacross fixed architec-
tures
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Figure 7.3: Errors for hybrid networks with spread 0.4 agerhacross variable archi-
tectures
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Figure 7.4: Errors for hybrid networks with spread 0.6 agerhacross fixed architec-
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Figure 7.5: Errors for hybrid networks with spread 0.6 agerhacross variable archi-
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Number of sigmoid Averaging technigue | Test MSE Number of RBF
neurons neurons
6 Fixed layer size 0.00999 207
Variable layer size | 0.00993 211.2
8 Fixed layer size 0.01028 250
Variable layer size | 0.00992 198.8

Table 7.1: Best errors achievable with two-step GL-ANN
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Figure 7.6: Errors for three-step GL-ANNSs with near optimarohitectures

7.2.2 Three-step algorithm

In selecting which hybrid networks to optimise, the resirten the training of RBF
networks were again used as guidance. The optimum hidden $&e for pure RBF
networks was reduced by gradient descent optimisation &baut 200 to 85. It was
assumed that optimisation of hybrid networks would sirhlaeduce the optimum
size of the networks. Only networks with up to 100 hidden fayeurons (in steps of
5) were therefore optimised. The number of sigmoid neurartbe GL-ANNs was
varied between 5 and 10 inclusive and the starting RBF widthOmasThe results are
illustrated in figure 7.6. This figure focuses upon the agetthitres that gave the lowest
test MSEs, which contained between 70 and 90 hidden neurons.

The best results are seen to be obtained with 6 sigmoid newod 80 hidden
neurons, i.e. 6 sigmoid neurons and 74 RBF neurons. The testodatiained with this
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architecture is 0.00952.

A comparison between the results of the two-step and thegeadgorithms shows
that the introduction of gradient descent leads to furtimarovements in performance
as well as a substantial reduction in network size. The geobpnance of GL-ANNs
may be attributed in part to the hybrid architecture, bub afspart to the hybrid al-
gorithm. For the CLASH dataset it appears that a combinatfaine deterministic
method of FS-OLS and the more stochastic process of gradestent leads to ef-
fective generalisation. When compared with the resultsiobtbusing RBF networks
optimised with gradient descent (section 5.3.3), there@engo be only a small reduc-
tion in error upon using the hybrid architecture. This suggé¢hat the hybrid training
method accounts for most of the improvement in the perfonea three-step GL-
ANNSs, with the hybrid architecture playing a lesser role.

The errors obtained with three-step GL-ANNSs are almostwasal®those obtained
when pure RBF networks are trained with regularisation. Tifeceof regularisation
on hybrid networks is reported in the next section.

7.2.3 Hybrid networks trained with regularisation

Investigation of the fect of regularisation on hybrid networks focused upon tlchiar
tectures most likely to yieldfeective networks, i.e. those with 6 sigmoid neurons and
a RBF spread of 0.4. As with the training of pure RBF networks watjufarisation,
networks were originally trained with up to 200 RBF neuronse Tésults are shown
in figure 7.7. As with pure RBF networks, the best results arainbt withA = 1074,
and again the verification errors are still seen to be faltftgr the addition of 200
neurons (compare section 5.3.2). As with pure RBF networ&syitrg was continued
until 450 RBF neurons had been added, using the optimum régatian parameter,
i.e.10.

The minimum verification MSE was achieved with 439 RBF neureqsiivalent
to a total of 445 hidden neurons, and the test error, averagess 30 networks, was
0.00936. The results obtained when each data split is atldwéchoose’ its own
preferred architecture (humber of RBF neurons) are giverbie ta2. The results are
very close to those achieved with pure RBF networks. Sincegtimam architectures
contain very large numbers of RBF networks, they dominate #tevarks and the
sigmoid neurons have littlgfect on the network size or the generalisation ability of the
networks. The combination of regularisation and hybriduoeks does not therefore
appear to be a useful technique.
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Data split number | Verification error | Test error | Optimum number
of RBF neurons
1 0.00856 0.00779 448
2 0.00909 0.00985 445
3 0.00886 0.00890 400
4 0.00900 0.00833 302
5 0.00726 0.00985 337
6 0.00884 0.00920 420
7 0.00827 0.01027 385
8 0.00887 0.01011 438
9 0.00863 0.01020 346
10 0.00865 0.00813 373
11 0.00881 0.01138 391
12 0.00918 0.00894 334
13 0.00941 0.01059 445
14 0.01113 0.00934 450
15 0.00768 0.00843 345
16 0.00889 0.00854 400
17 0.00777 0.00905 348
18 0.01021 0.00791 309
19 0.00970 0.00892 450
20 0.00803 0.00792 441
21 0.00942 0.00927 449
22 0.00971 0.00850 338
23 0.00787 0.00997 324
24 0.00938 0.00837 301
25 0.00811 0.00908 291
26 0.00800 0.00954 418
27 0.00745 0.01151 378
28 0.00904 0.00921 430
29 0.01013 0.00723 439
30 0.00714 0.01290 450
Average 0.00877 0.00931 387.5

Table 7.2: Optimum errors for hybrid networks with spre@d! containing 6 sigmoid
neurons trained with regularisation
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Figure 7.7: Verification errors for hybrid networks traineih regularisation

The dfect of regularisation may be compared with that of gradiexsicdnt opti-
misation. Both techniques aim to improve upon the resultainbtl using the basic
FS-OLS algorithm, and the best MSEs obtained using the talmnigues are similar:
0.00936 with regularisation and 0.00952 with gradient desoptimisation. The most
significant diference between the two techniques is the size of the netwoeksed.
The best results are obtained with regularisation by irginggthe size of the networks
(compared to the optimum size without regularisation). @ dther hand, gradient
descent optimisation appears to favour much smaller n&swvor

Examination of the network weights between the hidden artputdayer sug-
gests that GL-ANNs automatically incorporate a degreegilagisation. The average
weight between the RBF neurons and the output neuron in an alptisized pure
unregularised RBF network is 18.8. The corresponding valuth®osRBF neurons in
the most &ective two-step GL-ANNSs is 4.00 and for three-step GL-ANBIgiist 1.29.
Since themodus operandof the regularisation procedure is to reduce the size of the
hidden-output weights it appears that regularisation tsweeded for GL-ANNSs. This
observation may be explained by considering the procesaraftibn-fitting. When
RBF neurons are added to a hybrid network, an approximate-oydput function is
already simulated within the network via the sigmoid nesrorhe diference between
this approximate function and the ‘true’ function is faidgnall and it is this dference
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that the RBF neurons are intended to approximate. Since the RBBnsehave a rel-
atively minor role in reducing the MSE they are likely to besigaed small weights
by the FS-OLS algorithm which always sets the hidden-outights to produce the
lowest possible MSE.

7.2.4 Speed and memory comparisons

The FS-OLS procedure used to create two-step GL-ANNs andaeged hybrid net-
works is the same as that used to build pure RBF networks aneftiherruns at the
same speed. However, the required size of the networks i smaller, if gradient
descent optimisation is to be performed. To create a sefibglwid networks con-
taining up to 100 RBF networks takes approximate%yrﬁinutes when running on a
PC containing an AMD Athlon 2100 chip with a clock-speed of 1.74 GHz. This
compares favourably with the 23 minutes required to produseries of pure RBF
networks containing up to 250 neurons.

The gradient descent step is much slower. To optimise a mkteantaining 80
hidden neurons takes 23 minutes. It is therefore necessédmgy $elective in choosing
which networks to optimise, as described in section 7.2m2thé future it might be
wise to replace the L-M algorithm with the conjugate grat@gorithm (Appendix
B), which has much lower computational cost.

Both the L-M and FS-OLS procedures have substantial memauinements, but
these never exceed 100 MB and do not therefore presefii@tty to a modern com-
puter.

7.3 Summary

This section aims to sum up all of the research involving tee of ANNs with the
CLASH dataset, including the results from Chapters 4 and 5 disaswehis chapter.
Comparisons are also made with traditional methods of ptiadiovertopping rates.
Table 7.3 summarises the results obtained using MLP, RBF addhyetworks.
Also included are the best results from training RBF networitk vegularisation and
with gradient descent optimisation. In addition to the agernormalised test MSEs,
the average error factor and average absolute error ara.giBeth of these values

1Orr has observed that regularisation is generally not lisefien adding neurons with narrower
spreads to those with wider spreads [211]. This observaisimilar to that made here concerning the
addition of RBF neurons to hybrid networks.
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Network type Normalised MSE | Error factor | Absolute error
MLP (linear output) 0.01168 6.99 254x 1073
MLP (sigmoid output) 0.01114 8.93 1.52x 1073
RBF 0.01060 5.61 1.29x 1073
RBF with regularisation 0.00930 6.03 1.15x 1073
RBF with gradient descent 0.00956 6.15 1.37x 1073
GL-ANN 0.00952 5.59 151x10°

Table 7.3: Performance indicators for MLP, RBF and GL-ANN reks, averaged
across 30 networks

are obtained using the de-normalised valuegepf.e. the normalisation process de-
scribed in section 3.2 has been performed in reverse. The factor, EF, is defined
by equation 7.1.

qO, redicted/ qO,tar et if QO, redicted > qO,tar et
EF={ ©°F e e ’ (7.1)
Qo target/ Jo, predicted if Olo,predicted < Oojarget

It is interesting to note that the ‘best’ architecture, d@ieed from the average
normalised test MSE, does not correspond to the mfistte/e architecture on all
performance measures. RBF and GL-ANN networks out-perfornf® Metworks on
all measures, but the relative performance of RBF networksGnd@NN networks
vary according to performance measure. RBF networks give erlaverage error, but
GL-ANNSs give lower normalised MSEs and lower error factors.

With the MLP networks, a sigmoid output neuron performs logsthe first two
measures, whereas a linear output neuron gives a lower faatmr. The introduc-
tion of regularisation or gradient descent optimisatioio iRBF training reduces the
measured MSE, but increases the error factor.

In order to make comparisons with traditional methods ofijmteng overtopping
rates and in an attempt to analyse the results in more dataiigle network was
chosen for each architecture. In each case this was the mketvinich gave the lowest
normalised test MSE. The results for these individual netware given in table 7.4.

Also included are the equivalent figures using numericatfation. These results
are taken from Huwet al [28]. They used a high-resolution, finite-volume model to
solve the non-linear shallow water equations (see sectn Data used included 40
items of laboratory test data using regular waves overtappmooth walls with slopes
between 1:3 and 1:5. Also included were 11 tests using adadygrtest model of Great
Yarmouth outer harbour, under varying sea conditions. Tdita dsed by Hu is taken
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Network type Normalised MSE | Average error | Error factor
MLP 0.00842 1.49x 1073 2.60
RBF 0.00871 1.10x 107 2.75
GL-ANN 0.00739 0.92x 1073 2.48
Numerical modelling - 2.29%x 1073 1.89

Table 7.4: Performance indicators for the best performind®MRBF and GL-ANN
networks

from a narrower range of structures and sea conditions Hea@t ASH data. However,
their work is representative of the type of approach usedimarical modelling, and
is provided here as a guide to the accuracy attainable with swethods.

When assessed in terms of average error, the ANNs perforer bleéin numerical
simulation, even though they have a much wider range of egiplity. When the
error factors are considered, numerical simulation outepes the ANNs, with the
GL-ANN coming closest to the simulated results in accuracy.

Figures 7.8-7.10 show the ratig predicted/ Joarget fOr the individual data items within
the CLASH dataset for the best performing individual ANNshyitespectively, MLP,
RBF and GL-ANN architectures. As expected from the error facto table 7.4, the
GL-ANN gives results which lie closest to ideal, i.6 predicted/ Qotarget = 1, although
the diference in error factors between the networks is small.

All three networks show a tendency to overpredict low oygptog rates and to un-
derpredict high overtopping rates. This may be partly altesuhe ANN technique,
which favours areas in which data density is high. In aredswfata density, the re-
sults are therefore likely to be less accurate. There maysee@nd factor operating at
low overtopping rates. When overtopping rates are low, itfisodilt to obtain accurate
measurements, so the training data is likely to show a highegeof variability in this
region.
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Chapter 8

GL-ANN Evaluation using
Benchmark Datasets

This chapter introduces a number of benchmark datasetedhatbeen used to assess
the GL-ANN architecture and algorithm. The first aim in usihgse datasets is to find
out whether the GL-ANN method is especially useful when gpoitio certain types of
data. On the other hand, the use of benchmark datasets nrifyidgpes of dataset
for which GL-ANNSs are not a useful tool.

The second aim is to find out about the nature of the architestcreated by the
GL-ANN process. Architectures arefiirentiated in terms of number of hidden neu-
rons and optimum RBF spread. Comparisons are made with thespornéing MLP
and RBF networks.

The datasets used are all readily available and they haxeftine been used previ-
ously by other researchers. In many cases it is therefooepaissible to compare the
results of the GL-ANN method with additional techniquestsas regression trees.

Section 8.1 describes the datasets, using tools to asselasaarity and clustering
behaviour of the datasets. Section 8.2 explains the metsmisto train various types
of network using these datasets. Section 8.3 reports th#sesd this training. Section
8.4 summarises this chapter.

8.1 Description of the benchmark datasets

The datasets used for benchmarking fall into two categosigsthetic and measured.
Each of the synthetic datasets is generated using some mmatibal function, usu-
ally with random noise added to the output. They have two radiantages. Firstly

159
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the amount of noise may be easily altered, allowing tfiece of noise on dierent
approaches to be compared. Secondly an exact solutioniialdeasince ‘clean’ sam-
ples are easily generated. The extent to whi¢kedgnt techniques approach a ‘correct’
solution is therefore easily assessed.

The measured datasets have been obtained from a numbealottenarios. For
this reason they contain unknown quantities of noise ancctimeept of a ‘correct’
solution is less easily defined. However, they represenemealistic problems than
the synthetic datasets. They contain data of higher diroaalty and the regression
solution is generally more complex in mathematical forrmtfa@ the synthetic data.

8.1.1 Synthetic Datasets

Four synthetic benchmark datasets were employed. As watlCtbASH dataset, the
target values are real-valued. The aim of ANN training isef@re to achieve accurate
function approximation in each case. The tests are taken €ohen and Intrator’s
2002 paper[107], in which comparisons are made with a numbeather approaches.
For this reason the treatment varies between tiferént datasets. While this creates
some inconsistency it allows the consideration of a var@tglatasets and permits
comparison with a number of alternative methods. The amghroaed by Cohen and
Intrator is to use separate training and test sets, but nfication set. This makes it
necessary to use the test set both to identify the optimuhitaoture and as the final
performance measure. In order to be consistent with eavbek, the same procedure
is followed in this study.

The first function is the 1-D sine wave of equation 8.1, witrendomly selected
from [0, 1] and f(X) corrupted by Gaussian noise with standard deviation)(sfd.1
and a mean of 0. The training and test sets both contain 50lsgfhp6]. Given the
noisy data, there is a theoretical minimum value for the MSE, equal to 0.01.

f(x) = sin(12x) (8.1)

The second function is the 2D sine wave of equation 8.2, witk [0, 10] and
X = [-5,5]. The training data is made up of 200 randomly selected it&main
corrupted with Gaussian noise of standard deviation 0.1naeah 0. However, clean
data is used for testing purposes, arranged in a 20 by 20@yddver the entire input
space. The test set therefore contains 400 data items.
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F(x) = O.8sin(%) sin(%) 8.2)

The third function is a simulated alternating current usgétedman in the evalu-
ation of multivariate adaptive regression splines (MARS3Y[R It is given by equation
8.3, in whichZ is the impedanceR the resistancep the angular frequency., the
inductance and the capacitance of the circuit. The input rangesRure [0, 10Q,
w = [40r,560r], L = [0,1] andC = [1x 10°°,11x 10°°|. 200 random samples, with
Gaussian noise of standard deviation 175 and zero mearedgpliZ, are used for
training. 5000 random clean samples are used for testing.

Z(R w,L,C) = \/Rz + (wL — 1/wC)? (8.3)

The fourth function is the Hermite polynomial of equatiod,8with x randomly
selected fronw = [-4, 4]. 100 random samples corrupted by Gaussian noise of stan-
dard deviation 0.1 and zero mean are used for training pagos00 clean samples
are used for testing. This function was first used by Mackély[9

f(x) =1+ (1 - x+2)e¥ (8.4)

The synthetic datasets have been analysed using two tooksarest neighbour
data density estimates and linear regression analysis.tBaithare described in detail
in section 3.3.

The data density estimates for the four datasets are shofiguies 8.1-8.4. The
data densities for the sine 2D dataset display a sharp pehis. indicates a homo-
geneous distribution that is likely to favour MLP networkBhe Hermite dataset, in
contrast, shows a wide distribution of data densities ciaitng substantial clustering.
This dataset would be expected to perform better with RBF niésvd he remaining
two datasets show a moderate variation in data densities.infarquartile ranges of
the data densities are 1.6 for the sine 1D dataset and 1.4hddntpedance dataset.
These values are just above the boundary of 1.2 used by Lee[88] and indicate a
slight preference for RBF networks.

Figures 8.5-8.8 present an analysis of linear regressioey plot studentised resid-
uals against estimates of the target outputs in order toagivedication of the linearity,
or non-linearity of the datasets. Figure 8.6 suggests ttfesine 2D dataset may be
partially fitted by linear regression, with some deviatioonh linearity. The graphs for
all of the other datasets indicate that the size of the ressddepends strongly upon
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Figure 8.5: Plot of studentised residuals vs. estimggddr the sine 1D dataset

the output value, and that the input-output relationshigvésefore highly non-linear.
This is confirmed by th&? values given in table 8.1. This table summarises various
properties of the synthetic datasets used, includingdotatile ranges (IQRs) of the
data densities ani? statistics from regression analysis.

8.1.2 Measured Datasets

The measured datasets were all obtained from the Univeo$ityalifornia, Irvine
(UCI). This university maintains a substantial number obdats in a ‘machine learn-
ing repository’. These datasets are useful because thegmraon-linear, noisy data
that are suitable for machine learning tasks. They may bentiaded from the In-
ternet and have been widely used as benchmark tests whessiags&ANNs and other
machine learning techniques.

The first dataset, ‘housing’, is a compilation of house iaad factors that may
affect these prices. The task is to predict median house pricesarbs in the Boston
area from the values of 13 independent variables, incluttiagollowing:

e per capita crime rate

¢ proportion of residential land zoned for lots over 25,30
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Figure 8.6: Plot of studentised residuals vs. estimggddr the sine 2D dataset
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Figure 8.7: Plot of studentised residuals vs. estimggddr the impedance dataset



CHAPTER 8. GL-ANN EVALUATION USING BENCHMARK DATASETS 166

25r

X%
2+ % >3>é
X %
¥
X
1.5 X
x
X X
X
X
X %
g B, "
S %
3 x e <
1; ><>2<><>§°°(>< x
o 05 %
2 X x% x
=2 2 o X X
(5]
=}
=1 X x
@ or X>><< xX
* >
x X
L x x> X
-0.5 % x %g; %XXX «
X %XW x x
b 2O MXX):X % 5% Bk SRR
x x XX
X X
X
X
-15 I I I X J
-0.23 -0.22 -0.21 -0.2 -0.19 -0.18
fitted output

Figure 8.8: Plot of studentised residuals vs. estimggddr the Hermite dataset

Table 8.1: Summary of the synthetic benchmark datasets

Name Sine 1D Sine 2D impedance Hermite
Source Orr/Cohen| Orr/Cohen| FriedmarCohen| MackayCohen
Number of inputs 1 2 4 1
Training data size 50 200 200 100
Test data size 50 400 5000 100
Training noise s.d 0.1 0.1 175 0.1
Test noise s.d. 0.1 0.0 0.0 0.0
IQR of density 1.6 0.76 1.4 3.4
R? value 0.17 0.71 0.19 0.001




CHAPTER 8. GL-ANN EVALUATION USING BENCHMARK DATASETS 167

nitric oxide concentrations (in parts per million)

pupil-teacher ratio

percentage of the population of ‘lower status’

weighted distances to five employment centres

average number of rooms per dwelling

proportion of homes built before 1940

It contains 506 data items, and was first used by Harrison atdhRId[213] in
1978.

The second dataset, ‘servo’, was first used by Quinlan[214]992. It aims to
predict the rise time of a servomechanism as a function ofgaino settings and two
discrete choices of mechanical linkages. There are therédfindependent variables
in total, and the dataset contains 167 instances.

The third dataset, ‘cpu’, contains the following infornmatifor a number of com-
puters: vendor name, machine cycle time, minimum and maximain memory size,
cache memory, and minimum and maximum channels. From tueation the task
is to predict the published relative performance. The sizbedataset is 209, and for
the purposes of this study the vendor name was not used, soithieer of inputs was
6. This dataset was first used by Ein-Dor and Feldmesser in[228].

The final dataset, 'auto-mpg’ contains information concegrcar models includ-
ing number of cylinders, year of manufacture, horsepoweigit and acceleration.
From these parameters the aim is to predict the petrol copisom in miles per gal-
lon. Like the ‘servo’ dataset, it was first used by QuinlarfR1

Figures 8.9-8.12 show density distributions for the meagilnrenchmark datasets.
The housing and cpu datasets exhibit considerable clogteéehaviour, with a wide
range in data densities. On the other hand, the servo dasasetead more evenly
and shows a sharp peak around a normalised density of 1. Thergqug dataset is
intermediate, showing some variation in data densitiese ifkerquartile ranges of
the data densities for each dataset are given in table &@gavith other summary
statistics for the measured datasets.

Figures 8.13-8.16 illustrate the degree of linearity oftieasured datasets. Table
8.2 includesR? values, which also give an indication of the degree of liitga®f the
four datasets, only ‘servo’ hasR value considerably less than 1. Study of figure 8.14
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Figure 8.9: Data densities for the housing dataset
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Figure 8.10: Data densities for the servo dataset
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Figure 8.11: Data densities for the cpu dataset
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Figure 8.12: Data densities for the auto-mpg dataset
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Figure 8.13: Plot of studentised residuals vs. estimggddr the housing dataset

shows that there are clusters of data which deviate coradlflefrom linear behaviour

for this dataset. This observation is interesting sincejitesrs to contradict the find-
ings of the data density analysis. While data density armlggiusses primarily on

distribution of the input data, regression analysis carsidhe relationship between
the input and output values. The servo dataset has everthbdted inputs, but the

responses produced behave in a highly non-linear way.

Table 8.2 shows that all of the measured datasets have mgndionality. One
can also assume that they have a fairly high noise levelgdiney are taken from
‘real’ situations which involve a large number of indepemidgarameters, only some
of which are included in the data representation used.

All of the datasets were split into equal sized training aest sets. In order to
simplify interpretation, and to maintain a uniform appro&etween the synthetic and
measured datasets, a verification set was not used.

8.2 Method

The datasets trained were the following-

e 1D sine



CHAPTER 8. GL-ANN EVALUATION USING BENCHMARK DATASETS 171

studentised residual
X
X%
x ¥
%3
¥ x
XK x
XK KX
K%K %
R ¢ X
N
TRKEX
X X
X
X X XX

SOREX X X
X¥ x X X

1
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 (o] 0.2
fitted output

Figure 8.14: Plot of studentised residuals vs. estimggddr the servo dataset
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Figure 8.15: Plot of studentised residuals vs. estimggddr the cpu dataset
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Figure 8.16: Plot of studentised residuals vs. estimggddr the auto-mpg dataset

Table 8.2: Summary of the measured benchmark datasets

Name housing servo cpu auto-mpg
Source UCI/Harrison| UCI/Quinlan | UCI/Ein-Dor | UCI/Quinlan
Number of inputs 13 4 6 7
Training data size 253 83 104 196
Test data size 253 84 105 196
IQR of density 1.8 0.15 2.6 1.2
R? 0.74 0.50 0.86 0.82
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e 2D sine

e impedance
e Hermite

¢ housing

e sServo

e CpU

e auto-mpg

GL-ANNSs were created using the three-step process desdanl@hapter 6.

In the first step MLP networks were trained with the L-M algiom. All networks
had bipolar sigmoid functions in the hidden layer and a lirfeaction in the out-
put layer. Initially, networks were trained containingWween 1 and 10 hidden layer
neurons, but in cases where the minimum error was achieviedl@ineurons, larger
networks were also trained. In each case Hedent splits of the data were made.

In the second step up to 10 RBF neurons were added intitialty,naore were
added if the results indicated that 10 RBF neurons gave theréssits. Diterent
widths of RBF were used. Widths between 0.2 and 1.0, in step2pi@re tried first.
If a width of 1.0 was seen to give the best results, greateasisrwere tried.

In the third step, nearly all of the hybrid networks createtevoptimised using the
Levenberg-Marquardt algorithm. An exception was made Wighimpedance dataset.
The optimum sized hybrid networks were large for this ddtase gradient descent
performed slowly. Only networks with a hidden layer sizettivas a multiple of 5
were therefore optimised.

When making comparisons with MLP networks, the networks pced by step 1
were considered. Separate RBF networks were created usifH@E.S algorithm.
Again networks with up to 10 RBF neurons were trained first argelanetworks were
only built if the lowest MSEs were achieved with 10 neuronsifrly, networks with
spreads between 0.2 and 1.0 were trained first, and largeadpmere used only if
s = 1.0 gave the lowest MSEs.

The optimum networks were selected based on the lowest t8&sMaveraged
over all 10 data-splits. Only fixed architectures were abmisid - datasets were not
permitted to ‘choose’ the most favourable architecturéviddally.
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Table 8.3: Mean square errors for the synthetic benchmadsets

1D sine| 2D sine | impedance Hermite
MLP 0.0175| 0.00128| 0.102 | 0.00214
RBF 0.0119 | 0.00095 0.152 0.00141
GL-ANN | 0.0120| 0.00111| 0.098 | 0.00130

8.3 Results

8.3.1 Test errors

The best test MSEs obtained with the synthetic benchmadsdts are summarised in
table 8.3. In the case of the ‘impedance’ dataset, the MStasrma have been divided
by the variance of the test data. This practice was intradlioyeFriedman when he

first used the dataset[216] and allows easier comparisdnotliier methods.

The MSEs indicate that the GL-ANN algorithm is a useful tami the impedance
and Hermite datasets. These datasets have high dimenticarad are highly non-
linear. The impedance dataset also has high noise levelf. daasets display some
level of clustering, particularly the Hermite dataset.

The 2-D sine function gives best results with a pure RBF netywotkle the 1-
D sine function gives comparable results with pure RBF netw/@kd GL-ANNS.
The good performance of RBF networks in mapping the sine fanstis perhaps
unsurprising when one considers the similarity in shapavéen sine and Gaussian
functions, illustrated in figure 8.17. In this graph the dimection has been translated
to give a maximum ak = 0 and the width of the Gaussian function has been chosen
such that the outputs of the functions coincidd &x)=0.5.

The GL-ANN algorithm seems to find it filicult to approximate functions which
are purely ‘radial’ in nature. The reason for this may be thatGL-ANN algorithm
starts with a MLP containing sigmoid neurons. The functioespnt within this net-
work is likely to be an obstruction when radial functions adeled in step 2.

On the other hand, functions which are very well describethy? networks do
not present a problem for GL-ANNS. In cases where radialtians can make little
contribution the output weights from the RBF neurons will beteelow values by
the FS-OLS algorithm, and it will be apparent that the additof RBF neurons is not
reducing the network error, so training will cease.

The degree of non-linearity within a dataset appears to beaca guide to the
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Figure 8.17: Graph showing a Gaussian function (blue) aridfeed sine curve (red)

Table 8.4: Mean square errors for the measured benchmarkedat

housing| servo| cpu | auto-mpg
MLP 21.6 | 0.590| 5561 8.54
RBF 15.2 | 0.664| 3316 7.94

GL-ANN 159 | 0.512| 5153| 8.38

effectiveness of the GL-ANN algorithm. The sine 2D dataset scdbed quite well
by a linear modelRZ = 0.71) and does not perform well with GL-ANNSs, whereas
the remaining datasets have much loRrvalues and perform relatively well with
GL-ANNSs.

Table 8.4 gives test MSEs for networks trained with the messibenchmark
datasets. Two of the datasets, housing and cpu, give mutdr lbesults with RBF
than with MLP networks. This could have been predicted fromhigh interquartile
range of the data denstites, suggesting that the data ity ltigistered. Neither of these
datasets give particularly good results with the GL-ANNaaithm. This observation
may be compared with that with the sinewave datasets: fasde that are very well
described by radial functions, the presence of sigmoidtfans is an obstruction.

On the other hand, the GL-ANN algorithm gives good resultstie servo dataset.
This dataset gives slightly better results with MLP than RBEwoeks - again this
would have been predicted from the interquartile range td dansities which is low,
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Table 8.5: Number of hidden layer neurons for the syntheticchmark datasets

1D sine 2D sine | impedance| Hermite
SIRIT|SIR|T|SIR|T|S|R|T
MLP (L-M) ||12|/0|12|5/ 0| 5 (5] 0| 5|14|0|14
FS-OLS 0|6 0/13(13/0|48,48| 0 |7 | 7
GL-ANN 1|6 1116173 3 | 6 | 1|2

Table 8.6: Number of hidden layer neurons for the measuradieark datasets

housing servo cpu auto-mpg
SIR|IT|S|R|T|S|IR|T|IS|R|T
MLP(L-M) || 2| O | 2 |10| O |10(2|0|2|1]| 0|1
FS-OLS ||0|50(50| 0 |16/16|{0|9 /9|0 11|11
GL-ANN /13940 3 /126|292 |3|5/1|4 |5

implying a homogeneous data distribution. The results thighhybrid architecture are
superior to those from either pure network, suggestingttteeRBF neurons are able
to add substantial detail to the function identified by tlggrsdid neurons.

The auto-mpg dataset has an intermediate range of dataidsnsidicating little
preference for MLP or RBF networks. Further, fRevalue does not indicate a high
degree of non-linearity, which would favour GL-ANNs. The ESfor this dataset are
similar for the 3 types of network.

As with the synthetic datasets, the degree of linearity iwithe datasets is a good
indication of the relative performance of pure and hybrichi#tectures. The datasets
which haveR? values above 0.6 perform better with pure networks, whetteasnly
dataset with a loweR? value, servo, gives a lower MSE with GL-ANNS.

8.3.2 Optimum architectures

Table 8.5 gives the number of hidden layer neurons in oplynsited MLPs, RBF
networks and GL-ANNSs for the synthetic benchmark datasetde table 8.6 gives
the corresponding information for the measured datasetsll tases ‘S’ refers to the
number of sigmoid neurons, ‘R’ to the number of RBF neurons andoThe total
number of hidden layer neurons.
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In most cases the optimum size of the GL-ANN networks is sen#éifian the corre-
sponding size for pure RBF networks. In the case of the 1D siddH@nmite datasets
it is also smaller than the optimum size for a MLP network.

With the sinewave and housing datasets the GL-ANNSs are anafnprove upon
the RBF networks. However, they imitate the RBF networks by usiiegsmallest
possible number of sigmoid neurons, i.e. 1.

For the more complex synthetic functions the GL-ANNs perfdyetter than the
RBF networks and create significantlyfférent networks. The GL-ANN uses just 3
hidden neurons to reproduce the Hermite function and 6 ®irtipedance function.
In the case of the servo dataset, the GL-ANN also discoveov@l ybrid function.

With the cpu dataset, the GL-ANN appears unable to imitagenigh-performing
RBF architecture. Instead it adopts an architecture sinultre best performing MLP
network - with 2 sigmoid neurons - with the addition of a snmalmber of RBF neu-
rons. The unusual results with this dataset are discussttfun section 8.3.3.

These results confirm the observation made in Chapter 7 tha&IB\lls are parsi-
monious in their use of hidden neurons. They also show tlegtdne able to discover
types of function that are not available to pure RBF or MLP neksavhen they are
advantageous, but will imitate pure networks when a hylhnatfion cannot reduce the
MSE.

8.3.3 RBF spreads

Tables 8.7 and 8.8 give the spreads of the RBF neurons used masiesuccessful
RBF and GL-ANN networks when trained with the synthetic and sneed datasets,
respectively. In the case of the GL-ANN networks, these hesaverage finishing
spreads, after alteration by the third training step. Theselts suggest two trends-

e The spreads generally increase as the dimensionality afplg data increases.
This is to be expected, since greater spreads are requiredvier a higher-
dimensional space.

e The GL-ANNSs usually have comparable or narrower spreadstt&aRBF net-
works. This confirms the idea that the presence of the sigahoigurons frees
the RBF neurons to concentrate on local variation in the imupitput functiont

1The phenomenon of reduced RBF spread is seen when a fixed ma®duced into RBF networks,
since the radial functions do not have to fit the global bia tocal detail.[211]. The observation made
here concerning hybrid networks may be seen in the same way.
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Table 8.7: Synthetic datasets: optimum RBF spreads for pure RBFhybrid net-
works

1D sine| 2D sine| impedance Hermite
FS-OLS 0.45 0.8 2.4 0.1
GL-ANN 0.4 0.9 1.0 0.17

Table 8.8: Measured datasets: optimum RBF spreads for pure RiBRydmmid net-
works

housing| servo| cpu | auto-mpg
FS-OLS 1.6 0.8 | 3.6 1.4
GL-ANN 1.2 04 | 04 0.22

As we have seen, GL-ANNs performed particularly poorly viltle cpu dataset.
One noticeable feature of the results for this dataset igsghelarge spread value (3.6)
for the optimum RBF networks. A possible explanation is thatRBF neurons have
a different mode of working with this dataset than is usual. Thg veéde spreads
suggest that the RBF neurons are acting over a much wider réggonis common
and therefore map the global features of the function. InGheANN this option is
not available to the RBF neurons, since the sigmoid neurongorams, present in
the network have already adopted that role. The best resobtained by adding a
small number of RBF neurons with narrow spread. These causgha igduction in
MSE compared to that obtained by MLPs, but the generalisatidlities of the hybrid
cannot approach those of the pure RBF network.

8.3.4 RBF output weights

Table 8.9 shows the average weights between RBF and outputirssarthe most suc-
cessful networks, for the datasets that gave a better peafoze with GL-ANNSs than
with pure RBF networks. It is seen that the weights are geryenalich smaller for
the GL-ANNSs than the RBF networks. The same observation wae megrding the

Table 8.9: Output weights of RBF neurons in pure RBF and GL-ANNvosks
impedance Hermite | servo
FS-OLS 2700 0.55 | 1.60
GL-ANN 54.2 0.88 | 0.27
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CLASH dataset in section 7.2.3, where it was suggested thaAlNs automatically

incorporate a degree of regularisation. The Hermite datase exception. For this
dataset, the GL-ANN contains wider RBF neurons than the pure RBkank, sug-

gesting that those neurons have not been relegated to sl ole in describing only
local variations in the function. They have greater impactin this network than in
most GL-ANNs and the weights connecting these neurons todlmut are therefore
larger than usual.

8.4 Summary

The main aims of the studies reported in this chapter were

¢ toidentify the strengths and weaknesses of the GL-ANN élgor In particular
the objective was to define criteria that could be used totifyedatasets likely
to give low MSEs with a GL-ANN, compared to MLP or RBF networks.

¢ to find out more about the architectures created by the GL-Akidess.

The findings may be summarised as follows.

The results using synthetic datasets indicate that higimeensional, noisy datasets
perform well with the GL-ANN algorithm. However the measuirdatasets are all
high-dimensional and noisy, but the performance of GL-ANMses substantially
between them. These datasets may fEeintiated by their relative performances
with MLP and RBF networks, and by their degree of non-linearity

Datasets that show a strong preference for RBF over MLP nesyagkevidenced
by test MSEs, do not tend to perform well with the GL-ANN aligom. These datasets
are indicated by the spread (interquartile range) of tha dansities. Higher interquar-
tile ranges indicate more clustered data, which is likel&ofitted better by RBF
networks.

However, this measure should not be relied upon too heaiilg. CLASH dataset
has a high interquartile range of data densities (see se8i#2), but test MSEs with
MLPs are almost as low as those from RBF networks. A possiblieweapon for this is
that there are quite strong interactions betwediedint clusters of data, approximated
by the exponential relationship between crest freeboatlcbaartopping rate (see sec-
tion 3.3.3). The CLASH dataset therefore has some featuatsith modelled well by
MLP networks as well as other features that are modelledbyeRBF networks.
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The degree of non-linearity within a dataset seems to bedkedvailable indicator
of performance with GL-ANNSs. If théR? value obtained from linear regression is
below 0.6, the dataset appears to perform well with the GLNANGorithm.

GL-ANNSs are generally smaller than the corresponding RBF odtsv In some
cases they are also smaller than the optimum MLP networkssitliations where
GL-ANNSs give much lower MSEs than networks containing a kngpe of transfer
function in the hidden layer, it is generally the result aémtifying a novel function
that is not available to ‘pure’ networks. When such a funci®mnot available, the
best-performing GL-ANN is usually seen to imitate a purenmek as closely as it
can.

RBF spreads within GL-ANN networks are generally similar tdess than those
for pure RBF networks. The weights connecting RBF neurons toubui@urons in
GL-ANNSs are also generally less than the corresponding teign pure RBF net-
works. This confirms the idea that the RBF neurons in GL-ANNsw@aely confined
to identifying local features within the input-output furs.



Chapter 9

Conclusions and further work

9.1 Summary and conclusions

The findings of this research may be summarised under foulimgs

the nature of the CLASH dataset (Chapter 3)

the results of training various neural networks to appr@tarthe wave overtop-
ping rate through training with the CLASH dataset (Chaptetsahd 7)

methods for identifying datasets for which the GL-ANN methweould be ben-
eficial (Chapters 7 and 8)

description of the architectures created by the GL-ANN atgm and of the
manner in which the GL-ANN method operates (Chapters 7 and 8)

In addition, background material has been provided in tie fof:

a review of previous research in the areas of hydroinforgeaatrtificial neural
networks and the links between the two (Chapter 1)

a description of the relevant mathematical methods usedurahnetwork train-
ing (Chapter 2)

a description of the novel algorithm used for training Glebacal Artificial
Neural Networks (Chapter 6)

The nature of the CLASH dataset may be summarised thus. Itasya,|highly
noisy dataset with considerable redundancy in the datareTdre substantial ‘white

181
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spots’ in the data used in this study, although this shouletbeedied in later versions
of the dataset. The dataset can be made more homogeneog$-tminnle scaling and

mathematical transformations of some input parametersveder, even with these

transformations, the relationship between the indepanp@mmeters and the wave
overtopping rate is highly non-linear. Nevertheless, éhisrevidence of some rela-
tionships that hold globally throughout the data, in paitic an approximately linear

relationship betweeRy,, To andin(qp).

The training of MLP networks with the CLASH dataset revealeciage of in-
formation. Stochastic weight updates were much mdrectve than batch weight
updates. Sigmoid output neurons were found to give sligtelyer results than linear
output neurons and the Levenberg-Marquardt algorithmopexd better than back-
propagation. The introduction of momentum into the lattasviound not to be bene-
ficial.

RBF networks trained with the FS-OLS algorithm were found te dower errors
than MLP networks, although they require substantially enoidden layer neurons.
Further improvements in performance were seen to occurtihintroduction of ei-
ther regularisation or a gradient descent optimisatiop.sihe former produces the
best results using networks that are larger than standard RB¥orks, whereas the
latter produces the best results using smaller networks.

GL-ANNSs were seen to give errors comparable to those oldaimmen RBF net-
works trained with regularisation, with the CLASH data. Hoee the former use
substantially fewer neurons than the latter. A comparidamybrid networks trained
with a two-step and a three-step algorithm suggests thajdabd performance of GL-
ANNSs is partly due to their hybrid architecture and partheda their hybrid training
algorithm.

Datasets which are likely to benefit from use of a GL-ANN hasdain character-
istics. They generally have high-dimensional inputs ardcarrupted by high levels
of noise. They are also likely to be highly non-linear. TRfestatistic obtained from
linear regression appears to be a good guide to non-ligearith values below 0.6
performing well with the GL-ANN technique. The clusteringhaviour of datasets
(measured as the interquartile range of the estimated dagateks) gives an ind