ICS 103 – Computer Programming in C

Spring Semester 2009/20010 (092)
Lab # 4 (Repetition)

Objective:

Learn the Repetition Structures by covering the following loops:
1. while loop

2. for loop

3. do-while loop

Loops are basically means to do a task multiple times, without actually writing the repeated statements over and over again.
The format of a while loop is as follows:
while (condition) {

 Statements;

}
If the block of statements to be repeated is one, then the brackets { } are not required.

The condition is evaluated, and if it is true, the code within the block is executed. This repeats until the condition becomes false. We can think of a while loop as a repeating if statement.
for loop is another type of loop which allows for initialization and iteration control. Its format is

for(initialization; condition; update) {

 statements;
}

The initialization part is executed first followed by the condition. If the condition is true, the code within the block is executed. Once at the end of the loop, we go to update, then condition. If the condition is true the statements are executed again and so on. Note that the execution part is executed only one time when the for loop starts.
Each for loop can be converted easily into while loop. For and while loop are pre-test loops i.e. the iteration is executed based on the condition being true. Thus, we can have zero iteration in case the condition is false at the beginning.
Do-while loop is the third type of loop. It’s format is
do {

statements;

} while (condition) ;
Do-while is useful for things that we want to perform at least once because here the loop is executed at least one time. The cause for this is the condition being tested at the end and not at the beginning like for and while loops. Don’t forget to include the semi-colon after the condition of while.

We can have counting loops in case we know in advance how many iterations we will perform. We can use while or for loops for such cases. The following is an example of a counting loop for displaying the alphabet.
#include <stdio.h>

int main(void) {

char ch;

for (ch='A';ch<='Z';ch++) {

 printf("%c\t",ch);

 if((ch-'A'+1)%6==0) //prints 6 characters per line

 printf ("\n");

}

return 0;

}
[image: image1.png]c D E

CWIN\BIN\NONAMEOO. EXE) !
F
L
R
X

I J K
0 P]
u v u

A B
G H
M N
S T
v z

Y

You can change the above example to a while loop.

In case the number of iterations is not defined from the beginning, then we have a sentinel
controlled loop. In this case the signal to end the loop will come from the input. The following is an example of a sentinel controlled loop.
The program reads in positive numbers and finds their sum. When 0 is input, the loop will stop.

#include <stdio.h>

int main(){

 double num, sum ;

 sum=0.0;

 printf("Enter a value (0 to quit) >");

 scanf("%lf",&num);

 while (num !=0) {

 sum += num;

 printf("Enter a value (0 to quit) >");

 scanf("%lf",&num);

 }

 printf("sum = %f\n", sum);

 return 0;

}
Do-while can be used in a menu driven program. The example shown below will continue running as long as the user did not enter the number 5.
#include <stdio.h>

void menu();

int main(){

 int choice;

 do {

 menu();

 printf("Enter your choice >");

 scanf("%d",&choice);

 // Here come the statements to do

 // the different tasks

 } while (choice != 5);

 return 0;

}

void menu () {

printf("1-addition\n");

printf("2-subtraction\n");

printf("3-multiplication\n");

printf("4-division\n");

printf("5-Exit\n");

}

Do-while can also be used to validate an input as indicated in the example below.

#include <stdio.h>

int main(){

 int n;

 do {

 printf ("Enter an integer number in [10,100] interval >");

 scanf("%d",&n);

 if(n<10 || n>100)

 printf("Sorry wrong input, try again\n");

 }while (n<10 || n>100);

 printf("Now your input is correct");

return 0;

}

We can have one or more loops defined inside another loop. These are called nested loops. The example shown below uses a nested loop to compute the sum of integer numbers from 1 to 10.

#include <stdio.h>

int main(){

 int sum,i,j;

 for(i=1;i<=10;i++) {

 sum=1;

 printf("1");

 for(j=2;j<=i;j++) {

 sum=sum+j;

 printf("+%d",j);

 }

 printf("=%d\n",sum);

 }

return 0;

}

[image: image2.png](Inactive C:\TCWINBINWNON

142436
1424344210

142434445215
142434445462 21
142+3444546+7:28
14243444546+ 748236
14243444546+ 748+9:45
14243444546+ 748+9+10=55

Exercise :1

Write a program that reads the end values min. and max. of an interval of integer numbers [min.,max.]. Use do-while to make sure that the user enters the smaller value first. Then your program will find and display the sum of integer all integer numbers from min. to max. .min. and max. are included in the sum.

[image: image3.png]= Dr\ics-103\092\ workarea\ labdex1.exe [_ ol x|

Enter end values of the interval min. first
23 21 =
Wrong input try again

Enter end values of the interval min. first

15 15

Wrong input try again

Enter end values of the interval min. first

1115
sum of values from 11 to 15 is 65
Press any key to continue

lof | f

Exercise :2

Using nested for loop, write a program to print the following pattern on the screen.

Use do-while to make sure that the value typed by the user is between 1 and 10.
[image: image4.png]Enter an integer from 1 to 10

Wrong input try again
Enter an integer from 1 to 10

Wrong input try again
Enter an integer from 1 to 10

N—
-

bescnn

-

———

beesese

e

-

be

Press any key to continue .
<

)

[image: image5.png]D 03,092\ workarea\labde; _[olx
Enter an integer from 1 to 16 4
1 =
be
Press any key to continue .

o | oy

[image: image6.png]Enter an integer from 1 to 16 4|
o =
Wrong input try again

Enter an integer from 1 to 10

Press any key to continue .

K f

Exercise :3
Using sentinel controlled loop, write a program that reads some text typed by the user character by character.

When the user types some text he will end it by pressing “Enter” key. This key is nothing but the ‘\n’ character. Thus the loop will continue as long as the character read is not ‘\n’.

Your program counts the total number of typed characters and also the number of letters.
[image: image7.png]Enter some text
IcS 103 IS fuN

You tuped 14 characters

8 of them are letters
Press any key to continue .

o |

Exercise:4
Read a positive integer value, and compute the following sequence:
If the number typed is less than 1, print wrong input.

If it is 1, print initial value 1, no processing

For values greater than 1; if the number is even, halve it; if it is odd, multiply it by 3 and add 1 to it. Repeat this process until the value is 1, printing out each value. Finally print out how many of these operations you performed.

[image: image8.png]D 03,092\ workarea\labde; _[olx
Enter an integer value >: to 1 4
- =
Wrong input
Press any key to continue .

o | oy

[image: image9.png]1

initial value 1, no processing
Press any key to continue

[| oy

[image: image10.png]3,002\ workarea\ labdex:

||

Enter an integer value > to 1
6 =
initial value :6

Next value :3

Next value :10

Next value :5

Next value :16

Next value :8

Next value :%

Next value :2

Next value :1

number of steps:s

Press any key to continue

o | f

[image: image11.png]Enter an integer value >: to |

Press any key to continue

7
initial value

Next value :22
Next value :11
Next value :34
Next value :17
Next value :52
Next value :26
Next value :13
Next value :40
Next value :20
Next value :10
Next value :5

Next value :16
Next value :8

Next value :%

Next value :2

Next value :1
number of steps:16
<

: 7 i

PAGE
1

