
ICS103: Programming in C

3: Top-Down Design with Functions

Prof. Muhamed F. Mudawar

OUTLINE

� Building Programs from Existing Information

� Library Functions and Code Reuse

� Top-Down Design and Structure Charts

� Functions, Prototypes, and Definitions

� Functions with Arguments

� Testing Functions and Function Data Area

� Advantages of Functions and Common Errors 2

RECALL: SOFTWARE DEVELOPMENT METHOD

1. Specify the problem

2. Analyze the problem

3. Design the algorithm to solve the problem

4. Implement the algorithm

5. Test and verify the completed program

6. Maintain and update the program
3

CASE STUDY: COMPUTING THE WEIGHT

OF A BATCH OF FLAT WASHERS

� 1. Problem: Write a program that computes the weight

of a specified quantity of flat washers.

� 2. Analysis: to compute the weight of a single flat

washer, you should know its area, thickness, and

density.

Inputs:

hole diameter, edge diameter, thickness, density, quantity

Output:

weight (of a batch of flat washers)
4

2. ANALYSIS

COMPUTING THE AREA AND WEIGHT

5

rim area =

π(d2/2)2 – π(d1/2)2

unit weight =

rim area ×
thickness ×

density

3. DESIGNING THE ALGORITHM

1. Read the washer's inner diameter, outer diameter,

and thickness

2. Read the material density and quantify of washers

3. Compute the rim area

4. Compute the weight of one flat washer

5. Compute the weight of the batch of washers

6. Display the weight of the batch of washers
6

7

4. IMPLEMENT

FLAT WASHER

PROGRAM

FLAT WASHER PROGRAM (CONT'D)

8

5. Testing

Run the program with inner, outer diameters, thickness, and

densities that lead to calculations that can be verified easily.

LIBRARY FUNCTIONS AND CODE REUSE

� The primary goal of software engineering is to write

error-free code.

� Reusing code that has already been written and tested

is one way to achieve this.

� C promotes code reuse by providing library functions.

� Input/Output functions: printf , scanf , etc.

� Mathematical functions: sqrt , exp , log , etc.

� String functions: strlen , strcpy , strcmp , etc.

� Appendix B lists many C standard library functions
9

10

SOME MATHEMATICAL LIBRARY FUNCTIONS

Function Header file Argument Result Example

abs(x) <stdlib.h> int int abs(-5) is 5

fabs(x) <math.h> double double fabs(-2.3) is 2.3

sqrt(x) <math.h> double double sqrt(2.25) is 1.5

exp(x) <math.h> double double exp(1.0) is 2.71828

log(x) <math.h> double double log(2.71828) is 1.0

log10(x) <math.h> double double log10(100.0) is 2.0

pow(x,y) <math.h> double,
double

double pow(2.0,3.0) is 8.0
returns xy

sin(x) <math.h> double double sin(PI/2.0) is 1.0

cos(x) <math.h> double double cos(PI/3.0) is 0.5

tan(x) <math.h> double double tan(PI/4.0) is 1.0

ceil(x) <math.h> double double ceil(45.2) is 46.0

floor(x) <math.h> double double floor(45.2) is 45.0

USING MATH LIBRARY FUNCTIONS

#include < math.h >

� Computing the roots of: ax2 + bx + c = 0

delta = b*b – 4*a*c;

root1 = (-b + sqrt(delta))/(2.0 * a);

root2 = (-b - sqrt(delta))/(2.0 * a);

� Computing the unknown side of a triangle

�a2 = b2 + c2 – 2 b c cos(α)

a = sqrt (b*b + c*c -

2*b*c* cos (alpha));

�alpha must be in radians
11

NEXT . . .

� Building Programs from Existing Information

� Library Functions and Code Reuse

� Top-Down Design and Structure Charts

� Functions, Prototypes, and Definitions

� Functions with Arguments

� Testing Functions and Function Data Area

� Advantages of Functions and Common Errors 12

TOP-DOWN DESIGN

� Algorithms are often complex

� To solve a problem, the programmer must break it

into sub-problems at a lower level

� This process is called top-down design

� Examples:

Drawing

Simple

Diagrams
13

STRUCTURE CHARTS

� Structure Charts show the relationship between the

original problem and its sub-problems.

� The sub-problem (Draw a triangle) can also be refined.

It has its own sub-problems at level 2.

14

FUNCTIONS WITHOUT ARGUMENTS

� One way to achieve top-down design is to define a

function for each sub-program.

� For example, one can define functions to draw a

circle, intersecting lines, base line, and a triangle.

� To draw a circle, call the function:

draw_circle (); /* No argument */

� To draw a triangle, call the function:

draw_triangle (); /* No argument */

� The above draw functions have no arguments
15

FUNCTION PROTOTYPES

� A function must be declared before it can be used in a program.

� To do this, you can add a function prototype before main to

tell the compiler what functions you are planning to use.

� A function prototype tells the C compiler:

1. The result data type that the function will return

2. The function name

3. Information about the arguments that the function expects

� Function prototypes for draw_circle and sqrt

void draw_circle(void);

double sqrt(double x);
16

FUNCTION PROTOTYPES AND MAIN FUNCTION

17

Draws

This

Stick

Figure

FUNCTION DEFINITION

� A function prototype tells the compiler what arguments the

function takes and what it returns, but NOT what it does

� A function definition tells the compiler what the function does

� Function Header: Same as the prototype, except it does not

end with a semicolon ;

� Function Body: enclosed by { and } containing variable

declarations and executable statements

18

No Argument
No Result

19

PLACEMENT

OF FUNCTION

DEFINITIONS

AFTER THE

MAIN FUNCTION

OF A PROGRAM

PLACEMENT OF FUNCTIONS IN A PROGRAM

� In general, declare all function prototypes at the

beginning (after #include and #define)

� This is followed by the main function

� After that, we define all of our functions

� However, this is just a convention

� As long as a function’s prototype appears before it is

used, it doesn’t matter where in the file it is defined

� The order we define functions in a program does

not have any impact on how they are executed
20

EXECUTION ORDER OF FUNCTIONS

� Program execution always starts in main function

� Execution order of functions is determined by the order

of the function call statements

� At the end of a function, control returns immediately

after the point where the function call was made

21

function call

NEXT . . .

� Building Programs from Existing Information

� Library Functions and Code Reuse

� Top-Down Design and Structure Charts

� Functions, Prototypes, and Definitions

� Functions with Arguments

� Testing Functions and Function Data Area

� Advantages of Functions and Common Errors 22

FUNCTIONS WITH ARGUMENTS

� We use arguments to communicate with the function

� Two types of function arguments:

� Input arguments: pass data from the caller to the function

� Output arguments: pass results from the function back to

the caller [chapter 6]

� Types of Functions

� No input arguments and no value returned

� Input arguments, but no value returned

� Input arguments and single value returned

� Input arguments and multiple values returned [chapter 6]
23

FUNCTION WITH INPUT ARGUMENT

BUT NO RETURN VALUE

�void print_rboxed (double rnum);

�Display its double argument rnum in a box

�void function � No return value

24

Sample Run

FORMAL AND ACTUAL PARAMETERS

� Formal Parameter

An identifier that represents a parameter in a function

prototype or definition.

Example: void print_rbox(double rnum);

The formal parameter is rnum of type double

� Actual Parameter (or Argument)

An expression used inside the parentheses of a function call

Example: print_rbox(x+y); /* function call */

Actual argument is the value of the expression x+y

� Parameters make functions more useful. Different

arguments are passed each time a function is called.

25

FUNCTIONS WITH INPUT ARGUMENTS

AND A SINGLE RESULT VALUE

/* area of a circle */

double

circle_area(double r)

{

return (PI * r * r);

}

/* diagonal of rectangle */

double

rect_diagonal(double l, double w)

{

double d = sqrt(l*l + w*w);

return d;

}

� Functions in the math library are of this category
26

TESTING FUNCTIONS USING DRIVERS

� A function is an independent program module

� It should be tested separately to ensure correctness

� A driver function is written to test another function

� Input or define the arguments

� Call the function

� Display the function result and verify its correctness

� We can use the main function as a driver function
27

TESTING FUNCTION rect_diagonal

28

/* Testing rect_diagonal function */

int

main(void)

{

double length, width; /* of a rectangle */

double diagonal; /* of a rectangle */

printf("Enter length and width of rectangle> ");

scanf("%lf%lf", &length, &width);

diagonal = rect_diagonal(length, width);

printf("Result of rect_diagonal is %f\n", diagonal);

return 0;

}

ARGUMENT LIST CORRESPONDENCE

� The Number of actual arguments used in a call to a

function must be equal to the number of formal

parameters listed in the function prototype.

� The Order of the actual arguments used in the

function call must correspond to the order of the

parameters listed in the function prototype.

� Each actual argument must be of a data Type that

can be assigned to the corresponding formal

parameter with no unexpected loss of information.
29

THE FUNCTION DATA AREA

� Each time a function call is executed, an area of memory is

allocated for formal parameters and local variables

� Local Variables: variables declared within a function body

� Function Data Area: Formal Parameters + Local Variables

� Allocated when the function is called

� Can be used only from within the function

� No other function can see them

� The function data area is lost when a function returns

� It is reallocated when the function is called again
30

EXAMPLE OF FUNCTION DATA AREAS

31

Function

main
Data Area

length

1.5

width

2.0

diagonal

?

Function

rect_diagonal
Data Area

l

1.5

w

2.0

d

2.5

pass

pass

return

diagonal = rect_diagonal(length, width);

ADVANTAGES OF FUNCTIONS

� A large problem can be better solved by breaking it up

into several functions (sub-problems)

� Easier to write and maintain small functions than

writing one large main function

� Once you have written and tested a function, it can be

reused as a building block for a large program

� Well written and tested functions reduce the overall

length of the program and the chance of error

� Useful functions can be bundled into libraries 32

PROGRAMMING STYLE

� Each function should begin with a comment that

describes its purpose, input arguments, and result

� Include comments within the function body to

describe local variables and the algorithm steps

� Place prototypes for your own functions in the

source file before the main function

� Place the function definitions after the main

function in any order than you want 33

COMMON PROGRAMMING ERRORS

� Remember to use #include directive for every

standard library from which you are using functions

� For each function call:

� Provide the required Number of arguments

� Make sure the Order of arguments is correct

� Make sure each argument is the correct Type or that

conversion to the correct type will not lose information.

� Document and test every function you write

� Do not call a function and pass arguments that are

out of range. A function will not work properly

when passing invalid arguments: sqrt (-1.0)
34

