
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
Resource Sharing and Binding Resource Sharing and Binding

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Sharing and Binding
Resource-dominated circuits.
• Flat and hierarchical graphs.

Register sharing
Multi-port memory binding
Bus sharing and binding
Non resource-dominated circuits.
Module selection.

Sharing and Binding
Resource-dominated circuits.
• Flat and hierarchical graphs.

Register sharing
Multi-port memory binding
Bus sharing and binding
Non resource-dominated circuits.
Module selection.

3

Allocation and BindingAllocation and BindingAllocation and Binding

Allocation
• Number of resources available.

Binding
• Mapping between operations and resources.

Sharing
• Assignment of a resource to more than one operation.

Optimum binding/sharing
• Minimize the resource usage.

Allocation
• Number of resources available.

Binding
• Mapping between operations and resources.

Sharing
• Assignment of a resource to more than one operation.

Optimum binding/sharing
• Minimize the resource usage.

4

Optimum Sharing ProblemOptimum Sharing ProblemOptimum Sharing Problem

Scheduled sequencing graphs.
• Operation concurrency well defined.

Consider operation types independently.
• Problem decomposition.
• Perform analysis for each resource type.

Minimize resource usage.

Scheduled sequencing graphs.
• Operation concurrency well defined.

Consider operation types independently.
• Problem decomposition.
• Perform analysis for each resource type.

Minimize resource usage.

5

Compatibility and ConflictsCompatibility and ConflictsCompatibility and Conflicts

Operation compatibility
• Same resource type.
• Non concurrent.

Compatibility graph
• Vertices: operations.
• Edges: compatibility relation.

Conflict graph
• Complement of compatibility

graph.

Operation compatibility
• Same resource type.
• Non concurrent.

Compatibility graph
• Vertices: operations.
• Edges: compatibility relation.

Conflict graph
• Complement of compatibility

graph.

Multiplier ALU

6

Algorithmic Solution to
the Optimum Binding Problem
Algorithmic Solution toAlgorithmic Solution to
the Optimum Binding Problemthe Optimum Binding Problem

Compatibility graph.
• Partition the graph into a minimum number of cliques.
• Find clique cover number.

Conflict graph.
• Color the vertices by a minimum number of colors.
• Find chromatic number.

NP-complete problems - Heuristic algorithms.

Compatibility graph.
• Partition the graph into a minimum number of cliques.
• Find clique cover number.

Conflict graph.
• Color the vertices by a minimum number of colors.
• Find chromatic number.

NP-complete problems - Heuristic algorithms.

7

ExampleExampleExample

ALU1: 1, 3, 5
ALU2: 2, 4

1 2

3 4

5

1

3

5

2

4

8

Perfect GraphsPerfect GraphsPerfect Graphs

Comparability graph
• Graph G(V, E) has an orientation (i.e. directed edges) G(V, F)

with the transitive property.
• (vi, vj) ∈ F ∪ (vj, vk) ∈ F ⇒ (vi, vk) ∈ F.

Interval graph
• Vertices correspond to intervals.
• Edges correspond to interval intersection.
• Subset of chordal graphs

• Every loop with more than three edges has a chord (i.e. an edge
joining two non-consecutive vertices in the cycle).

Efficient algorithms exist for coloring and clique
partitioning of interval, chordal, and comparability
graphs.

Comparability graph
• Graph G(V, E) has an orientation (i.e. directed edges) G(V, F)

with the transitive property.
• (vi, vj) ∈ F ∪ (vj, vk) ∈ F ⇒ (vi, vk) ∈ F.

Interval graph
• Vertices correspond to intervals.
• Edges correspond to interval intersection.
• Subset of chordal graphs

• Every loop with more than three edges has a chord (i.e. an edge
joining two non-consecutive vertices in the cycle).

Efficient algorithms exist for coloring and clique
partitioning of interval, chordal, and comparability
graphs.

9

Non-Hierarchical Sequencing GraphsNonNon--Hierarchical Sequencing GraphsHierarchical Sequencing Graphs

The compatibility/conflict
graphs have special
properties
• Compatibility: Comparability

graph.
• Conflict: Interval graph.

Polynomial time solutions
• Golumbic's algorithm.
• Left-edge algorithm.

The compatibility/conflict
graphs have special
properties
• Compatibility: Comparability

graph.
• Conflict: Interval graph.

Polynomial time solutions
• Golumbic's algorithm.
• Left-edge algorithm.

Comparability Graph

10

ExampleExampleExample

Intervals Corresponding
to Conflict Graph

11

Left-Edge AlgorithmLeftLeft--Edge AlgorithmEdge Algorithm

Input
• Set of intervals with left

and right edge.

Rationale
• Sort intervals by left

edge.
• Assign non-overlapping

intervals to first color
using the sorted list.

• When possible intervals
are exhausted increase
color counter and repeat.

Input
• Set of intervals with left

and right edge.

Rationale
• Sort intervals by left

edge.
• Assign non-overlapping

intervals to first color
using the sorted list.

• When possible intervals
are exhausted increase
color counter and repeat.

12

ExampleExampleExample

13

ILP Formulation of BindingILP Formulation of BindingILP Formulation of Binding

Boolean variables bir
• Operation i bound to resource r.

Boolean variables xil
• Operation i scheduled to start at step l.

Each operation vi should be assigned to one resource

At most, one operation can be executing, among those
assigned to resource r, at any time step

Boolean variables bir
• Operation i bound to resource r.

Boolean variables xil
• Operation i scheduled to start at step l.

Each operation vi should be assigned to one resource

At most, one operation can be executing, among those
assigned to resource r, at any time step

14

Example…ExampleExample……

Operation types: Multiplier, ALU
Unit execution delay
A feasible binding satisfies
constraints

Operation types: Multiplier, ALU
Unit execution delay
A feasible binding satisfies
constraints

∑

∑

∑

∑

=

=

=

=

=+=≤

=∀=

=+=≤

=∀=

2)(:
2

2

1

1)(:
1

1

,...,2,1,1,...,2,1,1

2)(:,1

,...,2,1,1,...,2,1,1

1)(:,1
1

i

i

vTypei
ilir

a

r
iir

vTypei
ilir

a

r
iir

arlxb

vTypeib

arlxb

vTypeib

λ

λ

15

… Example…… ExampleExample

Constants in X are 0 except
x1,1, x2,1, x3,2, x4,3, x5,4, x6,2,
x7,3, x8,3, x9,4, x10,1, x11,2.
An implementation with
a1=2 multipliers:

Solutions
• b1,1=1, b2,2=1, b3,1=1, b6,2=1,

b7,1=1, b8,2=1.

Constants in X are 0 except
x1,1, x2,1, x3,2, x4,3, x5,4, x6,2,
x7,3, x8,3, x9,4, x10,1, x11,2.
An implementation with
a1=2 multipliers:

Solutions
• b1,1=1, b2,2=1, b3,1=1, b6,2=1,

b7,1=1, b8,2=1.

∑

∑

∈

∈

=≤

=≤

∈∀=+

}8,7,6,3,2,1{
2

}8,7,6,3,2,1{
1

21

5 ,...,2 ,1 ,1

5 ,...,2 ,1 ,1
}8 ,7 ,6 ,3 ,2 ,1{ ,1

i
ili

i
ili

ii

lxb

lxb
ibb

16

Hierarchical Sequencing Graphs …Hierarchical Sequencing Graphs Hierarchical Sequencing Graphs ……

Hierarchical conflict/compatibility graphs.
• Easy to compute.
• Prevent sharing across hierarchy.

Flatten hierarchy.
• Bigger graphs.
• Destroy nice properties.

• Graphs may no longer have special properties i.e., comparability
graph, interval graph.

• Clique partitioning and vertex coloring intractable problems.

Hierarchical conflict/compatibility graphs.
• Easy to compute.
• Prevent sharing across hierarchy.

Flatten hierarchy.
• Bigger graphs.
• Destroy nice properties.

• Graphs may no longer have special properties i.e., comparability
graph, interval graph.

• Clique partitioning and vertex coloring intractable problems.

17

… Hierarchical Sequencing Graphs…… Hierarchical Sequencing GraphsHierarchical Sequencing Graphs

Model calls
• When two link vertices corresponding to different called models

are not concurrent
• Any operation pair of same resource type in the different called

models is compatible.
• Concurrency of called models does not necessarily imply conflicts

of operation pairs in the models.

Model calls
• When two link vertices corresponding to different called models

are not concurrent
• Any operation pair of same resource type in the different called

models is compatible.
• Concurrency of called models does not necessarily imply conflicts

of operation pairs in the models.

18

Example: Model CallsExample: Model CallsExample: Model Calls

Model a consists of two operations: addition, followed
by multiplication
Addition delay is 1, multiplication delay is 2

Model a consists of two operations: addition, followed
by multiplication
Addition delay is 1, multiplication delay is 2

19

Example: Branching ConstructsExample: Branching ConstructsExample: Branching Constructs

All operations take 2 time units
Start times: ta=1, tb=3, tc=td=2
All operations take 2 time units
Start times: ta=1, tb=3, tc=td=2

20

Register Binding ProblemRegister Binding ProblemRegister Binding Problem

Given a schedule
• Lifetime intervals for variables.
• Lifetime overlaps.

Conflict graph (interval graph).
• Vertices ↔ variables.
• Edges ↔ overlaps.
• Interval graph.
• Left-edge algorithm. (Polynomial-time).

Find minimum number of registers storing all the
variables.
Compatibility graph (comparability graph).

Given a schedule
• Lifetime intervals for variables.
• Lifetime overlaps.

Conflict graph (interval graph).
• Vertices ↔ variables.
• Edges ↔ overlaps.
• Interval graph.
• Left-edge algorithm. (Polynomial-time).

Find minimum number of registers storing all the
variables.
Compatibility graph (comparability graph).

21

ExampleExampleExample

Six intermediate variables that need to be stored in
registers {z1, z2, z3, z4, z5, z6}
Six variables can be stored in two registers

Six intermediate variables that need to be stored in
registers {z1, z2, z3, z4, z5, z6}
Six variables can be stored in two registers

22

Register Sharing: General CaseRegister Sharing: General CaseRegister Sharing: General Case

Iterative constructs
• Preserve values across iterations.
• Circular-arc conflict graph.
• Coloring is intractable.

Hierarchical graphs
• General conflict graphs.
• Coloring is intractable.

Heuristic algorithms.

Iterative constructs
• Preserve values across iterations.
• Circular-arc conflict graph.
• Coloring is intractable.

Hierarchical graphs
• General conflict graphs.
• Coloring is intractable.

Heuristic algorithms.

23

ExampleExampleExample

7 intermediate variables, 3 loop variables, 3 loop invariants
5 registers suffice to store 10 intermediate loop variables
7 intermediate variables, 3 loop variables, 3 loop invariants
5 registers suffice to store 10 intermediate loop variables

24

Example: Variable-Lifetimes and Circular-
Arc Conflict Graph
Example: VariableExample: Variable--Lifetimes and CircularLifetimes and Circular--
Arc Conflict GraphArc Conflict Graph

25

Multiport-Memory Binding …MultiportMultiport--Memory Binding Memory Binding ……

Multi-port memory arrays used to store variables.
Find minimum number of ports to access the required
number of variables.
Assuming variables access memory always through the
same port
• Problem reduces to binding variables to ports.
• Port compatibility/conflict.
• Similar to resource binding.

Assuming variables can use any port
• Decision variable xil is TRUE when variable i is accessed at step l.
• Minimum number of ports

Multi-port memory arrays used to store variables.
Find minimum number of ports to access the required
number of variables.
Assuming variables access memory always through the
same port
• Problem reduces to binding variables to ports.
• Port compatibility/conflict.
• Similar to resource binding.

Assuming variables can use any port
• Decision variable xil is TRUE when variable i is accessed at step l.
• Minimum number of ports

26

… Multiport-Memory Binding…… MultiportMultiport--Memory BindingMemory Binding

Find maximum number of variables to be stored through a
fixed number of ports a.
• Boolean variables {bi, i = 1, 2, … , nvar}:
• Variable i is stored in array.

The maximum number of variables that can be stored in a
multiport-memory with a ports is obtained by:

Find maximum number of variables to be stored through a
fixed number of ports a.
• Boolean variables {bi, i = 1, 2, … , nvar}:
• Variable i is stored in array.

The maximum number of variables that can be stored in a
multiport-memory with a ports is obtained by:

27

ExampleExampleExample

One port a = 1
• {b2, b4, b8} non-zero.
• 3 variables stored:

{v2, v4, v8}.

Two ports a = 2
• 6 variables stored:

{v2, v4, v5, v10, v12, v14}

Three ports a = 3
• 9 variables stored:

{v1, v2, v4, v6, v8, v10,
v12, v13}

One port a = 1
• {b2, b4, b8} non-zero.
• 3 variables stored:

{v2, v4, v8}.

Two ports a = 2
• 6 variables stored:

{v2, v4, v5, v10, v12, v14}

Three ports a = 3
• 9 variables stored:

{v1, v2, v4, v6, v8, v10,
v12, v13}

28

Bus Sharing and BindingBus Sharing and BindingBus Sharing and Binding

Busses act as transfer resources that feed data to
functional resources.
Find the minimum number of busses to accommodate
all data transfers.
Find the maximum number of data transfers for a fixed
number of busses.
Similar to memory binding problem.
ILP formulation or heuristic algorithms.

Busses act as transfer resources that feed data to
functional resources.
Find the minimum number of busses to accommodate
all data transfers.
Find the maximum number of data transfers for a fixed
number of busses.
Similar to memory binding problem.
ILP formulation or heuristic algorithms.

29

ExampleExampleExample

One bus
• 3 variables can be

transferred.

Two busses
• All variables can be

transferred.

One bus
• 3 variables can be

transferred.

Two busses
• All variables can be

transferred.

30

Sharing and Binding for General
Circuits
Sharing and Binding for General Sharing and Binding for General
CircuitsCircuits

Area and delay influenced by
• Steering logic, wiring, registers and control circuit.
• E.g. multiplexers area and propagation delays depend on

number of inputs.
• Wire lengths can be derived from statistical models.

Binding affects the cycle-time
• It may invalidate a schedule.

Control unit is affected marginally by resource binding.

Area and delay influenced by
• Steering logic, wiring, registers and control circuit.
• E.g. multiplexers area and propagation delays depend on

number of inputs.
• Wire lengths can be derived from statistical models.

Binding affects the cycle-time
• It may invalidate a schedule.

Control unit is affected marginally by resource binding.

31

Unconstrained Minimum Area BindingUnconstrained Minimum Area BindingUnconstrained Minimum Area Binding

Area cost function depends on several factors
• resource count, steering logic and wiring.

In limiting cases, resource sharing may affect
adversely circuit area.
Example
• Circuit with n 1-bit add operations
• Area of 1-bit adder is areaadd
• Area of a MUX is a function of number of inputs

areamux = areamux
∇ . (i-1), where areamux

∇ is a constant
• Total area of a binding with a resources is a (areaadd +

areamux) ≈ a (areaadd - areamux
∇) + n . areamux

∇

• Area is increasing or decreasing function of a according to
relation areaadd > areamux

∇ .

Area cost function depends on several factors
• resource count, steering logic and wiring.

In limiting cases, resource sharing may affect
adversely circuit area.
Example
• Circuit with n 1-bit add operations
• Area of 1-bit adder is areaadd
• Area of a MUX is a function of number of inputs

areamux = areamux
∇ . (i-1), where areamux

∇ is a constant
• Total area of a binding with a resources is a (areaadd +

areamux) ≈ a (areaadd - areamux
∇) + n . areamux

∇

• Area is increasing or decreasing function of a according to
relation areaadd > areamux

∇ .

32

Unconstrained Minimum Area BindingUnconstrained Minimum Area BindingUnconstrained Minimum Area Binding

Edge-weighted compatibility graph
• Edge weights represent level of desirability of sharing
• Clique covering

Edge-weighted compatibility graph
• Edge weights represent level of desirability of sharing
• Clique covering

33

Unconstrained Minimum Area BindingUnconstrained Minimum Area BindingUnconstrained Minimum Area Binding

Tseng’s algorithm considers repeatedly subgraphs
induced by vertices with same weight edges.
Graphs with decreasing values of weights considered.
Unweighted clique partitioning of subgraphs.
Example
• Assume following edges have weight of 2

• {v1, v3}, {v1, v6}, {v1, v7}, {v3, v7}, {v6, v7}
• Other edges have weight 1
• Clique {v1, v3, v7} is first identified
• Clique {v2, v6, v8} is then identified

Tseng’s algorithm considers repeatedly subgraphs
induced by vertices with same weight edges.
Graphs with decreasing values of weights considered.
Unweighted clique partitioning of subgraphs.
Example
• Assume following edges have weight of 2

• {v1, v3}, {v1, v6}, {v1, v7}, {v3, v7}, {v6, v7}
• Other edges have weight 1
• Clique {v1, v3, v7} is first identified
• Clique {v2, v6, v8} is then identified

34

Module Selection Problem …Module Selection Problem Module Selection Problem ……

Library of resources
• More than one resource per type.

Example
• Adder

• Ripple-carry adder.
• Carry look-ahead adder.

• Multiplier
• Fully parallel
• Serial-Parallel
• Fully serial

Resource modeling
• Resource subtypes with

• (area, delay) parameters.

Library of resources
• More than one resource per type.

Example
• Adder

• Ripple-carry adder.
• Carry look-ahead adder.

• Multiplier
• Fully parallel
• Serial-Parallel
• Fully serial

Resource modeling
• Resource subtypes with

• (area, delay) parameters.

35

… Module Selection Problem…… Module Selection ProblemModule Selection Problem

ILP formulation
• Decision variables bjr

• Select resource sub-type.
• Determine (area, delay).

Heuristic algorithms
• Determine minimum latency

with fastest resource
subtypes.

• Recover area by using
slower resources on non-
critical paths.

ILP formulation
• Decision variables bjr

• Select resource sub-type.
• Determine (area, delay).

Heuristic algorithms
• Determine minimum latency

with fastest resource
subtypes.

• Recover area by using
slower resources on non-
critical paths.

bound uppe resource a is ;,...,2,1 ;.
1

anjdelaybd opsr

a

r
jrj ==∑

=

36

ExampleExampleExample

Multipliers with
• (Area, delay) = (5,1) and

(2,2)
ALU with
• (Area, delay) = (1,1)

Latency bound of 5.
Area cost is 7+2=9

Multipliers with
• (Area, delay) = (5,1) and

(2,2)
ALU with
• (Area, delay) = (1,1)

Latency bound of 5.
Area cost is 7+2=9

37

ExampleExampleExample

Latency bound of 4.
• Fast multipliers for {v1, v2, v3}.
• Slower multipliers can be used

elsewhere.
• Less sharing.
• Assume v8 uses a slow

multiplier: Area=12+2=14

Minimum-area design uses
fast multipliers only.
• Area=10+2=12

Latency bound of 4.
• Fast multipliers for {v1, v2, v3}.
• Slower multipliers can be used

elsewhere.
• Less sharing.
• Assume v8 uses a slow

multiplier: Area=12+2=14

Minimum-area design uses
fast multipliers only.
• Area=10+2=12

