COE 561 Digital System Design & Synthesis Resource Sharing and Binding

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

- Sharing and Binding
- Resource-dominated circuits.
 - Flat and hierarchical graphs.
- Register sharing
- Multi-port memory binding
- Bus sharing and binding
- Non resource-dominated circuits.
- Module selection.

Allocation and Binding

Allocation

- Number of resources available.
- Binding
 - Mapping between operations and resources.
- Sharing
 - Assignment of a resource to more than one operation.

Optimum binding/sharing

Minimize the resource usage.

Optimum Sharing Problem

Scheduled sequencing graphs.

Operation concurrency well defined.

Consider operation types independently.

- Problem decomposition.
- Perform analysis for each resource type.
- Minimize resource usage.

Compatibility and Conflicts

Operation compatibility

- Same resource type.
- Non concurrent.

Compatibility graph

- Vertices: operations.
- Edges: compatibility relation.

Conflict graph

Complement of compatibility graph.

Algorithmic Solution to the Optimum Binding Problem

Compatibility graph.

- Partition the graph into a minimum number of cliques.
- Find clique cover number.
- Conflict graph.
 - Color the vertices by a minimum number of colors.
 - Find chromatic number.

NP-complete problems - Heuristic algorithms.

Example

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x−y	3	4
t3	z=a+t		5	

ALU1: 1, 3, 5 ALU2: 2, 4

Perfect Graphs

Comparability graph

- Graph G(V, E) has an orientation (i.e. directed edges) G(V, F) with the transitive property.
- $(v_i, v_j) \in F \cup (v_j, v_k) \in F \Rightarrow (v_i, v_k) \in F.$

Interval graph

- Vertices correspond to intervals.
- Edges correspond to interval intersection.
- Subset of chordal graphs
 - Every loop with more than three edges has a chord (i.e. an edge joining two non-consecutive vertices in the cycle).
- Efficient algorithms exist for coloring and clique partitioning of interval, chordal, and comparability graphs.

Non-Hierarchical Sequencing Graphs

- The compatibility/conflict graphs have special properties
 - Compatibility: Comparability graph.
 - Conflict: Interval graph.
- Polynomial time solutions
 - Golumbic's algorithm.
 - Left-edge algorithm.

Comparability Graph

1 2 10	NOP ⁰
3 6 11	
4 7 8	
5 9	

Intervals Corresponding to Conflict Graph

Left-Edge Algorithm

Input

Set of intervals with *left* and *right* edge.

Rationale

- Sort intervals by left edge.
- Assign non-overlapping intervals to first color using the sorted list.
- When possible intervals are exhausted increase color counter and repeat.

```
LEFT\_EDGE(I) {
     Sort elements of I in a list L in ascending order of l_i;
     c = 0:
     while (some interval has not been colored ) do {
          S = \emptyset:
         r = 0;
          while (\exists s \in L \text{ such that } l_s > r) \text{ do} \{
               s = First element in the list L with l_s > r;
              S = S \cup \{s\};
              r = r_s;
              Delete s from L;
          c = c + 1;
          Label elements of S with color c;
```


ILP Formulation of Binding

- Boolean variables b_{ir}
 - Operation *i* bound to resource *r*.
- Boolean variables x_{ii}
 - Operation *i* scheduled to start at step *l*.
- Each operation v_i should be assigned to one resource

$$\sum_{r=1}^{a} b_{ir} = 1 \quad orall i$$

At most, one operation can be executing, among those assigned to resource r, at any time step

$$\sum_{i=1}^{n_{ops}} b_{ir} \quad \sum_{m=l-d_i+1}^l x_{im} \;\; \leq \;\; 1 \quad \; orall l \;\; orall r$$

Example...

- Operation types: Multiplier, ALU
- Unit execution delay
- A feasible binding satisfies constraints

$$\sum_{r=1}^{a_1} b_{ir} = 1, \quad \forall i : Type(v_i) = 1$$

$$\sum_{Type(v_i)=1} b_{ir} x_{il} \le 1, \quad l = 1, 2, \dots, \lambda + 1, \quad r = 1, 2, \dots, a_1$$

$$\sum_{r=1}^{a^2} b_{ir} = 1, \quad \forall i: Type(v_i) = 2$$

$$\sum_{Type(v_i)=2} b_{ir} x_{il} \le 1, \quad l = 1, 2, \dots, \lambda + 1, \quad r = 1, 2, \dots, a_2$$

... Example

Constants in X are 0 except $X_{1,1}, X_{2,1}, X_{3,2}, X_{4,3}, X_{5,4}, X_{6,2},$ $X_{7,3}, X_{8,3}, X_{9,4}, X_{10,1}, X_{11,2}$

An implementation with a₁=2 multipliers:

$$b_{i1} + b_{i2} = 1, \quad \forall i \in \{1, 2, 3, 6, 7, 8\}$$
$$\sum_{i \in \{1, 2, 3, 6, 7, 8\}} b_{i1} x_{il} \le 1, \quad l = 1, 2, ..., 5$$
$$\sum_{i \in \{1, 2, 3, 6, 7, 8\}} b_{i1} x_{i2} \le 1, \quad l = 1, 2, ..., 5$$

$$\sum_{i \in \{1,2,3,6,7,8\}} \mathcal{D}_{i2} x_{il} \leq 1, \quad l = 1, 2, \dots$$

Solutions

b_{1,1}=1, b_{2,2}=1, b_{3,1}=1, b_{6,2}=1, b_{7,1}=1, b_{8,2}=1.

Hierarchical Sequencing Graphs ...

Hierarchical conflict/compatibility graphs.

- Easy to compute.
- Prevent sharing across hierarchy.
- Flatten hierarchy.
 - Bigger graphs.
 - Destroy nice properties.
 - Graphs may no longer have special properties i.e., comparability graph, interval graph.
 - Clique partitioning and vertex coloring intractable problems.

... Hierarchical Sequencing Graphs

Model calls

- When two link vertices corresponding to different called models are not concurrent
 - Any operation pair of same resource type in the different called models is compatible.
- Concurrency of called models does not necessarily imply conflicts of operation pairs in the models.

Example: Model Calls

- Model a consists of two operations: addition, followed by multiplication
- Addition delay is 1, multiplication delay is 2

Example: Branching Constructs

All operations take 2 time units
 Start times: t_a=1, t_b=3, t_c=t_d=2

Register Binding Problem

Given a schedule

- Lifetime intervals for variables.
- Lifetime overlaps.

Conflict graph (interval graph).

- Vertices \leftrightarrow variables.
- Edges \leftrightarrow overlaps.
- Interval graph.
- Left-edge algorithm. (Polynomial-time).
- Find minimum number of registers storing all the variables.
- Compatibility graph (comparability graph).

Example

- Six intermediate variables that need to be stored in registers {z1, z2, z3, z4, z5, z6}
- Six variables can be stored in two registers

21

Register Sharing: General Case

Iterative constructs

- Preserve values across iterations.
- Circular-arc conflict graph.
- Coloring is intractable.
- Hierarchical graphs
 - General conflict graphs.
 - Coloring is intractable.
- Heuristic algorithms.

Example

7 intermediate variables, 3 loop variables, 3 loop invariants
5 registers suffice to store 10 intermediate loop variables

Example: Variable-Lifetimes and Circular-Arc Conflict Graph

Multiport-Memory Binding ...

- Multi-port memory arrays used to store variables.
- Find minimum number of ports to access the required number of variables.
- Assuming variables access memory always through the same port
 - Problem reduces to binding variables to ports.
 - Port compatibility/conflict.
 - Similar to resource binding.

Assuming variables can use any port

- Decision variable x_{ii} is TRUE when variable *i* is accessed at step *I*.
- Minimum number of ports

$$\max_{1 \le l \le \lambda+1} \sum_{i=1}^{n_{var}} x_{il}.$$

... Multiport-Memory Binding

Find maximum number of variables to be stored through a fixed number of ports a.

Boolean variables $\{b_i, i = 1, 2, \dots, n_{var}\}$:

Variable *i* is stored in array.

The maximum number of variables that can be stored in a multiport-memory with a ports is obtained by:

– max
$$\sum_{i=1}^{n_{var}} b_i$$
 such that

$$-\sum_{i=1}^{n_{var}} b_i x_{il} \le a \qquad l=1,2,\ldots,\lambda+1$$

Example

One port a = 1

- {b2, b4, b8} non-zero.
- 3 variables stored: {v2, v4, v8}.

Two ports a = 2

6 variables stored: {v2, v4, v5, v10, v12, v14}

Three ports a = 3

 9 variables stored: {v1, v2, v4, v6, v8, v10, v12, v13}

```
\begin{array}{rll} Time-step \ 1 & : & r_3=r_1+r_2 \ ; \ r_{12}=r_1 \\ Time-step \ 2 & : & r_5=r_3+r_4 \ ; \ r_7=r_3*r_6 \ ; \ r_{13}=r_3 \\ Time-step \ 3 & : & r_8=r_3+r_5 \ ; \ r_9=r_1+r_7 \ ; \ r_{11}=r_{10}/r_5 \\ Time-step \ 4 & : & r_{14}=r_{11}\wedge r_8 \ ; \ r_{15}=r_{12}\vee r_9 \\ Time-step \ 5 & : & r_1=r_{14} \ ; \ r_2=r_{15} \end{array}
```

$\max \sum_{i=1}^{15} b_i$ such that

Bus Sharing and Binding

- Busses act as transfer resources that feed data to functional resources.
- Find the minimum number of busses to accommodate all data transfers.
- Find the maximum number of data transfers for a fixed number of busses.
- Similar to memory binding problem.
- ILP formulation or heuristic algorithms.

Example

One bus

3 variables can be transferred.

Two busses

All variables can be transferred.

Sharing and Binding for General <u>Circuits</u>

Area and delay influenced by

- Steering logic, wiring, registers and control circuit.
- E.g. multiplexers area and propagation delays depend on number of inputs.
- Wire lengths can be derived from statistical models.

Binding affects the cycle-time

It may invalidate a schedule.

Control unit is affected marginally by resource binding.

Unconstrained Minimum Area Binding

Area cost function depends on several factors

resource count, steering logic and wiring.

In limiting cases, resource sharing may affect adversely circuit area.

Example

- Circuit with n 1-bit add operations
- Area of 1-bit adder is area_{add}
- Area of a MUX is a function of number of inputs $area_{mux} = area_{mux}^{\nabla} \cdot (i-1)$, where $area_{mux}^{\nabla}$ is a constant
- Total area of a binding with *a* resources is *a* (*area*_{add} + *area*_{mux}) \approx *a* (*area*_{add} *area*_{mux} $^{\nabla}$) + *n*. *area*_{mux} $^{\nabla}$
- Area is increasing or decreasing function of *a* according to relation $area_{add} > area_{mux}^{\nabla}$.

Unconstrained Minimum Area Binding

Edge-weighted compatibility graph

- Edge weights represent level of desirability of sharing
- Clique covering

```
TSENG(G_+(V, E, W)) {
       while (E \neq \emptyset) do {
                                                                                             /* largest edge weight?
               lw = \max w:
               E' = \{\{v_i, v_j\} \in E \text{ such that } w_{ij} = lw\};\
               G'_{+}(V', E', W') = subgraph of G_{+}(V, E, W) induced by E';
               while (E' \neq \emptyset) do {
                      Select \{v_i, v_i\} \in E' such that v_i and v_i have the most neighbors in common;
                      C = \{v_i, v_i\};
                      Delete edges \{v_l, v_i\} if \{v_l, v_j\} \notin E' \forall v_l \in V';
                      Delete vertex v_i from V';
                      while (one vertex adjacent to v_i in G'_+(V', E', W')) do {
                              Select v_k such that \{v_i, v_k\} \in E' and v_i and v_k have the
                                 most neighbors in common;
                              C = C \cup \{v_k\};
                              Delete edges \{v_l, v_i\} if \{v_l, v_k\} \notin E' \forall v_l \in V';
                              Delete vertex v_k from V';
                       }
                       Save clique C in the clique list;
               Delete the vertices in the clique list from V;
        ł
```

Unconstrained Minimum Area Binding

- Tseng's algorithm considers repeatedly subgraphs induced by vertices with same weight edges.
- Graphs with decreasing values of weights considered.
- Unweighted clique partitioning of subgraphs.
- Example
 - Assume following edges have weight of 2
 - {v1, v3}, {v1, v6}, {v1, v7}, {v3, v7}, {v6, v7}
 - Other edges have weight 1
 - Clique {v1, v3, v7} is first identified
 - Clique {v2, v6, v8} is then identified

Module Selection Problem ...

Library of resources

More than one resource per type.

Example

- Adder
 - Ripple-carry adder.
 - Carry look-ahead adder.
- Multiplier
 - Fully parallel
 - Serial-Parallel
 - Fully serial

Resource modeling

- Resource subtypes with
 - (area, delay) parameters.

... Module Selection Problem

ILP formulation

- Decision variables b_{ir}
 - Select resource sub-type.
 - Determine (area, delay).

$$d_j = \sum_{r=1}^{\overline{a}} b_{jr}.delay_r; \quad j = 1, 2, ..., n_{ops}; \ \overline{a} \text{ is a resource uppe bound}$$

Heuristic algorithms

- Determine minimum latency with fastest resource subtypes.
- Recover area by using slower resources on noncritical paths.

Example

- Multipliers with
 - (Area, delay) = (5,1) and (2,2)
- ALU with
 - (Area, delay) = (1,1)
- Latency bound of 5.
- Area cost is 7+2=9

Example

Latency bound of 4.

- Fast multipliers for {v1, v2, v3}.
- Slower multipliers can be used elsewhere.
 - Less sharing.
 - Assume v8 uses a slow multiplier: Area=12+2=14
- Minimum-area design uses fast multipliers only.
 - Area=10+2=12

