COE 561 Digital System Design & Synthesis Scheduling

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

- The scheduling problem.
- Scheduling without constraints.
- Scheduling under timing constraints.
 - Relative scheduling.
- Scheduling under resource constraints.
 - The ILP model.
 - Heuristic methods
 - List scheduling
 - Force-directed scheduling

Scheduling

Circuit model

- Sequencing graph.
- Cycle-time is given.
- Operation delays expressed in cycles.

Scheduling

- Determine the start times for the operations.
- Satisfying all the sequencing (timing and resource) constraint.

Goal

Determine area/latency trade-off.

Scheduling affects

- Area: maximum number of concurrent operations of same type is a lower bound on required hardware resources.
- Performance: concurrency of resulting implementation.

Scheduling Example

Scheduling Models

Unconstrained scheduling.

Scheduling with timing constraints

- Latency.
- Detailed timing constraints.
- Scheduling with resource constraints.
- Simplest scheduling model
 - All operations have bounded delays.
 - All delays are in cycles.
 - Cycle-time is given.
 - No constraints no bounds on area.
 - Goal
 - Minimize latency.

Minimum-Latency Unconstrained Scheduling Problem

- Given a set of operations V with integer delays D and a partial order on the operations E
- Find an integer labeling of the operations $\phi: V \rightarrow Z^{+},$ such that
 - $t_i = \phi(v_i),$
 - $t_i \ge t_j + d_j \quad \forall i, j \text{ s.t. } (v_j, v_i) \in E$

• and t_n is *minimum*.

- Unconstrained scheduling used when
 - Dedicated resources are used.
 - Operations differ in type.
 - Operations cost is marginal when compared to that of steering logic, registers, wiring, and control logic.
 - Binding is done before scheduling: resource conflicts solved by serializing operations sharing same resource.
 - Deriving bounds on latency for constrained problems.

ASAP Scheduling Algorithm

- Denote by t^s the start times computed by the as soon as possible (ASAP) algorithm.
- Yields minimum values of start times.

```
ASAP ( G_s(V, E)) {

Schedule v_0 by setting t_0^S = 1;

repeat {

Select a vertex v_i whose pred. are all scheduled;

Schedule v_i by setting t_i^S = \max_{j:(v_j,v_i)\in E} t_j^S + d_j;

}

until (v_n is scheduled) ;

return (t^S);
```


ALAP Scheduling Algorithm

- Denote by t^L the start times computed by the as late as possible (ALAP) algorithm.
- Yields maximum values of start times.
- **Latency upper bound** $\overline{\lambda}$

```
ALAP( G_s(V, E), \overline{\lambda}) {
Schedule v_n by setting t_n^L = \overline{\lambda} + 1;
repeat {
Select vertex v_i whose succ. are all scheduled;
Schedule v_i by setting t_i^L = \min_{j:(v_i,v_j) \in E} t_j^L - d_i;
}
until (v_0 is scheduled) ;
return (\mathbf{t}^L);
```


Latency-Constrained Scheduling

- ALAP solves a latency-constrained problem.
- Latency bound can be set to latency computed by ASAP algorithm.
- Mobility
 - Defined for each operation.
 - Difference between ALAP and ASAP schedule.
 - Zero mobility implies that an operation can be started only at one given time step.
 - Mobility greater than 0 measures span of time interval in which an operation may start.
- Slack on the start time.

Example

- Operations with zero mobility
 - {v1, v2, v3, v4, v5}.
 - Critical path.
- Operations with mobility one
 {v6, v7}.
- Operations with mobility two
 {v8, v9, v10, v11}

Scheduling under Detailed Timing Constraints ...

Motivation

- Interface design.
- Control over operation start time.

Constraints

Upper/lower bounds on start-time difference of any operation pair.

Minimum timing constraints between two operations

- An operation follows another by at least a number of prescribed time steps
- $I_{ij} \ge 0$ requires $t_j \ge t_i + I_{ij}$

Maximum timing constraints between two operations

- An operation follows another by at most a number of prescribed time steps
- $u_{ij} \ge 0$ requires $t_j \le t_i + u_{ij}$

... Scheduling under Detailed Timing Constraints

Example

- Circuit reads data from a bus, performs computation, writes result back on the bus.
- Bus interface constraint: data written three cycles after read.
- Minimum and maximum constraint of 3 cycles between read and write operations.

Example

- Two circuits required to communicate simultaneously to external circuits.
- Cycle in which data available is irrelevant.
- Minimum and maximum timing constraint of zero cycles between two write operations.

Constraint Graph Model

- Start from sequencing graph.
- Model delays as weights on edges.
- Add forward edges for minimum constraints.
 - Edge (v_i, v_j) with weight $I_{ij} \Rightarrow t_j \ge t_i + I_{ij}$
- Add backward edges for maximum constraints.
 - Edge (v_i, v_i) with weight $-u_{ij} \Rightarrow t_j \le t_i + u_{ij}$
 - because $t_j \leq t_i + u_{ij} \Rightarrow t_i \geq t_j u_{ij}$

... Constraint Graph Model

Mul delay = 2 ADD delay =1

Vertex	Start time
v_0	1
v_1	1
v_2	3
v_3	1
v_4	5
v_n	6

Methods for Scheduling under Detailed Timing Constraints ...

- Presence of maximum timing constraints may prevent existence of a consistent schedule.
- Required upper bound on time distance between operations may be inconsistent with first operation execution time.
- Minimum timing constraints may conflict with maximum timing constraints.
- A criterion to determine existence of a schedule:
 - For each maximum timing constraint u_{ii}
 - Longest weighted path between v_i and v_j must be $\leq u_{ij}$

... Methods for Scheduling under Detailed Timing Constraints

- Weight of longest path from source to a vertex is the minimum start time of a vertex.
- Bellman-Ford or Lia-Wong algorithm provides the schedule.
- A necessary condition for existence of a schedule is constraint graph has no positive cycles.

Method for Scheduling with Unbounded-Delay Operations

Unbounded delays

- Synchronization.
- Unbounded-delay operations (e.g. loops).
- Anchors.
 - Unbounded-delay operations.

Relative scheduling

- Schedule ops w.r. to the anchors.
- Combine schedules.

$$t_3 = \max\{t_1 + d_1; t_a + d_a\}$$

Relative Scheduling Method

For each vertex

- Determine relevant anchor set R(.).
- Anchors affecting start time.
- Determine time offset from anchors.
- Start-time
 - Expressed by:

$$t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\}$$

Computed only at run-time because delays of anchors are unknown.

Relative Scheduling under Timing Constraints

Problem definition

- Detailed timing constraints.
- Unbounded delay operations.

Solution

- May or may not exist.
- Problem may be ill-specified.
- Feasible problem
 - A solution exists when unknown delays are zero.
- Well-posed problem
 - A solution exists for any value of the unknown delays.

Theorem

A constraint graph can be made well-posed if there are no cycles with unbounded weights.

Example

(a) & (b) III-posed constraint (c) well-posed constraint

20

Relative Scheduling Approach

Analyze graph

- Detect anchors.
- Well-posedness test.
- Determine dependencies from anchors.

Schedule ops with respect to relevant anchors

Bellman-Ford, Liao-Wong, Ku algorithms.

Combine schedules to determine start times:

$$t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\} \quad \forall i$$

Example

Vertex	Relevant Anchor Set Offsets		fsets
v_i	$R(v_i)$	t_0	t_a
a	$\{v_0\}$	0	-
v_1	$\{v_0\}$	0	-
v2	$\{v_0\}$	2	-
v3	$\{v_0,a\}$	3	0

22

Scheduling under Resource Constraints

- Classical scheduling problem.
 - Fix area bound minimize latency.
- The amount of available resources affects the achievable latency.
- Dual problem
 - Fix latency bound minimize resources.
- Assumption
 - All delays bounded and known.

Minimum Latency Resource-Constrained Scheduling Problem

- Given a set of ops V with integer delays D, a partial order on the operations E, and upper bounds {a_k; k = 1, 2, ..., n_{res}}
- Find an integer labeling of the operations $\phi : V \rightarrow Z^+$, such that

•
$$\mathbf{t}_{i} = \boldsymbol{\varphi}(\mathbf{v}_{i}),$$

$$t_i \ge t_j + d_j \quad \forall i, j \text{ s.t. } (v_j, v_i) \in E$$

 $|\{v_i | \mathcal{T}(v_i) = k \text{ and } t_i \leq l < t_i + d_i\}| \leq a_k$ $\forall \text{types } k = 1, 2, \dots, n_{res} \text{ and } \forall \text{ steps } l$

and t_n is *minimum*.

Number of operations of any given type in any schedule step does not exceed bound.

Scheduling under Resource Constraints

Intractable problem.

Algorithms

- Exact
 - Integer linear program.
 - Hu (restrictive assumptions).
- Approximate
 - List scheduling.
 - Force-directed scheduling.

ILP Formulation ...

Binary decision variables

• X = {
$$x_{ii}$$
; i = 1, 2, ..., n; $i = 1, 2, ..., \overline{\lambda}+1$ }.

• x_{il} , is TRUE only when operation v_i starts in step *l* of the schedule (i.e. $l = t_i$).

• $\overline{\lambda}$ is an upper bound on latency.

Start time of operation v_i

$$t_i = \sum_l l \cdot x_{il}$$

Operations start only once

$$\sum_{l} x_{il} = 1 \quad i = 1, 2, \dots, n$$

... ILP Formulation ...

Sequencing relations must be satisfied

$$-t_i \ge t_j + d_j \qquad \forall (v_j, v_i) \in E$$
$$-\sum_l l \cdot x_{il} - \sum_l l \cdot x_{jl} - d_j \ge 0 \quad \forall (v_j, v_i) \in E$$

Resource bounds must be satisfied

Simple case (unit delay)

$$-\sum_{i:\mathcal{T}(v_i)=k} x_{il} \leq a_k \quad k = 1, 2, \dots, n_{res}; \quad \forall l$$

... ILP Formulation

Minimize c^T t such that

$$\sum_{j} x_{ij} = 1 \ i = 1, 2, \dots, n$$

$$\sum_{l} l \cdot x_{il} - \sum_{l} l \cdot x_{jl} - d_{j} \ge 0 \ i, j = 1, 2, \dots, n, (v_{j}, v_{i}) \in E$$

$$\sum_{i:\mathcal{T}(v_{i})=k} \sum_{m=l-d_{i}+1}^{l} x_{im} \le a_{k} \ k = 1, 2, \dots, n_{res}; l = 0, 1, \dots, t_{n}$$

c^T=[0,0,...,0,1]^T corresponds to minimizing the latency of the schedule.

c^T=[1,1,...,1,1]^T corresponds to finding the earliest start times of all operations under the given constraints. 28

Example ...

Resource constraints

- 2 ALUs; 2 Multipliers.
- a₁ = 2; a₂ = 2.
- Single-cycle operation. • $d_i = 1 \forall i$.

Operations start only once

• $x_{0,1}=1; x_{1,1}=1; x_{2,1}=1; x_{3,2}=1$

$$x_{4,3} = 1, x_{5,4} =$$

 $x_{6,4} + x_{6,2} = 1$

•
$$x_{7,2} + x_{7,3} = 1$$

$$x_{8,1} + x_{8,2} + x_{8,3} = 1$$

$$x_{9,2} + x_{9,3} + x_{9,4} = 7$$

$$x_{10,1} + x_{10,2} + x_{10,3} = 1$$

... Example ...

Sequencing relations must be satisfied

- $2x_{3,2} x_{1,1} \ge 1$
- [●] 2x_{3,2}-x_{2,1}≥1
- $2x_{7,2} + 3x_{7,3} x_{6,1} 2x_{6,2} \ge 1$
- $2x_{9,2} + 3x_{9,3} + 4x_{9,4} x_{8,1} 2x_{8,2} 3x_{8,3} \ge 1$
- $2x_{11,2} + 3\overline{x_{11,3}} + 4x_{11,4} x_{10,1} 2x_{10,2} 3x_{10,3} \ge 1$
- $4x_{5,4} 2x_{7,2} 3x_{7,3} \ge 1$
- $4x_{5,4}-3x_{4,3} \ge 1$
- $5x_{n,5}$ - $2x_{9,2}$ - $3x_{9,3}$ - $4x_{9,4} \ge 1$
- $5x_{n,5} 2x_{11,2} 3x_{11,3} 4x_{11,4} \ge 1$
- 5x_{n,5}-4x_{5,4}≥1

... Example

Resource bounds must be satisfied:

- $-x_{11} + x_{21} + x_{61} + x_{81} \le 2$
- $x_{32} + x_{62} + x_{72} + x_{82} \le 2$
- Any set of start times satisfying constraints provides a feasible solution.
- Any feasible solution is optimum since sink (x_{n.5}=1) mobility is 0.

Dual ILP Formulation

- Minimize resource usage under latency constraint.
- Same constraints as previous formulation.
- Additional constraint
 - Latency bound must be satisfied.

$$\sum_{l} l x_{nl} \le \overline{\lambda} + 1$$

- Resource usage is unknown in the constraints.
- Resource usage is the objective to minimize.
 - Minimize c^T a
 - a vector represents resource usage
 - c^T vector represents resource costs

Example

- Multiplier area = 5; ALU area = 1.
- Objective function: $5a_1 + a_2$. $\overline{\lambda} = 4$
- Start time constraints same.
- Sequencing dependency constraints same.
- Resource constraints
 - $x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} a_1 \le 0$
 - $x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} a_1 \le 0$
 - $x_{7,3} + x_{8,3} a_1 \le 0$
 - $x_{10,1} a_2 \le 0$
 - $x_{9,2} + x_{10,2} + x_{11,2} a_2 \le 0$
 - $x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} a_2 \le 0$
 - $x_{5,4} + x_{9,4} + x_{11,4} a_2 \le 0$

ILP Solution

- Use standard ILP packages.
- Transform into LP problem [Gebotys].
- Advantages
 - Exact method.
 - Other constraints can be incorporated easily
 - Maximum and minimum timing constraints
- Disadvantages
 - Works well up to few thousand variables.

List Scheduling Algorithms

Heuristic method for

- Minimum latency subject to resource bound.
- Minimum resource subject to latency bound.

Greedy strategy.

Priority list heuristics.

- Assign a weight to each vertex indicating its scheduling priority
 - Longest path to sink.
 - Longest path to timing constraint.

List Scheduling Algorithm for Minimum Latency ...

```
LIST_L( G(V, E), a ) {

l = 1;

repeat {

for each resource type k = 1, 2, ..., n_{res} {

Determine candidate operations U_{l,k};

Determine unfinished operations T_{l,k};

Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;

Schedule the S_k operations at step l;

l = l + 1;

}

until (v_n is scheduled) ;

return (t);
```

... List Scheduling Algorithm for Minimum Latency

Candidate Operations U_{I,k}

Operations of type k whose predecessors are scheduled and completed at time step before l

 $U_{l,k} = \{v_i \in V : Type(v_i) = k \text{ and } t_j + d_j \le l \ \forall j : (v_j, v_i) \in E\}$

Unfinished operations T_{I,k} are operations of type k that started at earlier cycles and whose execution is not finished at time I

$$T_{l,k} = \{v_i \in V : Type(v_i) = k \text{ and } t_j + d_j > l \ \forall j : (v_j, v_i) \in E\}$$

• Note that when execution delays are 1, $T_{l,k}$ is empty.

Example

- Assumptions
 - **a**₁ = 2 multipliers with delay 1.
 - $a_2 = 2$ ALUs with delay 1.
- First Step
 - $\bigcup_{1,1} = \{v_1, v_2, v_6, v_8\}$
 - Select $\{v_1, v_2\}$
 - $U_{1,2} = \{v_{10}\}; selected$
- Second step
 - $U_{2,1} = \{v_3, v_6, v_8\}$
 - select $\{v_3, v_6\}$
 - $U_{2,2} = \{v_{11}\}; \text{ selected}$
- Third step
 - $U_{3,1} = \{v_7, v_8\}$
 - Select $\{v_7, v_8\}$
 - $U_{3,2} = \{v_4\}; selected$
- Fourth step
 - $U_{4,2} = \{v_5, v_9\}; selected$

Example

Assumptions

- $a_1 = 3$ multipliers with delay 2.
- $a_2 = 1$ ALU with delay 1.

Operation		_	
Multiply	ALU	Start time	
$\{v_1, v_2, v_6\}$	v_{10}	1	
—	v_{11}	2	
$\{v_3, v_7, v_8\}$	_	3	
- -	_	4	
_	v_4	5	
-	v_5	6	
_	v9	7	

List Scheduling Algorithm for Minimum Resource Usage

}

```
LIST_R( G(V, E), \overline{\lambda} ) {
     a = 1:
     Compute the latest possible start times t^L
     by ALAP (G(V, E), \lambda);
     if (t_0^L < 0)
          return (\emptyset);
     l = 1:
     repeat {
          for each resource type k = 1, 2, \dots n_{res} {
               Determine candidate operations U_{lk}:
               Compute the slacks \{s_i = t_i^L - l \ \forall v_i \in U_{lk}\};
               Schedule the candidate operations
               with zero slack and update a;
               Schedule the candidate operations
               that do not require additional resources:
          i = l + 1;
     until (v_n \text{ is scheduled});
     return (t,a);
```

Example

- Assume λ=4
- Let a = [1, 1][⊤]
- First Step
 - $\bigcup_{1,1} = \{v_1, v_2, v_6, v_8\}$
 - Operations with zero slack {v₁, v₂}
 - a = [2, 1]^T
 - $U_{1,2} = \{v_{10}\}$
- Second step
 - $U_{2,1} = \{v_3, v_6, v_8\}$
 - Operations with zero slack {v₃, v₆}
 - $U_{2,2} = \{v_{11}\}$
- Third step
 - $U_{3,1} = \{v_7, v_8\}$
 - Operations with zero slack {v₇, v₈}
 - $U_{3,2} = \{v_4\}$
- Fourth step
 - $U_{4,2} = \{v_5, v_9\}$
 - Both have zero slack; $a = [2, 2]^T$

Force-Directed Scheduling ...

Heuristic scheduling methods [Paulin]

- Min latency subject to resource bound.
 - Variation of list scheduling: FDLS.
- Min resource subject to latency bound.
 - Schedule one operation at a time.

Rationale

 Reward uniform distribution of operations across schedule steps.

Operation interval: mobility plus one (μ_i+1).

• Computed by ASAP and ALAP scheduling $[t_i^S, t_i^L]$

Operation probability p_i(I)

- Probability of executing in a given step.
- $1/(\mu_i+1)$ inside interval; 0 elsewhere.

... Force-Directed Scheduling

• Operation-type distribution $q_k(l)$

- Sum of the op. prob. for each type.
- Shows likelihood that a resource is used at each schedule step.

Distribution graph for multiplier

Distribution graph for adder

 $\begin{array}{l} p_1(1)=1, p_1(2)=p_1(3)=p_1(4)=0\\ p_2(1)=1, p_2(2)=p_2(3)=p_2(4)=0\\ \mu_6=1; \text{ time frame [1,2]}\\ p_6(1)=0.5, p_6(2)=0.5, p_6(3)=p_6(4)=0\\ \mu_8=2; \text{ time frame [1,3]}\\ p_8(1)=p_8(2)=p_8(3)=0.3, p_8(4)=0\\ q_{mul}(1)=1+1+0.5+0.3=2.8 \end{array}$

Force

Used as priority function.

- Selection of operation to be scheduled in a time step is based on force.
- Forces attract (repel) operations into (from) specific schedule steps.
- Force is related to concurrency.
 - The larger the force the larger the concurrency

Mechanical analogy

- Force exerted by elastic spring is proportional to displacement between its end points.
- Force = constant × displacement.
 - constant = operation-type distribution.
 - displacement = change in probability.

Forces Related to the Assignment of an Operation to a Control Step

Self-force

- Sum of forces relating operation to all schedule steps in its time frame.
- Self-force for scheduling operation v_i in step I

$$self - force(i, l) = \sum_{m=t_i^s}^{t_i^L} q_k(m)(\delta_{lm} - p_i(m)) = q_k(l) - \frac{1}{\mu_i + 1} \sum_{m=t_i^s}^{t_i^L} q_k(m)$$

• δ_{lm} denotes a Kronecker delta function; equal 1 when m=l.

Successor-force

- Related to the successors.
- Delaying an operation implies delaying its successors.

Example: Operation v₆ ...

- It can be scheduled in the first two steps.
 - p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0.
- Distribution: q(1) = 2.8; q(2) = 2.3; q(3)=0.8.
- Assign v₆ to step 1
 - variation in probability 1 0.5 = 0.5 for step1
 - variation in probability 0 0.5 = -0.5 for step2
 - Self-force: 2.8 * 0.5 + 2.3 * -0.5 = +0.25
- Assign v₆ to step 2
 - variation in probability 0 0.5 = -0.5 for step1
 - variation in probability 1 0.5 = 0.5 for step2
 - Self-force: 2.8 * -0.5 + 2.3 * 0.5 = -0.25

... Example: Operation v6 ...

Successor-force

- Assigning v_6 to step 2 implies operation v_7 assigned to step 3.
- 2.3 (0-0.5) + 0.8 (1 -0.5) = -.75
- Total-force on $v_6 = (-0.25)+(-0.75)=-1$.

Conclusion

- Least force is for step 2.
- Assigning v₆ to step 2 reduces concurrency (i.e. resources).

Total force on an operation related to a schedule step

= self force + predecessor/successor forces with affected time frame

$$ps - force(i,l)_{j} = \frac{1}{\tilde{\mu}_{j} + 1} \sum_{m=t_{j}^{\tilde{s}}}^{m=t_{j}^{\tilde{L}}} q_{k}(m) - \frac{1}{\mu_{j} + 1} \sum_{m=t_{j}^{s}}^{m=t_{j}^{L}} q_{k}(m)$$

... Example: Operation v6

Assignment of v₆ to step 2 makes v₇ assigned at step 3

- Time frame change from [2, 3] to [3, 3]
- Variation on force of v₇ = 1*q(3) ½ * (q(2)+q(3)) = 0.8-0.5(2.3+0.8)= -0.75
- Assignment of v₈ to step 2 makes v₉ assigned to step 3 or 4
 - Time frame change from [2, 3, 4] to [3, 4]
 - Variation on force of v₉ = 1/2*(q(3)+q(4)) 1/3 * (q(2)+q(3)+q(4)) = 0.5*(2+1.6)-0.3*(1+2+1.6)=0.3

Force-Directed List Scheduling: Minimum Latency under Resource Constraints

- Outer structure of algorithm same as LIST-L.
- Selected candidates determined by
 - Reducing iteratively candidate set U_{I,k.}
 - Operations with least force are deferred.
 - Maximize local concurrency by selecting operations with large force.
 - At each outer iteration of loop, time frames updated.

```
LIST_L( G(V, E), a ) {

l = 1;

repeat {

for each resource type k = 1, 2, ..., n_{res} {

Determine candidate operations U_{l,k};

Determine unfinished operations T_{l,k};

Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;

Schedule the S_k operations at step l;

l = l + 1;

}

until (v_n is scheduled) ;

return (t);
```

Force-Directed Scheduling Algorithm for Minimum Resources

Operations considered one a time for scheduling

For each iteration

- Time frames, probabilities and forces computed
- Operation with least force scheduled

FDS($G(V, E), \overline{\lambda}$) {

repeat {

- Compute the time-frames;
- Compute the operation and type probabilities;
- Compute the self-forces, p/s-forces and total forces;
- Schedule the op. with least force, update time-frame;
- } **until** (all operations are scheduled)

```
return (t);
```


Scheduling Algorithms for Extended Sequencing Models

- For hierarchical sequencing graphs, scheduling performed bottom up.
- Computed start times are relative to source vertices in corresponding graph entities.
- Timing and resource-constrained scheduling is not straightforward.

Simplifying assumptions

- No resource can be shared across different graph entities in hierarchy.
- Timing and resource constraints apply within each graph entity.
- Schedule each graph entity independently.

Scheduling Graphs with Alternative Paths

- Assume sequencing graph has alternative paths related to branching constructs.
 - Obtained by expanding branch entities

ILP formulation

Resource constraints need to express that operations in alternative paths can be scheduled in same time step without affecting resource usage.

Example

Assume that path (v₀, v₈, v₉, v_n) is mutually exclusive with other operations.

Scheduling Graphs with Alternative Paths

Resource constraints

- $x_{1,1} + x_{2,1} + x_{6,1} a_1 \le 0$
- $x_{3,2} + x_{6,2} + x_{7,2} a_1 \le 0$
- $x_{10,2} + x_{11,2} a_2 \le 0$
- $\mathbf{x}_{4,3} + \mathbf{x}_{10,3} + \mathbf{x}_{11,3} \mathbf{a}_2 \le \mathbf{0}$
- $x_{5,4} + x_{11,4} a_2 \le 0$
- List scheduling and force-directed scheduling algorithms can support mutually exclusive operations
 - By modifying way resource usage computed.

