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OutlineOutlineOutline

The scheduling problem.
Scheduling without constraints.
Scheduling under timing constraints.
• Relative scheduling.

Scheduling under resource constraints.
• The ILP model.
• Heuristic methods

• List scheduling
• Force-directed scheduling

The scheduling problem.
Scheduling without constraints.
Scheduling under timing constraints.
• Relative scheduling.

Scheduling under resource constraints.
• The ILP model.
• Heuristic methods

• List scheduling
• Force-directed scheduling
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SchedulingSchedulingScheduling

Circuit model
• Sequencing graph.
• Cycle-time is given.
• Operation delays expressed in cycles.

Scheduling
• Determine the start times for the operations.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.

Scheduling affects
• Area: maximum number of concurrent operations of same 

type is a lower bound on required hardware resources.
• Performance: concurrency of resulting implementation.

Circuit model
• Sequencing graph.
• Cycle-time is given.
• Operation delays expressed in cycles.

Scheduling
• Determine the start times for the operations.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.

Scheduling affects
• Area: maximum number of concurrent operations of same 

type is a lower bound on required hardware resources.
• Performance: concurrency of resulting implementation.
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Scheduling ExampleScheduling ExampleScheduling Example
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Scheduling ModelsScheduling ModelsScheduling Models

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.
Simplest scheduling model
• All operations have bounded delays.
• All delays are in cycles.

• Cycle-time is given.
• No constraints - no bounds on area.
• Goal

• Minimize latency.

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.
Simplest scheduling model
• All operations have bounded delays.
• All delays are in cycles.

• Cycle-time is given.
• No constraints - no bounds on area.
• Goal

• Minimize latency.
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Minimum-Latency Unconstrained
Scheduling Problem
MinimumMinimum--Latency UnconstrainedLatency Unconstrained
Scheduling ProblemScheduling Problem

Given a set of operations V with integer delays D and a 
partial order on the operations E
Find an integer labeling of the operations ϕ : V → Z+, 
such that
• ti = ϕ(vi),• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E
• and tn is minimum.

Unconstrained scheduling used when
• Dedicated resources are used.
• Operations differ in type.
• Operations cost is marginal when compared to that of 

steering logic, registers, wiring, and control logic.
• Binding is done before scheduling: resource conflicts solved 

by serializing operations sharing same resource.
• Deriving bounds on latency for constrained problems.

Given a set of operations V with integer delays D and a 
partial order on the operations E
Find an integer labeling of the operations ϕ : V → Z+, 
such that
• ti = ϕ(vi),• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E
• and tn is minimum.

Unconstrained scheduling used when
• Dedicated resources are used.
• Operations differ in type.
• Operations cost is marginal when compared to that of 

steering logic, registers, wiring, and control logic.
• Binding is done before scheduling: resource conflicts solved 

by serializing operations sharing same resource.
• Deriving bounds on latency for constrained problems.
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ASAP Scheduling AlgorithmASAP Scheduling AlgorithmASAP Scheduling Algorithm

Denote by ts the start times computed by the as soon as
possible (ASAP) algorithm.
Yields minimum values of start times.

Denote by ts the start times computed by the as soon as
possible (ASAP) algorithm.
Yields minimum values of start times.
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ALAP Scheduling AlgorithmALAP Scheduling AlgorithmALAP Scheduling Algorithm

Denote by  tL the start times computed by the as late as 
possible (ALAP) algorithm.
Yields maximum values of start times.
Latency upper bound λ

Denote by  tL the start times computed by the as late as 
possible (ALAP) algorithm.
Yields maximum values of start times.
Latency upper bound λ
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Latency-Constrained SchedulingLatencyLatency--Constrained SchedulingConstrained Scheduling

ALAP solves a latency-constrained problem.
Latency bound can be set to latency computed by 
ASAP algorithm.
Mobility
• Defined for each operation.
• Difference between ALAP and ASAP schedule.
• Zero mobility implies that an operation can be started only at 

one given time step.
• Mobility greater than 0 measures span of time interval in 

which an operation may start.

Slack on the start time.

ALAP solves a latency-constrained problem.
Latency bound can be set to latency computed by 
ASAP algorithm.
Mobility
• Defined for each operation.
• Difference between ALAP and ASAP schedule.
• Zero mobility implies that an operation can be started only at 

one given time step.
• Mobility greater than 0 measures span of time interval in 

which an operation may start.

Slack on the start time.
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ExampleExampleExample

Operations with zero mobility
• {v1, v2, v3, v4, v5}.
• Critical path.

Operations with mobility one
• {v6, v7}.

Operations with mobility two
• {v8, v9, v10, v11}

Operations with zero mobility
• {v1, v2, v3, v4, v5}.
• Critical path.

Operations with mobility one
• {v6, v7}.

Operations with mobility two
• {v8, v9, v10, v11}



11

Scheduling under Detailed Timing
Constraints …
Scheduling under Detailed TimingScheduling under Detailed Timing
Constraints Constraints ……

Motivation
• Interface design.
• Control over operation start time.

Constraints
• Upper/lower bounds on start-time difference of any operation 

pair.

Minimum timing constraints between two operations
• An operation follows another by at least a number of 

prescribed time steps
• lij ≥ 0 requires tj ≥ ti + lij

Maximum timing constraints between two operations
• An operation follows another by at most a number of 

prescribed time steps
• uij ≥ 0 requires tj ≤ ti + uij

Motivation
• Interface design.
• Control over operation start time.

Constraints
• Upper/lower bounds on start-time difference of any operation 

pair.

Minimum timing constraints between two operations
• An operation follows another by at least a number of 

prescribed time steps
• lij ≥ 0 requires tj ≥ ti + lij

Maximum timing constraints between two operations
• An operation follows another by at most a number of 

prescribed time steps
• uij ≥ 0 requires tj ≤ ti + uij
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… Scheduling under Detailed Timing
Constraints
…… Scheduling under Detailed TimingScheduling under Detailed Timing
ConstraintsConstraints

Example
• Circuit reads data from a bus, performs computation, writes 

result back on the bus.
• Bus interface constraint: data written three cycles after read.
• Minimum and maximum constraint of 3 cycles between read 

and write operations.

Example
• Two circuits required to communicate simultaneously to 

external circuits.
• Cycle in which data available is irrelevant.
• Minimum and maximum timing constraint of zero cycles 

between two write operations.

Example
• Circuit reads data from a bus, performs computation, writes 

result back on the bus.
• Bus interface constraint: data written three cycles after read.
• Minimum and maximum constraint of 3 cycles between read 

and write operations.

Example
• Two circuits required to communicate simultaneously to 

external circuits.
• Cycle in which data available is irrelevant.
• Minimum and maximum timing constraint of zero cycles 

between two write operations.
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Constraint Graph ModelConstraint Graph ModelConstraint Graph Model

Start from sequencing graph.
Model delays as weights on edges.
Add forward edges for minimum constraints.
• Edge (vi, vj) with weight lij ⇒ tj ≥ ti + lij

Add backward edges for maximum constraints.
• Edge (vj, vi) with weight -uij ⇒ tj ≤ ti + uij
• because tj ≤ ti + uij ⇒ ti ≥ tj - uij

Start from sequencing graph.
Model delays as weights on edges.
Add forward edges for minimum constraints.
• Edge (vi, vj) with weight lij ⇒ tj ≥ ti + lij

Add backward edges for maximum constraints.
• Edge (vj, vi) with weight -uij ⇒ tj ≤ ti + uij
• because tj ≤ ti + uij ⇒ ti ≥ tj - uij
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… Constraint Graph Model…… Constraint Graph ModelConstraint Graph Model

Mul delay = 2
ADD delay =1
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Methods for Scheduling
under Detailed Timing Constraints …
Methods for SchedulingMethods for Scheduling
under Detailed Timing Constraints under Detailed Timing Constraints ……

Presence of maximum timing constraints 
may prevent existence of a consistent 
schedule.
Required upper bound on time distance 
between operations may be inconsistent 
with first operation execution time.
Minimum timing constraints may conflict 
with maximum timing constraints.
A criterion to determine existence of a 
schedule: 
• For each maximum timing constraint uij
• Longest weighted path between vi and vj must 

be ≤ uij

Presence of maximum timing constraints 
may prevent existence of a consistent 
schedule.
Required upper bound on time distance 
between operations may be inconsistent 
with first operation execution time.
Minimum timing constraints may conflict 
with maximum timing constraints.
A criterion to determine existence of a 
schedule: 
• For each maximum timing constraint uij
• Longest weighted path between vi and vj must 

be ≤ uij
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… Methods for Scheduling
under Detailed Timing Constraints
…… Methods for SchedulingMethods for Scheduling
under Detailed Timing Constraintsunder Detailed Timing Constraints

Weight of longest path from source to a vertex is the 
minimum start time of a vertex.
Bellman-Ford or Lia-Wong algorithm provides the 
schedule.
A necessary condition for existence of a schedule is 
constraint graph has no positive cycles.

Weight of longest path from source to a vertex is the 
minimum start time of a vertex.
Bellman-Ford or Lia-Wong algorithm provides the 
schedule.
A necessary condition for existence of a schedule is 
constraint graph has no positive cycles.
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Method for Scheduling
with Unbounded-Delay Operations
Method for SchedulingMethod for Scheduling
with Unboundedwith Unbounded--Delay OperationsDelay Operations

Unbounded delays
• Synchronization.
• Unbounded-delay operations (e.g. 

loops).

Anchors.
• Unbounded-delay operations.

Relative scheduling
• Schedule ops w.r. to the anchors.
• Combine schedules.

Unbounded delays
• Synchronization.
• Unbounded-delay operations (e.g. 

loops).

Anchors.
• Unbounded-delay operations.

Relative scheduling
• Schedule ops w.r. to the anchors.
• Combine schedules.
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Relative Scheduling MethodRelative Scheduling MethodRelative Scheduling Method

For each vertex
• Determine relevant anchor set R(.).
• Anchors affecting start time.
• Determine time offset from anchors.

Start-time
• Expressed by: 

• Computed only at run-time because delays of anchors 
are unknown.

For each vertex
• Determine relevant anchor set R(.).
• Anchors affecting start time.
• Determine time offset from anchors.

Start-time
• Expressed by: 

• Computed only at run-time because delays of anchors 
are unknown.
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Relative Scheduling under Timing
Constraints
Relative Scheduling under TimingRelative Scheduling under Timing
ConstraintsConstraints

Problem definition
• Detailed timing constraints.
• Unbounded delay operations.

Solution
• May or may not exist.
• Problem may be ill-specified.

Feasible problem
• A solution exists when unknown delays are zero.

Well-posed problem
• A solution exists for any value of the unknown delays.

Theorem
• A constraint graph can be made well-posed if there are no 

cycles with unbounded weights.

Problem definition
• Detailed timing constraints.
• Unbounded delay operations.

Solution
• May or may not exist.
• Problem may be ill-specified.

Feasible problem
• A solution exists when unknown delays are zero.

Well-posed problem
• A solution exists for any value of the unknown delays.

Theorem
• A constraint graph can be made well-posed if there are no 

cycles with unbounded weights.
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ExampleExampleExample

(a) & (b) Ill-posed constraint (c) well-posed constraint
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Relative Scheduling ApproachRelative Scheduling ApproachRelative Scheduling Approach

Analyze graph
• Detect anchors.
• Well-posedness test.
• Determine dependencies from anchors.

Schedule ops with respect to relevant anchors
• Bellman-Ford, Liao-Wong, Ku algorithms.

Combine schedules to determine start times:

Analyze graph
• Detect anchors.
• Well-posedness test.
• Determine dependencies from anchors.

Schedule ops with respect to relevant anchors
• Bellman-Ford, Liao-Wong, Ku algorithms.

Combine schedules to determine start times:
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ExampleExampleExample
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Scheduling under Resource ConstraintsScheduling under Resource ConstraintsScheduling under Resource Constraints

Classical scheduling problem.
• Fix area bound - minimize latency.

The amount of available resources affects the 
achievable latency.
Dual problem
• Fix latency bound - minimize resources.

Assumption
• All delays bounded and known.

Classical scheduling problem.
• Fix area bound - minimize latency.

The amount of available resources affects the 
achievable latency.
Dual problem
• Fix latency bound - minimize resources.

Assumption
• All delays bounded and known.
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Minimum Latency Resource-Constrained
Scheduling Problem
Minimum Latency Resource-Constrained
Scheduling Problem

Given a set of ops V with integer delays D, a partial order 
on the operations E, and upper bounds {ak; k = 1, 2, … , 
nres}
Find an integer labeling of the operations ϕ : V → Z+, such 
that
• ti = ϕ(vi),
• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E

• and tn is minimum.

Number of operations of any given type in any 
schedule step does not exceed bound.

Given a set of ops V with integer delays D, a partial order 
on the operations E, and upper bounds {ak; k = 1, 2, … , 
nres}
Find an integer labeling of the operations ϕ : V → Z+, such 
that
• ti = ϕ(vi),
• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E

• and tn is minimum.

Number of operations of any given type in any 
schedule step does not exceed bound.

:V→{1,2, …nres}
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Scheduling under Resource ConstraintsScheduling under Resource ConstraintsScheduling under Resource Constraints

Intractable problem.
Algorithms
• Exact

• Integer linear program.
• Hu (restrictive assumptions).

• Approximate
• List scheduling.
• Force-directed scheduling.

Intractable problem.
Algorithms
• Exact

• Integer linear program.
• Hu (restrictive assumptions).

• Approximate
• List scheduling.
• Force-directed scheduling.
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ILP Formulation …ILP Formulation ILP Formulation ……

Binary decision variables
• X = { xil; i = 1, 2, … , n; l = 1, 2, … , λ+1}.
• xil, is TRUE only when operation vi starts in step l of the 

schedule (i.e. l = ti).
• λ is an upper bound on latency.

Start time of operation vi

Operations start only once

Binary decision variables
• X = { xil; i = 1, 2, … , n; l = 1, 2, … , λ+1}.
• xil, is TRUE only when operation vi starts in step l of the 

schedule (i.e. l = ti).
• λ is an upper bound on latency.

Start time of operation vi

Operations start only once

ti =
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… ILP Formulation ……… ILP Formulation ILP Formulation ……

Sequencing relations must be satisfied

Resource bounds must be satisfied

Sequencing relations must be satisfied

Resource bounds must be satisfied
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… ILP Formulation…… ILP FormulationILP Formulation

Minimize cT t such that

cT=[0,0,…,0,1]T corresponds to minimizing the latency 
of the schedule.
cT=[1,1,…,1,1]T corresponds to finding the earliest start 
times of all operations under the given constraints.

Minimize cT t such that

cT=[0,0,…,0,1]T corresponds to minimizing the latency 
of the schedule.
cT=[1,1,…,1,1]T corresponds to finding the earliest start 
times of all operations under the given constraints.
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Example …Example Example ……

Resource constraints
• 2 ALUs; 2 Multipliers.
• a1 = 2; a2 = 2.

Single-cycle operation.
• di = 1 ∀i.

Operations start only once
• x0,1=1; x1,1=1; x2,1=1; x3,2=1
• x4,3=1; x5,4=1
• x6,1+ x6,2=1
• x7,2+ x7,3=1
• x8,1+ x8,2+x8,3=1
• x9,2+ x9,3+x9,4=1
• x10,1+ x10,2+x10,3=1
• x11,2+ x11,3+x11,4=1
• xn,5=1

Resource constraints
• 2 ALUs; 2 Multipliers.
• a1 = 2; a2 = 2.

Single-cycle operation.
• di = 1 ∀i.

Operations start only once
• x0,1=1; x1,1=1; x2,1=1; x3,2=1
• x4,3=1; x5,4=1
• x6,1+ x6,2=1
• x7,2+ x7,3=1
• x8,1+ x8,2+x8,3=1
• x9,2+ x9,3+x9,4=1
• x10,1+ x10,2+x10,3=1
• x11,2+ x11,3+x11,4=1
• xn,5=1
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… Example ……… Example Example ……

Sequencing relations must be 
satisfied
• 2x3,2-x1,1 ≥1
• 2x3,2-x2,1 ≥1
• 2x7,2+3x7,3-x6,1-2x6,2 ≥1
• 2x9,2+3x9,3+4x9,4-x8,1-2x8,2-3x8,3 ≥1
• 2x11,2+3x11,3+4x11,4-x10,1-2x10,2 -3x10,3 ≥1
• 4x5,4-2x7,2-3x7,3 ≥1
• 4x5,4-3x4,3 ≥1
• 5xn,5-2x9,2-3x9,3-4x9,4 ≥1
• 5xn,5-2x11,2-3x11,3-4x11,4 ≥1
• 5xn,5-4x5,4 ≥1

Sequencing relations must be 
satisfied
• 2x3,2-x1,1 ≥1
• 2x3,2-x2,1 ≥1
• 2x7,2+3x7,3-x6,1-2x6,2 ≥1
• 2x9,2+3x9,3+4x9,4-x8,1-2x8,2-3x8,3 ≥1
• 2x11,2+3x11,3+4x11,4-x10,1-2x10,2 -3x10,3 ≥1
• 4x5,4-2x7,2-3x7,3 ≥1
• 4x5,4-3x4,3 ≥1
• 5xn,5-2x9,2-3x9,3-4x9,4 ≥1
• 5xn,5-2x11,2-3x11,3-4x11,4 ≥1
• 5xn,5-4x5,4 ≥1
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… Example…… ExampleExample

Resource bounds must be 
satisfied:

Any set of start times satisfying 
constraints provides a feasible 
solution.
Any feasible solution is optimum 
since sink (xn,5=1) mobility is 0.

Resource bounds must be 
satisfied:

Any set of start times satisfying 
constraints provides a feasible 
solution.
Any feasible solution is optimum 
since sink (xn,5=1) mobility is 0.
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Dual ILP FormulationDual ILP FormulationDual ILP Formulation

Minimize resource usage under latency constraint.
Same constraints as previous formulation.
Additional constraint
• Latency bound must be satisfied.

Resource usage is unknown in the constraints.
Resource usage is the objective to minimize.
• Minimize cT a

• a vector represents resource usage
• cT vector represents resource costs

Minimize resource usage under latency constraint.
Same constraints as previous formulation.
Additional constraint
• Latency bound must be satisfied.

Resource usage is unknown in the constraints.
Resource usage is the objective to minimize.
• Minimize cT a

• a vector represents resource usage
• cT vector represents resource costs
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ExampleExampleExample

Multiplier area = 5; ALU area = 1.
Objective function: 5a1 +a2.    λ = 4
Start time constraints same.
Sequencing dependency 
constraints same.
Resource constraints
• x1,1+x2,1+x6,1+x8,1 – a1 ≤ 0
• x3,2+x6,2+x7,2+x8,2 – a1 ≤ 0
• x7,3+x8,3 – a1 ≤ 0
• x10,1 – a2 ≤ 0
• x9,2+x10,2+x11,2 – a2 ≤ 0
• x4,3+x9,3+x10,3+x11,3– a2 ≤ 0
• x5,4+x9,4+x11,4– a2 ≤ 0

Multiplier area = 5; ALU area = 1.
Objective function: 5a1 +a2.    λ = 4
Start time constraints same.
Sequencing dependency 
constraints same.
Resource constraints
• x1,1+x2,1+x6,1+x8,1 – a1 ≤ 0
• x3,2+x6,2+x7,2+x8,2 – a1 ≤ 0
• x7,3+x8,3 – a1 ≤ 0
• x10,1 – a2 ≤ 0
• x9,2+x10,2+x11,2 – a2 ≤ 0
• x4,3+x9,3+x10,3+x11,3– a2 ≤ 0
• x5,4+x9,4+x11,4– a2 ≤ 0
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ILP SolutionILP SolutionILP Solution

Use standard ILP packages.
Transform into LP problem [Gebotys].
Advantages
• Exact method.
• Other constraints can be incorporated easily

• Maximum and minimum timing constraints

Disadvantages
• Works well up to few thousand variables.

Use standard ILP packages.
Transform into LP problem [Gebotys].
Advantages
• Exact method.
• Other constraints can be incorporated easily

• Maximum and minimum timing constraints

Disadvantages
• Works well up to few thousand variables.
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List Scheduling AlgorithmsList Scheduling AlgorithmsList Scheduling Algorithms

Heuristic method for
• Minimum latency subject to resource bound.
• Minimum resource subject to latency bound.

Greedy strategy.
Priority list heuristics.
• Assign a weight to each vertex indicating its scheduling 

priority
• Longest path to sink.
• Longest path to timing constraint.

Heuristic method for
• Minimum latency subject to resource bound.
• Minimum resource subject to latency bound.

Greedy strategy.
Priority list heuristics.
• Assign a weight to each vertex indicating its scheduling 

priority
• Longest path to sink.
• Longest path to timing constraint.
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List Scheduling Algorithm for Minimum 
Latency …
List Scheduling Algorithm for Minimum List Scheduling Algorithm for Minimum 
Latency Latency ……
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… List Scheduling Algorithm for Minimum 
Latency
…… List Scheduling Algorithm for Minimum List Scheduling Algorithm for Minimum 
LatencyLatency

Candidate Operations Ul,k
• Operations of type k whose predecessors are scheduled and 

completed at time step before l

Unfinished operations Tl,k are operations of type k that 
started at earlier cycles and whose execution is not 
finished at time l

• Note that when execution delays are 1, Tl,k is empty.

Candidate Operations Ul,k
• Operations of type k whose predecessors are scheduled and 

completed at time step before l

Unfinished operations Tl,k are operations of type k that 
started at earlier cycles and whose execution is not 
finished at time l

• Note that when execution delays are 1, Tl,k is empty.

}),(:)(:{, Evvjl dtkvΤypeVvU ijjjiikl ∈∀≤+=∈=  and 

}),(:)(:{, Evvjl dtkvΤypeVvT ijjjiikl ∈∀>+=∈=  and 
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ExampleExampleExample

Assumptions
• a1 = 2 multipliers with delay 1.
• a2 = 2 ALUs with delay 1.

First Step
• U1,1 = {v1, v2, v6, v8}• Select  {v1, v2}• U1,2 = {v10}; selected

Second step
• U2,1 = {v3, v6, v8}• select {v3, v6}• U2,2 = {v11}; selected

Third step
• U3,1 = {v7, v8}• Select {v7, v8}• U3,2 = {v4}; selected

Fourth step
• U4,2 = {v5, v9}; selected

Assumptions
• a1 = 2 multipliers with delay 1.
• a2 = 2 ALUs with delay 1.

First Step
• U1,1 = {v1, v2, v6, v8}• Select  {v1, v2}• U1,2 = {v10}; selected

Second step
• U2,1 = {v3, v6, v8}• select {v3, v6}• U2,2 = {v11}; selected

Third step
• U3,1 = {v7, v8}• Select {v7, v8}• U3,2 = {v4}; selected

Fourth step
• U4,2 = {v5, v9}; selected
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ExampleExampleExample

Assumptions
• a1 = 3 multipliers with delay 2.
• a2 = 1 ALU with delay 1.

Assumptions
• a1 = 3 multipliers with delay 2.
• a2 = 1 ALU with delay 1.
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List Scheduling Algorithm
for Minimum Resource Usage
List Scheduling AlgorithmList Scheduling Algorithm
for Minimum Resource Usagefor Minimum Resource Usage
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ExampleExampleExample
Assume λ=4
Let a = [1, 1]T

First Step
• U1,1 = {v1, v2, v6, v8}• Operations with zero slack {v1, v2}• a = [2, 1]T
• U1,2 = {v10}

Second step
• U2,1 = {v3, v6, v8}• Operations with zero slack {v3, v6}• U2,2 = {v11}

Third step
• U3,1 = {v7, v8}• Operations with zero slack {v7, v8}• U3,2 = {v4}

Fourth step
• U4,2 = {v5, v9}• Both have zero slack; a = [2, 2]T

Assume λ=4
Let a = [1, 1]T

First Step
• U1,1 = {v1, v2, v6, v8}• Operations with zero slack {v1, v2}• a = [2, 1]T
• U1,2 = {v10}

Second step
• U2,1 = {v3, v6, v8}• Operations with zero slack {v3, v6}• U2,2 = {v11}

Third step
• U3,1 = {v7, v8}• Operations with zero slack {v7, v8}• U3,2 = {v4}

Fourth step
• U4,2 = {v5, v9}• Both have zero slack; a = [2, 2]T
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Force-Directed Scheduling …ForceForce--Directed Scheduling Directed Scheduling ……

Heuristic scheduling methods [Paulin]
• Min latency subject to resource bound.

• Variation of list scheduling: FDLS.
• Min resource subject to latency bound.

• Schedule one operation at a time.

Rationale
• Reward uniform distribution of operations across schedule 

steps.

Operation interval: mobility plus one (μi+1).
• Computed by ASAP and ALAP scheduling

Operation probability pi(l)
• Probability of executing in a given step.
• 1/(μi+1) inside interval; 0 elsewhere.

Heuristic scheduling methods [Paulin]
• Min latency subject to resource bound.

• Variation of list scheduling: FDLS.
• Min resource subject to latency bound.

• Schedule one operation at a time.

Rationale
• Reward uniform distribution of operations across schedule 

steps.

Operation interval: mobility plus one (μi+1).
• Computed by ASAP and ALAP scheduling

Operation probability pi(l)
• Probability of executing in a given step.
• 1/(μi+1) inside interval; 0 elsewhere.
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… Force-Directed Scheduling…… ForceForce--Directed SchedulingDirected Scheduling

Operation-type distribution qk(l)
• Sum of the op. prob. for each type.
• Shows likelihood that a resource is 

used at each schedule step.

Distribution graph for multiplier

Distribution graph for adder

Operation-type distribution qk(l)
• Sum of the op. prob. for each type.
• Shows likelihood that a resource is 

used at each schedule step.

Distribution graph for multiplier

Distribution graph for adder
p1(1)=1, p1(2)=p1(3)=p1(4)=0
p2(1)=1, p2(2)=p2(3)=p2(4)=0
μ6=1; time frame [1,2]
p6(1)=0.5, p6(2)=0.5, p6(3)=p6(4)=0
μ8=2; time frame [1,3]
p8(1)=p8(2)=p8(3)=0.3, p8(4)=0
qmul(1)=1+1+0.5+0.3=2.8
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ForceForceForce

Used as priority function.
Selection of operation to be scheduled in a time step is 
based on force.
Forces attract (repel) operations into (from) specific 
schedule steps.
Force is related to concurrency.
• The larger the force the larger the concurrency

Mechanical analogy
• Force exerted by elastic spring is proportional to 

displacement between its end points. 
• Force = constant  × displacement.

• constant = operation-type distribution.
• displacement = change in probability.

Used as priority function.
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Forces Related to the Assignment
of an Operation to a Control Step
Forces Related to the AssignmentForces Related to the Assignment
of an Operation to a Control Stepof an Operation to a Control Step

Self-force
• Sum of forces relating operation to all schedule steps in its 

time frame. 
• Self-force for scheduling operation vi in step l

• δlm denotes a Kronecker delta function; equal 1 when m=l.
Successor-force
• Related to the successors.
• Delaying an operation implies delaying its successors.
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Example: Operation v6 …Example: Operation vExample: Operation v66 ……

It can be scheduled in the first two 
steps.
• p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) =0.

Distribution: q(1) = 2.8; q(2) = 2.3; 
q(3)=0.8.
Assign v6 to step 1
• variation in probability 1 – 0.5 = 0.5 for step1
• variation in probability 0 – 0.5 = -0.5 for step2
• Self-force: 2.8 * 0.5 + 2.3 * -0.5 = +0.25 

Assign v6 to step 2
• variation in probability 0 – 0.5 = -0.5 for step1
• variation in probability 1 – 0.5 =  0.5 for step2
• Self-force: 2.8 * -0.5 + 2.3 * 0.5 = -0.25 

It can be scheduled in the first two 
steps.
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Distribution: q(1) = 2.8; q(2) = 2.3; 
q(3)=0.8.
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47

… Example: Operation v6 ……… Example: Operation v6 Example: Operation v6 ……

Successor-force
• Assigning v6 to step 2 implies operation v7 assigned to step 3.
• 2.3 (0-0.5) + 0.8 (1 -0.5) = -.75
• Total-force on v6 = (-0.25)+(-0.75)=-1.

Conclusion
• Least force is for step 2.
• Assigning v6 to step 2 reduces concurrency (i.e.  resources).

Total force on an operation related to a schedule step
• = self force + predecessor/successor forces with affected time 

frame

Successor-force
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… Example: Operation v6…… Example: Operation v6Example: Operation v6

Assignment of v6 to step 2 makes v7 assigned at step 3
• Time frame change from [2, 3] to [3, 3]
• Variation on force of v7 = 1*q(3) – ½ * (q(2)+q(3)) 

= 0.8-0.5(2.3+0.8)= -0.75

Assignment of v8 to step 2 makes v9 assigned to step 3 
or 4
• Time frame change from [2, 3, 4] to [3, 4]
• Variation on force of v9 = 1/2*(q(3)+q(4)) – 1/3 * 

(q(2)+q(3)+q(4)) = 0.5*(2+1.6)-0.3*(1+2+1.6)=0.3 

Assignment of v6 to step 2 makes v7 assigned at step 3
• Time frame change from [2, 3] to [3, 3]
• Variation on force of v7 = 1*q(3) – ½ * (q(2)+q(3)) 

= 0.8-0.5(2.3+0.8)= -0.75

Assignment of v8 to step 2 makes v9 assigned to step 3 
or 4
• Time frame change from [2, 3, 4] to [3, 4]
• Variation on force of v9 = 1/2*(q(3)+q(4)) – 1/3 * 

(q(2)+q(3)+q(4)) = 0.5*(2+1.6)-0.3*(1+2+1.6)=0.3 
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Force-Directed List Scheduling: Minimum 
Latency under Resource Constraints
ForceForce--Directed List Scheduling: Minimum Directed List Scheduling: Minimum 
Latency under Resource ConstraintsLatency under Resource Constraints

Outer structure of 
algorithm same as LIST-L.
Selected candidates 
determined by
• Reducing iteratively 

candidate set Ul,k.
• Operations with least force 

are deferred. 
• Maximize local concurrency 

by selecting operations with 
large force.

• At each outer iteration of 
loop, time frames updated.

Outer structure of 
algorithm same as LIST-L.
Selected candidates 
determined by
• Reducing iteratively 

candidate set Ul,k.
• Operations with least force 

are deferred. 
• Maximize local concurrency 

by selecting operations with 
large force.

• At each outer iteration of 
loop, time frames updated.
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Force-Directed Scheduling Algorithm
for Minimum Resources
ForceForce--Directed Scheduling AlgorithmDirected Scheduling Algorithm
for Minimum Resourcesfor Minimum Resources

Operations considered one a time for scheduling
For each iteration
• Time frames, probabilities and forces computed
• Operation with least force scheduled 

Operations considered one a time for scheduling
For each iteration
• Time frames, probabilities and forces computed
• Operation with least force scheduled 
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Scheduling Algorithms for Extended 
Sequencing Models
Scheduling Algorithms for Extended Scheduling Algorithms for Extended 
Sequencing ModelsSequencing Models

For hierarchical sequencing graphs, scheduling 
performed bottom up.
Computed start times are relative to source vertices in 
corresponding graph entities.
Timing and resource-constrained scheduling is not 
straightforward.
Simplifying assumptions
• No resource can be shared across different graph entities in 

hierarchy.
• Timing and resource constraints apply within each graph 

entity.
• Schedule each graph entity independently.
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Scheduling Graphs with Alternative PathsScheduling Graphs with Alternative PathsScheduling Graphs with Alternative Paths

Assume sequencing graph has alternative paths 
related to branching constructs.
• Obtained by expanding branch entities

ILP formulation
• Resource constraints need to express that operations in 

alternative paths can be scheduled in same time step without 
affecting resource usage.

Example
• Assume that path (v0, v8, v9, vn)

is mutually exclusive with other 
operations.

Assume sequencing graph has alternative paths 
related to branching constructs.
• Obtained by expanding branch entities

ILP formulation
• Resource constraints need to express that operations in 

alternative paths can be scheduled in same time step without 
affecting resource usage.

Example
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Scheduling Graphs with Alternative PathsScheduling Graphs with Alternative PathsScheduling Graphs with Alternative Paths

Resource constraints
• x1,1+x2,1+x6,1 – a1 ≤ 0
• x3,2+x6,2+x7,2 – a1 ≤ 0
• x10,2+x11,2 – a2 ≤ 0
• x4,3+x10,3+x11,3– a2 ≤ 0
• x5,4+x11,4– a2 ≤ 0

List scheduling and force-directed 
scheduling algorithms can support 
mutually exclusive operations
• By modifying way resource usage 

computed.
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