
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
Architectural Synthesis Architectural Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Motivation
Dataflow graphs
Sequencing graphs
Compilation and behavioral optimization
Resources
Constraints
Synthesis in temporal domain: Scheduling
Synthesis in spatial domain: Binding

Motivation
Dataflow graphs
Sequencing graphs
Compilation and behavioral optimization
Resources
Constraints
Synthesis in temporal domain: Scheduling
Synthesis in spatial domain: Binding

3

SynthesisSynthesisSynthesis

Transform behavioral into structural view.
Architectural-level synthesis
• Architectural abstraction level.
• Determine macroscopic structure.
• Example: major building blocks like adder, register, mux.

Logic-level synthesis
• Logic abstraction level.
• Determine microscopic structure.
• Example: logic gate interconnection.

Transform behavioral into structural view.
Architectural-level synthesis
• Architectural abstraction level.
• Determine macroscopic structure.
• Example: major building blocks like adder, register, mux.

Logic-level synthesis
• Logic abstraction level.
• Determine microscopic structure.
• Example: logic gate interconnection.

4

Synthesis and OptimizationSynthesis and OptimizationSynthesis and Optimization

5

Architectural Design Space Example …Architectural Design Space Example Architectural Design Space Example ……

6

Different Design SolutionsDifferent Design SolutionsDifferent Design Solutions

1 Multiplier , 1 ALU 2 Multipliers, 2 ALUs

7

Example of StructuresExample of StructuresExample of Structures

8

Area vs. Latency TradeoffsArea vs. Latency TradeoffsArea vs. Latency Tradeoffs

Multiplier Area: 5
Adder Area: 1
Other logic Area: 1

9

Architectural-Level Synthesis MotivationArchitecturalArchitectural--Level Synthesis MotivationLevel Synthesis Motivation

Raise input abstraction level.
• Reduce specification of details.
• Extend designer base.
• Self-documenting design specifications.
• Ease modifications and extensions.

Reduce design time.
Explore and optimize macroscopic structure
• Series/parallel execution of operations.

Raise input abstraction level.
• Reduce specification of details.
• Extend designer base.
• Self-documenting design specifications.
• Ease modifications and extensions.

Reduce design time.
Explore and optimize macroscopic structure
• Series/parallel execution of operations.

10

Architectural-Level SynthesisArchitecturalArchitectural--Level SynthesisLevel Synthesis

Translate HDL models into sequencing graphs.
Behavioral-level optimization
• Optimize abstract models independently from the

implementation parameters.

Architectural synthesis and optimization
• Create macroscopic structure

• data-path and control-unit.
• Consider area and delay information of the implementation.

Translate HDL models into sequencing graphs.
Behavioral-level optimization
• Optimize abstract models independently from the

implementation parameters.

Architectural synthesis and optimization
• Create macroscopic structure

• data-path and control-unit.
• Consider area and delay information of the implementation.

11

Dataflow Graphs …Dataflow Graphs Dataflow Graphs ……

Behavioral views of
architectural models.
Useful to represent data-
paths.
Graph
• Vertices = operations.
• Edges = dependencies.

Dependencies arise due
• Input to an operation is result

of another operation.
• Serialization constraints in

specification.
• Two tasks share the same

resource.

Behavioral views of
architectural models.
Useful to represent data-
paths.
Graph
• Vertices = operations.
• Edges = dependencies.

Dependencies arise due
• Input to an operation is result

of another operation.
• Serialization constraints in

specification.
• Two tasks share the same

resource.

12

… Dataflow Graphs…… Dataflow GraphsDataflow Graphs

Assumes the existence of variables who store
information required and generated by operations.
Each variable has a lifetime which is the interval from
birth to death.
Variable birth is the time at which the value is
generated.
Variable death is the latest time at which the value is
referenced as input to operation.
Values must be preserved during life-time.

Assumes the existence of variables who store
information required and generated by operations.
Each variable has a lifetime which is the interval from
birth to death.
Variable birth is the time at which the value is
generated.
Variable death is the latest time at which the value is
referenced as input to operation.
Values must be preserved during life-time.

13

Sequencing GraphsSequencing GraphsSequencing Graphs

Useful to represent data-path
and control.
Extended dataflow graphs
• Control Data Flow Graphs

(CDFGs).
• Operation serialization.
• Hierarchy.
• Control-flow commands

• branching and iteration.
• Polar: source and sink.

Paths in the graph represent
concurrent streams of
operations.

Useful to represent data-path
and control.
Extended dataflow graphs
• Control Data Flow Graphs

(CDFGs).
• Operation serialization.
• Hierarchy.
• Control-flow commands

• branching and iteration.
• Polar: source and sink.

Paths in the graph represent
concurrent streams of
operations.

14

Example of HierarchyExample of HierarchyExample of Hierarchy

Two kinds of vertices
• Operations
• Links: linking sequencing

graph entities in the
hierarchy

• Model call
• Branching
• Iteration

Vertex vi is a predecessor
of vertex vj if there is a
path with tail vi and head
vj

Vertex vi is a successor
of vertex vj if there is a
path with head vi and tail
vj

Two kinds of vertices
• Operations
• Links: linking sequencing

graph entities in the
hierarchy

• Model call
• Branching
• Iteration

Vertex vi is a predecessor
of vertex vj if there is a
path with tail vi and head
vj

Vertex vi is a successor
of vertex vj if there is a
path with head vi and tail
vj

15

Example of Branching …Example of Branching Example of Branching ……

Branching modeled by
• Branching clause
• Branching body

• Set of tasks selected according to value of branching clause.

Several branching bodies
• Mutual exclusive execution.

A sequencing graph entity associated with each
branch body.
Link vertex models
• Branching clause.
• Operation of evaluating clause and taking branch decision.

Branching modeled by
• Branching clause
• Branching body

• Set of tasks selected according to value of branching clause.

Several branching bodies
• Mutual exclusive execution.

A sequencing graph entity associated with each
branch body.
Link vertex models
• Branching clause.
• Operation of evaluating clause and taking branch decision.

16

… Example of Branching…… Example of BranchingExample of Branching

x= a*b
y=x*c
z=a+b
If (z ≥ 0)
• {p=m+n; q=m*n}

x= a*b
y=x*c
z=a+b
If (z ≥ 0)
• {p=m+n; q=m*n}

17

Iterative ConstructsIterative ConstructsIterative Constructs

Iterative constructs modeled by
• Iteration clause
• Iteration body

Iteration body is a set of tasks repeated as long as
iteration clause is true.
Iteration modeled through use of hierarchy.
Iteration represented as repeated model call to
sequencing graph entity modeling iteration body.
Link vertex models the operation of evaluating the
iteration cause.

Iterative constructs modeled by
• Iteration clause
• Iteration body

Iteration body is a set of tasks repeated as long as
iteration clause is true.
Iteration modeled through use of hierarchy.
Iteration represented as repeated model call to
sequencing graph entity modeling iteration body.
Link vertex models the operation of evaluating the
iteration cause.

18

Example of Iteration …Example of Iteration Example of Iteration ……

19

… Example of Iteration…… Example of IterationExample of Iteration

Loop Body

20

Semantics of Sequencing GraphsSemantics of Sequencing GraphsSemantics of Sequencing Graphs

Marking of vertices
• Waiting for execution.
• Executing.
• Have completed execution.

Firing an operation means starting its execution.
Execution semantics
• An operation can be fired as soon as all its immediate

predecessors have completed execution.
Model can be reset by making all operations waiting for
execution.
Model can be fired (executed) by firing the source
vertex.
Model completes execution when sink completes
execution.

Marking of vertices
• Waiting for execution.
• Executing.
• Have completed execution.

Firing an operation means starting its execution.
Execution semantics
• An operation can be fired as soon as all its immediate

predecessors have completed execution.
Model can be reset by making all operations waiting for
execution.
Model can be fired (executed) by firing the source
vertex.
Model completes execution when sink completes
execution.

21

Vertex AttributesVertex AttributesVertex Attributes

Area cost.
Delay cost
• Propagation delay.
• Execution delay.

Data-dependent execution delays
• Bounded (e.g. branching).

• Maximum and minimum delays can be computed
• E.g. floating-point data normalization requiring conditional data

alignment.
• Unbounded (e.g. iteration, synchronization).

Area cost.
Delay cost
• Propagation delay.
• Execution delay.

Data-dependent execution delays
• Bounded (e.g. branching).

• Maximum and minimum delays can be computed
• E.g. floating-point data normalization requiring conditional data

alignment.
• Unbounded (e.g. iteration, synchronization).

22

Properties of Sequencing GraphsProperties of Sequencing GraphsProperties of Sequencing Graphs

Computed by visiting hierarchy bottom-up.
Area estimate
• Sum of the area attributes of all vertices.
• Worst-case -- no sharing.

Delay estimate (latency)
• Bounded-latency graphs.
• Length of longest path.

Computed by visiting hierarchy bottom-up.
Area estimate
• Sum of the area attributes of all vertices.
• Worst-case -- no sharing.

Delay estimate (latency)
• Bounded-latency graphs.
• Length of longest path.

23

Compilation and Behavioral OptimizationCompilation and Behavioral OptimizationCompilation and Behavioral Optimization

Software compilation
• Compile program into intermediate form.
• Optimize intermediate form.
• Generate target code for an architecture.

Hardware compilation
• Compile HDL model into sequencing graph.
• Optimize sequencing graph.
• Generate gate-level interconnection for a cell library.

Software compilation
• Compile program into intermediate form.
• Optimize intermediate form.
• Generate target code for an architecture.

Hardware compilation
• Compile HDL model into sequencing graph.
• Optimize sequencing graph.
• Generate gate-level interconnection for a cell library.

24

Hardware and Software CompilationHardware and Software CompilationHardware and Software Compilation

25

CompilationCompilationCompilation

Front-end
• Lexical and syntax analysis.
• Parse-tree generation.
• Macro-expansion.
• Expansion of meta-variables.

Semantic analysis
• Data-flow and control-flow analysis.
• Type checking.
• Resolve arithmetic and relational operators.

Front-end
• Lexical and syntax analysis.
• Parse-tree generation.
• Macro-expansion.
• Expansion of meta-variables.

Semantic analysis
• Data-flow and control-flow analysis.
• Type checking.
• Resolve arithmetic and relational operators.

26

Parse Tree ExampleParse Tree ExampleParse Tree Example

a = p + q * ra = p + q * r

27

Behavioral-Level OptimizationBehavioralBehavioral--Level OptimizationLevel Optimization

Semantic-preserving transformations aiming at
simplifying the model.
Applied to parse-trees or during their generation.
Taxonomy
• Data-flow based transformations.
• Control-flow based transformations.

Semantic-preserving transformations aiming at
simplifying the model.
Applied to parse-trees or during their generation.
Taxonomy
• Data-flow based transformations.
• Control-flow based transformations.

28

Data-Flow Based TransformationsDataData--Flow Based TransformationsFlow Based Transformations

Tree-height reduction.
Constant and variable propagation.
Common subexpression elimination.
Dead-code elimination.
Operator-strength reduction.
Code motion.

Tree-height reduction.
Constant and variable propagation.
Common subexpression elimination.
Dead-code elimination.
Operator-strength reduction.
Code motion.

29

Tree-Height ReductionTreeTree--Height ReductionHeight Reduction

Applied to arithmetic expressions.
Goal
• Split into two-operand expressions to exploit hardware

parallelism at best.

Techniques
• Balance the expression tree.
• Exploit commutativity, associativity and distributivity.

Applied to arithmetic expressions.
Goal
• Split into two-operand expressions to exploit hardware

parallelism at best.

Techniques
• Balance the expression tree.
• Exploit commutativity, associativity and distributivity.

30

Example of Tree-Height Reduction
using Commutativity and Associativity
Example of TreeExample of Tree--Height ReductionHeight Reduction
using using CommutativityCommutativity and and AssociativityAssociativity

x = a + b * c + d => x = (a + d) + b * cx = a + b * c + d => x = (a + d) + b * c

31

Example of Tree-Height Reduction
using Distributivity
Example of TreeExample of Tree--Height ReductionHeight Reduction
using using DistributivityDistributivity

x = a * (b * c * d + e) => x = a * b * c * d + a * ex = a * (b * c * d + e) => x = a * b * c * d + a * e

32

Examples of Propagation & Subexpression
Elimination
Examples of Propagation & Examples of Propagation & SubexpressionSubexpression
EliminationElimination

Constant propagation
• a = 0; b = a+1; c = 2 * b;
• a = 0; b = 1; c = 2;

Variable propagation
• a = x; b = a+1; c = 2 * a;
• a = x; b = x+1; c = 2 * x;

Subexpression elimination
• Search isomorphic patterns in the parse trees.
• Example

• a = x+y; b = a+1; c = x+y;
• a = x+y; b = a+1; c = a;

Constant propagation
• a = 0; b = a+1; c = 2 * b;
• a = 0; b = 1; c = 2;

Variable propagation
• a = x; b = a+1; c = 2 * a;
• a = x; b = x+1; c = 2 * x;

Subexpression elimination
• Search isomorphic patterns in the parse trees.
• Example

• a = x+y; b = a+1; c = x+y;
• a = x+y; b = a+1; c = a;

33

Examples of Other TransformationsExamples of Other TransformationsExamples of Other Transformations

Dead-code elimination
• a = x; b = x+1; c = 2 * x;
• a = x; can be removed if not referenced.

Operator-strength reduction
• a = x2; b = 3 * x;
• a = x * x; t = x << 1; b = x+t.

Code motion
• for (i = 1; i < a * b) { } ;
• t = a * b; for (i = 1; i < t) { }.

Dead-code elimination
• a = x; b = x+1; c = 2 * x;
• a = x; can be removed if not referenced.

Operator-strength reduction
• a = x2; b = 3 * x;
• a = x * x; t = x << 1; b = x+t.

Code motion
• for (i = 1; i < a * b) { } ;
• t = a * b; for (i = 1; i < t) { }.

34

Control-Flow Based TransformationsControlControl--Flow Based TransformationsFlow Based Transformations

Model expansion.
Conditional expansion.
Loop expansion.
Block-level transformations.
Model Expansion
• Expand subroutine -- flatten hierarchy.
• Useful to expand scope of other optimization techniques.
• Problematic when routine is called more than once.
• Example

• x = a+b; y = a * b; z = foo(x; y);
• foo(p; q){ t = q - p; return(t); }
• By expanding foo

• x = a+b; y = a * b; z = y - x

Model expansion.
Conditional expansion.
Loop expansion.
Block-level transformations.
Model Expansion
• Expand subroutine -- flatten hierarchy.
• Useful to expand scope of other optimization techniques.
• Problematic when routine is called more than once.
• Example

• x = a+b; y = a * b; z = foo(x; y);
• foo(p; q){ t = q - p; return(t); }
• By expanding foo

• x = a+b; y = a * b; z = y - x

35

Conditional ExpansionConditional ExpansionConditional Expansion

Transform conditional into parallel execution with test
at the end.
Useful when test depends on late signals.
May preclude hardware sharing.
Always useful for logic expressions.
Example
• If (A>B) { Y= A-B} Else {Y=B-A}.

Example
• y = ab; if (a) {x = b + d; } else {x = bd; }

• can be expanded to: x = a (b+d) + a’bd
• and simplified as: y = ab; x = y + d (a+b)

Transform conditional into parallel execution with test
at the end.
Useful when test depends on late signals.
May preclude hardware sharing.
Always useful for logic expressions.
Example
• If (A>B) { Y= A-B} Else {Y=B-A}.

Example
• y = ab; if (a) {x = b + d; } else {x = bd; }

• can be expanded to: x = a (b+d) + a’bd
• and simplified as: y = ab; x = y + d (a+b)

36

Loop ExpansionLoop ExpansionLoop Expansion

Applicable to loops with data-independent exit
conditions.
Useful to expand scope of other optimization
techniques.
Problematic when loop has many iterations.
Example
• x = 0; for (i = 1; i ≤ 3; i++) {x = x+1; }
• Expanded to:

• x = 0; x = x+1; x = x+2; x = x+3

Applicable to loops with data-independent exit
conditions.
Useful to expand scope of other optimization
techniques.
Problematic when loop has many iterations.
Example
• x = 0; for (i = 1; i ≤ 3; i++) {x = x+1; }
• Expanded to:

• x = 0; x = x+1; x = x+2; x = x+3

37

Architectural Synthesis and OptimizationArchitectural Synthesis and OptimizationArchitectural Synthesis and Optimization

Synthesize macroscopic structure in terms of building-
blocks.
Explore area/performance trade-offs
• maximum performance implementations subject to area

constraints.
• minimum area implementations subject to performance

constraints.

Determine an optimal implementation.
Create logic model for data-path and control.

Synthesize macroscopic structure in terms of building-
blocks.
Explore area/performance trade-offs
• maximum performance implementations subject to area

constraints.
• minimum area implementations subject to performance

constraints.

Determine an optimal implementation.
Create logic model for data-path and control.

38

Design Space and ObjectivesDesign Space and ObjectivesDesign Space and Objectives

Design space
• Set of all feasible implementations.

Implementation parameters
• Area.
• Performance

• Cycle-time,
• Latency,
• Throughput (for pipelined implementations).

• Power consumption.

Design space
• Set of all feasible implementations.

Implementation parameters
• Area.
• Performance

• Cycle-time,
• Latency,
• Throughput (for pipelined implementations).

• Power consumption.

39

Design Evaluation SpaceDesign Evaluation SpaceDesign Evaluation Space

40

Circuit Specification for Architectural
Synthesis
Circuit Specification for Architectural Circuit Specification for Architectural
SynthesisSynthesis

Circuit behavior
• Sequencing graphs.

Building blocks
• Resources.

• Functional resources: process data (e.g. ALU).
• Memory resources: store data (e.g. Register).
• Interface resources: support data transfer (e.g. MUX and Buses).

Constraints
• Interface constraints

• Format and timing of I/O data transfers.
• Implementation constraints

• Timing and resource usage.
• Area
• Cycle-time and latency

Circuit behavior
• Sequencing graphs.

Building blocks
• Resources.

• Functional resources: process data (e.g. ALU).
• Memory resources: store data (e.g. Register).
• Interface resources: support data transfer (e.g. MUX and Buses).

Constraints
• Interface constraints

• Format and timing of I/O data transfers.
• Implementation constraints

• Timing and resource usage.
• Area
• Cycle-time and latency

41

ResourcesResourcesResources

Functional resources: perform operations on data.
• Example: arithmetic and logic blocks.
• Standard resources

• Existing macro-cells.
• Well characterized (area/delay).
• Example: adders, multipliers, ALUs, Shifters, ...

• Application-specific resources
• Circuits for specific tasks.
• Yet to be synthesized.
• Example: instruction decoder.

Memory resources: store data.
• Example: memory and registers.

Interface resources
• Example: busses and ports.

Functional resources: perform operations on data.
• Example: arithmetic and logic blocks.
• Standard resources

• Existing macro-cells.
• Well characterized (area/delay).
• Example: adders, multipliers, ALUs, Shifters, ...

• Application-specific resources
• Circuits for specific tasks.
• Yet to be synthesized.
• Example: instruction decoder.

Memory resources: store data.
• Example: memory and registers.

Interface resources
• Example: busses and ports.

42

Resources and Circuit FamiliesResources and Circuit FamiliesResources and Circuit Families

Resource-dominated circuits.
• Area and performance depend on few, well-characterized

blocks.
• Example: DSP circuits.

Non resource-dominated circuits.
• Area and performance are strongly influenced by sparse

logic, control and wiring.
• Example: some ASIC circuits.

Resource-dominated circuits.
• Area and performance depend on few, well-characterized

blocks.
• Example: DSP circuits.

Non resource-dominated circuits.
• Area and performance are strongly influenced by sparse

logic, control and wiring.
• Example: some ASIC circuits.

43

Synthesis in the Temporal Domain:
Scheduling
Synthesis in the Temporal Domain: Synthesis in the Temporal Domain:
SchedulingScheduling

Scheduling
• Associate a start-time with each operation.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.
• Determine latency and parallelism of the implementation.
Scheduled sequencing graph
• Sequencing graph with start-time annotation.

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.

Scheduling
• Associate a start-time with each operation.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.
• Determine latency and parallelism of the implementation.
Scheduled sequencing graph
• Sequencing graph with start-time annotation.

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.

44

Scheduling …Scheduling Scheduling ……

4 Multipliers, 2 ALUs 1 Multiplier , 1 ALU

45

… Scheduling…… SchedulingScheduling

2 Multipliers, 3 ALUs 2 Multipliers, 2 ALUs

46

Synthesis in the Spatial Domain: BindingSynthesis in the Spatial Domain: BindingSynthesis in the Spatial Domain: Binding

Binding
• Associate a resource with each operation with the same type.
• Determine area of the implementation.

Sharing
• Bind a resource to more than one operation.
• Operations must not execute concurrently.

Bound sequencing graph
• Sequencing graph with resource annotation.

Binding
• Associate a resource with each operation with the same type.
• Determine area of the implementation.

Sharing
• Bind a resource to more than one operation.
• Operations must not execute concurrently.

Bound sequencing graph
• Sequencing graph with resource annotation.

47

Example: Bound Sequencing GraphExample: Bound Sequencing GraphExample: Bound Sequencing Graph

48

Binding SpecificationBinding SpecificationBinding Specification

Mapping from the vertex
set to the set of resource
instances, for each given
type.
Partial binding
• Partial mapping, given as

design constraint.

Compatible binding
• Binding satisfying the

constraints of the partial
binding.

Mapping from the vertex
set to the set of resource
instances, for each given
type.
Partial binding
• Partial mapping, given as

design constraint.

Compatible binding
• Binding satisfying the

constraints of the partial
binding.

49

Performance and Area EstimationPerformance and Area EstimationPerformance and Area Estimation

Resource-dominated circuits
• Area = sum of the area of the resources bound to the

operations.
• Determined by binding.

• Latency = start time of the sink operation (minus start time of
the source operation).

• Determined by scheduling

Non resource-dominated circuits
• Area also affected by

• registers, steering logic, wiring and control.
• Cycle-time also affected by

• steering logic, wiring and (possibly) control.

Resource-dominated circuits
• Area = sum of the area of the resources bound to the

operations.
• Determined by binding.

• Latency = start time of the sink operation (minus start time of
the source operation).

• Determined by scheduling

Non resource-dominated circuits
• Area also affected by

• registers, steering logic, wiring and control.
• Cycle-time also affected by

• steering logic, wiring and (possibly) control.

50

Approaches to Architectural OptimizationApproaches to Architectural OptimizationApproaches to Architectural Optimization

Multiple-criteria optimization problem
• area, latency, cycle-time.

Determine Pareto optimal points
• Implementations such that no other has all parameters with

inferior values.

Draw trade-off curves
• discontinuous and highly nonlinear.

Area/latency trade-off
• for some values of the cycle-time.

Cycle-time/latency trade-off
• for some binding (area).

Area/cycle-time trade-off
• for some schedules (latency).

Multiple-criteria optimization problem
• area, latency, cycle-time.

Determine Pareto optimal points
• Implementations such that no other has all parameters with

inferior values.

Draw trade-off curves
• discontinuous and highly nonlinear.

Area/latency trade-off
• for some values of the cycle-time.

Cycle-time/latency trade-off
• for some binding (area).

Area/cycle-time trade-off
• for some schedules (latency).

51

Area/Latency Trade-off …Area/Latency TradeArea/Latency Trade--off off ……

Rationale
• Cycle-time dictated by system constraints.

Resource-dominated circuits
• Area is determined by resource usage.

General circuits
• Area and delay affected by registers, steering logic, wiring and

control logic.
• Complex dependency of area and delay on circuit structure.

Scheduling and binding are deeply interrelated.
• Most approaches perform scheduling before binding (fits well for

CPU and DSP designs).
• Performing binding before scheduling fits control dominated

designs.
Approaches
• Schedule for minimum latency under resource constraints.
• Schedule for minimum resource usage under latency constraints.

Rationale
• Cycle-time dictated by system constraints.

Resource-dominated circuits
• Area is determined by resource usage.

General circuits
• Area and delay affected by registers, steering logic, wiring and

control logic.
• Complex dependency of area and delay on circuit structure.

Scheduling and binding are deeply interrelated.
• Most approaches perform scheduling before binding (fits well for

CPU and DSP designs).
• Performing binding before scheduling fits control dominated

designs.
Approaches
• Schedule for minimum latency under resource constraints.
• Schedule for minimum resource usage under latency constraints.

52

… Area/Latency Trade-off…… Area/Latency TradeArea/Latency Trade--offoff

Areas smaller than 20 units.
Latency less than 8 cycles.
ALU area = 1 unit.
MUL area = 5 units.
Overhead area = 1 unit.
ALU propagation delay 25ns.
MUL propagation delay 35 ns.
Cycle time = 40 ns
• Resources have unit execution

delay.
Cycle time = 30ns
• MUL has 2 unit execution

delay.

Areas smaller than 20 units.
Latency less than 8 cycles.
ALU area = 1 unit.
MUL area = 5 units.
Overhead area = 1 unit.
ALU propagation delay 25ns.
MUL propagation delay 35 ns.
Cycle time = 40 ns
• Resources have unit execution

delay.
Cycle time = 30ns
• MUL has 2 unit execution

delay.

