
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
Sequential Logic SynthesisSequential Logic Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Modeling synchronous circuits
• State-based models.
• Structural models.

State-based optimization methods
• State minimization.
• State encoding

• State encoding for two-level logic
• Input encoding
• Output encoding

• State encoding for multiple-level logic

Structural-based optimization methods
• Retiming

Modeling synchronous circuits
• State-based models.
• Structural models.

State-based optimization methods
• State minimization.
• State encoding

• State encoding for two-level logic
• Input encoding
• Output encoding

• State encoding for multiple-level logic

Structural-based optimization methods
• Retiming

3

Synchronous Logic CircuitsSynchronous Logic CircuitsSynchronous Logic Circuits

Interconnection of
• Combinational logic gates.
• Synchronous delay elements

• E-T or M-S registers.

Assumptions
• No direct combinational feedback.
• Single-phase clocking.

Interconnection of
• Combinational logic gates.
• Synchronous delay elements

• E-T or M-S registers.

Assumptions
• No direct combinational feedback.
• Single-phase clocking.

4

Modeling Synchronous CircuitsModeling Synchronous CircuitsModeling Synchronous Circuits

State-based model
• Model circuits as finite-state machines.
• Represented by state tables/diagrams.
• Lacks a direct relation between state manipulation and

corresponding area and delay variations.
• Apply exact/heuristic algorithms for

• State minimization.
• State encoding.

Structural models
• Represent circuit by synchronous logic network.
• Apply

• Retiming.
• Logic transformations.

State-based model
• Model circuits as finite-state machines.
• Represented by state tables/diagrams.
• Lacks a direct relation between state manipulation and

corresponding area and delay variations.
• Apply exact/heuristic algorithms for

• State minimization.
• State encoding.

Structural models
• Represent circuit by synchronous logic network.
• Apply

• Retiming.
• Logic transformations.

5

State-Based OptimizationStateState--Based OptimizationBased Optimization

6

Formal Finite-State Machine ModelFormal FiniteFormal Finite--State Machine ModelState Machine Model

Defined by the quintuple (Χ, Υ, S, δ, λ).
A set of primary inputs patterns Χ.
A set of primary outputs patterns Υ.
A set of states S.
A state transition function
• δ : Χ × S → S.

An output function
• λ: Χ × S → Υ for Mealy models
• λ : S → Υ for Moore models.

Defined by the quintuple (Χ, Υ, S, δ, λ).
A set of primary inputs patterns Χ.
A set of primary outputs patterns Υ.
A set of states S.
A state transition function
• δ : Χ × S → S.

An output function
• λ: Χ × S → Υ for Mealy models
• λ : S → Υ for Moore models.

7

State MinimizationState MinimizationState Minimization

Aims at reducing the number of machine states
• reduces the size of transition table.

State reduction may reduce
• the number of storage elements.
• the combinational logic due to reduction in transitions

Completely specified finite-state machines
• No don't care conditions.
• Easy to solve.

Incompletely specified finite-state machines
• Unspecified transitions and/or outputs.
• Intractable problem.

Aims at reducing the number of machine states
• reduces the size of transition table.

State reduction may reduce
• the number of storage elements.
• the combinational logic due to reduction in transitions

Completely specified finite-state machines
• No don't care conditions.
• Easy to solve.

Incompletely specified finite-state machines
• Unspecified transitions and/or outputs.
• Intractable problem.

8

State Minimization
for Completely-Specified FSMs
State Minimization State Minimization
for Completelyfor Completely--Specified Specified FSMsFSMs

Equivalent states
• Given any input sequence the corresponding output

sequences match.

Theorem: Two states are equivalent iff
• they lead to identical outputs and
• their next-states are equivalent.

Equivalence is transitive
• Partition states into equivalence classes.
• Minimum finite-state machine is unique.

Equivalent states
• Given any input sequence the corresponding output

sequences match.

Theorem: Two states are equivalent iff
• they lead to identical outputs and
• their next-states are equivalent.

Equivalence is transitive
• Partition states into equivalence classes.
• Minimum finite-state machine is unique.

9

AlgorithmAlgorithmAlgorithm

Stepwise partition refinement.
Initially
• ∏1 = States belong to the same block when outputs are the

same for any input.

Refine partition blocks: While further splitting is
possible
• ∏k+1 = States belong to the same block if they were

previously in the same block and their next-states are in the
same block of ∏k for any input.

At convergence
• Blocks identify equivalent states.

Stepwise partition refinement.
Initially
• ∏1 = States belong to the same block when outputs are the

same for any input.

Refine partition blocks: While further splitting is
possible
• ∏k+1 = States belong to the same block if they were

previously in the same block and their next-states are in the
same block of ∏k for any input.

At convergence
• Blocks identify equivalent states.

10

Example …Example Example ……

∏1 = {(s1, s2), (s3, s4),
(s5)}.
∏2 = {(s1, s2), (s3), (s4),
(s5)}.
∏2 = is a partition into
equivalence classes
• States (s1, s2) are

equivalent.

∏1 = {(s1, s2), (s3, s4),
(s5)}.
∏2 = {(s1, s2), (s3), (s4),
(s5)}.
∏2 = is a partition into
equivalence classes
• States (s1, s2) are

equivalent.

11

… Example ……… Example Example ……
Original FSM Minimal FSM

12

… Example…… ExampleExample

{OUT_0} = IN_0 LatchOut_v1' + IN_0 LatchOut_v3' + IN_0' LatchOut_v2'
v4.0 = IN_0 LatchOut_v1' + LatchOut_v1' LatchOut_v2'
v4.1 = IN_0' LatchOut_v2 LatchOut_v3 + IN_0' LatchOut_v2'
v4.2 = IN_0 LatchOut_v1' + IN_0' LatchOut_v1 + IN_0' LatchOut_v2 LatchOut_v3
sis> print_stats
pi= 1 po= 1 nodes= 4 latches= 3
lits(sop)= 22 #states(STG)= 5

{OUT_0} = IN_0 LatchOut_v1' + IN_0 LatchOut_v2 + IN_0' LatchOut_v2'
v3.0 = IN_0 LatchOut_v1' + LatchOut_v1' LatchOut_v2‘
v3.1 = IN_0' LatchOut_v1' + IN_0' LatchOut_v2'
sis> print_stats
pi= 1 po= 1 nodes= 3 latches= 2
lits(sop)= 14 #states(STG)= 4

Original FSM

Minimal FSM

13

Computational ComplexityComputational ComplexityComputational Complexity

Polynomially-bound algorithm.
There can be at most |S| partition refinements.
Each refinement requires considering each state
• Complexity O(|S|2).

Actual time may depend upon
• Data-structures.
• Implementation details.

Polynomially-bound algorithm.
There can be at most |S| partition refinements.
Each refinement requires considering each state
• Complexity O(|S|2).

Actual time may depend upon
• Data-structures.
• Implementation details.

14

State Minimization
for Incompletely-Specified FSMs …
State MinimizationState Minimization
for Incompletelyfor Incompletely--Specified Specified FSMsFSMs ……

Applicable input sequences
• All transitions are specified.
• Does not lead to any unspecified transition.

Compatible states
• Given any applicable input sequence the corresponding

output sequences match.

Theorem: Two states are compatible iff
• they lead to identical outputs (when both are specified),
• their next-states are compatible (when both are specified).

Compatibility is not an equivalency relation (not transitive).

Applicable input sequences
• All transitions are specified.
• Does not lead to any unspecified transition.

Compatible states
• Given any applicable input sequence the corresponding

output sequences match.

Theorem: Two states are compatible iff
• they lead to identical outputs (when both are specified),
• their next-states are compatible (when both are specified).

Compatibility is not an equivalency relation (not transitive).

15

An Interesting ExampleAn Interesting ExampleAn Interesting Example

Moore machine with 3-states.
Replace don’t care output of s1 by
0 → Can’t be minimized.
Replace don’t care output of s1 by
1 → Can’t be minimized.
Replacing don’t cares with all
possible assignments does not
guarantee a minimum solution.
Maximal compatible classes
• (s1, s2) ⇐ (s1, s3)
• (s1, s3) ⇐ (s1, s2)

Machine can be reduced to two
states.

Moore machine with 3-states.
Replace don’t care output of s1 by
0 → Can’t be minimized.
Replace don’t care output of s1 by
1 → Can’t be minimized.
Replacing don’t cares with all
possible assignments does not
guarantee a minimum solution.
Maximal compatible classes
• (s1, s2) ⇐ (s1, s3)
• (s1, s3) ⇐ (s1, s2)

Machine can be reduced to two
states.

0s1s21
1s1s30

0-s20

1-s31

-s3s11
-s2s10

OutN-
State

StateInput

1BB1
1AB0
0BA1
0AA0

OutN-
State

StateInput

16

… State Minimization
for Incompletely Specified FSMs
…… State MinimizationState Minimization
for Incompletely Specified for Incompletely Specified FSMsFSMs

Minimum finite-state machine is not unique.
Implication relations make problem intractable.
Example
• Replace * by 1.

• {(s1, s2), (s3), (s4), (s5)}.
• Replace * by 0.

• {(s1, s5), (s2, s3, s4)}.
• Compatible states (s1, s2).
• Incompatible states (s1, s3),

(s1, s4), (s2, s5), (s3, s5),
(s4, s5).

• If (s3, s4) are compatible
• then (s1, s5) are compatible.

Minimum finite-state machine is not unique.
Implication relations make problem intractable.
Example
• Replace * by 1.

• {(s1, s2), (s3), (s4), (s5)}.
• Replace * by 0.

• {(s1, s5), (s2, s3, s4)}.
• Compatible states (s1, s2).
• Incompatible states (s1, s3),

(s1, s4), (s2, s5), (s3, s5),
(s4, s5).

• If (s3, s4) are compatible
• then (s1, s5) are compatible.

17

Compatibility and Implications …Compatibility and Implications Compatibility and Implications ……

Compatible pairs
• (s1, s2)
• (s1, s5) ⇐ (s3, s4)
• (s2, s4) ⇐ (s3, s4)
• (s2, s3) ⇐ (s1, s5)
• (s3, s4) ⇐ (s2, s4) and (s1, s5)

Incompatible pairs
• (s2, s5), (s3, s5)
• (s1, s4), (s4, s5)
• (s1, s3)

Compatible pairs
• (s1, s2)
• (s1, s5) ⇐ (s3, s4)
• (s2, s4) ⇐ (s3, s4)
• (s2, s3) ⇐ (s1, s5)
• (s3, s4) ⇐ (s2, s4) and (s1, s5)

Incompatible pairs
• (s2, s5), (s3, s5)
• (s1, s4), (s4, s5)
• (s1, s3)

18

… Compatibility and Implications…… Compatibility and ImplicationsCompatibility and Implications

A class of compatible states is such that all state pairs
are compatible.
A class is maximal
• If not subset of another class.

Closure property
• A set of classes such that all compatibility implications are

satisfied.

The set of maximal compatibility classes
• Satisfies always the closure property.
• May not provide a minimum solution.

Minimum covers may involve compatibility classes that
are not necessarily maximal.

A class of compatible states is such that all state pairs
are compatible.
A class is maximal
• If not subset of another class.

Closure property
• A set of classes such that all compatibility implications are

satisfied.

The set of maximal compatibility classes
• Satisfies always the closure property.
• May not provide a minimum solution.

Minimum covers may involve compatibility classes that
are not necessarily maximal.

19

Maximal Compatible ClassesMaximal Compatible ClassesMaximal Compatible Classes

(s1, s2)
(s1, s5) ⇐ (s3, s4)
(s2, s3, s4) ⇐ (s1, s5)
Cover with MCC has cardinality 3.
Minimum cover: {(s1, s5) , (s2, s3, s4)}.
Minimum cover has cardinality 2.

(s1, s2)
(s1, s5) ⇐ (s3, s4)
(s2, s3, s4) ⇐ (s1, s5)
Cover with MCC has cardinality 3.
Minimum cover: {(s1, s5) , (s2, s3, s4)}.
Minimum cover has cardinality 2.

0BB0
1AB1

0AA1
1BA0

OutputN-StateStateInput

Reduced Table

20

Finding Maximal Compatible Classes …Finding Maximal Compatible Classes Finding Maximal Compatible Classes ……

Knowing that si and sj are two incompatible states
implies that no maximal compatible class will contain
both si and sj.
Every set of states that does not contain any
incompatible pair is a compatible set.
Associate a variable xi to state si such that xi =1
implies that si is an element of the set.
Write a conjunction of two-literal clauses.
Each clause corresponds to an incompatible pair.
Convert the expression into a prime and irredundant
sum-of-product form.
Every term corresponds to a maximal compatible set
and represents the sets that do no appear in the prime
implicant.

Knowing that si and sj are two incompatible states
implies that no maximal compatible class will contain
both si and sj.
Every set of states that does not contain any
incompatible pair is a compatible set.
Associate a variable xi to state si such that xi =1
implies that si is an element of the set.
Write a conjunction of two-literal clauses.
Each clause corresponds to an incompatible pair.
Convert the expression into a prime and irredundant
sum-of-product form.
Every term corresponds to a maximal compatible set
and represents the sets that do no appear in the prime
implicant.

21

… Finding Maximal Compatible Classes…… Finding Maximal Compatible ClassesFinding Maximal Compatible Classes

Example
• Incompatible pairs

• (s2, s5), (s3, s5)
• (s1, s4), (s4, s5)
• (s1, s3)

• Two-literal Clauses
• (x2’+x5’) (x3’+x5’) (x4’+x5’) (x1’+x4’) (x1’+x3’)

• Prime and Irredundant sum-of-product
• = (x2’ x3’ x4’+x5’) (x1’+ x3’x4’)
• = x1’ x2’ x3’ x4’+ x1’x5’+ x2’ x3’ x4’+ x3’x4’ x5’
• = x1’x5’+ x2’ x3’ x4’+ x3’x4’ x5’

• Maximal Compatible Classes
• x1’x5’ → (S2,S3,S4)
• x2’ x3’ x4’→ (S1,S5)
• x3’x4’ x5’ → (S1,S2)

Example
• Incompatible pairs

• (s2, s5), (s3, s5)
• (s1, s4), (s4, s5)
• (s1, s3)

• Two-literal Clauses
• (x2’+x5’) (x3’+x5’) (x4’+x5’) (x1’+x4’) (x1’+x3’)

• Prime and Irredundant sum-of-product
• = (x2’ x3’ x4’+x5’) (x1’+ x3’x4’)
• = x1’ x2’ x3’ x4’+ x1’x5’+ x2’ x3’ x4’+ x3’x4’ x5’
• = x1’x5’+ x2’ x3’ x4’+ x3’x4’ x5’

• Maximal Compatible Classes
• x1’x5’ → (S2,S3,S4)
• x2’ x3’ x4’→ (S1,S5)
• x3’x4’ x5’ → (S1,S2)

22

Formulation of the State Minimization
Problem
Formulation of the State MinimizationFormulation of the State Minimization
ProblemProblem

A class is prime, if not subset of another class
implying the same set or a subset of classes.
Compute the prime compatibility classes.
Select a minimum number of PCC such that
• all states are covered.
• all implications are satisfied.

Binate covering problem.
Upper bound on optimum solution given by
• Cardinality of set of maximal compatible classes and
• Original state set cardinality.

Lower bound on optimum solution given by
• A unate cover solution that disregards implications.

A class is prime, if not subset of another class
implying the same set or a subset of classes.
Compute the prime compatibility classes.
Select a minimum number of PCC such that
• all states are covered.
• all implications are satisfied.

Binate covering problem.
Upper bound on optimum solution given by
• Cardinality of set of maximal compatible classes and
• Original state set cardinality.

Lower bound on optimum solution given by
• A unate cover solution that disregards implications.

23

Setting Up Covering Problem …Setting Up Covering Problem Setting Up Covering Problem ……

All states must be contained in at least one compatible
class (covering).
All compatible classes implied by any compatible class
must be contained in a compatible class in the solution
(closure).
Associate a variable ci to the i-th compatible class
such that ci =1 implies that class i is part of the
solution.
We write a Boolean formula (product of sum form) to
express the conditions for a set of compatible classes
to represent a closed cover.
• Terms representing covering constraints
• Terms representing closure constraints.

All states must be contained in at least one compatible
class (covering).
All compatible classes implied by any compatible class
must be contained in a compatible class in the solution
(closure).
Associate a variable ci to the i-th compatible class
such that ci =1 implies that class i is part of the
solution.
We write a Boolean formula (product of sum form) to
express the conditions for a set of compatible classes
to represent a closed cover.
• Terms representing covering constraints
• Terms representing closure constraints.

24

… Setting Up Covering Problem ……… Setting Up Covering Problem Setting Up Covering Problem ……

Maximal compatibles classes
• c1:(s1, s2)
• c2:(s1, s5) ⇐ (s3, s4)
• c3:(s2, s3, s4) ⇐ (s1, s5)

Covering constraints
• s1: (c1 + c2)
• s2: (c1 + c3)
• s3: (c3)
• s4: (c3)
• s5: (c2)

Closure constraints
• c2 → c3 : (c2’ + c3)
• c3 → c2 : (c3’ + c2)

Maximal compatibles classes
• c1:(s1, s2)
• c2:(s1, s5) ⇐ (s3, s4)
• c3:(s2, s3, s4) ⇐ (s1, s5)

Covering constraints
• s1: (c1 + c2)
• s2: (c1 + c3)
• s3: (c3)
• s4: (c3)
• s5: (c2)

Closure constraints
• c2 → c3 : (c2’ + c3)
• c3 → c2 : (c3’ + c2)

25

… Setting Up Covering Problem…… Setting Up Covering ProblemSetting Up Covering Problem

Binate covering problem
• (c1 + c2) (c1 + c3) (c2) (c3) (c2’ + c3) (c3’ + c2)
• =(c1 + c2 c3) (c2) (c3) (c2’ + c3) (c3’ + c2)
• = (c2 c3) (c2’ + c3) (c3’ + c2)
• = (c2 c3)

Minimum cover: {c2 c3}.
Minimum cover: {(s1, s5) , (s2, s3, s4)}.

Binate covering problem
• (c1 + c2) (c1 + c3) (c2) (c3) (c2’ + c3) (c3’ + c2)
• =(c1 + c2 c3) (c2) (c3) (c2’ + c3) (c3’ + c2)
• = (c2 c3) (c2’ + c3) (c3’ + c2)
• = (c2 c3)

Minimum cover: {c2 c3}.
Minimum cover: {(s1, s5) , (s2, s3, s4)}.

26

Finding Prime Compatible Classes …Finding Prime Compatible Classes Finding Prime Compatible Classes ……

All maximal compatible classes are prime.
Let C1 and C2 be two compatible classes such that C1 ⊃
C2. • One tempted to favor C1 over C2 as it covers more states.
• It might be better to choose C2 in case that C1 implies the

selection of other compatible classes that would not be
required if C2 is selected.

The set of compatible classes implied by a compatible
class is denoted as its class set (CS).
For each maximal compatible class p of size k with a
non-empty class set, consider all its subsets Sp of
compatible classes of size k-1.
For each s ∈Sp, and if there is a prime q of size > k-1,
such that s ⊂ q and CSs ⊇ CSq then s is not prime.
Otherwise, it is prime.

All maximal compatible classes are prime.
Let C1 and C2 be two compatible classes such that C1 ⊃
C2. • One tempted to favor C1 over C2 as it covers more states.
• It might be better to choose C2 in case that C1 implies the

selection of other compatible classes that would not be
required if C2 is selected.

The set of compatible classes implied by a compatible
class is denoted as its class set (CS).
For each maximal compatible class p of size k with a
non-empty class set, consider all its subsets Sp of
compatible classes of size k-1.
For each s ∈Sp, and if there is a prime q of size > k-1,
such that s ⊂ q and CSs ⊇ CSq then s is not prime.
Otherwise, it is prime.

27

… Finding Prime Compatible Classes…… Finding Prime Compatible ClassesFinding Prime Compatible Classes

Maximal compatibles classes
• (s1, s2)
• (s1, s5) ⇐ (s3, s4)
• (s2, s3, s4) ⇐ (s1, s5)

Prime compatibles classes
• (s2, s3, s4)

• (s2, s3) ⇐ (s1, s5) Not prime
• (s2, s4) ⇐ (s3, s4) Prime
• (s3, s4) ⇐ (s2, s4) and (s1, s5) Not prime

• (s1, s5)
• (s1) Not prime
• (s5) Prime

• (s2, s4)
• (s2) Not prime
• (s4) Prime

Set of prime compatible classes
• (s1, s2), (s1, s5), (s2, s3, s4), (s2, s4), (s5), (s4)

Maximal compatibles classes
• (s1, s2)
• (s1, s5) ⇐ (s3, s4)
• (s2, s3, s4) ⇐ (s1, s5)

Prime compatibles classes
• (s2, s3, s4)

• (s2, s3) ⇐ (s1, s5) Not prime
• (s2, s4) ⇐ (s3, s4) Prime
• (s3, s4) ⇐ (s2, s4) and (s1, s5) Not prime

• (s1, s5)
• (s1) Not prime
• (s5) Prime

• (s2, s4)
• (s2) Not prime
• (s4) Prime

Set of prime compatible classes
• (s1, s2), (s1, s5), (s2, s3, s4), (s2, s4), (s5), (s4)

28

Additional State Minimization ExampleAdditional State Minimization ExampleAdditional State Minimization Example

Flow Table

Compatibility
Table

29

Maximal Compatibility Classes
Computation
Maximal Compatibility Classes
Computation

=

=

=

=

=

30

Prime Compatibility Classes ComputationPrime Compatibility Classes Computation

31

Setting Up the Covering ProblemSetting Up the Covering ProblemSetting Up the Covering Problem

Covering clauses: One clause for each state
• For state a, the only two compatibles that cover it are 1 and

11.

Closure Constraints
• Prime 2 ({b, c, d}) requires {(a,b), (a, g), (d, e)}.

Covering problem formulation

Covering clauses: One clause for each state
• For state a, the only two compatibles that cover it are 1 and

11.

Closure Constraints
• Prime 2 ({b, c, d}) requires {(a,b), (a, g), (d, e)}.

Covering problem formulation

32

Reduced TableReduced TableReduced Table

Minimum cost solution: c1=c4=c5=c9=1.
Reduced table is not unique. It will lead to different
implementations with different cost.

Minimum cost solution: c1=c4=c5=c9=1.
Reduced table is not unique. It will lead to different
implementations with different cost.

33

State EncodingState EncodingState Encoding

Determine a binary encoding of the states (|S|=ns) that
optimize machine implementation
• Area
• Cycle-time
• Power dissipation
• Testability

Assume D-type registers.
Circuit complexity is related to
• Number of storage bits nb used for state representation
• Size of combinational component

There are possible encodings
Implementation Modeling
• Two-level circuits.
• Multiple-level circuits.

Determine a binary encoding of the states (|S|=ns) that
optimize machine implementation
• Area
• Cycle-time
• Power dissipation
• Testability

Assume D-type registers.
Circuit complexity is related to
• Number of storage bits nb used for state representation
• Size of combinational component

There are possible encodings
Implementation Modeling
• Two-level circuits.
• Multiple-level circuits.

)!2/(!2 s
nn nbb −

34

Two-Level Circuit ModelsTwoTwo--Level Circuit ModelsLevel Circuit Models

Sum of product representation.
• PLA implementation.

Area
• # of products (rows) × # I/Os

(columns).

Delay
• Twice # of products (2 column

length) plus # I/Os (1 row length).

Note
• # products considered as the size

of a minimum implementation.
• # I/Os depends on encoding

length.

Sum of product representation.
• PLA implementation.

Area
• # of products (rows) × # I/Os

(columns).

Delay
• Twice # of products (2 column

length) plus # I/Os (1 row length).

Note
• # products considered as the size

of a minimum implementation.
• # I/Os depends on encoding

length.

35

State Encoding for Two-Level ModelsState Encoding for TwoState Encoding for Two--Level ModelsLevel Models

Early work focused on use of minimum-length codes
i.e. using nb= ⎡log2 ns⎤.
Most classical heuristics are based on reduced
dependency criterion
• Encode states so that state variables have least

dependencies on those representing previous states.
• Correlates weakly with minimality of sum-of-products

representation.

Symbolic minimization of state table.
• Equivalent to minimizing the size of sum-of-products form

related to all codes that satisfy the corresponding constraints.

Constrained encoding problems.
• Exact and heuristic methods.

Early work focused on use of minimum-length codes
i.e. using nb= ⎡log2 ns⎤.
Most classical heuristics are based on reduced
dependency criterion
• Encode states so that state variables have least

dependencies on those representing previous states.
• Correlates weakly with minimality of sum-of-products

representation.

Symbolic minimization of state table.
• Equivalent to minimizing the size of sum-of-products form

related to all codes that satisfy the corresponding constraints.

Constrained encoding problems.
• Exact and heuristic methods.

36

Symbolic MinimizationSymbolic MinimizationSymbolic Minimization

Minimization of Boolean functions where codes of inputs and/or
outputs are not specified.
Minimize tables of symbols rather than binary tables.
Extension to bvi and mvi function minimization.
Reduce the number of rows of a table, that can have symbolic
fields.
Reduction exploits
• Combination of input symbols in the same field.
• Covering of output symbols.

Applications
• Encoding of op-codes.
• State encoding of finite-state machines.

Problems
• Input encoding.
• Output encoding.
• Mixed encoding.

Minimization of Boolean functions where codes of inputs and/or
outputs are not specified.
Minimize tables of symbols rather than binary tables.
Extension to bvi and mvi function minimization.
Reduce the number of rows of a table, that can have symbolic
fields.
Reduction exploits
• Combination of input symbols in the same field.
• Covering of output symbols.

Applications
• Encoding of op-codes.
• State encoding of finite-state machines.

Problems
• Input encoding.
• Output encoding.
• Mixed encoding.

37

Input Encoding ExampleInput Encoding ExampleInput Encoding Example

Replace symbols by
binary strings to
minimize corresponding
covers

38

DefinitionsDefinitionsDefinitions

Symbolic cover
• List of symbolic implicants.
• List of rows of a table.

Symbolic implicant
• Conjunction of symbolic literals.

Symbolic literals
• Simple: one symbol.
• Compound: the disjunction of some symbols.

Symbolic cover
• List of symbolic implicants.
• List of rows of a table.

Symbolic implicant
• Conjunction of symbolic literals.

Symbolic literals
• Simple: one symbol.
• Compound: the disjunction of some symbols.

39

Input Encoding ProblemInput Encoding ProblemInput Encoding Problem

Degrees of freedom in encoding the symbols.
Goal
• Reduce size of the representation.

Approach
• Encode to minimize number of rows.
• Encode to minimize number of bits.

Represent each string by 1-hot codes.
Minimize table with mvi minimizer.
Interpret minimized table
• Compound mvi-literals.
• Groups of symbols.

Degrees of freedom in encoding the symbols.
Goal
• Reduce size of the representation.

Approach
• Encode to minimize number of rows.
• Encode to minimize number of bits.

Represent each string by 1-hot codes.
Minimize table with mvi minimizer.
Interpret minimized table
• Compound mvi-literals.
• Groups of symbols.

40

Input Encoding Example …Input Encoding Example Input Encoding Example ……

Encoded Cover

Minimum
Cover

Input Encoding Problem

0 0 0 1

41

… Input Encoding Example…… Input Encoding ExampleInput Encoding Example

Examples of
• Simple literal: AND
• Compound literal: AND,OR

Examples of
• Simple literal: AND
• Compound literal: AND,OR

Minimum CoverMinimum Symbolic Cover

0 0 0 1

42

Input Encoding ProblemInput Encoding ProblemInput Encoding Problem

Transform minimum symbolic cover into minimum bv-
cover.
Map symbolic implicants into bv implicants (one to
one).
Compound literals
• Encode corresponding symbols so that their supercube does

not include other symbol codes.

Replace encoded literals into cover.

Transform minimum symbolic cover into minimum bv-
cover.
Map symbolic implicants into bv implicants (one to
one).
Compound literals
• Encode corresponding symbols so that their supercube does

not include other symbol codes.

Replace encoded literals into cover.

43

ExampleExampleExample

Compound literals
• AND,OR,JMP,ADD
• AND,OR
• JMP,ADD
• OR,JMP

Valid code
• {AND 00, OR 01, JMP 11, ADD 10}

Replacement in cover

Compound literals
• AND,OR,JMP,ADD
• AND,OR
• JMP,ADD
• OR,JMP

Valid code
• {AND 00, OR 01, JMP 11, ADD 10}

Replacement in cover

Valid code

Invalid code

44

Input Encoding AlgorithmsInput Encoding AlgorithmsInput Encoding Algorithms

Problem specification
• Constraint matrix A

• One row for each constraint (literal) and one column for
each symbol

• aij = 1 iff symbol j belongs to literal i.

Solution sought for
• Encoding matrix E

• As many rows as the symbols.
• Encoding length nb.

Constraint matrix

Encoding matrix

Problem specification
• Constraint matrix A

• One row for each constraint (literal) and one column for
each symbol

• aij = 1 iff symbol j belongs to literal i.

Solution sought for
• Encoding matrix E

• As many rows as the symbols.
• Encoding length nb.

Constraint matrix

Encoding matrix

AND,OR
JMP,ADD
OR,JMP

AND OR JMP ADD

AND
OR
JMP
ADD

45

Input Encoding ProblemInput Encoding ProblemInput Encoding Problem

Given constraint matrix A
• Find encoding matrix E

• satisfying all input encoding constraints (due to compound
literals)

• With minimum number of columns (bits).

An encoding matrix E satisfies the encoding
constraints by A if for each row aT of A
• The supercube of rows of E corresponding to 1’s in aT does

not intersect any of the rows of E corresponding to 0’s in aT.

Identity matrix is always a valid encoding.
• 1-hot encoding

Theorem: Given a constraint matrix A, the encoding
matrix E=AT satisfies the constrains of A.

Given constraint matrix A
• Find encoding matrix E

• satisfying all input encoding constraints (due to compound
literals)

• With minimum number of columns (bits).

An encoding matrix E satisfies the encoding
constraints by A if for each row aT of A
• The supercube of rows of E corresponding to 1’s in aT does

not intersect any of the rows of E corresponding to 0’s in aT.

Identity matrix is always a valid encoding.
• 1-hot encoding

Theorem: Given a constraint matrix A, the encoding
matrix E=AT satisfies the constrains of A.

46

Dichotomy TheoryDichotomy TheoryDichotomy Theory

Dichotomy
• Two sets (L, R).
• Bipartition of a subset of the symbol set.

Encoding
• Set of columns of E.
• Each column corresponds to a bipartition of symbol set.

Rationale
• Encoding matrix is equivalent to a set of bipartitions.
• Each row of the constraint matrix implies some choice on the

codes i.e. induces a bipartition.

Dichotomy
• Two sets (L, R).
• Bipartition of a subset of the symbol set.

Encoding
• Set of columns of E.
• Each column corresponds to a bipartition of symbol set.

Rationale
• Encoding matrix is equivalent to a set of bipartitions.
• Each row of the constraint matrix implies some choice on the

codes i.e. induces a bipartition.

47

DichotomiesDichotomiesDichotomies

Dichotomy associated with row aT of A
• A set pair (L, R)

• L has the symbols with the 1s in aT

• R has the symbols with the 0s in aT

Seed dichotomy associated with row aT of A
• A set pair (L, R)

• L has the symbols with the 1s in aT

• R has one symbol with a 0 in aT

Dichotomy associated with constraint aT = 1100
• ({AND, OR}; {JMP, ADD}).

The corresponding seed dichotomies are
• ({AND, OR}; {JMP})
• ({AND, OR}; {ADD}).

Dichotomy associated with row aT of A
• A set pair (L, R)

• L has the symbols with the 1s in aT

• R has the symbols with the 0s in aT

Seed dichotomy associated with row aT of A
• A set pair (L, R)

• L has the symbols with the 1s in aT

• R has one symbol with a 0 in aT

Dichotomy associated with constraint aT = 1100
• ({AND, OR}; {JMP, ADD}).

The corresponding seed dichotomies are
• ({AND, OR}; {JMP})
• ({AND, OR}; {ADD}).

48

DefinitionsDefinitionsDefinitions

Compatibility
• (L1, R1) and (L2, R2) are compatible if

• L1 ∩ L2 = ∅ and R1 ∩ R2 = ∅ or
• L1 ∩ R2 = ∅ and R1 ∩ L2 = ∅.

Covering
• Dichotomy (L1, R1) covers (L2, R2) if

• L1 ⊇ L2 and R1 ⊇ R2 or
• L1 ⊇ R2 and R1 ⊇ L2.

Prime dichotomy
• Dichotomy that is not covered by any compatible dichotomy

of a given set.

Union of two compatible dichotomies is a dichotomy
covering both with smallest left and right blocks.

Compatibility
• (L1, R1) and (L2, R2) are compatible if

• L1 ∩ L2 = ∅ and R1 ∩ R2 = ∅ or
• L1 ∩ R2 = ∅ and R1 ∩ L2 = ∅.

Covering
• Dichotomy (L1, R1) covers (L2, R2) if

• L1 ⊇ L2 and R1 ⊇ R2 or
• L1 ⊇ R2 and R1 ⊇ L2.

Prime dichotomy
• Dichotomy that is not covered by any compatible dichotomy

of a given set.

Union of two compatible dichotomies is a dichotomy
covering both with smallest left and right blocks.

49

Exact Input EncodingExact Input EncodingExact Input Encoding

Compute all prime dichotomies.
Form a prime/seed dichotomy table.
Find minimum cover of seeds by primes.
Prime dichotomies can be computed based on
Compatibility graphs of seed dichotomies by
• Finding largest clique covering each edge

An encoding can be found based on
• Compatibility graphs of seed dichotomies by a clique covering
• Conflict graphs of seed dichotomies by a graph coloring

Compute all prime dichotomies.
Form a prime/seed dichotomy table.
Find minimum cover of seeds by primes.
Prime dichotomies can be computed based on
Compatibility graphs of seed dichotomies by
• Finding largest clique covering each edge

An encoding can be found based on
• Compatibility graphs of seed dichotomies by a clique covering
• Conflict graphs of seed dichotomies by a graph coloring

50

Example …Example Example ……

Encoding matrix

Seed dichotomies

Encoding matrix

Seed dichotomies

Prime DichotomiesPrime Dichotomies

51

… Example…… ExampleExample

Table

Minimum cover: p1 and p2

Encoding

Table

Minimum cover: p1 and p2

Encoding

AND
OR
JMP
ADD

52

Heuristic EncodingHeuristic EncodingHeuristic Encoding

Determine dichotomies of rows of A.
Column-based encoding
• Construct E column by column.

Iterate
• Determine maximum compatible set.
• Find a compatible encoding.
• Use it as column of E.

Dichotomies

First two dichotomies are compatible.
Encoding column [1100]T satisfies d1 , d2.
Need to satisfy d3. Second encoding column [0110]T.

Determine dichotomies of rows of A.
Column-based encoding
• Construct E column by column.

Iterate
• Determine maximum compatible set.
• Find a compatible encoding.
• Use it as column of E.

Dichotomies

First two dichotomies are compatible.
Encoding column [1100]T satisfies d1 , d2.
Need to satisfy d3. Second encoding column [0110]T.

53

Output and Mixed EncodingOutput and Mixed EncodingOutput and Mixed Encoding

Output encoding
• Determine encoding of output symbols.

Mixed encoding
• Determine both input and output encoding
• Examples

• Interconnected circuits.
• Circuits with feedback.

Output encoding
• Determine encoding of output symbols.

Mixed encoding
• Determine both input and output encoding
• Examples

• Interconnected circuits.
• Circuits with feedback.

54

Symbolic MinimizationSymbolic MinimizationSymbolic Minimization

Extension to mvi-minimization.
Accounts for
• Covering relations.
• Disjunctive relations.

Exact and heuristic minimizers.
Minimum symbolic cover computed before

Can we use fewer implicants?
Can we merge implicants?

Extension to mvi-minimization.
Accounts for
• Covering relations.
• Disjunctive relations.

Exact and heuristic minimizers.
Minimum symbolic cover computed before

Can we use fewer implicants?
Can we merge implicants?

55

Covering Relations ExampleCovering Relations ExampleCovering Relations Example

Assume the code of CNTD covers the codes of CNTB
and CNTC.

Possible codes
• CNTA = 00, CNTB = 01,
• CNTC =10 and CNTD = 11.

Assume the code of CNTD covers the codes of CNTB
and CNTC.

Possible codes
• CNTA = 00, CNTB = 01,
• CNTC =10 and CNTD = 11.

56

Disjunctive Relations ExampleDisjunctive Relations ExampleDisjunctive Relations Example

Assume the code of CNTD is the OR of the codes of CNTB
and CNTC.

Possible codes
• CNTA = 00, CNTB = 01,
• CNTC =10 and CNTD = 11.

Assume the code of CNTD is the OR of the codes of CNTB
and CNTC.

Possible codes
• CNTA = 00, CNTB = 01,
• CNTC =10 and CNTD = 11.

57

Output Encoding AlgorithmsOutput Encoding AlgorithmsOutput Encoding Algorithms

Often solved in conjunction with input encoding.
Exact algorithms
• Prime dichotomies compatible with output constraints.
• Construct prime/seed table.
• Solve covering problem.

Heuristic algorithms
• Construct E column by column.

Compatibility
• (L1, R1) and (L2, R2) are compatible if L1 ∩ R2 = ∅ and R1 ∩

L2 = ∅.
Covering
• Dichotomy (L1, R1) covers (L2, R2) if L1 ⊇ L2 and R1 ⊇ R2.

Prime dichotomies need to cover at least one element
of all seed pairs.

Often solved in conjunction with input encoding.
Exact algorithms
• Prime dichotomies compatible with output constraints.
• Construct prime/seed table.
• Solve covering problem.

Heuristic algorithms
• Construct E column by column.

Compatibility
• (L1, R1) and (L2, R2) are compatible if L1 ∩ R2 = ∅ and R1 ∩

L2 = ∅.
Covering
• Dichotomy (L1, R1) covers (L2, R2) if L1 ⊇ L2 and R1 ⊇ R2.

Prime dichotomies need to cover at least one element
of all seed pairs.

58

Example …Example Example ……

Input constraint matrix of second stage

Output constraint matrix of first stage

Assume the code of CNTD covers the codes of CNTB and
CNTC.

Input constraint matrix of second stage

Output constraint matrix of first stage

Assume the code of CNTD covers the codes of CNTB and
CNTC.

59

… Example ……… Example Example ……

Seed dichotomies associated with A

Seed dichotomies s2A and s4B are not compatible with
B.
Note that only one of the seed dichotomies SiA or SiB
needs to be covered and not both.

Seed dichotomies associated with A

Seed dichotomies s2A and s4B are not compatible with
B.
Note that only one of the seed dichotomies SiA or SiB
needs to be covered and not both.

S1A: ({CNTA, CNTB} ; {CNTC})
S1B: ({CNTC} ; {CNTA, CNTB})
S2A: ({CNTA, CNTB} ; {CNTD})
S2B: ({CNTD} ; {CNTA, CNTB})
S3A: ({CNTB, CNTD} ; {CNTA})
S3B: ({CNTA} ; {CNTB, CNTD})
S4A: ({CNTB, CNTD} ; {CNTC})
S4B: ({CNTC} ; {CNTB, CNTD})

60

S1A: ({CNTA, CNTB} ; {CNTC})
S1B: ({CNTC} ; {CNTA, CNTB})
S2A: ({CNTA, CNTB} ; {CNTD})
S2B: ({CNTD} ; {CNTA, CNTB})
S3A: ({CNTB, CNTD} ; {CNTA})
S3B: ({CNTA} ; {CNTB, CNTD})
S4A: ({CNTB, CNTD} ; {CNTC})
S4B: ({CNTC} ; {CNTB, CNTD})

… Example ……… Example Example ……

Prime dichotomies compatible with B

Cover: p1 and p2

Encoding matrix

Prime dichotomies compatible with B

Cover: p1 and p2

Encoding matrix

S1A S4A

S1B

S2B

S3A

p3

p2

p1

S3B

P1: ({CNTC, CNTD}; {CNTA, CNTB})
P2: ({CNTB, CNTD}; {CNTA, CNTC})
P3: ({CNTA, CNTB, CNTD}; {CNTC})
P4: ({CNTA}; {CNTB, CNTD})

61

… Example…… ExampleExample

Heuristic encoding considers the
dichotomy pairs associated with
each row

Dichotomies d1B and d2B do not
satisfy output constraints.
Dichotomies d1A and d2A are not
compatible and considered one at a
time yielding two-column encoding.

Heuristic encoding considers the
dichotomy pairs associated with
each row

Dichotomies d1B and d2B do not
satisfy output constraints.
Dichotomies d1A and d2A are not
compatible and considered one at a
time yielding two-column encoding.

d1A: ({CNTC, CNTD} ; {CNTA, CNTB})
d1B: ({CNTA, CNTB} ; {CNTC, CNTD})
d2A: ({CNTB, CNTD} ; {CNTA, CNTC})
d2B: ({CNTA, CNTC} ; {CNTB, CNTD})

62

State Encoding of Finite-State MachinesState Encoding of FiniteState Encoding of Finite--State MachinesState Machines

Given a (minimum) state table of a finite-state machine
• Find a consistent encoding of the states

• that preserves the cover minimality
• with minimum number of bits.

The state set must be encoded while satisfying
simultaneously both input and output constraints.

Given a (minimum) state table of a finite-state machine
• Find a consistent encoding of the states

• that preserves the cover minimality
• with minimum number of bits.

The state set must be encoded while satisfying
simultaneously both input and output constraints.

63

Example …Example Example ……

Minimum Symbolic Cover

Covering Constraints
•s1 and s2 cover s3
•s5 is covered by all other states.

Encoding Constraint Matrices

64

… Example ……… Example Example ……

After Implicant Merging:
0 s1, s2 s3 0
1 s2 s1 1
1 s3 s4 1
0 s4, s5 s2 1
1 s1, s4 s3 0
0 s3 s5 0
1 s5 s5 0

If s1 ⊇ s3 and s2 ⊇ s3:
* s1, s2, s4 s3 0
1 s2 s1 1
1 s3 s4 1
0 s4, s5 s2 1
0 s3 s5 0
1 s5 s5 0

Last two rows, output is 0 => no impact on
output equation. If s5 is covered by all other
states, a minimal code will have s5 assigned
the 0 code, i.e. no impact on next state
equations => last two rows can be eliminated.
* s1, s2, s4 s3 0
1 s2 s1 1
1 s3 s4 1
0 s4, s5 s2 1

65

… Example…… ExampleExample

Encoding matrix (one row per state)

Encoded cover of combinational component

Encoding matrix (one row per state)

Encoded cover of combinational component

Covering Constraints
•s1 and s2 cover s3
•s5 is covered by all other states.

66

Limitation of Symbolic Minimization and
Constrained Encoding
Limitation of Symbolic Minimization and Limitation of Symbolic Minimization and
Constrained EncodingConstrained Encoding

The minimum-length solution compatible with a set of
constraints may require bits larger than ⎡log2 ns⎤.
Example: Consider an FSM whose minimal symbolic
cover is:
• 00 s1, s2 s3 100
• 01 s2, s3 s1 010
• 10 s1, s3 s2 001

Satisfaction of input constraints requires at least 3
bits.
• e.g. s1=100, s2=010, s3=001
• PLA size is 3 rows and 11 columns (2 PI+3 PS+3 NS+3 PO)

Assume we do not satisfy first input constraint
• 2 bits are sufficient
• PLA size is 4 rows and 9 columns (2 PI+2 PS+2 NS+3 PO)

The minimum-length solution compatible with a set of
constraints may require bits larger than ⎡log2 ns⎤.
Example: Consider an FSM whose minimal symbolic
cover is:
• 00 s1, s2 s3 100
• 01 s2, s3 s1 010
• 10 s1, s3 s2 001

Satisfaction of input constraints requires at least 3
bits.
• e.g. s1=100, s2=010, s3=001
• PLA size is 3 rows and 11 columns (2 PI+3 PS+3 NS+3 PO)

Assume we do not satisfy first input constraint
• 2 bits are sufficient
• PLA size is 4 rows and 9 columns (2 PI+2 PS+2 NS+3 PO)

67

State Encoding for Multiple-Level ModelsState Encoding for MultipleState Encoding for Multiple--Level ModelsLevel Models

Logic network representation.
Area: # of literals.
Delay: Critical path length.
Encoding based on cube-extraction heuristics
[Mustang-Devadas].
Rationale
• When two (or more) states have a transition to the same

next-state
• Keep the distance of their encoding short.
• Extract a large common cube.

Exploit first stage of logic.
Works fine because most FSM logic is shallow.

Logic network representation.
Area: # of literals.
Delay: Critical path length.
Encoding based on cube-extraction heuristics
[Mustang-Devadas].
Rationale
• When two (or more) states have a transition to the same

next-state
• Keep the distance of their encoding short.
• Extract a large common cube.

Exploit first stage of logic.
Works fine because most FSM logic is shallow.

68

ExampleExampleExample

5-state FSM (3-bits).
• s1 → s3 with input i.
• s2 → s3 with input i’.

Encoding
• s1 → 000 = a’b’c’.
• s2 → 001 = a’b’c.

Transition
• i a’b’c’ +i’ a’b’c = a’b’ (ic+i’c’)
• 6 literals instead of 8.

5-state FSM (3-bits).
• s1 → s3 with input i.
• s2 → s3 with input i’.

Encoding
• s1 → 000 = a’b’c’.
• s2 → 001 = a’b’c.

Transition
• i a’b’c’ +i’ a’b’c = a’b’ (ic+i’c’)
• 6 literals instead of 8.

69

AlgorithmAlgorithmAlgorithm

Examine all state pairs
• Complete graph with |V| = |S|.

Add weight on edges
• Model desired code proximity.
• The higher the weight the lower the distance.

Embed graph in the Boolean space.
• Objective is to minimize the cost function

Difficulties
• The number of occurrences of common factors depends on the

next-state encoding.
• The extraction of common cubes interact with each other.

Examine all state pairs
• Complete graph with |V| = |S|.

Add weight on edges
• Model desired code proximity.
• The higher the weight the lower the distance.

Embed graph in the Boolean space.
• Objective is to minimize the cost function

Difficulties
• The number of occurrences of common factors depends on the

next-state encoding.
• The extraction of common cubes interact with each other.

),(*),(
1 1

jij

N

i

N

ij
i vvDistvvWeight

s s

∑ ∑
= +=

70

Mustang Algorithm Implementation …Mustang Algorithm Implementation Mustang Algorithm Implementation ……

Fanout-oriented algorithm
• Consider state fanout i.e. next states and outputs.
• Assign closer codes to pair of states that have same next state

transition or same output.
• Maximize the size of the most frequent common cubes.

Fanout-oriented algorithm
• Consider state fanout i.e. next states and outputs.
• Assign closer codes to pair of states that have same next state

transition or same output.
• Maximize the size of the most frequent common cubes.

71

… Mustang Algorithm Implementation ……… Mustang Algorithm Implementation Mustang Algorithm Implementation ……

Fanin-oriented algorithm
• Consider state fan-in i.e. present states and inputs.
• Assign closer codes to pair of states that have transition from same

present state or same input.
• Maximize the frequency of the largest common cubes.

Fanin-oriented algorithm
• Consider state fan-in i.e. present states and inputs.
• Assign closer codes to pair of states that have transition from same

present state or same input.
• Maximize the frequency of the largest common cubes.

k state ofequation in i state of ocurrences ofnumber :

k state ofequation in iinput of ocurrences ofnumber :

k state ofequation in iinput of ocurrences ofnumber :

)*(*)*()*(

s
,

,

,

1
s
,

s
,,,,1 ,,

ik

OFF
ik

ON
ik

ns

i ilikb
OFF
il

OFF
ik

ON
il

ni

i
ON
iklk

P

P

P

PPnPPPPM ∑∑ ==
++=

72

… Mustang Algorithm Implementation…… Mustang Algorithm ImplementationMustang Algorithm Implementation

73

Synchronous Logic Network …Synchronous Logic Network Synchronous Logic Network ……

Synchronous Logic Network
• Variables.
• Boolean equations.
• Synchronous delay annotation.

Synchronous network graph
• Vertices ↔ equations ↔ I/O , gates.
• Edges ↔ dependencies ↔ nets.
• Weights ↔ synch. delays ↔ registers.

Synchronous Logic Network
• Variables.
• Boolean equations.
• Synchronous delay annotation.

Synchronous network graph
• Vertices ↔ equations ↔ I/O , gates.
• Edges ↔ dependencies ↔ nets.
• Weights ↔ synch. delays ↔ registers.

74

… Synchronous Logic Network…… Synchronous Logic NetworkSynchronous Logic Network

75

Approaches to Synchronous Logic
Optimization
Approaches to Synchronous LogicApproaches to Synchronous Logic
OptimizationOptimization

Optimize combinational logic only.
Optimize register position only
• Retiming.

Optimize overall circuit
• Peripheral retiming.
• Synchronous transformations

• Algebraic.
• Boolean.

Optimize combinational logic only.
Optimize register position only
• Retiming.

Optimize overall circuit
• Peripheral retiming.
• Synchronous transformations

• Algebraic.
• Boolean.

76

Retiming …Retiming Retiming ……

Minimize cycle-time or area by changing register
positions.
Do not modify combinational logic.
Preserve network structure
• Modify weights.
• Do not modify graph structure.

Minimize cycle-time or area by changing register
positions.
Do not modify combinational logic.
Preserve network structure
• Modify weights.
• Do not modify graph structure.

77

… Retiming ……… Retiming Retiming ……

Global optimization technique [Leiserson].
Changes register positions
• affects area

• changes register count.
• affects cycle-time

• changes path delays between register pairs.

Solvable in polynomial time.
Assumptions
• Vertex delay is constant: No fanout delay dependency.
• Graph topology is invariant: No logic transformations.
• Synchronous implementation

• Cycles have positive weights.
• Edges have non-negative weights.

Global optimization technique [Leiserson].
Changes register positions
• affects area

• changes register count.
• affects cycle-time

• changes path delays between register pairs.

Solvable in polynomial time.
Assumptions
• Vertex delay is constant: No fanout delay dependency.
• Graph topology is invariant: No logic transformations.
• Synchronous implementation

• Cycles have positive weights.
• Edges have non-negative weights.

78

… Retiming ……… Retiming Retiming ……

79

… Retiming ……… Retiming Retiming ……

80

… Retiming…… RetimingRetiming

81

… Retiming ……… Retiming Retiming ……

Retiming of a vertex
• Moving registers from output to

inputs or vice versa
• Integer

• Positive value: from outputs to
inputs

• Negative value: from inputs to
outputs

Retiming of a network
• Vector of vertex retiming.

Definitions
•

• Retiming of an edge (vi, vj):

Retiming of a vertex
• Moving registers from output to

inputs or vice versa
• Integer

• Positive value: from outputs to
inputs

• Negative value: from inputs to
outputs

Retiming of a network
• Vector of vertex retiming.

Definitions
•

• Retiming of an edge (vi, vj):

82

ExampleExampleExample

Node values indicate
delay.
Retiming vector
• [a b c d e f g h]=

[0 0 -1 -1 -1 0 1 1]
• [a b c d e f g h]= -

[1 1 2 2 2 1 0 0]=
• [1 1 0 0 0 1 2 2]

Original critical path
is (vd, ve, vf, vg, vh)=
24 units
Retimed critical path
is (vb, vc, ve)= 13 units

Node values indicate
delay.
Retiming vector
• [a b c d e f g h]=

[0 0 -1 -1 -1 0 1 1]
• [a b c d e f g h]= -

[1 1 2 2 2 1 0 0]=
• [1 1 0 0 0 1 2 2]

Original critical path
is (vd, ve, vf, vg, vh)=
24 units
Retimed critical path
is (vb, vc, ve)= 13 units

83

Behavior and Testability Preservation
under Retiming …
Behavior and Testability Preservation Behavior and Testability Preservation
under Retiming under Retiming ……

A synchronizing sequence for a machine is an input
sequence that brings the machine to a known and
unique state determined without knowledge of output
response or initial state of the machine.
An interesting class of synchronizing sequences
allows the state reached after applying the
synchronizing sequence to be either a single state or a
set of equivalent states.
A synchronizing sequence (or a test) derived based on
pessimistic 3-valued simulation is called structural;
otherwise, it is called functional.
• functional synchronizing sequences (or tests) correspond to

those derived based on the state transition graph of a circuit.

A synchronizing sequence for a machine is an input
sequence that brings the machine to a known and
unique state determined without knowledge of output
response or initial state of the machine.
An interesting class of synchronizing sequences
allows the state reached after applying the
synchronizing sequence to be either a single state or a
set of equivalent states.
A synchronizing sequence (or a test) derived based on
pessimistic 3-valued simulation is called structural;
otherwise, it is called functional.
• functional synchronizing sequences (or tests) correspond to

those derived based on the state transition graph of a circuit.

84

… Behavior and Testability Preservation
under Retiming …
…… Behavior and Testability Preservation Behavior and Testability Preservation
under Retiming under Retiming ……

•Vector 11 synchronizes C1 to a single state and C2 to an equivalent set of
states.
•Any of the vectors (11, 00), (11, 01), (11, 10), (11, 11) synchronizes C2 to a
single equivalent state.

85

… Behavior and Testability Preservation
under Retiming …
…… Behavior and Testability Preservation Behavior and Testability Preservation
under Retiming under Retiming ……

•Vector 11 is a functional synchronizing sequence for L1 but not for
L2.
•Any of the vectors (00, 11), (01, 11), (10, 11), (11, 11) is a
synchronizing sequence for L2.

86

… Behavior and Testability Preservation
under Retiming
…… Behavior and Testability Preservation Behavior and Testability Preservation
under Retimingunder Retiming

