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Library BindingLibrary BindingLibrary Binding

Given an unbound logic network and a set of library 
cells
• Transform into an interconnection of instances of library cells.
• Optimize area, (under delay constraints.)
• Optimize delay, (under area constraints.)
• Optimize power, (under delay constraints.)

Called also technology mapping
• Method used for re-designing circuits in different 

technologies.
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Library ModelsLibrary ModelsLibrary Models

A cell library is a set of primitive gates including combinational, 
sequential, and interface elements.
Each cell is characterized by
• Its function.
• Input/output terminals.
• Area, delay, capacitive load.

Combinational elements
• Single-output functions: e.g. AND, OR, NAND, NOR, INV, XOR, 

XNOR,  AOI.
• Compound cells: e.g. adders, encoders.

Sequential elements
• Flip-flops, registers, counters.

Miscellaneous
• Tri-state drivers.
• Schmitt triggers.

A cell library is a set of primitive gates including combinational, 
sequential, and interface elements.
Each cell is characterized by
• Its function.
• Input/output terminals.
• Area, delay, capacitive load.

Combinational elements
• Single-output functions: e.g. AND, OR, NAND, NOR, INV, XOR, 

XNOR,  AOI.
• Compound cells: e.g. adders, encoders.

Sequential elements
• Flip-flops, registers, counters.

Miscellaneous
• Tri-state drivers.
• Schmitt triggers.
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Major ApproachesMajor ApproachesMajor Approaches

Rule-based systems
• Mimic designer activity.
• Handle all types of cells including multiple-output, sequential 

and interface elements.
• Requires creation and maintenance of set or rules.
• Slower execution.

Heuristic algorithms
• Restricted to single-output combinational cells.
• Implementation of registers, input/output circuits and drivers 

straightforward.

Most tools use a combination of both.
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Rule-Based Library BindingRuleRule--Based Library BindingBased Library Binding

Binding by stepwise transformations.
Data-base
• Set of patterns associated with best implementation.

Rules
• Select subnetwork to be mapped.
• Handle high-fanout problems, buffering, etc.

Binding by stepwise transformations.
Data-base
• Set of patterns associated with best implementation.

Rules
• Select subnetwork to be mapped.
• Handle high-fanout problems, buffering, etc.
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Rule-Based Library BindingRuleRule--Based Library BindingBased Library Binding

Execution of rules follows a priority scheme.
Search for a sequence of transformations.
A greedy search is a sequence of rules each decreasing cost.
Search space
• Breadth (options at each step).
• Depth (look-ahead).

Meta-rules determine dynamically breadth and depth.
Advantages
• Applicable to all kinds of libraries.

Disadvantages
• Large rule data-base

• Completeness issue.
• Data-base updates.
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A greedy search is a sequence of rules each decreasing cost.
Search space
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Algorithms for Library BindingAlgorithms for Library BindingAlgorithms for Library Binding

Mainly for single-output combinational cells.
Fast and efficient
• Quality comparable to rule-based systems.

Library description/update is simple
• Each cell modeled by its function or equivalent pattern.

Involves two steps
• Matching

• A cell matches a subnetwork if their terminal behavior is the 
same.

• Input-variable assignment problem.
• Covering

• A cover of an unbound network is a partition into subnetworks
which can be replaced by library cells.

Mainly for single-output combinational cells.
Fast and efficient
• Quality comparable to rule-based systems.

Library description/update is simple
• Each cell modeled by its function or equivalent pattern.

Involves two steps
• Matching

• A cell matches a subnetwork if their terminal behavior is the 
same.

• Input-variable assignment problem.
• Covering

• A cover of an unbound network is a partition into subnetworks
which can be replaced by library cells.
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MatchingMatchingMatching

Given two single-output combinational functions f(x)
and g(x) with same number of support variables.
f matches g if there exists a permutation P such that 
f(x)  = g(P x).
Example
• f = ab + c ; g = p + qr.
• By assigning {q, r, p} to {a, b, c}, f is equal to g.
• f and g have a Boolean match.
• By representing functions f and g by their AND-OR 

decomposition graphs, f and g have a structural match since 
their graphs are isomorphic.

Must ensure that vertices bound to inputs of a matched 
cell are outputs of other matched cells.
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AssumptionsAssumptionsAssumptions

Network granularity is fine.
• Decomposition into base functions: 2-input NAND, NOR, INV.

Trivial binding
• Replacement of each vertex by base cell.

Network granularity is fine.
• Decomposition into base functions: 2-input NAND, NOR, INV.

Trivial binding
• Replacement of each vertex by base cell.
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Example …Example Example ……
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… Example…… ExampleExample

Vertex covering
• Covering v1: (m1 +m4 +m5).
• Covering v2: (m2 +m4).
• Covering v3: (m3 +m5).

Input compatibility
• Match m2 requires m1: (m2’ +m1).
• Match m3 requires m1: (m3’ +m1).

Overall binate clause
• (m1 +m4 +m5)(m2 +m4)(m3 +m5)(m2’

+m1)(m3’ +m1) = 1

Optimum solution: 
m1’m2’m3’m4m5
• Cost=10
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Heuristic AlgorithmsHeuristic AlgorithmsHeuristic Algorithms

To render covering problem tractable, network is 
decomposed and partitioned.
Decomposition
• Cast network and library in standard form.
• Decompose into base functions.
• Example: NAND2 and INV.
• Guarantees that each vertex is covered by at least one 

match.

Partitioning
• Break network into cones called subject graphs.
• Reduce to many multi-input single-output subnetworks.

Covering
• Cover each subnetwork by library cells.

To render covering problem tractable, network is 
decomposed and partitioned.
Decomposition
• Cast network and library in standard form.
• Decompose into base functions.
• Example: NAND2 and INV.
• Guarantees that each vertex is covered by at least one 

match.

Partitioning
• Break network into cones called subject graphs.
• Reduce to many multi-input single-output subnetworks.

Covering
• Cover each subnetwork by library cells.
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PartitioningPartitioningPartitioning

Rationale for partitioning
• Size of each covering problem is smaller.
• Covering problem becomes tractable.

Used to isolate combinational portions from sequential 
elements and I/Os.
Partitioning of combinational circuits
• Mark vertices with multiple fanout.
• Edges whose tails are marked vertices define partition 

boundary.

Rationale for partitioning
• Size of each covering problem is smaller.
• Covering problem becomes tractable.

Used to isolate combinational portions from sequential 
elements and I/Os.
Partitioning of combinational circuits
• Mark vertices with multiple fanout.
• Edges whose tails are marked vertices define partition 

boundary.
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DecompositionDecompositionDecomposition
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PartitioningPartitioningPartitioning
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CoveringCoveringCovering
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MatchingMatchingMatching

Structural matching
• Model functions by patterns.

• Example: trees, dags (fanout only at the inputs).
• Both subject graph and library cells cast into comparable form 

(subject and pattern graphs).
• Rely on pattern matching techniques.
• Some library cells may have more than one pattern graph.

Boolean matching
• Use Boolean models.
• Solve tautology problem to check equivalence of two 

functions.
• More powerful.

Structural matching
• Model functions by patterns.

• Example: trees, dags (fanout only at the inputs).
• Both subject graph and library cells cast into comparable form 

(subject and pattern graphs).
• Rely on pattern matching techniques.
• Some library cells may have more than one pattern graph.

Boolean matching
• Use Boolean models.
• Solve tautology problem to check equivalence of two 

functions.
• More powerful.
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Boolean versus Structural MatchingBoolean versus Structural MatchingBoolean versus Structural Matching

Example
• f = xy +x’y’ +y’z
• g = xy +x’y’ +xz

Function equality is a tautology
• Boolean match.

Patterns are different
• No structural match.

Example
• f = xy +x’y’ +y’z
• g = xy +x’y’ +xz

Function equality is a tautology
• Boolean match.

Patterns are different
• No structural match.
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Structural Matching and CoveringStructural Matching and CoveringStructural Matching and Covering

Expression patterns
• Represented by dags using a 

decomposition of 2-inp NAND and INV.

Identify pattern dags in network
• Matching by sub-graph isomorphism.

Simplification
• Use tree patterns.
• Most library cells can be represented as 

trees.
• Tree matching & tree covering is linear.

Expression patterns
• Represented by dags using a 

decomposition of 2-inp NAND and INV.

Identify pattern dags in network
• Matching by sub-graph isomorphism.

Simplification
• Use tree patterns.
• Most library cells can be represented as 

trees.
• Tree matching & tree covering is linear. F = a b c d

F = a b c d

F = a b F = a ⊕ b
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Tree-Based Matching …TreeTree--Based Matching Based Matching ……

Network
• Partitioned and decomposed

• NOR2 (or NAND2) + INV.
• Generic base functions.

• Each partition called Subject tree.

Library
• Represented by trees.
• Possibly more than one tree per cell.
• Pattern recognition

• Simple binary tree match.
• Aho-Corasick automaton.

Network
• Partitioned and decomposed

• NOR2 (or NAND2) + INV.
• Generic base functions.

• Each partition called Subject tree.

Library
• Represented by trees.
• Possibly more than one tree per cell.
• Pattern recognition

• Simple binary tree match.
• Aho-Corasick automaton.
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Simple LibrarySimple LibrarySimple Library
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… Tree-Based Matching…… TreeTree--Based MatchingBased Matching
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Tree-Based CoveringTreeTree--Based CoveringBased Covering

Dynamic programming
• Visit subject tree bottom-up.

At each vertex attempt to match
• Locally rooted subtree.
• Check all library cells for a match.

Optimum solution for the subtree.

Dynamic programming
• Visit subject tree bottom-up.

At each vertex attempt to match
• Locally rooted subtree.
• Check all library cells for a match.

Optimum solution for the subtree.
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ExampleExampleExample
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Minimum Area Cover ExampleMinimum Area Cover ExampleMinimum Area Cover Example

Minimum-area cover.
Area costs
• INV:2; NAND2:3; 

AND2:4; AOI21:6.

Best choice
• AOI21 fed by a NAND2 

gate.

Minimum-area cover.
Area costs
• INV:2; NAND2:3; 

AND2:4; AOI21:6.

Best choice
• AOI21 fed by a NAND2 

gate.
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Minimum Delay CoverMinimum Delay CoverMinimum Delay Cover

Dynamic programming  approach.
Cost related to gate delay.
Delay modeling
• Constant gate delay: straightforward.
• Load-dependent delay

• Load fanout unknown.

Minimum delay cover with constant delays
• The cell tree is isomorphic to a subtree with leaves L.

• The vertex is labeled with the cell cost plus the maximum of the 
labels of L.

Dynamic programming  approach.
Cost related to gate delay.
Delay modeling
• Constant gate delay: straightforward.
• Load-dependent delay

• Load fanout unknown.

Minimum delay cover with constant delays
• The cell tree is isomorphic to a subtree with leaves L.

• The vertex is labeled with the cell cost plus the maximum of the 
labels of L.
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Minimum Delay Cover ExampleMinimum Delay Cover ExampleMinimum Delay Cover Example

Inputs data-ready times 
are 0 except for td = 6
Constant delays
• INV:2; NAND2:4; 

AND2:5; AOI21:10.
Compute data-ready 
times bottom-up
• tx = 4; ty = 2; tz = 10;   

tw = 14.
Best choice
• AND2, two NAND2 

and an INV gate.

Inputs data-ready times 
are 0 except for td = 6
Constant delays
• INV:2; NAND2:4; 

AND2:5; AOI21:10.
Compute data-ready 
times bottom-up
• tx = 4; ty = 2; tz = 10;   

tw = 14.
Best choice
• AND2, two NAND2 

and an INV gate.
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Minimum Delay Cover
Load-Dependent Delays
Minimum Delay CoverMinimum Delay Cover
LoadLoad--Dependent DelaysDependent Delays

Model
• For most libraries, input capacitances are a finite small set.
• Label each vertex with all possible load values.

Dynamic programming approach
• Compute an array of solutions for each vertex corresponding 

to different loads.
• For each match, arrival time is computed for each load value.
• For each input to a matching cell the best match for the given  

load is selected.

Optimum solution, when all possible loads are 
considered.

Model
• For most libraries, input capacitances are a finite small set.
• Label each vertex with all possible load values.

Dynamic programming approach
• Compute an array of solutions for each vertex corresponding 

to different loads.
• For each match, arrival time is computed for each load value.
• For each input to a matching cell the best match for the given  

load is selected.

Optimum solution, when all possible loads are 
considered.
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ExampleExampleExample

Inputs data-ready times 
are 0 except for td = 6
Load-dependent delays
• INV:1+l; NAND2:3+l; 

AND2:4+l; AOI21:9+l; 
SINV:1+0.5l.

Loads
• INV:1; NAND2:1; 

AND2:1; AOI21:1; 
SINV:2.

Assume output load is 1
• Same solution as before.

Assume output load is 5
• Solution uses SINV cell.

Inputs data-ready times 
are 0 except for td = 6
Load-dependent delays
• INV:1+l; NAND2:3+l; 

AND2:4+l; AOI21:9+l; 
SINV:1+0.5l.

Loads
• INV:1; NAND2:1; 

AND2:1; AOI21:1; 
SINV:2.

Assume output load is 1
• Same solution as before.

Assume output load is 5
• Solution uses SINV cell.
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Boolean Matching/CoveringBoolean Matching/CoveringBoolean Matching/Covering

Decompose network into base functions.
When considering vertex vi
• Construct clusters by local elimination.
• Several functions associated with vi.

Limit size and depth of clusters.

Decompose network into base functions.
When considering vertex vi
• Construct clusters by local elimination.
• Several functions associated with vi.

Limit size and depth of clusters.
j = x y; x = e + z;
y = a + c; z = c’ + b;

fj,1 = x y;
fj,2 = x (a + c);
fj,3 = (e + z) y;
fj,4 = (e + z) (a + c)
fj,5 = (e + c’ + b) y;
fj,6 = (e + c’ + b) (a + c);
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Boolean Matching: P-EquivalenceBoolean Matching: PBoolean Matching: P--EquivalenceEquivalence

Cluster function f(x): sub-network behavior.
Pattern function g(y): cell behavior.
P-equivalence
• Exists a permutation operator P, such that f(x) = g(P x) is a 

tautology?

Approaches
• Tautology check over all input permutations.
• Multi-rooted pattern ROBDD capturing all permutations.

Cluster function f(x): sub-network behavior.
Pattern function g(y): cell behavior.
P-equivalence
• Exists a permutation operator P, such that f(x) = g(P x) is a 

tautology?

Approaches
• Tautology check over all input permutations.
• Multi-rooted pattern ROBDD capturing all permutations.
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Signatures and Filters …Signatures and Filters Signatures and Filters ……

Drastically reduce the number of permutations to be 
considered.
Capture some properties of Boolean functions.
If signatures do not match, there is no match.
Used as filters to reduce computation.
Signatures
• Unateness.
• Symmetries.

Any pin assignment must associate
• unate (binate) variables in f(x) with unate (binate) variables in 

g(y).
Variables or groups of variables
• that are interchangeable in f(x) must be interchangeable in 

g(y).

Drastically reduce the number of permutations to be 
considered.
Capture some properties of Boolean functions.
If signatures do not match, there is no match.
Used as filters to reduce computation.
Signatures
• Unateness.
• Symmetries.

Any pin assignment must associate
• unate (binate) variables in f(x) with unate (binate) variables in 

g(y).
Variables or groups of variables
• that are interchangeable in f(x) must be interchangeable in 

g(y).
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… Signatures and Filters ……… Signatures and Filters Signatures and Filters ……

Cluster and pattern functions must have the same 
number of unate and binate variables to match.
If there are b binate variables, un upper bound on 
number of variable permutations is b! (n-b)!
• (instead of n!)

Example
• g = s1 s2 a + s1 s2’ b + s1’ s3 c + s1’s3’ d.
• n=7 variables; 4 unate and 3 binate.
• Only 3! 4! = 144 variable orders and corresponding OBDDs. 

need to be considered in worst case.
• Compare this with overall number of permutations

• 7!=5040

Cluster and pattern functions must have the same 
number of unate and binate variables to match.
If there are b binate variables, un upper bound on 
number of variable permutations is b! (n-b)!
• (instead of n!)

Example
• g = s1 s2 a + s1 s2’ b + s1’ s3 c + s1’s3’ d.
• n=7 variables; 4 unate and 3 binate.
• Only 3! 4! = 144 variable orders and corresponding OBDDs. 

need to be considered in worst case.
• Compare this with overall number of permutations

• 7!=5040
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… Signatures and Filters ……… Signatures and Filters Signatures and Filters ……

A symmetry set is a set of variables that are pairwise
interchangeable.
A symmetry class is an ensemble of symmetry sets 
with the same cardinality.
A symmetry class Ci has symmetry sets with 
cardinality i.
A necessary condition for two functions to match is 
having symmetry classes of the same cardinality for 
each i.
Example
• F = x1 x2 x3 + x4 x5 + x6 x7
• Symmetry sets: (x1, x2, x3), (x4, x5), (x6, x7)
• C2= {(x4, x5), (x6, x7)}; |C2|=2
• C3= {(x1, x2, x3)}; |C3|=1

A symmetry set is a set of variables that are pairwise
interchangeable.
A symmetry class is an ensemble of symmetry sets 
with the same cardinality.
A symmetry class Ci has symmetry sets with 
cardinality i.
A necessary condition for two functions to match is 
having symmetry classes of the same cardinality for 
each i.
Example
• F = x1 x2 x3 + x4 x5 + x6 x7
• Symmetry sets: (x1, x2, x3), (x4, x5), (x6, x7)
• C2= {(x4, x5), (x6, x7)}; |C2|=2
• C3= {(x1, x2, x3)}; |C3|=1
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… Signatures and Filters ……… Signatures and Filters Signatures and Filters ……
Symmetry classes can be used to determine non-redundant 
variable orders
• All variables in a given symmetry set are equivalent.
• Number of permutations required is ∏i=1 to n (|Ci|!).

Example
• F = x1 x2 x3 + x4 x5 + x6 x7
• Number of permutations = 2! = 2 variable orders.
• (x1, x2, x3, x4, x5, x6, x7)
• (x1, x2, x3, x6, x7, x4, x5)

Cluster function: f = abc.
• Symmetries: {(a, b, c)} – 3 unate.

Pattern functions
• g1 = a+b+c

• Symmetries: {(a, b, c)}   – 3 unate.
• g2 = ab+c

• Symmetries: {(a, b) (c)}  -- 3 unate.
• g3 = abc +a’b’c’

• Symmetries: {(a, b, c)}    -- 3 binate.

Symmetry classes can be used to determine non-redundant 
variable orders
• All variables in a given symmetry set are equivalent.
• Number of permutations required is ∏i=1 to n (|Ci|!).

Example
• F = x1 x2 x3 + x4 x5 + x6 x7
• Number of permutations = 2! = 2 variable orders.
• (x1, x2, x3, x4, x5, x6, x7)
• (x1, x2, x3, x6, x7, x4, x5)

Cluster function: f = abc.
• Symmetries: {(a, b, c)} – 3 unate.

Pattern functions
• g1 = a+b+c

• Symmetries: {(a, b, c)}   – 3 unate.
• g2 = ab+c

• Symmetries: {(a, b) (c)}  -- 3 unate.
• g3 = abc +a’b’c’

• Symmetries: {(a, b, c)}    -- 3 binate.
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… Signatures and Filters…… Signatures and FiltersSignatures and Filters

Taking advantage of both symmetric classes and unate-
binate properties

Number of non-redundant permutations

Taking advantage of both symmetric classes and unate-
binate properties

Number of non-redundant permutations
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