COE 561 Digital System Design & Synthesis Library Binding

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

- Modeling and problem analysis
- Rule-based systems for library binding
- Heuristic Algorithms for library binding
- Decomposition and partitioning
- Structural matching/covering
- Tree-based matching
- Tree-based covering
- Boolean matching/covering

Library Binding

- Given an unbound logic network and a set of library cells
 - Transform into an interconnection of instances of library cells.
 - Optimize area, (under delay constraints.)
 - Optimize delay, (under area constraints.)
 - Optimize power, (under delay constraints.)
- Called also technology mapping
 - Method used for re-designing circuits in different technologies.

Library Models

- A cell library is a set of primitive gates including combinational, sequential, and interface elements.
- Each cell is characterized by
 - Its function.
 - Input/output terminals.
 - Area, delay, capacitive load.
- Combinational elements
 - Single-output functions: e.g. AND, OR, NAND, NOR, INV, XOR, XNOR, AOI.
 - Compound cells: e.g. adders, encoders.
- Sequential elements
 - Flip-flops, registers, counters.
- Miscellaneous
 - Tri-state drivers.
 - Schmitt triggers.

Major Approaches

Rule-based systems

- Mimic designer activity.
- Handle all types of cells including multiple-output, sequential and interface elements.
- Requires creation and maintenance of set or rules.
- Slower execution.

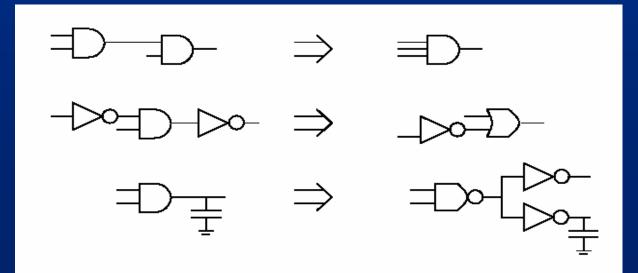
Heuristic algorithms

- Restricted to single-output combinational cells.
- Implementation of registers, input/output circuits and drivers straightforward.

Most tools use a combination of both.

Rule-Based Library Binding

- Binding by stepwise transformations.
- Data-base
 - Set of patterns associated with best implementation.
- Rules
 - Select subnetwork to be mapped.
 - Handle high-fanout problems, buffering, etc.



Rule-Based Library Binding

- Execution of rules follows a priority scheme.
- Search for a sequence of transformations.
- A greedy search is a sequence of rules each decreasing cost.
- Search space
 - Breadth (options at each step).
 - Depth (look-ahead).
- Meta-rules determine dynamically breadth and depth.
- Advantages
 - Applicable to all kinds of libraries.
- Disadvantages
 - Large rule data-base
 - Completeness issue.
 - Data-base updates.

Algorithms for Library Binding

Mainly for single-output combinational cells.

Fast and efficient

- Quality comparable to rule-based systems.
- Library description/update is simple
 - Each cell modeled by its function or equivalent pattern.

Involves two steps

- Matching
 - A cell matches a subnetwork if their terminal behavior is the same.
 - Input-variable assignment problem.

Covering

• A cover of an unbound network is a partition into subnetworks which can be replaced by library cells.

Matching

- Given two single-output combinational functions f(x) and g(x) with same number of support variables.
- f matches g if there exists a permutation P such that f(x) = g(P x).

Example

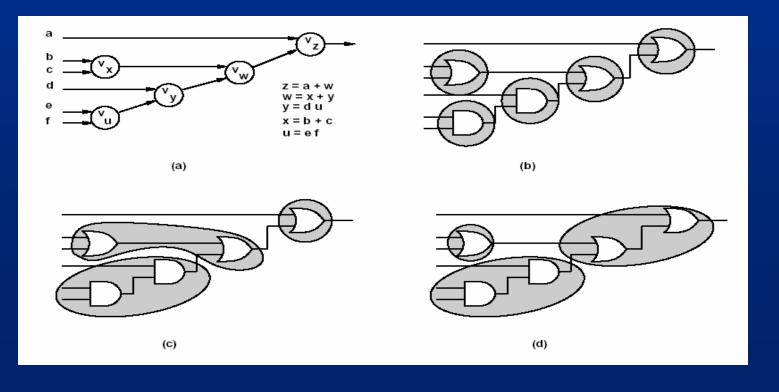
- f = ab + c; g = p + qr.
- By assigning {q, r, p} to {a, b, c}, f is equal to g.
- f and g have a Boolean match.
- By representing functions f and g by their AND-OR decomposition graphs, f and g have a structural match since their graphs are *isomorphic*.

Must ensure that vertices bound to inputs of a matched cell are outputs of other matched cells.

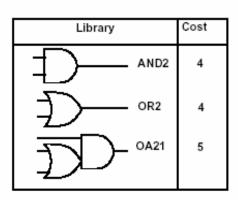
Assumptions

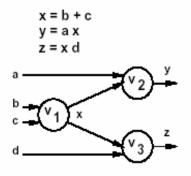
Network granularity is fine.

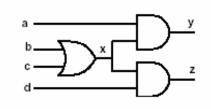
- Decomposition into base functions: 2-input NAND, NOR, INV.
- Trivial binding
 - Replacement of each vertex by base cell.



Example ...







(a)

(b)

(c)

m1: {v1,OR2} m2: {v2,AND2}

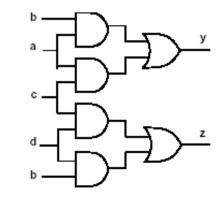
in the second second

m

(d)

AND DESCRIPTION.

(e)



(f)

11

... Example

Vertex covering

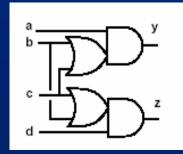
- Covering v1: (m1 +m4 +m5).
- Covering v2: (m2 +m4).
- Covering v3: (m3 +m5).
- Input compatibility
 - Match m2 requires m1: (m2' +m1).
 - Match m3 requires m1: (m3' +m1).

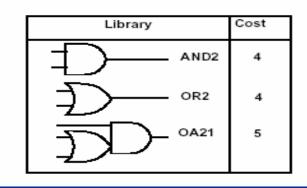
Overall binate clause

(m1 +m4 +m5)(m2 +m4)(m3 +m5)(m2' +m1)(m3' +m1) = 1

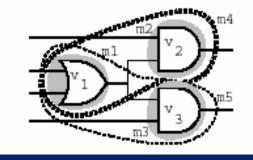
Optimum solution: m1'm2'm3'm4m5

Cost=10





m1: {v1,OR2} m2: {v2,AND2} m3: {v3,AND2} m4: {v1,v2,OA21} m5: {v1,v3,OA21}



Heuristic Algorithms

To render covering problem tractable, network is decomposed and partitioned.

Decomposition

- Cast network and library in standard form.
- Decompose into base functions.
- Example: NAND2 and INV.
- Guarantees that each vertex is covered by at least one match.

Partitioning

- Break network into cones called subject graphs.
- Reduce to many multi-input single-output subnetworks.

Covering

Cover each subnetwork by library cells.

Partitioning

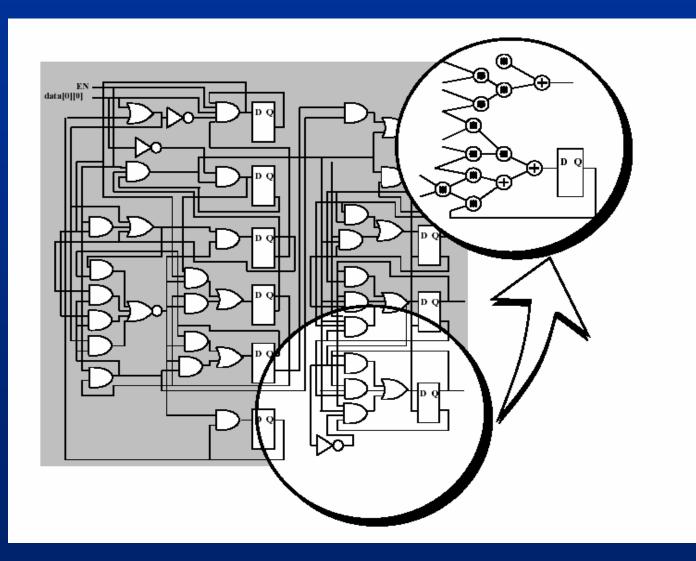
Rationale for partitioning

- Size of each covering problem is smaller.
- Covering problem becomes tractable.
- Used to isolate combinational portions from sequential elements and I/Os.

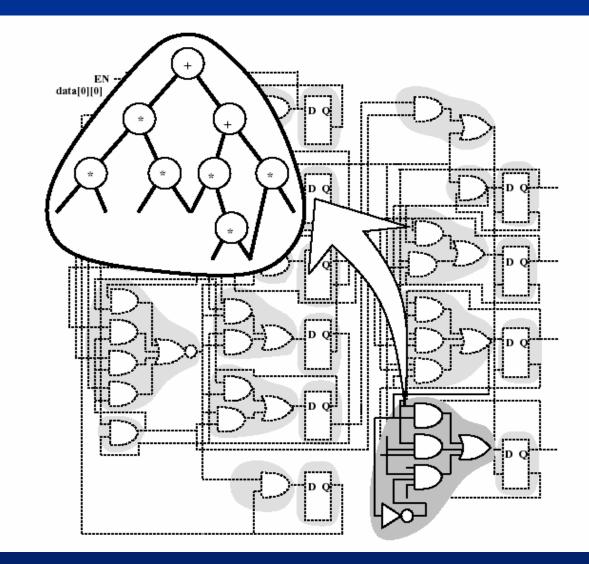
Partitioning of combinational circuits

- Mark vertices with multiple fanout.
- Edges whose tails are marked vertices define partition boundary.

Decomposition

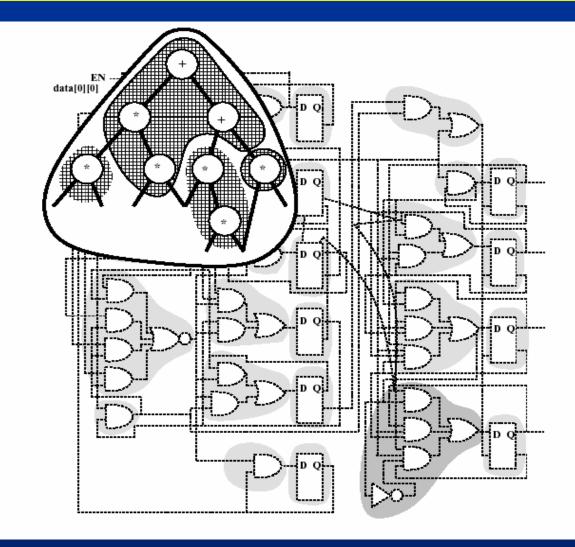


Partitioning



16

Covering



17

Matching

Structural matching

- Model functions by patterns.
 - Example: trees, dags (fanout only at the inputs).
- Both subject graph and library cells cast into comparable form (subject and pattern graphs).
- Rely on pattern matching techniques.
- Some library cells may have more than one pattern graph.

Boolean matching

- Use Boolean models.
- Solve tautology problem to check equivalence of two functions.
- More powerful.

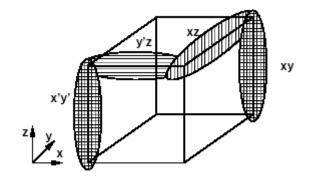
Boolean versus Structural Matching

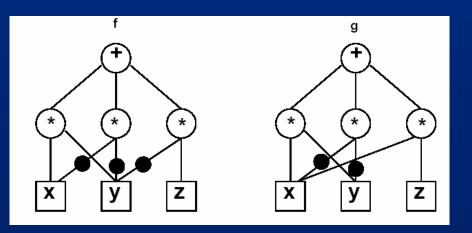
Example

- f = xy +x'y' +y'z
- g = xy +x'y' +xz

Function equality is a tautology

- Boolean match.
- Patterns are different
 - No structural match.





Structural Matching and Covering

Expression patterns

 Represented by dags using a decomposition of 2-inp NAND and INV.

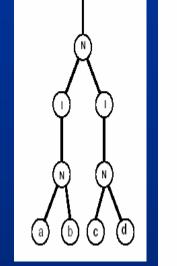
Identify pattern dags in network

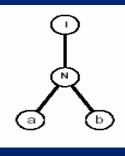
Matching by sub-graph isomorphism.

Simplification

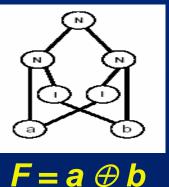
- Use tree patterns.
- Most library cells can be represented as trees.

Tree matching & tree covering is linear.
F = a b c d





= a b



F = a b c d

d

Tree-Based Matching ...

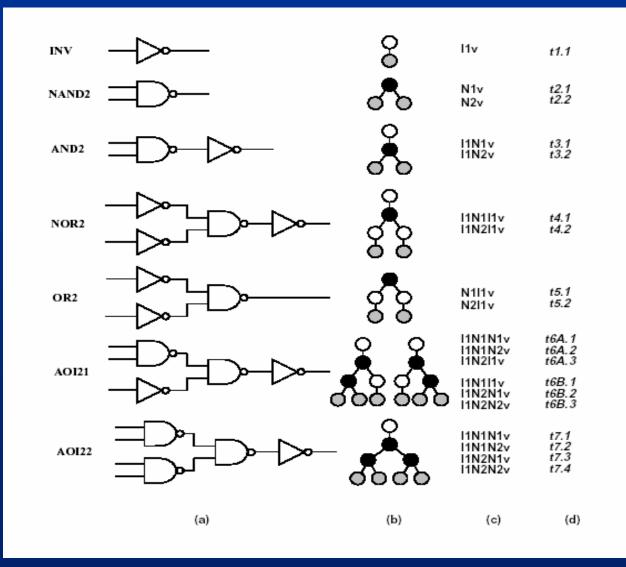
Network

- Partitioned and decomposed
 - NOR2 (or NAND2) + INV.
 - Generic base functions.
- Each partition called Subject tree.

Library

- Represented by trees.
- Possibly more than one tree per cell.
- Pattern recognition
 - Simple binary tree match.
 - Aho-Corasick automaton.

Simple Library



22

... Tree-Based Matching

```
MATCH(u, v) {
      if (u is a leaf) return (TRUE);
                                                                     /* Leaf of the pattern graph reached */
      else {
             if (v is a leaf) return (FALSE);
                                                                     /* Leaf of the subject graph reached */
             if (degree(v) \neq degree(u)) return(FALSE);
                                                                                      /* Degree mismatch */
             if (degree(v) == 1) {
                                                              /* One child each: visit subtree recursively */
                    u_c = \text{child of } u ; v_c = \text{child of } v ;
                   return (match(u_c, v_c))
             }
             else {
                                                         /* Two children each: visit subtrees recursively */
                   u_l = left-child of u; u_r = right-child of u;
                    v_l = left-child of v; v_r = right-child of v;
                   return (MATCH(u_l, v_l) \cdot MATCH(u_r, v_r) + MATCH(u_r, v_l) \cdot MATCH(u_l, v_r));
             }
```

Tree-Based Covering

Dynamic programming

Visit subject tree bottom-up.

At each vertex attempt to match

- Locally rooted subtree.
- Check all library cells for a match.

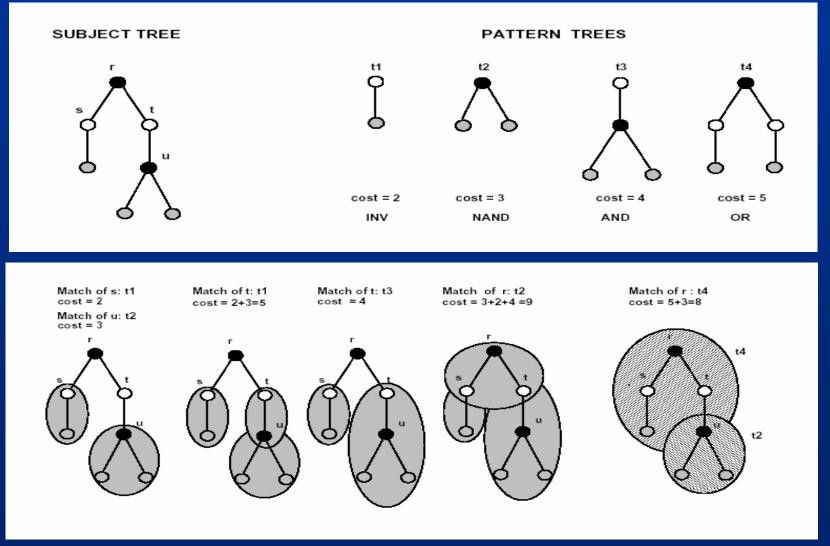
Optimum solution for the subtree.

$TREE_COVER(T(V, E))$ {

Set the cost of the internal vertices to -1; Set the cost of the leaf vertices to 0; while (some vertex has negative weight) do { Select a vertex $v \in V$ whose children have all nonnegative cost; M = set of all matching pattern trees at vertex v; $\text{cost}(v) = \min_{m \in M(v)} (cost(m) + \sum_{u \in L(m)} cost(u))$;

24

Example



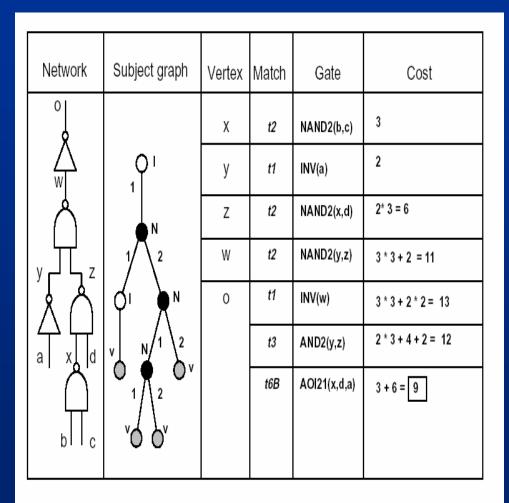
25

Minimum Area Cover Example

Minimum-area cover.

Area costs

- INV:2; NAND2:3; AND2:4; AOI21:6.
- Best choice
 - AOI21 fed by a NAND2 gate.



Minimum Delay Cover

- Dynamic programming approach.
- Cost related to gate delay.
- Delay modeling
 - Constant gate delay: straightforward.
 - Load-dependent delay
 - Load fanout unknown.
- Minimum delay cover with constant delays
 - The cell tree is isomorphic to a subtree with leaves L.
 - The vertex is labeled with the cell cost plus the maximum of the labels of L.

Minimum Delay Cover Example

- Inputs data-ready times are 0 except for t_d = 6
- Constant delays
 INV:2; NAND2:4; AND2:5; AOI21:10.
- Compute data-ready times bottom-up

• $t_x = 4; t_y = 2; t_z = 10;$ $t_w = 14.$

- Best choice
 - AND2, two NAND2 and an INV gate.

Network	Subject graph	Vertex	Match	Gate	Cost
	$ \begin{array}{c} $	Х	t2	NAND2(b,c)	4
		у	t1	INV(a)	2
		Z	t2	NAND2(x,d)	6 + 4 = 10
		W	t2	NAND2(y,z)	10 + 4 = 14
		0	t1	INV(w)	14 + 2 = 16
			t3 AND2(y,z)		10 + 5 = 15
			t6B	AOI21(x,d,a)	10 + 6 = 16
bTc	vộ ộv				
	0 0				

Minimum Delay Cover Load-Dependent Delays

Model

- For most libraries, input capacitances are a finite small set.
- Label each vertex with all possible load values.
- Dynamic programming approach
 - Compute an array of solutions for each vertex corresponding to different loads.
 - For each match, arrival time is computed for each load value.
 - For each input to a matching cell the best match for the given load is selected.

Optimum solution, when all possible loads are considered.

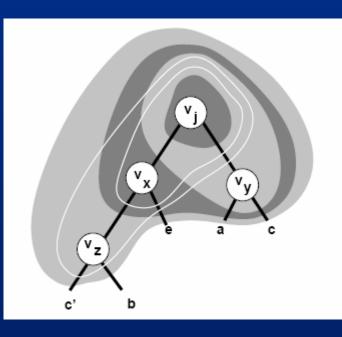
Example

- Inputs data-ready times are 0 except for t_d = 6
- Load-dependent delays
 - INV:1+l; NAND2:3+l; AND2:4+l; AOI21:9+l; SINV:1+0.5l.
- Loads
 - INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.
- Assume output load is 1
 - Same solution as before.
- Assume output load is 5
 - Solution uses SINV cell.

					Cost		
Network	Subject graph	Vertex	Match	Gate	Load=1	Load=2	Load=5
0		Х	t2	NAND2(b,c)	4	5	8
y z a x d	$ \begin{array}{c} $	у	t1	INV(a)	2	3	6
		Z	t2	NAND2(x,d)	10	11	14
		W	t2	NAND2(y,z)	14	15	18
		0	t1	INV(w)			20
			t3	AND2(y,z)			19
			t6B	AOI21(x,d,a)			20
b c	voov			SINV(w)			18.5
	0 0						

Boolean Matching/Covering

- Decompose network into base functions.
- When considering vertex v_i
 - Construct clusters by local elimination.
 - Several functions associated with v_i.
- Limit size and depth of clusters.



$$j = x y; \qquad x = e + z; y = a + c; \qquad z = c' + b; f_{j,1} = x y; f_{j,2} = x (a + c); f_{j,3} = (e + z) y; f_{j,4} = (e + z) (a + c) f_{j,5} = (e + c' + b) y; f_{j,6} = (e + c' + b) (a + c);$$

Boolean Matching: P-Equivalence

- Cluster function f(x): sub-network behavior.
- Pattern function g(y): cell behavior.
- P-equivalence
 - Exists a permutation operator P, such that f(x) = g(P x) is a tautology?
- Approaches
 - Tautology check over all input permutations.
 - Multi-rooted pattern ROBDD capturing all permutations.

Signatures and Filters ...

- Drastically reduce the number of permutations to be considered.
- Capture some properties of Boolean functions.
- If signatures do not match, there is no match.
- Used as filters to reduce computation.
- Signatures
 - Unateness.
 - Symmetries.

Any pin assignment must associate

- unate (binate) variables in f(x) with unate (binate) variables in g(y).
- Variables or groups of variables
 - that are interchangeable in f(x) must be interchangeable in g(y).

... Signatures and Filters ...

- Cluster and pattern functions must have the same number of unate and binate variables to match.
- If there are b binate variables, un upper bound on number of variable permutations is b! (n-b)!
 - (instead of n!)
- Example
 - g = s1 s2 a + s1 s2' b + s1' s3 c + s1's3' d.
 - n=7 variables; 4 unate and 3 binate.
 - Only 3! 4! = 144 variable orders and corresponding OBDDs. need to be considered in worst case.
 - Compare this with overall number of permutations
 - 7!=5040

... Signatures and Filters ...

- A symmetry set is a set of variables that are pairwise interchangeable.
- A symmetry class is an ensemble of symmetry sets with the same cardinality.
- A symmetry class C_i has symmetry sets with cardinality *i*.
- A necessary condition for two functions to match is having symmetry classes of the same cardinality for each *i*.

Example

- F = x1 x2 x3 + x4 x5 + x6 x7
- Symmetry sets: (x1, x2, x3), (x4, x5), (x6, x7)
- $C_2 = \{(x4, x5), (x6, x7)\}; |C_2|=2$
- $C_3 = \{(x1, x2, x3)\}; |C_3| = 1$

... Signatures and Filters ... Symmetry classes can be used to determine non-redundant váriable órders All variables in a given symmetry set are equivalent. • Number of permutations required is $\prod_{i=1 \text{ to } n} (|C_i|!)$. Example • F = x1 x2 x3 + x4 x5 + x6 x7• Number of permutations = 2! = 2 variable orders. • (x1, x2, x3, x4, x5, x6, x7) (x1, x2, x3, x6, x7, x4, x5) **Cluster function:** f = abc. Symmetries: $\{(a, b, c)\} - 3$ unate. **Pattern functions** g1 = a+b+c • Symmetries: $\{(a, b, c)\} - 3$ unate. 9 g2 = ab+c Symmetries: {(a, b) (c)} - 3 unate. $\mathbf{g}3 = \mathbf{abc} + \mathbf{a'b'c'}$ • Symmetries: {(a, b, c)} -- 3 binate.

... Signatures and Filters

Taking advantage of both symmetric classes and unatebinate properties

Let
$$C_i = C_i^b + C_i^u$$
 $|C_i| = |C_i^b| + |C_i^u|$

Number of non-redundant permutations

$$\prod_{i=1}^{n} \left| C_{i}^{b} \right|! * \left| C_{i}^{u} \right|!$$