
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
TwoTwo--Level Logic SynthesisLevel Logic Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Programmable Logic Arrays
Definitions
Positional Cube Notation
Operations on Logic Covers
Exact Two-Level Optimization
Heuristic Two-Level Optimization
• Expand
• Reduce
• Reshape
• Irredundant

Espresso
Testability Properties of Two-Level Logic

Programmable Logic Arrays
Definitions
Positional Cube Notation
Operations on Logic Covers
Exact Two-Level Optimization
Heuristic Two-Level Optimization
• Expand
• Reduce
• Reshape
• Irredundant

Espresso
Testability Properties of Two-Level Logic

3

Programmable Logic Arrays …Programmable Logic Arrays …

Macro-cells with rectangular
structure.
Implement any multi-output
function.
Layout easily generated by
module generators.
Fairly popular in the
seventies/eighties (NMOS).
Still used for control-unit
implementation.

Macro-cells with rectangular
structure.
Implement any multi-output
function.
Layout easily generated by
module generators.
Fairly popular in the
seventies/eighties (NMOS).
Still used for control-unit
implementation.

f1 = a’b’+b’c+ab f2 = b’c

4

… Programmable Logic Arrays… Programmable Logic Arrays

5

Two-Level OptimizationTwoTwo--Level OptimizationLevel Optimization

Assumptions
• Primary goal is to reduce the number of implicants.
• All implicants have the same cost.
• Secondary goal is to reduce the number of literals.

Rationale
• Implicants correspond to PLA rows.
• Literals correspond to transistors.

Assumptions
• Primary goal is to reduce the number of implicants.
• All implicants have the same cost.
• Secondary goal is to reduce the number of literals.

Rationale
• Implicants correspond to PLA rows.
• Literals correspond to transistors.

6

Definitions …Definitions Definitions ……

A cover of a Boolean function is a set of implicants
that covers its minterms.
Minimum cover
• Cover of the function with minimum number of implicants.
• Global optimum.

Minimal cover or irredundant cover
• Cover of the function that is not a proper superset of another

cover.
• No implicant can be dropped.
• Local optimum.

Minimal cover w.r.t. 1-implicant containment
• No implicant is contained by another one.
• Weak local optimum.

A cover of a Boolean function is a set of implicants
that covers its minterms.
Minimum cover
• Cover of the function with minimum number of implicants.
• Global optimum.

Minimal cover or irredundant cover
• Cover of the function that is not a proper superset of another

cover.
• No implicant can be dropped.
• Local optimum.

Minimal cover w.r.t. 1-implicant containment
• No implicant is contained by another one.
• Weak local optimum.

7

… Definitions ……… Definitions Definitions ……

f1 = a’b’c’+a’b’c+ab’c
+abc+abc’

f2 = a’b’c+ab’c

•(a) cover is minimum.
•(b) cover is minimal.
•(c) cover is minimal w.r.t.
1-implicant containment.

8

… Definitions ……… Definitions Definitions ……

Prime implicant
• Implicant not contained by any other implicant.

Prime cover
• Cover of prime implicants.

Essential prime implicant
• There exist some minterm covered only by that prime

implicant.

Prime implicant
• Implicant not contained by any other implicant.

Prime cover
• Cover of prime implicants.

Essential prime implicant
• There exist some minterm covered only by that prime

implicant.

9

The Positional Cube NotationThe Positional Cube NotationThe Positional Cube Notation

Encoding scheme
• One column for each variable.
• Each column has 2 bits.

Example: f = a’d’ + a’b + ab’ + ac’d

Operations
• Intersection: AND
• Union: OR

Encoding scheme
• One column for each variable.
• Each column has 2 bits.

Example: f = a’d’ + a’b + ab’ + ac’d

Operations
• Intersection: AND
• Union: OR

a’d’
a’b
ab’
ac’d

10

Operations on Logic CoversOperations on Logic CoversOperations on Logic Covers

The intersection of two implicants is the largest cube contained in
both. (bitwise AND)
The supercube of two implicants is the smallest cube containing
both. (bitwise OR)
The distance between two implicants is the number of empty
fileds in their intersection.
An implicant covers another implicant when the bits of the former
are greater than or equal to those of the latter.
Recursive paradigm
• Expand about a variable.
• Apply operation to cofactors.
• Merge results.

Unate heuristics
• Operations on unate functions are simpler.
• Select variables so that cofactors become unate functions.

The intersection of two implicants is the largest cube contained in
both. (bitwise AND)
The supercube of two implicants is the smallest cube containing
both. (bitwise OR)
The distance between two implicants is the number of empty
fileds in their intersection.
An implicant covers another implicant when the bits of the former
are greater than or equal to those of the latter.
Recursive paradigm
• Expand about a variable.
• Apply operation to cofactors.
• Merge results.

Unate heuristics
• Operations on unate functions are simpler.
• Select variables so that cofactors become unate functions.

11

Cofactor ComputationCofactor ComputationCofactor Computation

Let α=a1a2…an and β =b1b2…bn

Cofactor of α w.r. to β
• Void when α does not intersect β (i.e. distance is ≥ 1)
• a1 +b1’ a2 +b2’ . . . an +bn’

Cofactor of a set C = {γi} w.r. to β
• Set of cofactors of γi w.r. to β.

Example: f = a’b’+ab
• a’b’ 10 10
• ab 01 01
• Cofactor w.r. to (a) 01 11

• First row: void.
• Second row: 11 01.

• Cofactor fa = b

Let α=a1a2…an and β =b1b2…bn

Cofactor of α w.r. to β
• Void when α does not intersect β (i.e. distance is ≥ 1)
• a1 +b1’ a2 +b2’ . . . an +bn’

Cofactor of a set C = {γi} w.r. to β
• Set of cofactors of γi w.r. to β.

Example: f = a’b’+ab
• a’b’ 10 10
• ab 01 01
• Cofactor w.r. to (a) 01 11

• First row: void.
• Second row: 11 01.

• Cofactor fa = b

12

Sharp Operation #Sharp Operation #Sharp Operation #

The sharp operation α # β returns the sets of
implicants covering all minterms covered by α and not
by β.
Let α=a1a2…an and β =b1b2…bn

Example: compute complement of cube ab
• 11 11 # 01 01 = {10 11; 11 10}= a’+b’

The sharp operation α # β returns the sets of
implicants covering all minterms covered by α and not
by β.
Let α=a1a2…an and β =b1b2…bn

Example: compute complement of cube ab
• 11 11 # 01 01 = {10 11; 11 10}= a’+b’

a1.b’1 a2 … an
a1 a2.b’2 … an
………………

a1 a2 … an.b’n

α # β=

13

Disjoint Sharp Operation #Disjoint Sharp Operation #Disjoint Sharp Operation #

The disjoint sharp operation α # β returns the sets of
implicants covering all minterms covered by α and not
by β such that all implicants are disjoint.
Let α=a1a2…an and β =b1b2…bn

Example: compute complement of cube ab
• 11 11 # 01 01 = {10 11; 01 10}= a’+ab’

The disjoint sharp operation α # β returns the sets of
implicants covering all minterms covered by α and not
by β such that all implicants are disjoint.
Let α=a1a2…an and β =b1b2…bn

Example: compute complement of cube ab
• 11 11 # 01 01 = {10 11; 01 10}= a’+ab’

a1.b’1 a2 … an
a1.b1 a2.b’2 … an
………………

a1.b1 a2.b2 … an.b’n

α # β=

14

ConsensusConsensusConsensus

Let α=a1a2…an and β =b1b2…bn

Consensus is void when two implicants have distance
larger than or equal to 2.
Yields a single implicant when distance is 1.
Example: α=01 10 01 and β =01 11 10
• Consensus(α,β)= {01 10 00, 01 11 00, 01 10 11}=01 10

11=ab’

Let α=a1a2…an and β =b1b2…bn

Consensus is void when two implicants have distance
larger than or equal to 2.
Yields a single implicant when distance is 1.
Example: α=01 10 01 and β =01 11 10
• Consensus(α,β)= {01 10 00, 01 11 00, 01 10 11}=01 10

11=ab’

a1+b1 a2.b2 … an.bn
a1.b1 a2+b2 … an.bn
………………

a1.b1 a2.b2 … an+bn

Consensus(α,β)=

15

Computation of all Prime Implicants …Computation of all Prime Computation of all Prime ImplicantsImplicants ……

Let f= x fx + x’ fx’

There are three possibilities for a prime implicant of f
• It is a prime of x fx i.e. a prime of fx
• It is a prime of x’ fx’ i.e. a prime of fx’
• It is the consensus of two implicants one in x fx and one in x’ fx’

A unate cover, F, with SCC contains all primes.
• P(F)=SCC(F)
• Each prime of a unate function is essential.

Let f= x fx + x’ fx’

There are three possibilities for a prime implicant of f
• It is a prime of x fx i.e. a prime of fx
• It is a prime of x’ fx’ i.e. a prime of fx’
• It is the consensus of two implicants one in x fx and one in x’ fx’

A unate cover, F, with SCC contains all primes.
• P(F)=SCC(F)
• Each prime of a unate function is essential.

))))(()),(((
))(())((()(

xx

xx

FPxFPxCONSENSUS
FPxFPxSCCfP

∩∩∪
∩∪∩=

16

… Computation of all Prime Implicants…… Computation of all Prime Computation of all Prime ImplicantsImplicants

Example: f=ab + ac + a’
• Let us choose to split the binate variable a
• Note that fa’ is tautology; P(fa’)=U; C(a’) ∩ P(fa’)

=10 11 11=P1=a’
• P(fa)= {11 01 11; 11 11 01}=b+c; C(a) ∩ P(fa)={01 01 11; 01

11 01}=P2={ab, ac}
• Consensus(P1,P2)= {11 01 11; 11 11 01}={b,c}
• P(F)=SCC{10 11 11; 01 01 11; 01 11 01; 11 01 11; 11 11 01}

= {a’, ab, ac, b, c}
= {10 11 11; 11 01 11; 11 11 01}
= {a’, b, c}

Example: f=ab + ac + a’
• Let us choose to split the binate variable a
• Note that fa’ is tautology; P(fa’)=U; C(a’) ∩ P(fa’)

=10 11 11=P1=a’
• P(fa)= {11 01 11; 11 11 01}=b+c; C(a) ∩ P(fa)={01 01 11; 01

11 01}=P2={ab, ac}
• Consensus(P1,P2)= {11 01 11; 11 11 01}={b,c}
• P(F)=SCC{10 11 11; 01 01 11; 01 11 01; 11 01 11; 11 11 01}

= {a’, ab, ac, b, c}
= {10 11 11; 11 01 11; 11 11 01}
= {a’, b, c}

17

Tautology …Tautology Tautology ……

Check if a function is always TRUE.
Plays an important rule in all algorithms for logic optimization.
Recursive paradigm
• Expand about a variable.
• If all cofactors are TRUE then function is a tautology.

TAUTOLOGY
• The cover has a row of all 1s (Tautology cube).
• The cover depends on one variable only, and there is no column of

0s in that field.
NO TAUTOLOGY
• The cover has a column of 0s (A variable that never takes a certain

value).
When a cover is the union of two subcovers that depend on
disjoint subsets of variables, then check tautology in both
subcovers.

Check if a function is always TRUE.
Plays an important rule in all algorithms for logic optimization.
Recursive paradigm
• Expand about a variable.
• If all cofactors are TRUE then function is a tautology.

TAUTOLOGY
• The cover has a row of all 1s (Tautology cube).
• The cover depends on one variable only, and there is no column of

0s in that field.
NO TAUTOLOGY
• The cover has a column of 0s (A variable that never takes a certain

value).
When a cover is the union of two subcovers that depend on
disjoint subsets of variables, then check tautology in both
subcovers.

18

… Tautology…… TautologyTautology

Unate heuristics
• If cofactors are unate functions, additional criteria to

determine tautology.
• Faster decision.

If a function is expanded in a unate variable, only one
cofactor needs to be checked for tautology
• Positive unate in variable xi, fxi ⊇ fxi’ ; only fxi’ needs to be

checked for tautology.
• Negative unate in variable xi, fxi ⊆ fxi’ ; only fxi needs to be

checked for tautology.

A cover is not tautology if it is unate and there is not a
row of all 1’s.

Unate heuristics
• If cofactors are unate functions, additional criteria to

determine tautology.
• Faster decision.

If a function is expanded in a unate variable, only one
cofactor needs to be checked for tautology
• Positive unate in variable xi, fxi ⊇ fxi’ ; only fxi’ needs to be

checked for tautology.
• Negative unate in variable xi, fxi ⊆ fxi’ ; only fxi needs to be

checked for tautology.

A cover is not tautology if it is unate and there is not a
row of all 1’s.

19

Tautology ExampleTautology ExampleTautology Example

f = ab+ac+ab’c’ +a’
Select variable a.
• Cofactor w.r.to a’

• 11 11 11 => Tautology.
• Cofactor w.r.to a is:

Select variable b.
• Cofactor w.r. to b’ is:

• Depends on a single variable, no column of 0’s => Tautology.
• Cofactor w.r. to b is: 11 11 11 => Tautology

Function is a TAUTOLOGY.

f = ab+ac+ab’c’ +a’
Select variable a.
• Cofactor w.r.to a’

• 11 11 11 => Tautology.
• Cofactor w.r.to a is:

Select variable b.
• Cofactor w.r. to b’ is:

• Depends on a single variable, no column of 0’s => Tautology.
• Cofactor w.r. to b is: 11 11 11 => Tautology

Function is a TAUTOLOGY.

20

ContainmentContainmentContainment

Theorem
• A cover F contains an implicant α iff Fα is a tautology.

Consequence
• Containment can be verified by the tautology algorithm.

Example
• f = ab+ac+ab’c’+a’
• Check covering of bc: C(bc) 11 01 01
• Take the cofactor

• Tautology; bc is contained by f

Theorem
• A cover F contains an implicant α iff Fα is a tautology.

Consequence
• Containment can be verified by the tautology algorithm.

Example
• f = ab+ac+ab’c’+a’
• Check covering of bc: C(bc) 11 01 01
• Take the cofactor

• Tautology; bc is contained by f

21

ComplementationComplementationComplementation

Recursive paradigm
• f = x · fx + x’ · fx’ f’ = x · f’x + x’ · f’x’

Steps
• Select a variable.
• Compute cofactors.
• Complement cofactors.

Recur until cofactors can be complemented in a straightforward
way.
Termination rules
• The cover F is void. Hence its complement is the universal cube.
• The cover F has a row of 1s. Hence F is a tautology and its

complement is void.
• All implicants of F depend on a single variable, and there is not a

column of 0s. The function is a tautology, and its complement is
void.

• The cover F consists of one implicant. Hence the complement is
computed by De Morgan's law.

Recursive paradigm
• f = x · fx + x’ · fx’ f’ = x · f’x + x’ · f’x’

Steps
• Select a variable.
• Compute cofactors.
• Complement cofactors.

Recur until cofactors can be complemented in a straightforward
way.
Termination rules
• The cover F is void. Hence its complement is the universal cube.
• The cover F has a row of 1s. Hence F is a tautology and its

complement is void.
• All implicants of F depend on a single variable, and there is not a

column of 0s. The function is a tautology, and its complement is
void.

• The cover F consists of one implicant. Hence the complement is
computed by De Morgan's law.

22

Complement of Unate Functions…Complement of Complement of UnateUnate FunctionsFunctions……

Theorem
• If f is positive unate in variable x: f’ = f’x +x’ · f’x’.
• If f is negative unate in variable x: f’ = x · f’x +f’x’.

Consequence
• Complement computation is simpler.

Heuristic
• Select variables to make the cofactors unate.

Example: f = ab+ac+a’
• Select binate variable a.
• Compute cofactors

• Fa’ is a tautology, hence F’a’ is void.
• Fa yields:

Theorem
• If f is positive unate in variable x: f’ = f’x +x’ · f’x’.
• If f is negative unate in variable x: f’ = x · f’x +f’x’.

Consequence
• Complement computation is simpler.

Heuristic
• Select variables to make the cofactors unate.

Example: f = ab+ac+a’
• Select binate variable a.
• Compute cofactors

• Fa’ is a tautology, hence F’a’ is void.
• Fa yields:

23

… Complement of Unate Functions…… Complement of Complement of UnateUnate FunctionsFunctions

Select unate variable b.
• Compute cofactors

• Fab is a tautology, hence F’ab is void.
• Fab’ = 11 11 01 and its complement is

11 11 10.
• Re-construct complement

• 11 11 10 intersected with C(b’) =
11 10 11 yields 11 10 10.

• 11 10 10 intersected with C(a) =
01 11 11 yields 01 10 10.

Complement: F’ = 01 10 10.

Select unate variable b.
• Compute cofactors

• Fab is a tautology, hence F’ab is void.
• Fab’ = 11 11 01 and its complement is

11 11 10.
• Re-construct complement

• 11 11 10 intersected with C(b’) =
11 10 11 yields 11 10 10.

• 11 10 10 intersected with C(a) =
01 11 11 yields 01 10 10.

Complement: F’ = 01 10 10.

24

Two-Level Logic MinimizationTwo-Level Logic Minimization

Exact methods
• Compute minimum cover.
• Often impossible for large functions.
• Based on derivatives of Quine-McCluskey method.
• Many minimization problems can be now solved exactly.
• Usual problems are memory size and time.

Heuristic methods
• Compute minimal covers (possibly minimum).
• Large variety of methods and programs

• MINI, PRESTO, ESPRESSO.

Exact methods
• Compute minimum cover.
• Often impossible for large functions.
• Based on derivatives of Quine-McCluskey method.
• Many minimization problems can be now solved exactly.
• Usual problems are memory size and time.

Heuristic methods
• Compute minimal covers (possibly minimum).
• Large variety of methods and programs

• MINI, PRESTO, ESPRESSO.

25

Exact Two-Level Logic MinimizationExact Two-Level Logic Minimization

Quine's theorem
• There is a minimum cover that is prime.

Consequence
• Search for minimum cover can be restricted to prime

implicants.
Quine McCluskey method
• Compute prime implicants.
• Determine minimum cover.

Prime implicant table
• Rows: minterms.
• Columns: prime implicants.
• Exponential size

• 2n minterms.
• Up to 3n/n prime implicants.

Quine's theorem
• There is a minimum cover that is prime.

Consequence
• Search for minimum cover can be restricted to prime

implicants.
Quine McCluskey method
• Compute prime implicants.
• Determine minimum cover.

Prime implicant table
• Rows: minterms.
• Columns: prime implicants.
• Exponential size

• 2n minterms.
• Up to 3n/n prime implicants.

Remark:Remark:
•• Some functions have much fewer Some functions have much fewer
primes.primes.
•• MintermsMinterms can be grouped together.can be grouped together.

26

Prime Implicant Table ExamplePrime Prime ImplicantImplicant Table ExampleTable Example

Function: f = a’b’c’+a’b’c+ab’c+abc’+abc

Prime Implicants

Implicant Table

27

Minimum Cover: Early MethodsMinimum Cover: Early Methods

Reduce table
• Iteratively identify essentials, save them in the cover, remove

covered minterms.
• Use row and column dominance.

Petrick's method
• Write covering clauses in POS form.
• Multiply out POS form into SOP form.
• Select cube of minimum size.
• Remark

• Multiplying out clauses is exponential.
Petrick's method example
• POS clauses: (α)(α+β)(β+γ)(γ+ δ)(δ) = 1
• SOP form: α β δ + α γ δ = 1
• Solutions

• {α, β, δ}
• {α, γ, δ}

Reduce table
• Iteratively identify essentials, save them in the cover, remove

covered minterms.
• Use row and column dominance.

Petrick's method
• Write covering clauses in POS form.
• Multiply out POS form into SOP form.
• Select cube of minimum size.
• Remark

• Multiplying out clauses is exponential.
Petrick's method example
• POS clauses: (α)(α+β)(β+γ)(γ+ δ)(δ) = 1
• SOP form: α β δ + α γ δ = 1
• Solutions

• {α, β, δ}
• {α, γ, δ}

28

Matrix RepresentationMatrix Representation

View table as Boolean matrix: A.
Selection Boolean vector for primes: x.
Determine x such that
• A x ≥ 1.
• Select enough columns to cover all rows.

Minimize cardinality of x
• Example: x = [1101]T

Set covering problem
• A set S. (Minterm set).
• A collection C of subsets. (Implicant set).
• Select fewest elements of C to cover S.

View table as Boolean matrix: A.
Selection Boolean vector for primes: x.
Determine x such that
• A x ≥ 1.
• Select enough columns to cover all rows.

Minimize cardinality of x
• Example: x = [1101]T

Set covering problem
• A set S. (Minterm set).
• A collection C of subsets. (Implicant set).
• Select fewest elements of C to cover S.

29

ESPRESSO-EXACTESPRESSOESPRESSO--EXACTEXACT

Exact minimizer [Rudell].
Exact branch and bound
covering.
Compact implicant table
• Group together minterms

covered by the same
implicants.

Very efficient. Solves most
problems.

Exact minimizer [Rudell].
Exact branch and bound
covering.
Compact implicant table
• Group together minterms

covered by the same
implicants.

Very efficient. Solves most
problems.

Implicant table
after reduction

30

Minimum Cover: Recent DevelopmentsMinimum Cover: Recent DevelopmentsRecent Developments

Many minimization problems can be solved exactly today.
Usually bottleneck is table size.
Implicit representation of prime implicants
• Methods based on BDDs [COUDERT]

• to represent sets.
• to do dominance simplification.

• Methods based on signature cubes [MCGEER]
• Represent set of primes.
• A signature cube identifies uniquely the set of primes covering

each minterm.
• It is the largest cube of the intersection of corresponding primes.
• The set of maximal signature cubes defines a minimum

canonical cover.

Many minimization problems can be solved exactly today.
Usually bottleneck is table size.
Implicit representation of prime implicants
• Methods based on BDDs [COUDERT]

• to represent sets.
• to do dominance simplification.

• Methods based on signature cubes [MCGEER]
• Represent set of primes.
• A signature cube identifies uniquely the set of primes covering

each minterm.
• It is the largest cube of the intersection of corresponding primes.
• The set of maximal signature cubes defines a minimum

canonical cover.

31

Heuristic Minimization PrinciplesHeuristic Minimization Principles

Provide irredundant covers with 'reasonably small'
cardinality.
Fast and applicable to many functions.
Avoid bottlenecks of exact minimization
• Prime generation and storage.
• Covering.

Local minimum cover
• Given initial cover.
• Make it prime.
• Make it irredundant.
• Iterative improvement

• Improve on cardinality by 'modifying' the implicants.

Provide irredundant covers with 'reasonably small'
cardinality.
Fast and applicable to many functions.
Avoid bottlenecks of exact minimization
• Prime generation and storage.
• Covering.

Local minimum cover
• Given initial cover.
• Make it prime.
• Make it irredundant.
• Iterative improvement

• Improve on cardinality by 'modifying' the implicants.

32

Heuristic Minimization OperatorsHeuristic Minimization Operators

Expand
• Make implicants prime.
• Remove covered implicants w.r.t. single implicant

containment.

Irredundant
• Make cover irredundant.
• No implicant is covered by the remaining ones.

Reduce
• Reduce size of each implicant while preserving cover.

Reshape
• Modify implicant pairs: enlarge one and reduce the other.

Expand
• Make implicants prime.
• Remove covered implicants w.r.t. single implicant

containment.

Irredundant
• Make cover irredundant.
• No implicant is covered by the remaining ones.

Reduce
• Reduce size of each implicant while preserving cover.

Reshape
• Modify implicant pairs: enlarge one and reduce the other.

33

Example: MINIExample: MINIExample: MINI

34

Example: ExpansionExample: ExpansionExample: Expansion

Expand 0000 to α=0∗∗0.
• Drop 0100, 0010, 0110

from the cover.

Expand 1000 to β= ∗0∗0.
• Drop 1010 from the cover.

Expand 0101 to γ= 01∗∗ .
• Drop 0111 from the cover.

Expand 1001 to δ= 10∗∗.
• Drop 1011 from the cover.

Expand 1101 to ε= 1∗01.
Cover is: {α, β, γ, δ, ε}
• Prime.
• Redundant.
• Minimal w.r.t. scc.

Expand 0000 to α=0∗∗0.
• Drop 0100, 0010, 0110

from the cover.

Expand 1000 to β= ∗0∗0.
• Drop 1010 from the cover.

Expand 0101 to γ= 01∗∗ .
• Drop 0111 from the cover.

Expand 1001 to δ= 10∗∗.
• Drop 1011 from the cover.

Expand 1101 to ε= 1∗01.
Cover is: {α, β, γ, δ, ε}
• Prime.
• Redundant.
• Minimal w.r.t. scc.

35

Example: ReductionExample: ReductionExample: Reduction

Reduce α=0∗∗0 to
nothing.
Reduce β=∗0∗0 to
β~=00∗0
Reduce ε=1∗01 to
ε~=1101
Cover={β~, γ, δ, ε~}

Reduce α=0∗∗0 to
nothing.
Reduce β=∗0∗0 to
β~=00∗0
Reduce ε=1∗01 to
ε~=1101
Cover={β~, γ, δ, ε~}

36

Example: ReshapeExample: ReshapeExample: Reshape

Reshape {β~, δ} to {β, δ~}
• δ~=10∗1

Cover={β, γ, δ~, ε~}

Reshape {β~, δ} to {β, δ~}
• δ~=10∗1

Cover={β, γ, δ~, ε~}

37

Example: Second ExpansionExample: Second ExpansionExample: Second Expansion

Cover={β, γ, δ~, ε~}
Expand δ~=10*1 to δ= 10∗∗.
Expand ε~=1101 to ε= 1∗01.
Cover={β, γ, δ, ε}; prime and irredundant

Cover={β, γ, δ~, ε~}
Expand δ~=10*1 to δ= 10∗∗.
Expand ε~=1101 to ε= 1∗01.
Cover={β, γ, δ, ε}; prime and irredundant

38

Example: ESPRESSOExample: ESPRESSOExample: ESPRESSO

Expansion
• Cover is: {α, β, γ, δ, ε}.
• Prime, redundant,

minimal w.r.t. scc.

Irredundant
• Cover is: {β, γ, δ, ε}
• Prime, irredundant

Expansion
• Cover is: {α, β, γ, δ, ε}.
• Prime, redundant,

minimal w.r.t. scc.

Irredundant
• Cover is: {β, γ, δ, ε}
• Prime, irredundant

39

Expand: Naive ImplementationExpand: Naive ImplementationExpand: Naive Implementation

For each implicant
• For each care literal

• Raise it to don't care if possible.
• Remove all covered implicants.

Problems
• Validity check.
• Order of expansions.

Validity Check
• Espresso, MINI

• Check intersection of expanded implicant with OFF-set.
• Requires complementation of {ON-set ∪ DC-Set}

• Presto
• Check inclusion of expanded implicant in the union of the ON-set

and DC-set.
• Can be reduced to recursive tautology check.

For each implicant
• For each care literal

• Raise it to don't care if possible.
• Remove all covered implicants.

Problems
• Validity check.
• Order of expansions.

Validity Check
• Espresso, MINI

• Check intersection of expanded implicant with OFF-set.
• Requires complementation of {ON-set ∪ DC-Set}

• Presto
• Check inclusion of expanded implicant in the union of the ON-set

and DC-set.
• Can be reduced to recursive tautology check.

40

Expand Heuristics …Expand Heuristics Expand Heuristics ……

Expand first cubes that are unlikely to be covered by
other cubes.
Selection
• Compute vector of column sums.
• Implicant weight: inner product of cube and vector.
• Sort implicants in ascending order of weight.

Rationale
• Low weight correlates to having few 1’s in densely populated

columns.

Expand first cubes that are unlikely to be covered by
other cubes.
Selection
• Compute vector of column sums.
• Implicant weight: inner product of cube and vector.
• Sort implicants in ascending order of weight.

Rationale
• Low weight correlates to having few 1’s in densely populated

columns.

41

Example …Example Example ……

f = a’b’c’ +ab’c’ +a’bc’ +a’b’c
DC-set = abc’
Ordering
• Vector: [313131]T
• Weights: (9, 7, 7, 7).

Select second implicant.

f = a’b’c’ +ab’c’ +a’bc’ +a’b’c
DC-set = abc’
Ordering
• Vector: [313131]T
• Weights: (9, 7, 7, 7).

Select second implicant.

a’b’c’
ab’c’
a’bc’
a’b’c

31 31 31

3
1
3
1
3
1

* = [9 7 7 7]

OFF-set:
01 11 01
11 01 01

42

… Example…… ExampleExample

Expand 01 10 10
• 11 10 10 valid.
• 11 11 10 valid.
• 11 11 11 invalid.

Update cover to
• 11 11 10
• 10 10 01

Expand 10 10 01
• 11 10 01 invalid.
• 10 11 01 invalid.
• 10 10 11 valid.

Expanded cover
• 11 11 10
• 10 10 11

Expand 01 10 10
• 11 10 10 valid.
• 11 11 10 valid.
• 11 11 11 invalid.

Update cover to
• 11 11 10
• 10 10 01

Expand 10 10 01
• 11 10 01 invalid.
• 10 11 01 invalid.
• 10 10 11 valid.

Expanded cover
• 11 11 10
• 10 10 11

43

Expand in ESPRESSO …Expand in ESPRESSO Expand in ESPRESSO ……

Smarter heuristics for choosing literals to be
expanded.
Four-step procedure in Espresso.
Rationale
• Raise literals so that expanded implicant

• Covers a maximal set of cubes.
• As large as possible.

Definitions: For a cube α to be expanded
• Free: Set of entries that can be raised to 1.
• Overexpanded cube: Cube whose entries in free are simultaneously

raised.
• Feasibly covered cube: A cube β∈FON is feasibly covered iff

supercube with α is distance 1 or more from each cube of FOFF (i.e.
does not intersect with offset).

Smarter heuristics for choosing literals to be
expanded.
Four-step procedure in Espresso.
Rationale
• Raise literals so that expanded implicant

• Covers a maximal set of cubes.
• As large as possible.

Definitions: For a cube α to be expanded
• Free: Set of entries that can be raised to 1.
• Overexpanded cube: Cube whose entries in free are simultaneously

raised.
• Feasibly covered cube: A cube β∈FON is feasibly covered iff

supercube with α is distance 1 or more from each cube of FOFF (i.e.
does not intersect with offset).

44

… Expand in ESPRESSO ……… Expand in ESPRESSO Expand in ESPRESSO ……

1. Determine the essential parts.
• Determine which entries can never be raised, and remove

them from free .
• Search for any cube in FOFF that has distance 1 from α (corresponding

column cannot be raised)
• Determine which parts can always be raised, raise them, and

remove them from free .
• Search for any column that has only 0’s in FOFF

2. Detection of feasibly covered cubes.
• If there is an implicant β∈FON whose supercube with α is feasible

repeat the following steps.
• Raise the appropriate entry of α and remove it from free.
• Remove from free entries that can never be raised or that can

always be raised and update α.
• Each cube remaining in the cover FON is tested for being feasibly

covered.
• α is expanded by choosing feasibly covered cube that covers the

most other feasibly covered cubes.

1. Determine the essential parts.
• Determine which entries can never be raised, and remove

them from free .
• Search for any cube in FOFF that has distance 1 from α (corresponding

column cannot be raised)
• Determine which parts can always be raised, raise them, and

remove them from free .
• Search for any column that has only 0’s in FOFF

2. Detection of feasibly covered cubes.
• If there is an implicant β∈FON whose supercube with α is feasible

repeat the following steps.
• Raise the appropriate entry of α and remove it from free.
• Remove from free entries that can never be raised or that can

always be raised and update α.
• Each cube remaining in the cover FON is tested for being feasibly

covered.
• α is expanded by choosing feasibly covered cube that covers the

most other feasibly covered cubes.

45

… Expand in ESPRESSO…… Expand in ESPRESSOExpand in ESPRESSO

• Only cubes ∈FON that are covered by the overexpanded cube of α need to
be considered.

• Cubes ∈ FOFF that are 1 distance or more from the overexpanded cube of α
do not need to be checked.

3. Expansion guided by the overexpanded cube.
• When there are no more feasibly covered cubes while the

overexpanded cube of α covers some other cubes of FON, repeat the
following steps.

• Raise a single entry of α as to overlap a maximum number of those cubes.
• Remove from free entries that can never be raised or that can always be raised

and update α.
• This has the goal of forcing α to overlap with as many cubes as possible in

FON .
4. Find the largest prime implicant covering α
• When there are no cubes∈FON covered by the over-expanded cube

of α
• Formulate a covering problem and solve it by a heuristic method.
• Find the largest prime implicant covering α.

• Only cubes ∈FON that are covered by the overexpanded cube of α need to
be considered.

• Cubes ∈ FOFF that are 1 distance or more from the overexpanded cube of α
do not need to be checked.

3. Expansion guided by the overexpanded cube.
• When there are no more feasibly covered cubes while the

overexpanded cube of α covers some other cubes of FON, repeat the
following steps.

• Raise a single entry of α as to overlap a maximum number of those cubes.
• Remove from free entries that can never be raised or that can always be raised

and update α.
• This has the goal of forcing α to overlap with as many cubes as possible in

FON .
4. Find the largest prime implicant covering α
• When there are no cubes∈FON covered by the over-expanded cube

of α
• Formulate a covering problem and solve it by a heuristic method.
• Find the largest prime implicant covering α.

46

ExampleExampleExample

β = 01 10 10 is selected first for expansion
• Free set includes columns {1,4,6}
• Column 6 cannot be raised

• Distance 1 from off-set 01 11 01
• Supercube of β and α is valid

• β = 11 10 10
• Supercube of β and γ is valid

• β = 11 11 10
• Supercube of β and δ is invalid
• Select γ since the expanded cube by γ covers that one by α

• Delete implicants α and γ; β’ = 11 11 10
Next, expand δ = 10 10 01
• Free set is {2, 4, 5}
• Columns 2 and 4 cannot be raised
• Column 5 of FOFF has only 0’s. The 0 in column 5 can be raised

• δ’ = 10 10 11
Final cover is {β’, δ’ }

β = 01 10 10 is selected first for expansion
• Free set includes columns {1,4,6}
• Column 6 cannot be raised

• Distance 1 from off-set 01 11 01
• Supercube of β and α is valid

• β = 11 10 10
• Supercube of β and γ is valid

• β = 11 11 10
• Supercube of β and δ is invalid
• Select γ since the expanded cube by γ covers that one by α

• Delete implicants α and γ; β’ = 11 11 10
Next, expand δ = 10 10 01
• Free set is {2, 4, 5}
• Columns 2 and 4 cannot be raised
• Column 5 of FOFF has only 0’s. The 0 in column 5 can be raised

• δ’ = 10 10 11
Final cover is {β’, δ’ }

α
β
γ
δ

OFF-set:
01 11 01
11 01 01

47

Another Expand Example …Another Expand Example Another Expand Example ……

FON= a’b’cd + a’bc’d + a’bcd + ab’c’d’ + ac’d
FDC= a’b’c’d + abcd + ab’cd’
Let assume that we will expand the cube a’b’cd
• We can see that variables a and d cannot be raised.
• Overexpanded cube is a’d.
• Note that only cubes a’bc’d and a’bcd need to be considered

for being feasibly covered.
• None of the offset cubes need to be checked as they are all

distance 1 or more from the overexpanded cube.
• Supercube of a’b’cd and a’bc’d is a’d.
• Supercube of a’b’cd and a’bcd is a’cd.
• So, a’bc’d is selected and the cube is expanded to a’d.

FON= a’b’cd + a’bc’d + a’bcd + ab’c’d’ + ac’d
FDC= a’b’c’d + abcd + ab’cd’
Let assume that we will expand the cube a’b’cd
• We can see that variables a and d cannot be raised.
• Overexpanded cube is a’d.
• Note that only cubes a’bc’d and a’bcd need to be considered

for being feasibly covered.
• None of the offset cubes need to be checked as they are all

distance 1 or more from the overexpanded cube.
• Supercube of a’b’cd and a’bc’d is a’d.
• Supercube of a’b’cd and a’bcd is a’cd.
• So, a’bc’d is selected and the cube is expanded to a’d.

48

… Another Expand Example…… Another Expand ExampleAnother Expand Example

Next, let us expand cube ab’c’d’.
• We can see that variables a and b cannot be raised.
• Overexpanded cube is ab’.
• None of the remaining cubes can be feasibly covered.
• None of the remaining cubes is covered by ab’.
• Expansion is done to cover the largest prime implicant.
• So, variable d is raised and the cube is expanded to ab’c’.

Finally, cube ac’d is expanded.
• Variables c and d cannot be raised.
• Overexpanded cube is c’d.
• No remaining cubes covered with overexpanded cube.
• Find the largest prime implicant covering the cube.
• Largest prime implicant is c’d.

Final Expanded Cover is: a’d + ab’c’ + c’d

Next, let us expand cube ab’c’d’.
• We can see that variables a and b cannot be raised.
• Overexpanded cube is ab’.
• None of the remaining cubes can be feasibly covered.
• None of the remaining cubes is covered by ab’.
• Expansion is done to cover the largest prime implicant.
• So, variable d is raised and the cube is expanded to ab’c’.

Finally, cube ac’d is expanded.
• Variables c and d cannot be raised.
• Overexpanded cube is c’d.
• No remaining cubes covered with overexpanded cube.
• Find the largest prime implicant covering the cube.
• Largest prime implicant is c’d.

Final Expanded Cover is: a’d + ab’c’ + c’d

49

Reduce Heuristics …Reduce Heuristics Reduce Heuristics ……

Goal is to decrease size of each implicant to smallest size so that
successive expansion may lead to another cover with smaller
cardinality.
Reduced covers are not prime.
Sort implicants
• First process those that are large and overlap many other implicants
• Heuristic: sort by descending weight (weight like expand)

For each implicant
• Lower as many * as possible to 1 or 0.

Reducing an implicant α
• Can be computed by intersecting α with complement of F–{α}.
• May result in multiple implicants.
• Must ensure result yields a single implicant.

Theorem
• Let α∈ F and Q = {F ∪ FDC}–{α}
• Then, the maximally reduced cube is: α~ = α ∩ supercube (Q’α)

Goal is to decrease size of each implicant to smallest size so that
successive expansion may lead to another cover with smaller
cardinality.
Reduced covers are not prime.
Sort implicants
• First process those that are large and overlap many other implicants
• Heuristic: sort by descending weight (weight like expand)

For each implicant
• Lower as many * as possible to 1 or 0.

Reducing an implicant α
• Can be computed by intersecting α with complement of F–{α}.
• May result in multiple implicants.
• Must ensure result yields a single implicant.

Theorem
• Let α∈ F and Q = {F ∪ FDC}–{α}
• Then, the maximally reduced cube is: α~ = α ∩ supercube (Q’α)

50

… Reduce Heuristics ……… Reduce Heuristics Reduce Heuristics ……

Expanded cover
• 11 11 10
• 10 10 11
Select first implicant 11 11 10 = c’
• Complement of 10 10 11 (a’b’) is {01 11 11; 11 01 11} (a+b)
• C’ intersected with 1 is c’.
• Cannot be reduced.

Select second implicant 10 10 11 (a’b’)
• Complement of c’ is c.
• a’b’ intersected with c is a’b’c.
• Reduced to 10 10 01 (a’b’c).
Reduced cover
• 11 11 10
• 10 10 01

Expanded cover
• 11 11 10
• 10 10 11
Select first implicant 11 11 10 = c’
• Complement of 10 10 11 (a’b’) is {01 11 11; 11 01 11} (a+b)
• C’ intersected with 1 is c’.
• Cannot be reduced.

Select second implicant 10 10 11 (a’b’)
• Complement of c’ is c.
• a’b’ intersected with c is a’b’c.
• Reduced to 10 10 01 (a’b’c).
Reduced cover
• 11 11 10
• 10 10 01

51

… Reduce Heuristics…… Reduce HeuristicsReduce Heuristics

Another Reduce Example
• F = a’b’ + c’
• FDC = bc’

Consider reducing c’
• Q = {a’b’, bc’}
• Qc’={a’b’,b}
• Q’c’={ab’}, SC(Q’c’)={ab’}
• Thus, c’ ∩ SC(Q’c’)=ab’c’

Note that if FDC is not included in Q, we will not get the
correct result
• Q = {a’b’}
• Qc’={a’b’}
• Q’c’={a+b}, SC(Q’c’)={1}
• Thus, c’ ∩ SC(Q’c’)=c’

Another Reduce Example
• F = a’b’ + c’
• FDC = bc’

Consider reducing c’
• Q = {a’b’, bc’}
• Qc’={a’b’,b}
• Q’c’={ab’}, SC(Q’c’)={ab’}
• Thus, c’ ∩ SC(Q’c’)=ab’c’

Note that if FDC is not included in Q, we will not get the
correct result
• Q = {a’b’}
• Qc’={a’b’}
• Q’c’={a+b}, SC(Q’c’)={1}
• Thus, c’ ∩ SC(Q’c’)=c’

52

Irredundant Cover …Irredundant Cover Irredundant Cover ……

Relatively essential set Er

• Implicants covering some minterms of the function not covered
by other implicants.

• α∈F is in Er if it is not covered by {F ∪ FDC}–{α}

Totally redundant set Rt

• Implicants covered by the relatively essentials.
• α∈F is in Rt if it is covered by {Er ∪ FDC}

Partially redundant set Rp

• Remaining implicants.
• Rp = F – {Er ∪ Rt}

Relatively essential set Er

• Implicants covering some minterms of the function not covered
by other implicants.

• α∈F is in Er if it is not covered by {F ∪ FDC}–{α}

Totally redundant set Rt

• Implicants covered by the relatively essentials.
• α∈F is in Rt if it is covered by {Er ∪ FDC}

Partially redundant set Rp

• Remaining implicants.
• Rp = F – {Er ∪ Rt}

53

… Irredundant Cover ……… Irredundant Cover Irredundant Cover ……

Find a subset of Rp that, together with Er, covers the
function.
Modification of the tautology algorithm
• Each cube in Rp is covered by other cubes in Er and Rp.
• Determine set of cubes when removed makes function non-

tautology.
• Find mutual covering relations.

Reduces to a covering problem
• Heuristic algorithm.

Find a subset of Rp that, together with Er, covers the
function.
Modification of the tautology algorithm
• Each cube in Rp is covered by other cubes in Er and Rp.
• Determine set of cubes when removed makes function non-

tautology.
• Find mutual covering relations.

Reduces to a covering problem
• Heuristic algorithm.

54

… Irredundant Cover…… Irredundant CoverIrredundant Cover

Er = {α, ε}
Rt = {}
Rp = {β, γ, δ }
Covering relations
• β is covered by {α, γ}.

• (α + γ + δ + ε)β
• (a’b’+ac+ab+bc’)b’c
• (a’ +a +0 +0)b’c

• γ is covered by {β, δ }.
• δ is covered by {γ, ε }

Minimum cover: γ ∪ Er = {α, ε, γ}

Er = {α, ε}
Rt = {}
Rp = {β, γ, δ }
Covering relations
• β is covered by {α, γ}.

• (α + γ + δ + ε)β
• (a’b’+ac+ab+bc’)b’c
• (a’ +a +0 +0)b’c

• γ is covered by {β, δ }.
• δ is covered by {γ, ε }

Minimum cover: γ ∪ Er = {α, ε, γ}

β γ δ
β 1 1 0
γ 1 1 1
δ 0 1 1

a’b’
b’c
ac
ab
bc’

55

Essentials …Essentials Essentials ……

Essential prime implicants are part of any cover.
Theorem
• Let F=G∪α, where α is a prime disjoint from G. Then, α is an

essential prime iff Consensus(G,α) does not cover α.

Corollary
• Let FON be a cover of the on-set and FDC be a cover of the dc-

set and α is a prime implicant. Then, α is an essential prime
implicant iff H∪FDC does not cover α, where H=Consensus(
((FON ∪FDC)# α), α)

Example

Essential prime implicants are part of any cover.
Theorem
• Let F=G∪α, where α is a prime disjoint from G. Then, α is an

essential prime iff Consensus(G,α) does not cover α.

Corollary
• Let FON be a cover of the on-set and FDC be a cover of the dc-

set and α is a prime implicant. Then, α is an essential prime
implicant iff H∪FDC does not cover α, where H=Consensus(
((FON ∪FDC)# α), α)

Example
α 10 10 11
β 11 10 01
γ 01 11 01
δ 01 01 11

Test α :
F#α={ab’c, ab, ac}={ab, ac}
H= {b’c}
Hα={c}; not tautology
α not contained in H and essential

a’b’
b’c
ac
ab

56

… Essentials…… EssentialsEssentials

Another Example
• F = a’b’ + c’
• FDC = bc’ + ac’

Let us consider if c’ is essential prime implicant
• F#c’=a’b’c
• H=a’b’
• H∪ {FDC}={a’b’,bc’,ac’}
• {a’b’,bc’,ac’}c’= {a’b’,b,a}=Tautology
• Thus, c’ is not essential prime implicant
• Note that if you do not include FDC, you will get the incorrect

result

Another Example
• F = a’b’ + c’
• FDC = bc’ + ac’

Let us consider if c’ is essential prime implicant
• F#c’=a’b’c
• H=a’b’
• H∪ {FDC}={a’b’,bc’,ac’}
• {a’b’,bc’,ac’}c’= {a’b’,b,a}=Tautology
• Thus, c’ is not essential prime implicant
• Note that if you do not include FDC, you will get the incorrect

result

57

ESPRESSO Algorithm …ESPRESSO Algorithm ESPRESSO Algorithm ……

Compute the complement.
Find a prime cover: Expand.
Find a prime and irredundant cover: Irredundant.
Extract Essentials.
Iterate
• Reduce, Expand, irredundant.

Cost functions
• Cover cardinality ∅1.
• Weighted sum of cube and literal count ∅2.

Compute the complement.
Find a prime cover: Expand.
Find a prime and irredundant cover: Irredundant.
Extract Essentials.
Iterate
• Reduce, Expand, irredundant.

Cost functions
• Cover cardinality ∅1.
• Weighted sum of cube and literal count ∅2.

58

… ESPRESSO Algorithm…… ESPRESSO AlgorithmESPRESSO Algorithm
last_gasp: uses different heuristics for
reduce and expand to get out of local
minimum.
• Reduce each cube independently to
cover only minterms not covered by other
implicants
• The generated cover after reduce may
not cover the function
• Expand only those cubes that were
reduced to cover reduced cubes
• Call irredundant on the primes in the
original cover and the newly generated
primes

make_sparse: attempts to reduce the
number of literals in the cover. Done by:
• reducing the "sparse" variables (using a
modified version of irredundant rather than
reduce),
• followed by expanding the "dense“
variables (using modified version of
expand).

59

Last_gasp ExampleLast_gaspLast_gasp ExampleExample

Original cover = {x1x3’, x1’x2, x1’x3}
Reduced cover={x1x2x3’, x1’x2x3’, x1’ x2’x3}
Cover after expansion= ={x2x3’, x1’x3}
Make irredundant of {x1x3’, x1’x2, x1’x3, x2x3’, x1’x3}
={x2x3’, x1’x3}

Original cover = {x1x3’, x1’x2, x1’x3}
Reduced cover={x1x2x3’, x1’x2x3’, x1’ x2’x3}
Cover after expansion= ={x2x3’, x1’x3}
Make irredundant of {x1x3’, x1’x2, x1’x3, x2x3’, x1’x3}
={x2x3’, x1’x3}

1 1

x x x x x x

60

Espresso FormatEspresso FormatEspresso Format

.i 3

.o 2

.ilb a b c

.ob f1 f2

.p 6
00- 10
-01 11
1-1 10
11- 10
110 11
100 0-
.e

.i 3

.o 2

.ilb a b c

.ob f1 f2

.p 4
1-0 01
11- 10
00- 10
-01 11
.e

Example Input Espresso Output

61

Testability Properties of Two-Level Logic
Circuits
Testability Properties of TwoTestability Properties of Two--Level Logic Level Logic
CircuitsCircuits

Single stuck-at fault model
• Assumes a single line in the circuit faulty.
• Faulty line is either stuck-at-0 or stuck-at-1.

Theorem
• A two-level circuit is fully single stuck-at fault testable iff it is

PRIME and IRREDUNDANT.

An untreatable stuck-at fault corresponds to
redundancy in the circuit
• Redundant stuck-at-0 in any of the products indicates product

term is redundant
• Redundant stuck-at-1 in any of the products inputs indicates

product term is not prime
• Redundancy can be removed by injecting the redundant

faulty value in the circuit and propagating constants

Single stuck-at fault model
• Assumes a single line in the circuit faulty.
• Faulty line is either stuck-at-0 or stuck-at-1.

Theorem
• A two-level circuit is fully single stuck-at fault testable iff it is

PRIME and IRREDUNDANT.

An untreatable stuck-at fault corresponds to
redundancy in the circuit
• Redundant stuck-at-0 in any of the products indicates product

term is redundant
• Redundant stuck-at-1 in any of the products inputs indicates

product term is not prime
• Redundancy can be removed by injecting the redundant

faulty value in the circuit and propagating constants

