COE 561 Digital System Design & Synthesis Two-Level Logic Synthesis

Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

Outline

- Programmable Logic Arrays
- Definitions
- Positional Cube Notation
- Operations on Logic Covers
- Exact Two-Level Optimization
- Heuristic Two-Level Optimization
 - Expand
 - Reduce
 - Reshape
 - Irredundant
- Espresso

Testability Properties of Two-Level Logic

Programmable Logic Arrays ...

- Macro-cells with rectangular structure.
- Implement any multi-output function.
- Layout easily generated by module generators.
- Fairly popular in the seventies/eighties (NMOS).
- Still used for control-unit implementation.

 $f_1 = a'b'+b'c+ab$ $f_2 = b'c$

... Programmable Logic Arrays

Two-Level Optimization

Assumptions

- Primary goal is to reduce the number of implicants.
- All implicants have the same cost.
- Secondary goal is to reduce the number of literals.

Rationale

- Implicants correspond to PLA rows.
- Literals correspond to transistors.

Definitions ...

- A cover of a Boolean function is a set of implicants that covers its minterms.
- Minimum cover
 - Cover of the function with minimum number of implicants.
 - Global optimum.

Minimal cover or irredundant cover

- Cover of the function that is not a proper superset of another cover.
- No implicant can be dropped.
- Local optimum.

Minimal cover w.r.t. 1-implicant containment

- No implicant is contained by another one.
- Weak local optimum.

... Definitions ...

- $f_1 = a'b'c'+a'b'c+ab'c$ +abc+abc'
- $f_2 = a'b'c+ab'c$

(a) cover is minimum.
(b) cover is minimal.
(c) cover is minimal w.r.t.
1-implicant containment.

... Definitions ...

Prime implicant

Implicant not contained by any other implicant.

Prime cover

Cover of prime implicants.

Essential prime implicant

There exist some minterm covered only by that prime implicant.

The Positional Cube Notation

Encoding scheme

- One column for each variable.
- Each column has 2 bits.
- Example: f = a'd' + a'b + ab' + ac'd

Ø	00
0	10
1	01
*	11

a'd'	10	11	11	10
a'b	10	01	11	11
ab'	01	10	11	11
ac'd	01	11	10	01

- Operations
 - Intersection: AND
 - Union: OR

Operations on Logic Covers

- The intersection of two implicants is the largest cube contained in both. (bitwise AND)
- The supercube of two implicants is the smallest cube containing both. (bitwise OR)
- The distance between two implicants is the number of empty fileds in their intersection.
- An implicant covers another implicant when the bits of the former are greater than or equal to those of the latter.
- Recursive paradigm
 - Expand about a variable.
 - Apply operation to cofactors.
 - Merge results.

Unate heuristics

- Operations on unate functions are simpler.
- Select variables so that cofactors become unate functions.

Cofactor Computation

• Let $\alpha = a_1 a_2 \dots a_n$ and $\beta = b_1 b_2 \dots b_n$ **Cofactor of** α w.r. to β • Void when α does not intersect β (i.e. distance is \geq 1) $a_1 + b_1' a_2 + b_2' \dots a_n + b_n'$ • Cofactor of a set $C = \{\gamma_i\}$ w.r. to β • Set of cofactors of γ_i w.r. to β . Example: f = a'b'+ab a'b' 10 10 • ab 01 01 Cofactor w.r. to (a) 01 11 • First row: void. • Second row: 11 01. • Cofactor $f_a = b$

Sharp Operation #

- The sharp operation α # β returns the sets of implicants covering all minterms covered by α and not by β.
- Let $\alpha = a_1 a_2 \dots a_n$ and $\beta = b_1 b_2 \dots b_n$

$$\alpha \# \beta = \begin{cases} a_1.b'_1 a_2 & \dots & a_n \\ a_1 & a_2.b'_2 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_1 & a_2 & \dots & a_n.b'_n \end{cases}$$

Example: compute complement of cube ab
 11 11 # 01 01 = {10 11; 11 10}= a'+b'

Disjoint Sharp Operation

The disjoint sharp operation α β returns the sets of implicants covering all minterms covered by α and not by β such that all implicants are disjoint.

Let
$$\alpha = a_1 a_2 \dots a_n$$
 and $\beta = b_1 b_2 \dots b_n$

$$\alpha \# \beta = \begin{cases} a_1 \cdot b'_1 & a_2 & \dots & a_n \\ a_1 \cdot b_1 & a_2 \cdot b'_2 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_1 \cdot b_1 & a_2 \cdot b_2 & \dots & a_n \cdot b'_n \end{cases}$$

Example: compute complement of cube ab 11 11(#)01 01 = {10 11; 01 10}= a'+ab'

Consensus

• Let $\alpha = a_1 a_2 \dots a_n$ and $\beta = b_1 b_2 \dots b_n$

Consensus(α , β)= \langle	a ₁ +b ₁	a ₂ .b ₂	a _n .b _n
	a ₁ .b ₁	a ₂ +b ₂	a _n .b _n
	a ₁ .b ₁	a ₂ .b ₂	a _n +b _n

- Consensus is void when two implicants have distance larger than or equal to 2.
- Yields a single implicant when distance is 1.
- **Example:** α =01 10 01 and β =01 11 10
 - Consensus(α,β)= {01 10 00, 01 11 00, 01 10 11}=01 10 11=ab'

Computation of all Prime Implicants ...

• Let $f = x f_x + x' f_{x'}$

There are three possibilities for a prime implicant of f

- It is a prime of x f_x i.e. a prime of f_x
- It is a prime of x' f_{x'} i.e. a prime of f_{x'}

It is the consensus of two implicants one in x f_x and one in x' f_{x'}

 $P(f) = SCC((x \cap P(F_x)) \cup (\overline{x} \cap P(F_{\overline{x}})))$ $\cup CONSENSUS((x \cap P(F_x)), (\overline{x} \cap P(F_{\overline{x}})))))$

A unate cover, F, with SCC contains all primes.

- P(F)=SCC(F)
- Each prime of a unate function is essential.

... Computation of all Prime Implicants

Example: f=ab + ac + a'

- Let us choose to split the binate variable a
- Note that $f_{a'}$ is tautology; $P(f_{a'})=U$; $C(a') \cap P(f_{a'})=10 \ 11 \ 11=P1=a'$
- P(f_a)= {11 01 11; 11 11 01}=b+c; C(a) \cap P(f_a)={01 01 11; 01 11 01}=P2={ab, ac}
- Consensus(P1,P2)= {11 01 11; 11 11 01}={b,c}
- P(F)=SCC{10 11 11; 01 01 11; 01 11 01; 11 01 11; 11 11 01}
 - = {a', ab, ac, b, c}
 - $= \{10 \ 11 \ 11; \ 11 \ 01 \ 11; \ 11 \ 01\}$
 - = {a', b, c}

Tautology ...

- **Check if a function is always TRUE.**
- Plays an important rule in all algorithms for logic optimization.
- Recursive paradigm
 - Expand about a variable.
 - If all cofactors are TRUE then function is a tautology.

TAUTOLOGY

- The cover has a row of all 1s (Tautology cube).
- The cover depends on one variable only, and there is no column of 0s in that field.

NO TAUTOLOGY

- The cover has a column of 0s (A variable that never takes a certain value).
- When a cover is the union of two subcovers that depend on disjoint subsets of variables, then check tautology in both subcovers.

... Tautology

Unate heuristics

- If cofactors are unate functions, additional criteria to determine tautology.
- Faster decision.
- If a function is expanded in a unate variable, only one cofactor needs to be checked for tautology
 - Positive unate in variable xi, f_{xi} ⊇ f_{xi}, ; only f_{xi}, needs to be checked for tautology.
 - Negative unate in variable xi, f_{xi} ⊆ f_{xi}, ; only f_{xi} needs to be checked for tautology.
- A cover is not tautology if it is unate and there is not a row of all 1's.

Tautology Example

- f = ab+ac+ab'c' +a'
- **Select variable a.**
 - Cofactor w.r.to a'
 11 11 11 => Tautology.
 - Cofactor w.r.to a is:

11	01	11
11	11	01
11	10	10

- **Select variable b.**
 - Cofactor w.r. to b' is:

- Depends on a single variable, no column of 0's => Tautology.
- Cofactor w.r. to b is: 11 11 11 => Tautology

Function is a TAUTOLOGY.

bc

Containment

Theorem

• A cover F contains an implicant α iff F_{α} is a tautology.

Consequence

Containment can be verified by the tautology algorithm.

Example

- f = ab+ac+ab'c'+a'
- Check covering of bc: C(bc) 11 01 01
- Take the cofactor

Tautology; bc is contained by f

01	01	11
01	11	01
01	10	10
10	11	11

Complementation

Recursive paradigm

• $f = x \cdot f_x + x' \cdot f_{x'}$ \longrightarrow $f' = x \cdot f'_x + x' \cdot f'_{x'}$

- Steps
 - Select a variable.
 - Compute cofactors.
 - Complement cofactors.
- Recur until cofactors can be complemented in a straightforward way.

Termination rules

- The cover F is void. Hence its complement is the universal cube.
- The cover F has a row of 1s. Hence F is a tautology and its complement is void.
- All implicants of F depend on a single variable, and there is not a column of 0s. The function is a tautology, and its complement is void.
- The cover F consists of one implicant. Hence the complement is computed by De Morgan's law.

Complement of Unate Functions...

Theorem

- If f is positive unate in variable x: $f' = f'_x + x' + f'_{x'}$.
- If f is negative unate in variable x: $f' = x \cdot f'_x + f'_{x'}$.
- Consequence
 - Complement computation is simpler.
- Heuristic
 - Select variables to make the cofactors unate.

Example: f = ab+ac+a'

- Select binate variable a.
- Compute cofactors
 - $F_{a'}$ is a tautology, hence $F'_{a'}$ is void.
 - F_a yields:

... Complement of Unate Functions

Select unate variable *b*.

- Compute cofactors
 - F_{ab} is a tautology, hence F'_{ab} is void.
 - *F_{ab}* = 11 11 01 and its complement is 11 11 10.
- Re-construct complement
 - 11 11 10 intersected with C(b') = 11 10 11 yields 11 10 10.
 - 11 10 10 intersected with C(a) = 01 11 11 yields 01 10 10.

Complement: F' = 01 10 10.

Two-Level Logic Minimization

Exact methods

- Compute minimum cover.
- Often impossible for large functions.
- Based on derivatives of Quine-McCluskey method.
- Many minimization problems can be now solved exactly.
- Usual problems are memory size and time.

Heuristic methods

- Compute minimal covers (possibly minimum).
- Large variety of methods and programs
 - MINI, PRESTO, ESPRESSO.

Exact Two-Level Logic Minimization

Quine's theorem

- There is a minimum cover that is prime.
- Consequence
 - Search for minimum cover can be restricted to prime implicants.
- Quine McCluskey method
 - Compute prime implicants.
 - Determine minimum cover.

Prime implicant table

- Rows: minterms.
- Columns: prime implicants.
- Exponential size
 - 2ⁿ minterms.
 - Up to 3ⁿ/n prime implicants.

Remark:

- Some functions have much fewer primes.
- Minterms can be grouped together.

Prime Implicant Table Example

Function: f = a'b'c'+a'b'c+ab'c+abc'+abc

Prime Implicants

Implicant Table

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

Minimum Cover: Early Methods

Reduce table

- Iteratively identify essentials, save them in the cover, remove covered minterms.
- Use row and column dominance.
- Petrick's method
 - Write covering clauses in POS form.
 - Multiply out POS form into SOP form.
 - Select cube of minimum size.
 - Remark
 - Multiplying out clauses is exponential.
- Petrick's method example
 - POS clauses: $(\alpha)(\alpha+\beta)(\beta+\gamma)(\gamma+\delta)(\delta) = 1$
 - SOP form: $\alpha \beta \delta + \alpha \gamma \delta = 1$
 - Solutions
 - {α, β, δ}
 - {α, γ, δ}

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

Matrix Representation

- View table as Boolean matrix: A.
- Selection Boolean vector for primes: x.
- Determine x such that
 - A $x \ge 1$.
 - Select enough columns to cover all rows.
- Minimize cardinality of x
 - Example: x = [1101]^T
- Set covering problem
 - A set S. (Minterm set).
 - A collection C of subsets. (Implicant set).
 - Select fewest elements of C to cover S.

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

ESPRESSO-EXACT

- Exact minimizer [Rudell].
- Exact branch and bound covering.
- Compact implicant table
 - Group together minterms covered by the same implicants.
- Very efficient. Solves most problems.

1		ò	0**0	1
1		α	0.0	–
1		ß	*0*0	1
1		Ρ		-
1		γ	01^{**}	1
1		ć	10**	-1
1		0	10***	T
1		6	1*∩1	1
1		c		-
1		Ċ	*101	1
1		5		-
	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	$\begin{array}{ccc} & \alpha \\ 1 & \beta \\ 1 & \beta \\ 1 & \gamma \\ 1 & \delta \\ 1 & \epsilon \\ 1 & \epsilon \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

0

1

0

0

Ω

0000,0010

1101

Implicant table after reduction 29

Minimum Cover: Recent Developments

- Many minimization problems can be solved exactly today.
- Usually bottleneck is table size.
- Implicit representation of prime implicants
 - Methods based on BDDs [COUDERT]
 - to represent sets.
 - to do dominance simplification.
 - Methods based on signature cubes [MCGEER]
 - Represent set of primes.
 - A signature cube identifies uniquely the set of primes covering each minterm.
 - It is the largest cube of the intersection of corresponding primes.
 - The set of maximal signature cubes defines a minimum canonical cover.

Heuristic Minimization Principles

- Provide irredundant covers with 'reasonably small' cardinality.
- Fast and applicable to many functions.
- Avoid bottlenecks of exact minimization
 - Prime generation and storage.
 - Covering.
- Local minimum cover
 - Given initial cover.
 - Make it prime.
 - Make it irredundant.
 - Iterative improvement
 - Improve on cardinality by 'modifying' the implicants.

Heuristic Minimization Operators

Expand

- Make implicants prime.
- Remove covered implicants w.r.t. single implicant containment.

Irredundant

- Make cover irredundant.
- No implicant is covered by the remaining ones.

Reduce

Reduce size of each implicant while preserving cover.

Reshape

Modify implicant pairs: enlarge one and reduce the other.

Example: MINI

	0000	1 1			
-	$\begin{array}{c} 0010\\ 0100 \end{array}$				
-	1100	1 1			
1	.000	1			
	.010	1			
-	$0101 \\ 0111$	1 1			
-	.001	1			
	.011	1			
1	.101	1			
0	0**0	1			
lpha eta	*0*0	1 1			
$\gamma \gamma$	01**	1			
$\overset{\prime}{\delta}$	10**	1			
ϵ	1*01	1			
ζ	*101	1			

33

Example: Expansion

- Expand 0000 to α=0**0.
 - Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to β = *0*0.
 - Drop 1010 from the cover.
- Expand 0101 to $\gamma = 01 * *$.
 - Drop 0111 from the cover.
- Expand 1001 to $\delta = 10 * *$.
 - Drop 1011 from the cover.
- Expand 1101 to $\varepsilon = 1*01$.
- Cover is: {α, β, γ, δ, ε}
 - Prime.
 - Redundant.
 - Minimal w.r.t. scc.

Example: Reduction

- Reduce α=0**0 to nothing.
- Reduce β=*0*0 to β~=00*0
- Reduce ε=1*01 to ε[~]=1101
- Cover={β[~], γ, δ, ε[~]}

Example: Reshape

- Reshape {β[~], δ} to {β, δ[~]}
 δ[~]=10*1
- Cover={β, γ, δ~, ε~}

Example: Second Expansion

- Cover={β, γ, δ~, ε~}
- Expand $\delta^{\sim}=10^{*1}$ to $\delta=10^{**}$.
- Expand ε^{-1101} to $\varepsilon = 1*01$.
- **Cover={** β , γ , δ , ϵ **}; prime and irredundant**

Example: ESPRESSO

Expansion

- Cover is: { α , β , γ , δ , ϵ }.
- Prime, redundant, minimal w.r.t. scc.

Irredundant

- Cover is: {β, γ, δ, ε}
- Prime, irredundant

Expand: Naive Implementation

For each implicant

- For each care literal
 - Raise it to don't care if possible.
- Remove all covered implicants.

Problems

- Validity check.
- Order of expansions.

Validity Check

- Espresso, MINI
 - Check intersection of expanded implicant with OFF-set.
- Presto
 - Check inclusion of expanded implicant in the union of the ON-set and DC-set.
 - Can be reduced to recursive tautology check.

Expand Heuristics ...

Expand first cubes that are unlikely to be covered by other cubes.

Selection

- Compute vector of column sums.
- Implicant weight: inner product of cube and vector.
- Sort implicants in ascending order of weight.

Rationale

Low weight correlates to having few 1's in densely populated columns.

Example ...

= f = a'b'c' + ab'c' + a'bc' + a'b'cDC-set = abc'10 a'b'c' Ordering 01ab'c' Vector: [313131][⊤] 10 a'bc' Weights: (9, 7, 7, 7). 10 a'b'c Select second implicant. 31

10

10

10

01

10

10

01

10

31 31

... Example

Expand in ESPRESSO ...

- Smarter heuristics for choosing literals to be expanded.
- Four-step procedure in Espresso.
- Rationale
 - Raise literals so that expanded implicant
 - Covers a maximal set of cubes.
 - As large as possible.

Definitions: For a cube α to be expanded

- Free: Set of entries that can be raised to 1.
- Overexpanded cube: Cube whose entries in free are simultaneously raised.
- Feasibly covered cube: A cube β∈F^{ON} is feasibly covered iff supercube with α is distance 1 or more from each cube of F^{OFF} (i.e. does not intersect with offset).

... Expand in ESPRESSO ...

1. Determine the essential parts.

- Determine which entries can never be raised, and remove them from *free*.
 - Search for any cube in F^OFF that has distance 1 from $\,\alpha$ (corresponding column cannot be raised)
- Determine which parts can always be raised, raise them, and remove them from free.
 - Search for any column that has only 0's in FOFF

2. Detection of feasibly covered cubes.

- If there is an implicant $\beta \in F^{ON}$ whose supercube with α is feasible repeat the following steps.
 - Raise the appropriate entry of α and remove it from *free*.
 - Remove from *free* entries that can never be raised or that can always be raised and update α .
- Each cube remaining in the cover F^{ON} is tested for being feasibly covered.
- α is expanded by choosing feasibly covered cube that covers the most other feasibly covered cubes.

... Expand in ESPRESSO

- Only cubes ∈ F^{ON} that are covered by the overexpanded cube of α need to be considered.
- Cubes \in F^{OFF} that are 1 distance or more from the overexpanded cube of α do not need to be checked.
- **3. Expansion guided by the overexpanded cube.**
 - When there are no more feasibly covered cubes while the overexpanded cube of α covers some other cubes of F^{ON}, repeat the following steps.
 - Raise a single entry of α as to overlap a maximum number of those cubes.
 - Remove from *free* entries that can never be raised or that can always be raised and update α .
 - This has the goal of forcing α to overlap with as many cubes as possible in F^{ON} .
- 4. Find the largest prime implicant covering α
 - When there are no cubes \in F^{ON} covered by the over-expanded cube of α
 - Formulate a covering problem and solve it by a heuristic method.
 - Find the largest prime implicant covering α.

Example

\beta = 01 10 10 is selected first for expansion

- Free set includes columns {1,4,6}
- Column 6 cannot be raised
 - Distance 1 from off-set 01 11 01
- ⁹ Supercube of β and α is valid
 - $\beta = 11 \ 10 \ 10$
- Supercube of β and γ is valid
 - $\beta = 11 \ 11 \ 10$
- Supercube of β and δ is invalid

Select γ since the expanded cube by γ covers that one by α

• Delete implicants α and γ ; $\beta' = 11$ 11 10

Next, expand $\delta = 10$ 10 01

- Free set is {2, 4, 5}
- Columns 2 and 4 cannot be raised
- Column 5 of F^{OFF} has only 0's. The 0 in column 5 can be raised
 δ' = 10 10 11
- Final cover is {β', δ' }

OFF-set:

01 11 01 11 01 <u>01</u>

Another Expand Example ...

- F^{ON}= a'b'cd + a'bc'd + a'bcd + ab'c'd' + ac'd
- F^{DC}= a'b'c'd + abcd + ab'cd'
- Let assume that we will expand the cube a'b'cd
 - We can see that variables a and d cannot be raised.
 - Overexpanded cube is a'd.
 - Note that only cubes a'bc'd and a'bcd need to be considered for being feasibly covered.
 - None of the offset cubes need to be checked as they are all distance 1 or more from the overexpanded cube.
 - Supercube of a'b'cd and a'bc'd is a'd.
 - Supercube of a'b'cd and a'bcd is a'cd.
 - So, a'bc'd is selected and the cube is expanded to a'd.

... Another Expand Example

Next, let us expand cube ab'c'd'.

- We can see that variables a and b cannot be raised.
- Overexpanded cube is ab'.
- None of the remaining cubes can be feasibly covered.
- None of the remaining cubes is covered by ab'.
- Expansion is done to cover the largest prime implicant.
- So, variable d is raised and the cube is expanded to ab'c'.

Finally, cube ac'd is expanded.

- Variables c and d cannot be raised.
- Overexpanded cube is c'd.
- No remaining cubes covered with overexpanded cube.
- Find the largest prime implicant covering the cube.
- Largest prime implicant is c'd.

Final Expanded Cover is: a'd + ab'c' + c'd

Reduce Heuristics ...

- Goal is to decrease size of each implicant to smallest size so that successive expansion may lead to another cover with smaller cardinality.
- Reduced covers are not prime.
- Sort implicants
 - First process those that are large and overlap many other implicants.
 - Heuristic: sort by descending weight (weight like expand)
- For each implicant
 - Lower as many * as possible to 1 or 0.
- Reducing an implicant α
 - Can be computed by intersecting α with complement of F–{ α }.
 - May result in multiple implicants.
 - Must ensure result yields a single implicant.

Theorem

- Let $\alpha \in F$ and $Q = \{F \cup F^{DC}\} \{\alpha\}$
- Then, the maximally reduced cube is: $\alpha \sim = \alpha \cap \text{supercube}(Q'_{\alpha})$

... Reduce Heuristics ...

- Expanded cover
 11 11 10
 - <mark>-</mark> 10 10 11
- Select first implicant 11 11 10 = c'
 - Complement of 10 10 11 (a'b') is {01 11 11; 11 01 11} (a+b)
 - C' intersected with 1 is c'.
 - Cannot be reduced.
- Select second implicant 10 10 11 (a'b')
 - Complement of c' is c.
 - a'b' intersected with c is a'b'c.
 - Reduced to 10 10 01 (a'b'c).
- Reduced cover
 - **•** 11 11 10
 - **10 10 01**

... Reduce Heuristics

Another Reduce Example

- F = a'b' + c'
- F^{DC} = bc'
- Consider reducing c'
 - Q = {a'b', bc'}
 - Q_{c'}={a'b',b}
 - Q'_{c'}={ab'}, SC(Q'_{c'})={ab'}
 - Thus, c' \cap SC(Q'_{c'})=ab'c'

Note that if F^{DC} is not included in Q, we will not get the correct result

- Q = {a'b'}
- Q_{c'}={a'b'}
- $Q'_{c'} = \{a+b\}, SC(Q'_{c'}) = \{1\}$
- Thus, c' \cap SC(Q'_{c'})=c'

Irredundant Cover ...

Relatively essential set E^r

- Implicants covering some minterms of the function not covered by other implicants.
- $\alpha \in F$ is in E^r if it is not covered by {F \cup F^{DC}}-{ α }

Totally redundant set R^t

- Implicants covered by the relatively essentials.
- $\alpha \in F$ is in R^t if it is covered by {E^r \cup F^{DC}}

Partially redundant set R^p

- Remaining implicants.
- ${}^{\bullet} R^{p} = F \{E^{r} \cup R^{t}\}$

... Irredundant Cover ...

- Find a subset of R^p that, together with E^r, covers the function.
- Modification of the tautology algorithm
 - Each cube in R^p is covered by other cubes in E^r and R^p.
 - Determine set of cubes when removed makes function nontautology.
 - Find mutual covering relations.
- Reduces to a covering problem
 - Heuristic algorithm.

... Irredundant Cover

- $E^r = \{\alpha, \varepsilon\}$
- $R^t = \{\}$
- **R**^p = { β , γ , δ }
- Covering relations
 - β is covered by $\{\alpha, \gamma\}$.
 - $(\alpha + \gamma + \delta + \varepsilon)_{\beta}$
 - (a'b'+ac+ab+bc')_{b'c}
 - (a' +a +0 +0)_{b'c}
 - γ is covered by { β , δ }.
 - δ is covered by { γ , ε }

Minimum cover: $\gamma \cup E^r = \{\alpha, \varepsilon, \gamma\}$

α	10	10	11	a'b'
eta	11	10	01	b'c
γ	01	11	01	ac
δ	01	01	11	ab
ϵ	11	10 10 11 01 01	10	bc'

Essentials ...

Essential prime implicants are part of any cover.

Theorem

• Let $F=G\cup\alpha$, where α is a prime disjoint from G. Then, α is an essential prime iff Consensus(G, α) does not cover α .

Corollary

Let F^{ON} be a cover of the on-set and F^{DC} be a cover of the dcset and α is a prime implicant. Then, α is an essential prime implicant iff H∪F^{DC} does not cover α, where H=Consensus(((F^{ON}∪F^{DC})# α), α)

Example

α 10 10 11 a'b'
β 11 10 01 b'c
γ 01 11 01 ac
δ 01 01 11 ab

Test α : $F#\alpha=\{ab'c, ab, ac\}=\{ab, ac\}$ $H=\{b'c\}$ $H_{\alpha}=\{c\}; not tautology$ α not contained in H and essential

... Essentials

Another Example

- F = a'b' + c'
- F^{DC} = bc' + ac'

Let us consider if c' is essential prime implicant

- F#c'=a'b'c
- H=a'b'
- H
 U {F^{DC}}={a'b',bc',ac'}
- {a'b',bc',ac'}_{c'}= {a'b',b,a}=Tautology
- Thus, c' is not essential prime implicant
- Note that if you do not include F^{DC}, you will get the incorrect result

ESPRESSO Algorithm ...

- Compute the complement.
- Find a prime cover: Expand.
- Find a prime and irredundant cover: Irredundant.
- Extract Essentials.
- Iterate
 - Reduce, Expand, irredundant.
- Cost functions
 - Cover cardinality \emptyset_1 .
 - Weighted sum of cube and literal count \emptyset_2 .

... ESPRESSO Algorithm

$$espresso(F,D) \{$$

$$R = complement(F \cup D);$$

$$F = expand(F,R);$$

$$F = irredundant(F,D);$$

$$E = essentials(F,D);$$

$$F = F - E;$$

$$D = D \cup E;$$
repeat {
$$\phi_{1} = |F|;$$

$$F = reduce(F,D);$$

$$F = expand(F,R);$$

$$F = irredundant(F,D);$$

$$\} until (|F| \ge \phi_{1});$$

$$F = last_gasp(F,D,R);$$

$$\} until (cost(F) \ge \phi_{2});$$

$$F = F \cup E;$$

$$D = D - E;$$

$$F = make_sparse(F,D,R);$$

last_gasp: uses different heuristics for reduce and expand to get out of local minimum.

• Reduce each cube independently to cover only minterms not covered by other implicants

• The generated cover after reduce may not cover the function

• Expand only those cubes that were reduced to cover reduced cubes

• Call irredundant on the primes in the original cover and the newly generated primes

make_sparse: attempts to reduce the number of literals in the cover. Done by:
reducing the "sparse" variables (using a modified version of irredundant rather than reduce),

• followed by expanding the "dense" variables (using modified version of expand).

Last_gasp Example

• Original cover = $\{x_1x_3', x_1'x_2, x_1'x_3\}$

- **Reduced cover={x_1x_2x_3', x_1'x_2x_3', x_1'x_2'x_3**
- Cover after expansion = ={ $x_2x_3', x_1'x_3$ }
- Make irredundant of $\{x_1x_3', x_1'x_2, x_1'x_3, x_2x_3', x_1'x_3\}$ = $\{x_2x_3', x_1'x_3\}$

Espresso Format

E

X	ample Inp	Ų
	.i 3	
	.0 2	
	.ilb a b c	
	.ob f1 f2	
	.p 6	
	00- 10	
	-01 11	
	1-1 10	
	11- 10	
	110 11	
	100 0-	
	.e	

Espresso Output *.i* 3 .02 .ilb a b c .ob f1 f2 .p4 1-0 01 11-10 00-10 -01 11 .e

Testability Properties of Two-Level Logic Circuits

Single stuck-at fault model

- Assumes a single line in the circuit faulty.
- Faulty line is either stuck-at-0 or stuck-at-1.

Theorem

- A two-level circuit is fully single stuck-at fault testable iff it is PRIME and IRREDUNDANT.
- An untreatable stuck-at fault corresponds to redundancy in the circuit
 - Redundant stuck-at-0 in any of the products indicates product term is redundant
 - Redundant stuck-at-1 in any of the products inputs indicates product term is not prime
 - Redundancy can be removed by injecting the redundant faulty value in the circuit and propagating constants