IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987 727

Multiple-Valued Minimization for PLA Optimization

RICHARD L. RUDELL anp ALBERTO SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Abstract—This paper describes both a heuristic algorithm, Espresso-
MYV, and an exact algorithm, Espresso-EXACT, for minimization of
multiple-valued input, binary-valued output logic functions. Minimi-
zation of these functions is an important step in the optimization of
programmable logic arrays (PLA’s). In particular, the problems of two-
level multiple-output minimization, minimization of PLA’s with input
decoders and solutions to the input encoding problem rely on efficient
solutions to the multiple-valued minimization problem. Results are
presented for a large class of PLA’s taken from actual chip designs.
These results show that the heuristic algorithm Espresso-MV comes
very close to producing optimum solutions for most of the examples.
Also, results from a chip design in progress at Berkeley show how im-
portant multiple-valued minimization can be for PLA optimization.

I. INTRODUCTION

ROGRAMMABLE LOGIC ARRAYS (PLA’s) are

important subsystems in the design of digital inte-
grated circuits [1], [2]. A PLA provides a simple and reg-
ular layout strategy for Boolean equations expressed in
two-level canonical form, and is usually used to imple-
ment ‘‘random’’ logic (random in the sense that the de-
signer sees no regular structure in the Boolean equations).
Typical examples are the control logic for a reduced-in-
struction set computer, or the control logic for the micro-
sequencer of a microcoded machine. With the addition of
latches for feedback. PLA’s are also often used for the
combinational logic in a finite-state machine. The opti-
mization of PLA’s is a useful application of computer-
aided design to the automatic synthesis of custom VLSI
designs.

Techniques for optimizing the structure of a PLA are
becoming well understood. The optimization goals are to
minimize the area occupied by the PLA and to minimize
the delay through the PLA. The regular structure of a PLA
means that the area of the PLA is simply proportional to
the number of product terms in the array, and to a first-
order approximation, the delay through the PLA is also
proportional to the number of product terms (i.e., inde-
pendent of the structure of each product term). A com-
plete strategy for the design of a PLA macrocell involves:
(1) logic optimization of the PLA equations including in-
put variable assignment and output phase assignment [3],
[4]; (2) optimization of the PLA layout using simple fold-

Manuscript received December 17, 1986. This work was supported by
the IBM Corporation in the form of a Graduate Research Fellowship, by
DARPA under Grant N0O0039-C-0107, and by SRC under Contract 82-11-
008.

The authors are with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720.

IEEE Log Number 8715658.

ing [5] or multiple folding [6]; and (3) generation of the
mask geometries implementing the PLA [7].

This paper is concerned with the logic optimization of
PLA equations, and, in particular, with the use of multi-
ple-valued minimization for PLA optimization. Multiple-
valued minimization is an extension of the classical min-
imization of switching functions to variables which can
assume more than two values. We will first motivate in-
terest in multiple-valued functions by showing how they
can be used for PLA optimization.

Boolean minimization [8], [9] is perhaps the most im-
portant and well-established optimization procedure for
PLA’s. Recent advances in heuristic multiple-output min-
imization of Boolean equations [3] have produced algo-
rithms able to minimize large Boolean functions within a
reasonable expenditure of resources. This is important for
VLSI designs where a PLA can have more than 50 inputs
and 50 outputs. However, there are other logic optimi-
zations which can be used to effectively reduce the area
required by a PLA. We will describe these in turn.

1) A PLA macrocell can use input decoders which
group the input signals into pairs [1]. The four decodes
of each pair are used in the core of the PLA rather than
the signals and their complements. An example of a PLA
with input decoders is shown in Fig. 1. A PLA which uses
input decoders can always be built with no more rows
than required by the normal PLA structure. However, op-
timization of the logic equations which result from the
pairing can often significantly reduce the total number of
product terms (hence, improving both the area and delay
for the PLA). The most natural way to solve this optimi-
zation problem is to use multiple-valued minimization [4],
{10]. Each pair of variables is viewed in the multiple-val-
ued problem as a single variable which can assume one
of four values.

2) There is often the possibility of changing the encod-
ing of either the inputs or the outputs of the PLA. For
example, if the PLA is implementing an instruction de-
code for a processor, then the codes for the instructions
can be chosen to minimize the total area required by the
PLA to decode the instructions. Another example would
be a finite-state machine where the encoding for the state
inputs (and outputs) can be chosen to reduce the size of
the PLA. As an example of output encoding alone, con-
sider the generation of the control signals for a data path.
Each action in the data path needs to be encoded uniquely,
but there is typically little reason to favor any particular
encoding.

The problem of input encoding has been successfully

0278-0070/87/0900-0727$01.00 © 1987 IEEE

728 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5, SEPTEMBER 1987

AND- OR~-

plane | plane

input output

buffer buffer
_ >a + b
a —a a 0
. >4 >a + b
b —>a + b
b— b — _)
— b —>a + b

normal input buffer paired input buffer

Fig. 1. PLA using input encoders.

solved using multiple-valued minimization followed by
the solution of a constrained embedding problem [10]. A
multiple-valued variable is used to represent the values of
interest for a set of variables. This function is minimized,
and then the result of the minimization is used to deter-
mine an optimal binary encoding for each value. This has
been used as an approximation to the state-assignment
problem [11], [12] and appears to be very successful for
dense finite-state machines.

The problem of outpur encoding (and the simultaneous
solution of the input and output encoding problems) is
more difficult. Current techniques for solving this prob-
lem rely on the use of maltiple-valued minimization [13].

3) Finally, there is the PLA optimization known as
output phase optimization [1]. Each output of a PLA ma-
crocell is buffered and each buffer can be made either log-
ically inverting or noninverting. This choice, made inde-
pendently for each output, can usually decrease the total
size of the core of the PLA. Techniques for choosing an
optimal assignment of phases for each output rely on mul-
tiple-valued minimization of the logic equations [4].

As we have shown here, there are many important op-
timizations which change the implementation of the logic
equations in a PLA. The combination of all of these tech-
niques can lead to a PLA implementation with signifi-
cantly less area that a straightforward approach. To ex-
ploit these optimizations requires the use of an effective
multiple-valued minimization algorithm. In this paper, we
present the extension of the Espresso-II algorithms [3] for
binary-valued minimization to the more general case of
multiple-valued logic functions.

Espresso-II is a collection of algorithms for the min-
imization of two-level binary-valued switching functions.
Some early ideas on the problem of minimizing multiple-
valued Boolean functions were presented in [3]. With a
simple transformation and the addition of an appropriate
don’t-care set, a multiple-valued minimization problem
can be solved with any binary-valued minimizer. How-
ever, this technique fails to exploit any knowledge of the
structure of the multiple-valued minimization problem,
and hence can be inefficient. For example, the don’t-care
set can become very large, and the number of binary

variables needed equals the sum of the number of values
(for all variables) in the original problem. In one example
we tried, the multiple-valued minimization problem for a
dense 93-state machine resulted in a binary-valued min-
imization with more than 100 input variables, over 100
output functions, and more than 5000 don’t-care terms.
This is a very large problem, and it was hoped that a mul-
tiple-valued minimizer would be able to solve this prob-
lem efficiently.

Also, it is known that the multiple-output minimization
problem for PLA optimization is a special case of multi-
ple-valued minimization [14]. Therefore, it was hoped
that a better understanding of the effect of the outpur part
on the multiple-output minimization problem would result
from working directly with multiple-valued variables. For
these reasons, we became interested in extending the Es-
presso-II algorithms to the more general framework of
multiple-valued logic functions.

In this paper we present the extension of Espresso-1I to
multiple-valued logic functions, and report our experi-
ence with the program Espresso-MV that implements
these extensions. Espresso-MV was found to be more ef-
ficient than Espresso-IIC due to its more uniform treat-
ment of the output part, and hence has replaced Espresso-
[IC even for minimization of binary-valued multiple-out-
put functions. We will also show how the Espresso-II al-
gorithms can be extended to solve the Boolean minimi-
zation problem exactly. This exact algorithm relies on an
algorithm for the minimum cover problem which has
proven to be efficient for solving large, cyclic covering
problems. We will present results from a large test set of
PLA examples for several different minimization algo-
rithms including the heuristic and exact modes of Es-
presso-MV. The PLA examples in the test set are graded
with respect to difficulty to organize the comparisons
among competing algorithms. Finally, we will report on
a specific design example where input encoding has been
used successfully to optimize several PLA’s for custom
VLSI circuits.

The paper is organized as follows. Section II contains
the basic definitions of multiple-valued logic functions and
the necessary extensions to the fundamental concepts of
Espresso-1I for manipulating multiple-valued logic func-
tions. Section III contains a description of the basic Es-
presso-MV algorithm and describes how each step of Es-
presso is modified to deal with multiple-valued logic
functions. In Section IV, we present an exact minimiza-
tion algorithm which uses the basic Espresso algorithms
to construct an algorithm for determining the minimum
representation of a multiple-valued function. Section V
will conclude with our experimental results.

II. DEFINITIONS

In this section we review the basic definitions for mul-
tiple-valued logic functions. There is a wealth of data in
the literature regarding multiple-valued functions; in par-
ticular, we follow the notation and terminology of Sasao
[4], [15], [16]. Chapters 2 and 3 of Logic Minimization
Algorithms for VLSI Synthesis [3] are a valuable reference

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION

for these definitions in the special case of binary-valued
multiple-output functions.

A. Multiple-Valued Functions

Let p; fori = 1 - + + n be positive integers representing
the number of values for each of n variables. Define the
set P, = {0, -+ ,p,— 1} fori =1 "+ n which rep-
resents the p; values that variable i may assume, and de-
fine B = {0, 1, *} which represents the value of the
function. A multiple-valued input, binary-valued out-
put function f (hereafter known as a multiple-valued
function) is a mapping

f.:Plezx"'XPn—’B.

The function is said to have » multiple-valued inputs,
and variable i is said to take on one of p; possible values.

Each element in the domain of the function is called a
minterm of the function.

An enumeration of all minterms with the value of the
function is called a truth table.

A function which evaluates to 1 for all minterms is
called a tautology.

The value * € B will represent a minterm for which the
function value is allowed to be either O or 1. Hence, we
allow functions which are incompletely specified.

An n-input, m-output switching function can be repre-
sented by a multiple-valued function of n + 1 variables
where p;, = 2fori =1 -+ n,andp,,; = m. This special
case is called a multiple-output function. It is easily
proven that the Boolean minimization problem for multi-
ple-output functions is equivalent to the minimization of
a multiple-valued function of this form [14, theorem 4.1].

As an example of a multiple-valued function, we define
a function of three variables with the first variable assum-
ing three values (p, = 3), the second variable assuming
two values (p, = 2), and the third variable assuming three
values (p; = 3). The function is given by the following
truth table:

2
2%
s

value

NN —m = ===, OO0 000
o = (OO O = = = OO0 O~ == OO0
N—=ON=OMN—ON~P,ONN—ON—=O
O %= O % KO === = O = O = O e =

729

Note that some of the function values are *, indicating
that the function value may be either O or 1 for these min-
terms.

Let X; be a variable taking a value from the set P;, and
let S; be a subset of P,. X represents the Boolean func-

tion
XS = 0
‘ 1

X,~S‘ is called a literal of variable X;. If §; = ¥, then the
value of the literal is always O, and the literal is called
empty. If §; = P;, then the value of the literal is always
1, and the literal is called full.

{Ionzthe example,{{’}l = {0, 1,2}, and if X; = 1 then
X, 7" =0,and X| ' = 1.

The complement of the literal X 5 (written X?') is the
literal X§'. The complement of a literal evaluates to O when
the literal evaluates to 1, and vice-versa.

A product term (sometimes simply a term) is a Bool-
ean product (or AND) of literals. If a product term evalu-
ates to 1 for a given minterm, the product term is said to
contain the minterm. If a literal in a product term is full,
the product term does not depend on that variable. With-
out loss of generality, a product term consists of the Bool-
ean AND of a literal for each variable.

If a literal in a product term is empty, the product term
contains no minterms, and is called the null product term
(written 7). If all literals in a product term are full, the
product term contains all minterms, and is called the uni-
versal product term.

A sum-of-products (also called a cover) is a Boolean
sum (or oR) of product terms. If any product term in the
sum-of-products evaluates to 1 for a given minterm, then
the sum-of-products is said to contain the minterin.

The set X, (called the ON-set) is the set of minterms
for which the function value is 1 (i.e., X,, = f7'(1)).
Likewise, the set X 4 (called the OFF-set) is the set of
minterms for which the function value is 0 (i.e., X,z =
£7'(0)), and X, (called the DC-set) is the set of min-
terms for which the function value is unspecified (i.e., Xy,
=f'(*).

An algebraic expression for f is a Boolean expression
(written using Boolean sums and Boolean products of lit-
erals) which evaluates to 1 for all minterms of the ON-
set, evaluates to O for all minterms of the OFF-set, and
evaluates to either O or 1 for all minterms of the DC-set.

Proposition 1: An algebraic expression for f can al-
ways be written in sum-of-products form.

Likewise, it is possible to define a sum term as a Bool-
can sum of literals, and a product-of-sums as a Boolean
product of sum terms. However, we restrict our attention
to sum-of-product forms because of the next proposition.

Proposition 2: The minimal product-of-sums form for
a function f can be derived from the minimal sum-of-prod-
ucts form for X 4.

An implicant of a function f is a product term which
does not contain any minterm in the OFF-set of the func-
tion.

if X, ¢S,
if X, € S.

730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6. NO. 5. SEPTEMBER 1987

A prime implicant of a function fis an implicant which
is contained by no other implicant of the function.

An essential prime implicant is a prime implicant
which contains some minterm not contained by any other
implicant. (0.1 {0 0

In the example, Xl Xz is a product term
(which is not an implicant of the function), and a sum-of-
products expression for the function is

X]O}X{l} {0.2} {1}

u xixOixdt

U xi0xloylon
U X%l.Z}Xil}X-i’OI

B. Operations on Product Terms and Covers

In the definitions which follow, § = X$'X5 « + + X3 and
T = XI'xP ... XI" represent product terms, and F and
G will represent sum-of-product expressions.

A product term S is said to contain a product term T (T
c $if T, <€ §;foralli =1 - n. If, in addition, S #
T, then S is said to strictly contain 7 (7 C §). S (strictly)
contains T if § (strictly) contains all of the minterms that
T contains.

The complement of a product term S (S) (computed
gssing De Morgan’s law) is the sum-of-products U7j_,
X7

The intersection of product terms Sand 7 (S N T) is
the product term X?}' NTix0T ..o x0T which is the
largest product term contained in both Sand 7. If §; N T;
= @ forsome i, then S N T = & and S and T are said
to be disjoint. If S N T are not disjoint, they are said to
intersect. Likewise, the intersection of two covers F and
G is defined as the union of the pairwise intersection of
the cubes from each cover.

The supercube of S and T (supercube (S, T)) is the
product term X§'YTx$UT oo x5UT which is the
smallest product term containing both S and 7. Likewise,
the supercube of a cover F is the smallest product term
containing every product term of F.

The distance between S and 7 equals the number of
empty literals in their intersection. If the distance between
two cubes is O they intersect; otherwise they are disjoint.

The sharp-product of S and T (S # T) equals S if S
and T are disjoint, and is empty if § © T. Otherwise, it
is the sum-of-products:

f' ce X;?fﬂT: Ce Xﬁ".

S#ET=5SNT=UZX
i=1
S # T contains all of the minterms of S which are not con-
tained by 7.
The consensus of S and T (consensus(S, T)) is the
sum-of-products:

n
SINT
UX]‘ ...

i=1

XSUT L xS0

If distance (S, T) = 2 then consensus(S, T) = . If
distance (S, T) = 1 and S, N T, = &, then consensus (S,

NT ,..XS,UT:,,,
i

T) is the single product term X7'
Xf"nr". If distance (S, T) = 0 then consensus (S, T) is a
cover of n terms. If the consensus of S and T is nonempty,
it contains minterms of both § and 7. Likewise, the con-
sensus of two covers F and G is defined as the union of
the pairwise consensus of the product terms from each
cover.

The cofactor (or cube restriction) of S with repect to
T (S;) is empty if § and T are disjoint. Otherwise, it is
the product term X'V X5V .o x5UT 1 jkewise the
cofactor of a cover F with respect to a cube S (Fy) is the
union of the cofactor of each cube of F with respect to S.

C. Positional Cube Notation

Let X'X3? - - - X5 be a product term. This product term
can be represented by a binary vector:

-1 1 - —
| —cgcz"'c’g’“]-—Cgcl"'cﬁ”'

n

C(]Jci e CII’

where ¢/ = 0ifj ¢ S, and c; = 1 if j € §;. This is called
the positional cube notation or more simply a cube [17].
A cube is a convenient representation for a product term,
and the terms cube and product term will often be used
interchangeably. (For example, a prime cube is a cube
which represents a prime implicant.)

The notation ¢; represents the binary vector cl¢; - - -
¢~ and | ¢; | represents the number of 1's in the binary
vector. The notation ¢; U d; refers to the bitwise or of
two binary vectors, ¢; N d; refers to the bitwise AND of
two binary vectors, and ¢, refers to the bitwise comple-
ment of a binary vector.

A sum-of-products will be represented by a set of cubes,
also called a cover. A cover also has a natural two-di-
mensional matrix representation, where each row of the
matrix is a cube.

Continuing with the example, the following is a cover
for the function:

X | x| X
012 | 01 | 012
100 | 01 | 101
010 | 10 | O11
100 | 10 | 110
011 | 01 | 110

The cube representation of a product term is useful be-
cause Boolean operations on the binary vectors corre-
spond to the useful operations on the product terms. For
example, one product term contains another if and only if
their corresponding cubes contain each other as bit-vec-
tors; the intersection of two cubes is the cube which re-
sults from componentwise Boolean aND of the two cubes;
and the supercube of two cubes results from the compo-
nentwise Boolean or of the two cubes.

For computer implementation of the algorithms, the
cube provides a convenient data structure where one bit
is used for each part of the cube. It is possible to perform

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 731

operations on the cubes as word-wide operations (i.e., the
bitwise Boolean AnD of two 32-bit vectors on most 32-bit
computers), which is more efficient than manipulating the
binary vectors element by element.

D. Generalized Shannon Cofactor and Multiple-Valued
Unate Functions

In [3], binary-valued unate functions were defined, and
several important properties of unate functions were
proven. In particular, it was shown that the problems of
finding the smallest cube containing the complement of a
function (an important step of REDUCE) and the problem
of determining whether a function is a tautology (an im-
portant step of both IRREDUNDANT and ESSENTIAL) can be
answered quickly for unate functions. When these results

are combined with Shannon’s theorem and the cofactor

operation defined in Section II-B, efficient recursive al-
gorithms can be devised for many basic operations. These
algorithms split the function into smaller functions until
each of the smaller functions becomes unate; then, a sim-
ple test is performed on the unate function to quickly de-
termine the result. Finally, the results of each branch of
the recursion are merged to produce the answer to the
original problem.

The basic paradigm for manipulating multiple-valued
functions is to use the multiple-valued extension of the
Shannon cofactor which is called the generalized Shannon
cofactor [18, lemma 3.2]. In Proposition 3, F is a cover
of a multiple-valued function. Recall that F, represents
the cofactor of F with respect to the cube ¢’

Proposition 3: Let ¢', i = 1 - -+ m be a set of cubes
satisfying Ur,ci=1tlande' Nl = @ fori # J. Then,

i C =z

F=Uc¢ NF.

i=1

Remark: Using simple algebraic operations of Boolean
algebra, it is easy to show that the operations of tautol-
ogy, complementation, and computing the supercube of
the complement of a cover can be computed using the
properties

F=le F.=1 fori=1---m

F = "N F.i

1 C s
ﬁN

i=1

supercube (F) = supercube < U ¢' N supercube(F,i)> :
i=1

It is not immediately obvious how to extend the defi-
nition for unate to multiple-valued functions. We will pre-
sent here two extensions. The first, referred to as weakly
unate, preserves the important property that tautology and
computing the supercube of the complement are trivial
operations for weakly unate functions. This will be the
important extension for the Espresso algorithms. How-
ever, a weakly unate function does not satisfy other im-
portant properties which are satisfied by binary-valued

unate functions. Hence, we will also define a strongly
unate function (a stronger condition on the function than
weakly unate) which preserves some of these properties.
It is important to note that the definitions of weakly unate
and strongly unate coincide for the special case of binary-
valued functions.

1) Weakly Unate Functions:

Definition 1: A function is said to be weakly unate in
variable X; if there exists a j such that changing the value
of X; from value j to any other value causes the function
value, if it changes, to change from 0 to 1. If a function
is weakly unate in all of its variables, then the function is

- said to be weakly unate.

If a function is weakly unate in variable X;, then chang-
ing the value of variable X; to value j causes the value of
the function, if it changes, to change from 1 to 0. Hence,
there is no need to define both unate increasing and unate
decreasing functions.

Definition 2: A cover F is said to be weakly unate in
variable X; if there exists a j such that all cubes which
depend on variable X; contain a O in the position j.

For example, the following cover is weakly unate be-
cause it is weakly unate in part 1 of variable 1, part 1 of
variable 2, and part 5 of variable 3:

11111-00001-11110
01100-00011-01010
01010-00100-11111
00110-01001-11010
00001-11111-10110

Proposition 4: A weakly unate cover in variable X; is
a cover for a weakly unate function in variable X;.

Proposition 5: A function fis weakly unate in variable
X; if and only if there exists a j such that each prime im-
plicant of f which depends on variable X; has a O in part j
of variable X;. Hence, a prime cover for a weakly unate
function is also a weakly unate cover.

The proofs of these propositions are trivial extensions
of the proof for the binary-valued case as in [3, proposi-
tions 3.3.1, 3.3.2, and 3.3.3].

A simple test for whether a cover is weakly unate in a
variable X; is to form the supercube of all cubes of F which
do not have a full literal in variable X;. This supercube
has a O in any parts of X, that are weakly unate.

The following result is useful for determining whether
a weakly unate function is a tautology.

Proposition 6: Let F be a weakly unate cover in vari-
able X;. Let G = { ¢ € F | c does not depend on X; }. Then
G=leF=1.

Proof: Clearly, if G = 1, then F = 1. Assume that
Jj is the part required by Definition 2 for F to be weakly
unate in variable X;, and assuming G # 1. Then there
exists a minterm m € G with a 1 in value j of variable X;.
However, F is unate in X;, and hence no terms of F have
a 1 in value j of variable X;. Therefore, it follows that m
€ F, and hence F # 1. |

732

There is a special case when all variables are weakly
unate.

Proposition 7. A weakly unate cover is a tautology if
and only if one of the cubes in the cover is the universal
cube.

Proof: By repeated application of Proposition 6, the
function is a tautology if and only if G = {c € F | ¢ does
not depend on X; for all i }. Only the univeral cube can
be in G, and hence G = 1 if and only if the original func-
tion contains the universal cube.]

A similar result is useful for determining the smallest
cube containing the complement of a function.

Proposition 8: Let F = { F' } be a weakly unate cover
(F' refers to the ith cube of F). Then,

[F|
supercube (F) = (N supercube(F').
i=1

Propositions 6, 7, and 8 show that the problems of tau-
tology and smallest cube containing the complement are
trivial operations for weakly unate functions.

Weakly unate functions play the same role in multiple-
valued minimization that binary-valued unate functions
play in binary-valued minimization. However, they do not
satisfy two properties that binary-valued unate functions
satisfy: (1) all prime implicants of a binary-valued unate
function are essential, and (2) the complement of a bi-
nary-valued unate function is also unate.

To understand the limitation of weakly unate, consider
that, in the binary-valued case, if a cover F is unate, then
the cover contains a cube ¢ if and only if the cube is con-
tained by some cube of the cover. This is true because F.
is unate if F is unate; hence F. = 1 if and only if F,
contains a universal cube. However, F, contains a uni-
versal cube if and only if it contains a single cube which
contains ¢. However, it is not true that F, is weakly unate
whenever F is weakly unate as the following example
shows:

10-11-11-111
11-10-10-100
11-11-10-010

Cofactoring against ¢ = 10-10-10-110 produces
11-11-11-111
11-11-11-101
11-11-11-011

which is not weakly unate in variable 4. Also note that
the function F contains ¢, but that no single row of F con-
tains c.

Also, in the binary-valued case, all primes of a unate
function are essential, and the complement of a unate
function is unate. However, the function presented earlier
violates both of these properties:

11111-00001-11110
01100-00011-01010 (nonessential)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5, SEPTEMBER 1987

01010-00100-11111
00110-01001-11010 (nonessential)
00001-11111-10110

The complement of this function is

00110-01000-00101
11111-00001-00001
00001-11110-01001
01100-00010-10101
11000-11000-11111
10100-10100-11111
10010-10010-11111

which is weakly unate in variable 3, but not in variables
1 or2.

It is interesting from a theoretical point of view to look
for a condition stronger than weakly unate that preserves
these properties.

2) Strongly Unate Functions:

Definition 3: A function is said to be strongly unate in
variable X; if the values of X; can be totally ordered via
< such that changing the value of variable X; from value
J to value k (where j < k) causes the function value, if it
changes, to change from 0 to 1. If all variables of a func-
tion are strongly unate, then the function is called strongly

~ unate.

Clearly any function which is strongly unate is also
weakly unate in the part of variable X; which is less than
(via <) all the remaining parts. A strongly unate function
provides a total order for all of the parts, and a weakly
unate function merely provides a single part which is less
than all remaining parts.

Proposition 9: A strongly unate cover contains a cube
if and only if the cube is contained in some cube in the
cover.

Proof: If H is strongly unate, then H. consists of
those cubes of H which intersect with ¢, with the addition
of full columns in the positions where ¢’ is 1. Hence, H,
is also strongly unate and is a tautology if, and only if, it
contains a universal cube. But, H, can contain a universal
cube if, and only if, it contains a single cube which con-
tains c. |

Proposition 10: All primes of a strongly unate function
are essential.

Proof: This proposition can be proved as [3, propo-
sition 3.3.6] where Proposition 9 replaces [3, proposition
3.3.5].]

Proposition 11: The complement of a strongly unate
function is strongly unate.

E. Choice of Partition

Once a cofactor F,.. becomes weakly unate, it is trivial
to determine if the function is a tautology, or it is trivial

RUDELL AND SANGIOVANNI-VINCENTELLL: MULTIPLE-VALUED MINIMIZATION 733

to compute the smallest cube containing the complement
of the function. Hence, we wish to choose a partition c’,

i =1+ mso that each cofactor F,; becomes a weakly
unate function as quickly as poss1ble.

The choice of partition is simplified by first choosing a
splitting variable, followed by a choice of a partition of
the splitting variable into a number of cubes which depend
on only the splitting variable. Any cube in the cover which
is independent of the splitting variable is duplicated in all
branches of the recursion; hence this consideration enters
into our choice of the splitting variable.

There is an important difference between the binary-
valued case and the multiple-valued case. When the vari-
able has only fwo values t}{le}functlon is split with the
cubes ¢' = X; ' and ¢? = X; ; the only choice is which
variable X; to use for splitting. But this choice is easy to
make. The most binate variable [3], defined as the vari-
able which has the most cubes in the cover which depend
on it, leads to the minimum duplication of cubes after ap-
plying the Shannon cofactor. As a secondary considera-
tion, it is desirable to keep the recursion balanced. There-
fore, as a tiebreaker, Espresso chooses the variable which
has the closest to an equal number of cubes with X{°} and
X!} These rules guarantee a minimum of duplication be-
tween F. and F.» at the next level of the recursion.

When a variable has more than two values, however,
we must also choose how to partition the parts of the
variable into a number of different cubes. There are two
possibilities.

1) Partition the values of the splitting variable into two
disjoint sets: /] C P;and r C P, (withI N r = ¢, and /
U r = P;). The function F is then split into two parts:

F=(X'N Fy) U (X" N Fy).

This enables us to maintain a binary recursive strategy.
However, unlike the binary-valued case, this does not
necessarily make each of the cofactors independent of the
splitting variable.

2) Partition the values of the s litting variable X; into
the p; cubes X% x{'} =1} This effectively
eliminates variable X; at this level of the recursion, and
forms a p;-way splitting of the function

F= (X% N Fyo) U (X1 N Fyy)
(XN Fygen).

Strategy 1 is more desirable because it leaves more de-
grees of freedom at the next level of the recursion. For
example, if a variable has eight values, splitting on ail
eight values (as suggested by strategy 2) gives us the eight-
way tree shown in Fig. 2. Using the binary partition (as
suggested by 1) and choosing the same variable for split-
ting at the next two levels, we get the binary tree shown
in Fig. 3.

However, at either the second or third level there is
more freedom in that a different variable may be chosen
for splitting. Hence, strategy 1 reduces to strategy 2 in
the case where the same variable is chosen at each level.

Foo o e
\ el
X /’ Iy

N Ty
[torzhi K mm

A
SN

e A
¢ 5t F W:'F ol
WX \f/ X

Fig. 3. Partition strategy 2, binary split of single variable.

Note, too, that strategy 1 also gives us a natural way to
use a tree structure to perform the n-way merge which
would be required by strategy 2.

In Espresso-MV, we use strategy 1. This reduces the
problem to: (1) choosing the variable to be used as the
splitting variable and (2) choosing a partition of the values
of the variable. As always, there is a tradeoff between the
time taken to determine what will be the next step in the
recursion, and the depth and breadth of the tree to be
searched. The heuristics used in Espresso-MV are kept
very simple; yet, they still account for a significant per-
centage (on the order of 25 percent) of the execution time
of the Espresso-MV algorithms.

1) Choice of Splitting Variable: As the cofactors F,
and F,, are formed, 1’s are added to the cubes in each
cofactor. In essence, we can view the (’s in the array for
F as the “‘active’” parts, some of which are eliminated as
the cofactor is formed. The splitting variable is chosen in
Espresso-MV using the following rules.

1) The variable with the largest number of active val-
ues (i.e., the multiple-valued variable with the most
number of values).

2) In the case of a tie, choose the variable with the
greatest number of 0’s, summed over all of its val-
ues.

3) In the case of a further tie, choose the variable with
the fewest 0’s in the value with the greatest number
of O0’s.

These heuristics model the behavior of the binate heu-
ristic of Espresso-II for binary-valued variables. There is
no equivalent to the first rule for binary-valued variables.
However, the first tiebreaker is equivalent to the most bi-
nate heuristic, and the second tiebreaker attempts to keep
the recursion balanced.

734 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

2) Choice of Partition for the Splitting Variable: 1t was
mentioned earlier that in the multiple-valued case it is
more difficult to choose a partition of the values which
yields a minimum of duplication of cubes during the re-
cursion. This problem can be formulated as follows.

Problem: Find a set of values ¢' and ¢? such that the
total number of cubes in F. U F,> is minimized.

Consider the submatrix of the cover F restricting our
attention to only the columns associated with variable X;.
Consider finding a row and column permutation of the
matrix into the form

A]0

B

0]C

which minimizes the number of rows of B.

The columns of A are identified with the first half of the
partition ¢', and the columns of C are identified with the
second half of the partition ¢*. The cubes of B are dupli-
cated in both halves of the recursion.

This problem is a standard partitioning problem. Form
a graph from the columns of the matrix by placing an edge
between two columns that have 1’s in the same row. The
weight of this edge is equal to the number of different
rows in which these columns share 1’s. The problem is
then to partition the nodes into two disjoint sets such that
a minimum total edge weight connects the two sets.

Solving the preceding problem is potentially expensive,
so we choose instead to partition the active parts to place
the first n/2 into the set / and the remaining n /2 active
parts into the set r. This heuristic is very fast to compute
but it remains no worse than an initial n-way split on the
function (as would have been provided by strategy 1).

Further work on the efficiency of these algorithms might
concentrate on improving the heuristics for selecting the
partitions of the function.

III. THE EsPRESSO-MV MINIMIZATION ALGORITHMS

The Espresso-MV strategy for minimizing multiple-
valued functions is similar to the strategy used by Es-
presso-1I for multiple-output functions. In this section we
describe each of the basic steps of the algorithm, concen-
trating on the extensions needed to handle multiple-val-
ued functions. Pseudocode for the Espresso algorithm is
shown in Fig. 4.

The first step performed by Espresso-MV is to read the
function provided by the user and split the function into
a cover of the ON-set, a cover of the OFF-set, and a cover
of the DC-set. The user specifies a multiple-valued func-
tion by providing any two of these three covers, and Es-
presso-MV uses COMPLEMENT to compute the missing
cover.

Processing begins by expanding each cube of the ON-
set cover into a prime implicant (EXPAND). Then a mini-
mal subset of this set of prime implicants is selected (Ir-

* Espresso-MV — minimize a multiple-valued Boolean function

* F is the ON-set of the function
* D is the DC-set of the function
* R is the OFF-set of the function
* cost (F) first considers the number of cubes in F,
* and then the number of literals to implement F.
.
espresso(F. D)
F,. < F: /* Save original cover for verifcation */

R «~ COMPLEMENT (F + D) /* Compute the complement */
F — EXPAND (F. R):

F < IRREDUNDANT (F, D):
E ~ ESSENTIAL (F.D):

/* Initial ex pansion */
/* Initial irredundant */
#* Detect essential primes */

F~F-E: /* Remove essentials from F */
D~D+E: /* Add essentials to D */
do {

¢ cost(F):

/* Repeat inner loop until solution becomnes stable */
do |

é1—1Fi;

F « REDUCE (F. D);

F — EXPAND (F. R):

F « IRREDUNDANT (F, D);
} while (1F1 <g,):

/% Perturb solution 1o see if we can continue {o iterate */
if (super_gasp_mode) {
F — SUPER_GASP (F.D.R);
| else {
F — LAST_GASP (F.D.R):
'

} while (cost(F) <¢;):

F+«~F+E
D+<D-E
F —~ MAKE _SPARSE (F.D.R): /* Make the solution sparse */
if (! VERIFY (F. D. F,;)) exit(“verify error™):

return F;

/* Return essential to F */

Fig. 4. The Espresso-MV algorithm.

REDUNDANT). Essential prime implicants are identified
using ESSENTIAL and are removed from the solution before
iterating over the cover.

The Espresso algorithm iterates over the cover until no
improvement in the cost function is seen. The inner loop
of the Espresso-MV strategy consists of reducing the im-
plicants to nonprime cubes (REDUCE), expanding the cubes
to prime implicants (EXPAND), and extracting a minimal
subset of the prime implicants (IRREDUNDANT). The re-
duction step is important as it moves the solution away
from the current local minimum without increasing the
number of cubes in the cover.

When the solution stabilizes, the LAST__GAsp routine
performs the reduction and expansion in a different man-
ner in an attempt to get past the current local minimum.
If LAST __GAsP is unable to decrease the number of cubes
in the cover, there is the guarantee that no implicant can
replace any implicant in the cover in order to reduce the
cover cardinality. Finally, the MAKE SPARSE routine at-
tempts to reduce the number of transistors needed in a
PLA for the function.

One interesting variant added in Espresso-MV is the
routine SUPER__GASP. This procedure is used optionally
instead of LAST GasP to expend more effort in finding a
better solution.

A. Tautology

Multiple-valued tautology is an important step in many
heuristic minimization algorithms [18]. A well-known re-
sult [3], [18] is the following.

Proposition 12: A cover F contains a cube ¢ if and only
if F, is a tautology.

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 735

Hence, multiple-valued tautology can be used to deter-
mine if a cover contains a cube (i.e., the cover contains
all of the minterms of the cube). This is used in the Ir-
REDUNDANT and ESSENTIAL algorithms.

The nontautology question for a multiple-valued func-
tion is NP-complete [19, p. 261], implying that there is
little hope of finding a polynomial-time algorithm to solve
the problem. However, in practice, the run time of the
tautology algorithm accounts for a small fraction of the
time for Espresso-MV. The generalized Shannon cofactor
described in Section II is used to recursively divide the
function into simpler functions which are examined for

tautology: ‘
Proposition 13: [18, lemma 3.3]. If a set of cubes ¢,
i=1---msatisfies UL, ¢'= landc' N ¢/ = @ for

i # j, then F is a tautology if, and only if, each of F, is
a tautology fori =1 -+ - m.

To reduce the complexity of answering the tautology
question, we will use the properties of weakly unate func-
tions given in Section II. Using Proposition 6, the size of
the problem being examined for tautology can be reduced
if there are any weakly unate variables.

Special Cases: Before the cubes ¢' and ¢? are chosen
to decompose the function, a set of special cases are first
examined.

1) If the cover has a row of all 1’s (i.e., contains a
universal cube), then the function is a tautology.

2) If the cover has a column of all 0’s, then the func-
tion is not a tautology.

3) If the function is weakly unate, then the function is
not a tautology because a row of 1’s was not iden-
tified in case (1).

4) If there are any weakly unate variables, then cubes
of F which are not full in the unate variable are dis-
carded according to Proposition 6. At this point, re-
turn to case (1) to continue checking the reduced
function.

5) If the cover H can be written as A U B, where A
and B are defined over disjoint variable sets, then F
is a tautology if and only if either 4 or B is a tau-
tology. This case can be detected by finding a row
and column permutation of F resulting in a matrix

of the form:
Al

T3]

where 1 represents an appropriately sized block of
all 1’s (and the division does not split a variable be-
tween the two halves). This partition can be easily
detected with a greedy algorithm. However, in prac-
tice, such a decomposition may not occur often, and
hence should only be checked for in the case that the
matrix contains many 1’s.

If none of these special cases apply, then two cubes c!
and ¢? are chosen (as described in Section II-C) as a par-

tition of a heuristically selected splitting varible, and then
F. and F,. are each checked recursively for tautology.
The function is a tautology only if each of the two cofac-
tors is a tautology.

B. cOMPLEMENT

COMPLEMENT computes the complement of a multiple-
valued function. In the Espresso-MV algorithms, the
complement of a function is used by the EXPAND proce-
dure. A procedure for generating the complement of a
function is also a useful tool for manipulating multiple-
valued functions.

The complement of a multiple-valued function is com-
puted using the generalized Shannon expansion via the
following proposition [15, lemma 3.2].

Proposition 14: Let ¢t i =1---m, be a set of cubes
satisfying U”_ ¢’ = land¢' N ¢/ = @ fori # j. Then,

¢ N I_’C,.
1

nC s

F=
In Espresso-MV, a splitting variable X; and a partition
the values of the variable into two halves ¢' and ¢ are
selected. Half of the values of X; are placed in ¢' and the
remaining half are placed in ¢?. The complement of the
function is computed recursively for each of F. and F,.,

- and the complement of Fis (¢' N F.) U (¢? N F,2).

1) Merging the Complement: Merging is the process
of forming the union of ¢' N F. and ¢ N F..in such a
way as to minimize the number of terms. The merge step
can be viewed as a heuristic minimization algorithm that
attempts to minimize the number of terms in the comple-
ment of the function while the complement is being com-
puted. _ _

If the same cube d appears in both F. and F,:, then the
relation

(Ndyu(c*nd)y=('Uc?)Nd=d

replaces the two cubes with the single cube d.
An expansion of the splitting variable is also attempted
using one of two algorithms:

Algorithm 1:

Check, for each cube d € F.., whether it is contained
by F,.. If so, use the relation

(' Nd)yU(c*NF.)=((c'U cz)'n d)
U (¢ N F.)

to raise the values of ¢ ind (i.e., replace c'_ﬂ d with
supercube (¢' N d, ¢?).) The condition d C F.. can be
checked in three ways.

a) Check if any single cube of F, contains d: if so,
d C Fa.

b) Determine if F.2 is a tautology.

¢) Check if (¢! U ¢?) N d does not intersect F; is
this intersection is empty, then d C F..

736

The conditions of Algorithm 1(b) and 1(c) are stronger
then the single-cube containment of Algorithm 1(a) be-
cause they detect multiple-cube containment.

Algorithm 2:

Check, for each cube d € 1—7(,1, whether d is distance-1
from a cube f € F. If so, the parts of f which are a 1
may not be raised in d (i.e., they must remain 0). Any
parts of d which are not forced to be 0 by some cube f
€ F may be raised.

Both of these algorithms are symmetric in that the pro-
cedure is repeated for the cubes d € F,..

Remark I: Because the cubes have been sorted in order
to remove the duplicates between the two lists, the com-
plexity of Algorithm 1(a) can be reduced by roughly a
factor of 2 by checking only the cubes of F.: which are
larger than d to see if they contain d.

Remark 2: Algorithms 1(a) and 1(b) either raise all of
the parts in the splitting variable or none of the parts.
However, Algorithm 2 allows individual parts of a cube
to be raised, and is able to determine precisely which parts
can be raised and which cannot be raised. In fact, if the
cubes of ¢! N F.iand ¢ N F.. are prime inmplicants, then
the cover resulting from applying Algorithm 2 will consist
of prime implicants. Because each leaf of the recursion in
COMPLEMENT produces only prime implicants, we have,
by induction, that the final cover returned by COMPLE-
MENT will consist of only prime implicants when using
Algorithm 2.

Algorithm 2 is a more powerful merging algorithm and
will, in general, yield a smaller representation of the com-
plement than either Algorithm 1(a) or Algorithm 1(b).
Assuming that the complexity of Algorithm 1(a) is ap-
proximately 0.5| F.. || F,>| and that of Algorithm 2 is ap-
proximately (| F.| + | F.2|) | |, the following heuristic
is used. If

(IFs] + |F.:

JIF| < ([Fa] Fal)

use Algorithm 2 to raise the parts in the splitting variable;
otherwise, use Algorithm 1(a). Algorithm 2 is favored (by
a factor of two) because it has the possibility of generating
a smaller representation of the complement (which im-
proves the performance of the EXPAND procedure).

Note that, as mentioned in Section II-E, if the same
variable is selected for splitting until all cubes in the cover
are independent of that variable, then the leaves will be
the functions Fyy, Fx(1y - * - Fx(n..;. Hence, in this case,
the technique of splitting the parts in half provides a nat-
ural binary tree for performing the merge operation.

2) Special Cases: As usual, a set of special cases are
checked before the function is split by the generalized
Shannon cofactor. In the case of COMPLEMENT, the special
cases are as follows.

1) If there are no cubes in the cover (i.e., the cover is
empty), then the complement is the universe; if there
is a row of all 1’s in the cover (i.e., the cover con-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5. SEPTEMBER 1987

tains a universal cube), then the complement is
empty.

2) If there is only a single cube in the cover, compute
the complement using De Morgan’s law as de-
scribed in Section 1I.

3) If the matrix of F contains a column of all 0’s, form
the cube ¢ which has a 0 in a column which is all
0’s, and a 1 in all other positions. Then, F = ¢ N
F.,and F = ¢ U F.. Hence, recursively compute
the complement of F, and return the union of F, and
the complement of the single cube c.

4) If all cubes of F depend on only a single variable,
then the function is a tautology (because there were
no columns of 0’s detected in the previous step, the
function must be a tautology if it depends on only a
single variable) and hence the complement is empty.

If none of these special cases apply, the function is split
into two pieces, and the complement is computed recur-
sively.

C. EXPAND

The ExPAND procedure examines each cube ¢ € F (where
F is a cover of the ON-set of the binary function f) and
replaces ¢ with a prime implicant with ¢ € d. If ¢ is not
prime, then d covers more minterms of F than ¢ does and
hence it is said that ¢ has expanded into a larger cube. (If
¢ is known to be prime from a previous expansion, then
¢ is not processed in ExpPAND.) Note that each c is replaced
with a single prime implicant d (out of all of the possible
prime implicants which cover ¢) so that the number of
cubes in the cover can never increase during the EXPAND
step.

The goal for the minimization program is to minimize
the number of cubes in F. There are several criteria that
can be used in the EXPAND procedure to achieve this goal.
For example, Espresso-1I defines an optimally expanded
prime as a prime d for which

a) d covers the largest number of cubes of F, and

b) among all cubes d which cover the same number of
cubes of F, d covers the largest number of minterms
of F.

Conditton (a) is a local statement by the minimization
objective, and condition (b) expresses the condition that
ties be broken by covering as many minterms of F as pos-
sible.

Espresso-MV expends considerable effort in choosing
a good set of parts to raise so as to achieve the minimi-
zation objective (which is to reduce the number of cubes
in the cover). In particular, Espresso-MV first guarantees
that if it is possible for the cardinality of F to decrease in
a single EXPAND operation, that it will. In addition, the
EXPAND operation is able to consider all of the prime im-
plicants which cover a cube in order to select heuristically
a single prime implicant.

1) ExpAND Cube Ordering: The order in which the
cubes are expanded can affect the final result of the ex-

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION

pansion. The cube-order dependency comes about in the
heuristics which are used to expand a cube into a prime.
The same ordering as used in MINI is used [20, ORDF1-
ORDF3] in Espresso-MV (namely, to compute a weight
for each cube as the inner product of the cube with the
column sums of F, and then sort the cubes into ascending
order based on the weights). This heuristic attempts to
expand cubes first which are unlikely to be covered by
other cubes.

Experiments were performed with a random choice of
cube order, and the quality of the final results (from the
complete run of Espresso-MV) were identical; however,
the same results were achieved in fewer iterations using
the heuristic cube ordering.

2) Blocking Matrix and Covering Matrix: Espresso-II
[3] introduced the concepts of the blocking matrix and the
covering matrix, and then used these matrices to guide the
expansion of a cube into a prime. The blocking matrix is
derived from the OFF-set by ensuring that each cube of
the OFF-set has only a single | in the output part. (This
operation is referred to as unraveling the output part.) The
covering matrix is derived from the ON-set.

Espresso-MV views the problem differently and uses
the ON-set and OFF-set directly to guide the expansion
of a cube into a prime. The actual operations performed
are very similar in the case of multiple-output functions.
Thus, the technique used by Espresso-MV provides a dif-
ferent way of explaining the techniques used by Espresso-
IL

The blocking matrix is less convenient for the case of
multiple-valued functions because the size of the blocking
matrix can become very large. A direct extension of the
blocking matrix to multiple-valued functions requires un-
raveling each multiple-valued variable (i.e., each cube in
the OFF-set which depends on variable X; to have only a
single 1 in the literal of X;). The number of rows in the
blocking matrix can become very large—a single cube r
of the OFF-set of an n-variable function expands into

n

I ||

rilif!u’ll
rows in the blocking matrix (where | r; | equals the num-
ber of 1’s in variable i of the cube r). This is clearly un-
acceptable, so we want to avoid forming the blocking ma-
trix in this form if possible. We present here a new
explanation of why it was necessary for Espresso-II to
unravel the OFF-set to form the blocking matrix, and
show how Espresso-MV can avoid doing so until the very
last step of the expansion process (and, in many cases,
completely avoid the unraveling of the multiple-valued
variables).

3) Expansion of a Single Cube: Recall that the Bool-
ean function being minimized is f, and a cover of the ON-
set of the function is given by F. We assume we have
access to a cover of the OFF-set of the function (which
we call R), and that we are given a single cube ¢ € F
which we wish to expand. Initially, each part of the cube

737

¢ which is not already a 1 belongs to the set of free parts
which is denoted by free. As the algorithm progresses,
parts are removed from free, and some of these parts are
added to ¢. The algorithm terminates when free is empty,
and at that point ¢ is a prime cube. As a matter of termi-
nology, when a part of ¢ is changed from a 0 into a 1, the
part is said to be raised or expanded.

Before proceeding, we first define two terms.

Definition 4: At each step of the algorithm, the over-
expanded cube of ¢ is the cube which results from raising
simultaneously all parts of free. Initially, the over-ex-
panded cube is the universe.

Definition 5: For any f € F, the expansion of ¢ which
covers fis the smallest cube containing both fand ¢ (i.e.,
supercube (c, f)); fis said to be feasibly covered if su-
percube(c, f) is an implicant of F.

Of course, all feasibly covered cubes of F are covered
by the over-expanded cube of ¢, but it is possible that
some cube which is covered by the over-expanded cube
of ¢ may not be feasibly covered (precisely because cov-
ering the cube would force ¢ to intersect R). Also, ini-
tially, all parts are free so that the over-expanded cube of
c is the universe. However, as parts are removed from
free, the over-expanded cube changes, reflecting that only
the parts of free can be raised.

Expansion Algorithm Overview:

1) Determination of essential parts: Determine which
parts can never be raised and remove these from free; de-
termine which parts can always be raised and raise these
parts of ¢. Exactly how this is done will be explained later.

2) Detection of feasibly covered cubes: If there are fea-
sibly covered cubes in F, expand ¢ to cover one of the
feasibly covered cubes by adding parts to ¢ and removing
these parts from free. After each such expansion, check
again for parts which can never be raised, and parts which
can always be raised. Repeat step 2 as long as there are
feasibly covered cubes in F.

3) Expansion guided by the over-expanded cube: While
there are cubes which are still covered by the over-ex-
panded cube of ¢, expand ¢ in a single part so as to over-
lap a maximum number of the cubes which are covered
by the over-expanded cube. After expanding this part,
again remove parts which can never be raised, and parts
which can always be raised. Repeat step 3 as long as there
are cubes of F covered by the over-expanded cube of c.

4) Finding the largest prime implicant covering the
cube: When there are no cubes covered by the over-ex-
panded cube of ¢, map the problem of maximal expansion
of ¢ into a covering problem whereby each minimal cover
of the covering problem corresponds to a prime implicant
which covers c. Choose, using some heuristic technique,
a small (not necessarily minimum) cover for the covering
problem. This minimal cover corresponds to a large (not
necessarily maximally large) prime implicant.

1) Determination of Essential Parts: This step helps
us identify parts which can always be raised and parts

738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5. SEPTEMBER 1987

which can never be raised and helps us reduce F and R to
just those cubes which will influence the expansion of c.
The goal is to reduce the complexity of the subsequent
steps.

Proposition 15: If any cube ¢ € R is distance 1 from c,
then all of the parts of the conflicting variable which are
1 in e may never be raised in ¢, and any part which does
not appear in any cube r € R may always be raised in c.

Proposition 16: 1f any cube r € R is distance 1 or more
from the over-expanded cube of ¢, then the cube r can be
removed from R while still guaranteeing that the expan-
sion of ¢ is an implicant of f. If any cube f € F is not
covered by the over-expanded cube of ¢, then fis not cov-
ered by any prime containing ¢; hence, F can be reduced.

Therefore, Proposition 15 is used to identify parts which
can never be raised and Proposition 16 is used to reduce
the number of cubes of F and R which have to be consid-
ered in subsequent steps. Note that any cube which is used
by Proposition 15 to force parts out of the set free always
satisfies the condition of Proposition 16 (after the parts
are removed from the free set), and hence is immediately
removed from further consideration.

After applying these two propositions, every cube of R
is distance 2 or more from ¢, and every cube of R inter-
sects the over-expanded cube of c¢. This is the equivalent
to the statement that any single part of free can be raised
in isolation without ¢ intersecting R, and that it is not pos-
sible to raise simultaneously all the parts of free.

2) Detection of Feasibly Covered Cubes: A cube is
feasibly covered if ¢ can be expanded so as to cover the
cube. A test to determine whether a cube can be feasibly
covered is given by the next proposition.

Proposition 17: A cube f € F is feasibly covered if, and
only if, supercube (f, ¢) is distance 1 or more from each
cube of R.

Thus, each cube remaining in the cover F is tested for
being feasibly covered (i.e., only the cubes of F covered
by the over-expanded cube of ¢ are checked for being fea-
sibly covered.) To choose among the feasibly covered
cubes, the feasibly covered cube which also covers the
most other feasibly covered cubes is chosen. Hence, c is
expanded so as to cover as many other feasibly covered
cubes as possible.

After selecting a feasibly covered cube fto be covered,
c is replaced with supercube (c, f), and parts of f are re-
moved from the free set. Step 1 is repeated to find more
essential parts, and then step 2 (this step) is repeated to
detect any more feasibly covered cubes. The algorithm
proceeds to step 3 when there are no more feasibly cov-
ered cubes.

This step allows us to guarantee that if it is possible for
some expansion of a cube ¢ to cover some other cube in
F, then the expansion will be chosen and hence reduce the
size of the cover.

3) Expansion Guided by the Over-Expanded Cube:
When there are no more feasibly covered cubes and while
there are still cubes covered by the over-expanded cube
of ¢, then we select the single part of free which occurs

in the most cubes which are covered by the over-expanded
cube of c. We are allowed to expand c¢ in this part because
the distance between ¢ and each cube of R is 2 or more.
This has the goal of forcing ¢ to overlap in as many parts
as possible other cubes of F. After adding the part to ¢
and removing it from free, repeat step 1 to detect essential
parts and continue with step 3 if there are cubes still cov-
ered by the over-expanded cube of c.

This is similar to the static ordering used by MINI as
the main heuristic for expanding a cube into a prime im-
plicant. The difference is that after selecting a single part
to add to ¢, Espresso-MYV follows all consequences of that
selection (by finding parts which can never be raised, and
parts which can always be raised after raising the single
part). Then the new set of cubes which are covered by the
over-expanded cube are found, and another single part is
selected. Thus, in some senses, Espresso-MV defines a
dynamic ordering which is recomputed after each selec-
tion of a part to raise. Further, this heuristic is performed
only while there are no cubes which can be completely
covered, but while there are still cubes covered by the
over-expanded cube of c.

One other important difference is that, with the strategy
of MINI, it is not possible to reach all prime implicants
containing ¢, even if all possible permutations of vari-
ables were to be considered. This is because MINI
chooses to pick a single variable, and then expand maxi-
mally all of the parts in that variable before continuing to
the next variable. Espresso-MYV instead chooses a single
part of a single variable to expand and is then free to
choose another part of a different variable. Therefore, Es-
presso-MV is able to reach all possible primes which cover
the original cube.

4) Expansion via the Minimum Covering Problem: In
order for ¢ to expand into an implicant of F, we must have
that, after expanding, ¢ be distance 1 or more from each
r'eR. Let cj‘-' be a Boolean variable representing the con-
dition that part k of variable j of an expansion of ¢ be set
to 1. Also, let (7'),A have the value of 1 if part k of vari-
able j of the cube r'is a 1. For any variable X;, we express
the condition that ' and an expansion of ¢ be disjoint in
X; as

Gy = (r') e U (r)efU - U (7Y et =0

J

or, equivalently,

J

pi—1 ks
Glj = ,\,L;JO (r').Cj =0

or, using De Morgan’s law, as

P 1

G,= N (7)) +2) = 1.

We stress that the values of r' written as (r')f‘ are known
values of either O or 1, and that the variables in the above
equations are cjA _

The quantities r' and ¢ are disjoint if they are disjoint

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 739

for some variable j. This condition is written as

UG

j=1

Finally, the expansion of ¢ is disjoint from R only if it is
disjoint from all cubes r' € R, and we express this as
(R
I=NH=1.

i=1

We have a Boolean expression which expresses the con-

dition that an assignment of {0, 1} to the variables c¥

J
results in an implicant of f. We write this in full as

IR n pj— "
r=nUN (7 + 2.
i=1j=1 k=0

An implicant of the function I corresponds to an as-
signment of {0, 1} to the variables ¢} which results in an
implicant of f. Further, a prime implicant of / corresponds
to an assignment of (0, 1) to the variables cj’-‘ which is
maximal in the sense that no other variable which is 0 can
be made a 1; therefore, a prime implicant of I corresponds
to a prime implicant of f.

Proposition 18: I is a binary-valued unate function in
the variables c/‘

Proof: By construction, we see that I contains only
the complements of the variables cj’-‘, and is therefore
unate.

Proposition 19: The prime implicants of / may be ob-
tained by expanding the product-of-sum-of-product form
into a sum-of-products form, and then performing single-
cube containment on the resulting cover.

Proof: By [3, proposition 3.3.7], we know that a
unate, single-cube contained minimal cover is in fact the
set of all primes of the unate function defined by the cover.

Thus, if all cf are considered variables, Proposition 19
outlines a procedure for generating all of the prime im-
plicants of a function f given a cover for its complement.
If, instead, we set the values of cj‘f to be 1 in those places
where a cube ¢ already has a 1 (and leave the variables
for cj’-‘ where ¢ has a 0). Proposition 19 outlines a proce-
dure for generating all of the prime implicants which cover
a cube c.

We can also modify the expression for I using De Mor-
gan’s theorem to get the equivalent form

A0 ().

Hence, we can directly write a sum-of-products expres-
sion for I and use COMPLEMENT to generate the sum-of-
products form for /. We can identify the blocking matrix
as proposed by Espresso-1I as a representation of the
Boolean function I. The concept of unraveling the output
part of each cube of the OFF-set in order to create the
blocking matrix is equivalent to the expansion of the inner
product-of-sums in the expression for I to yield a sum-of-
product form for 1.

Thus, we have two techniques for generating all of the
prime implicants of a function: one which involves re-
peated intersection of sum-of-products forms and one
which involves the complementation of a sum-of-products
form. We note here that the first formulation is equivalent
to the technique outlined by Roth [21] for generating all
of the prime implicants of a function.

We use the form of I to discuss now how to generate
the largest prime implicant which covers a cube c. Take
the cover R and unravel each variable for which there is
more than 1 part in the variable. (As mentioned earlier,
this is equivalent to multiplying out the product-of-sums
subexpression in I to get a single sum-of-products repre-
sentation of 1.) Let us call the resulting binary matrix R’'.
A binary row vector x is called a cover for R' if R’ - x7
> (1,1, -+, D"

Proposition 20: Each minimal cover of R’ corresponds
to a prime cube in the complement of 7, and a minimum
cover of R’ corresponds to a maximum prime implicant in
the complement of I.

Hence, we can apply a heuristic technique (to be ex-
plained in more detail in Section IV) to compute from R’
the largest prime implicant which contains c.

D. IRREDUNDANT

The IRREDUNDANT procedure extracts from a cover a
minimal subset which is still sufficient to cover the same
function. As before, we assume we have a cover F of the
ON-set of the function f, and a cover D of the DC-set of
the function f.

The cover F is first split into the relatively essential set
E, and the relatively redundant set R,:

E ={ceFlcg (FUD -)}
R, = {ceF‘c(_:(FUD—C)}.

The set E, is relatively essential in the sense that ail of the
cubes of E, must be retained in any subcover of F to main-
tain a cover of the same function.

The prime implicants of R, are further divided into the
totally redundant set R, and the partially redundant set
R >

p-

R, {ceR,Icg(E,UD)}

R,={ceR|c g (E UD)}.

p

The cubes of R, are totally redundant because they are
completely covered by the relatively essential primes. The
cubes of R, are relatively redundant because, although any
single cube of R, can be removed, it is not possible to
simultaneously remove all of the cubes of R, while still
maintaining a cover of f.

The cubes in R, cause the most difficulty in trying to
extract a minimum subcover of F. Consider the following
simple irredundant algorithm used by many heuristic min-
imizers: for each cube ¢ € F test whether F U D — ¢
contains c. If so, c¢ is redundant and is removed from F.
Any time a cube of E, is tested, the cube cannot be re-

740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5, SEPTEMBER 1987

moved. Any time a cube of R, is tested, the cube can al-
ways be removed (regardless of the order in which the
cubes are processed). However, when a cube of R, is
tested with this simple algorithm, the cube may or may
not be removed, depending on the order in which the cubes
are tested. With this simple algorithm, at least one mem-
ber of R,, will be removed, but there is no guarantee that
a maximum subset of R, will be discarded.

The muiltiple-valued tautology algorithm described ear-
lier is used to split F into E,, R,, and Rp.

The Espresso-MV techniques for extracting a minimal
subset of primes from R, is now described. The key in the
algorithm is a simple modification of the multiple-valued
tautology algorithm. Rather than testing whether the func-
tion is a tautology, the subsets of cubes which would have
to be removed to prevent the function from becoming a
tautology are determined.

Consider forming H = E, U R, — ¢, and using the
multiple-valued tautology algorithm to determine if H. is
a tautology. H. is a tautology because every cube of R, is
covered by the union of E, and the remaining cubes of R,,.
When we get to a leaf in the tautology algorithm (i.e.,
when we are able to determine that the function is a tau-
tology), we examine the cubes which are in the cover at
this leaf. If there is a cube from E, (or D) which is the
universe (in this leaf), then it is not possible to avoid the
function being a tautology in this leaf. Otherwise, all of
the cubes of R, which are the universe (in this leaf) must
be removed in order to prevent this leaf becoming a tau-
tology. In terms of determining how a cover covers the
cube, this is equivalent to saying the cover will fail to
cover the cube if and only if all of the cubes of R, which
are universal in this leaf are discarded.

In this way, a binary matrix is formed with a cube of
R, associated with each column. At each leaf which is a
tautology (and for which no cube from E, is the universal
cube), we add a row to our Boolean matrix with a | for
each column where (R,,)i is universal. A minimal cover
of this Boolean matrix corresponds to a minimal subset of
the primes of R, which must be retained in the cover for
- The heuristic covering algorithm outlined in Section IV
will be used to select a good minimal cover of the cov-
ering matrix.

The algorithm proceeds by forming H, for each c € R,,
and calling a modified version of the TauToLOGY proce-
dure called FIND__TAUTOLOGY. FIND__ TAUTOLOGY returns
the binary matrix described above. Note that after deter-
mining how ¢ can be covered, ¢ can be moved to the set
E,, thus improving the performance of the algorithm (be-
cause we now know how all of the minterms of ¢ can be
covered by selecting primes from R,,).

We can relate the binary matrix formed in this way to
the prime implicant table of the Quine-McCluskey algo-
rithm for Boolean minimization. By starting with the set
of all prime implicants, the binary matrix created is a re-
duced form of the prime implicant table; rather than each
row of the matrix corresponding to a minterm of the func-
tion, each row corresponds to a collection of minterms all

of which are covered by the same set of prime implicants.
The prime implicant table is further reduced because the
set of essential primes (E,) and the set of dominated prime
implicants (K,) have been detected and removed.

In practice, the set R, has been observed to be small.
Because the relatively essential and totally redundant sets
are first identified, there is little overhead in this algo-
rithm (compared to the simple IRREDUNDANT mentioned
earlier). However, when there are partially redundant
cubes, there is a much better chance of selecting a smaller
subset of the partially redundant primes.

This formulation of the IRREDUNDANT algorithm, in-
cluding the formation of the prime implicant table and the
algorithm for finding a minimum cover for the prime im-
plicant table, will be the basis for the exact minimization
algorithm described in Section IV.

E. Essential

Essential primes are primes implicants that cover a
minterm not covered by any other prime implicant, and
hence must be in any cover for the function. There are
efficient methods to detect those prime implicants in a
cover which are essential. These essential prime impli-
cants can be removed from the function before Espresso-
MYV iterates over the cover, thus providing fewer cubes
which need to be processed in the inner loop.

The main theorem used for detecting which primes in a
cover are essential is due to Sasao [4, Theorem A.1, 22]:

Theorem I: Let F be written as G U p, where p is a
prime implicant of the function f, and G and p are disjoint.
Then, p is an essential prime implicant of f if, and only
if, p is not covered by consensus (G, p).

The theorem can be understood by considering the fol-
lowing explanation: Given a ¢ € G, the distance between
c and p is at least 1. If the distance is exactly 1, then the
consensus of ¢ and p is a cube with minterms in both ¢
and p. Hence, every minterm of p covered by consensus
(¢, p) is covered by another prime implicant different from
p. (That is, a prime implicant which covers consensus (c,
p) covers all of the minterms of p) consensus (¢, p)
and is different from p because it contains minterms of ¢.)
Continuing in this manner for all cubes of G, every min-
term of p is covered by two or more prime implicants if
and only if every minterm is covered by some cube in
consensus (G, p). ‘

This theorem provides a simple test for detecting essen-
tial prime implicants in any cover:

Proposition 21: Given a cover F for ON-set, a cover D
for the DC-set of a multiple-valued function, and a prime
implicant p € F, form

H = consensus (((F U D)#p). p).

Here, p is an essential prime implicant if and only if p
Z HU D.

Proof: p is to be tested as an essential prime of the
function F U D. Set G = (F U D)#p and then F U D
= G U p with & and p disjoint. Hence, Theorem 1 ap-

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 741

plies and p is essential if, and only if, all of the care min-
terms of p are not covered by H. n

Remark: The condition that all of the care minterms of
p are not covered by H is tested by checking if (H U D),
is a tautology. Hence, p is an esential prime implicant if,
and only if (H U D), is not a tautology.

A potential problem with this procedure is that H may
contain a large number of cubes (but no more than n|F
U DJ). In practice, the performance of the tautology al-
gorithm depends strongly on the number of cubes in the
function being tested for tautology.

For each cube of c € F U D, we review here the pro-
cedure for generating the cubes of consensus (c#p, p).

1) If distance (c, p) = 2, then cfp is ¢ and consensus
(¢, p) = &. Hence, no cubes are generated for H. Like-
wise, if ¢ € p, then c#p is empty, and no cubes are gen-
erated.

2) If distance (¢, p) = 1, then c#p equals ¢, and a
single cube results from consensus (¢, p). Hence, a single
cube is generated for H.

3) If distance (¢, p) = 0, the sharp-product c#p gen-
erates one cube for every variable X; satisfying ¢; € p;.
The cube associated with such an X; is
gnNp ifi=]

(etp), = | o

Each of these cubes is distance 1 from ¢, and hence gen-
erates a cube after the consensus operation according to

consensus ((c#p), p);
¢ N p; ifi # j.

(2)
Thus, when p and c intersect, as many as n cubes may be
generated for H (where #n is the number of variables of ¢).

The number of cubes generated in the case where p and
¢ intersect can be reduced by not generating extraneous
cubes which result from the binary-valued variables (i.e.,
variables with two parts). Assume that ¢ € p, and con-
sider a cube d € H which results from a binary-valued
variable X;. This cube will necessarily have d; = 11, and
d; = ¢; N p; forj # i. However, p; cannot be 11 (it must
either 10 or 01 to satisfy ¢; € p;). Hencep U dand € ¢
N p. Thus, with respect to Proposition 21, the single cube
¢ N pis sufficient to replace all of the cubes which result
from considering each binary-valued variables.

This result can be improved by noticing that any cube
which results from a multiple-valued variable (according
to equation (2)) contains ¢ N p; hence it is not necessary
to consider the binary-value variables if any multiple-val-
ued variable generates a cube for H.

Hence, to summarize, if ¢ and p intersect (but ¢ € p),
a single cube is generated for each multiple-valued vari-
able for which ¢; € p;. Then, if no cubes have been gen-
erated, the single cube ¢ M p is generated.

The TauTOLOGY procedure outlined in the previous sec-
tion is used to determine whether the resulting cover does
indeed cover the cube c. If it does, then the prime c is
nonessential. If it fails to cover the cube c, then the prime
¢ is essential.

F. REDUCE

REDUCE transforms an irredundant cover of prime im-
plicants into a new cover by replacing each prime impli-
cant, where possible, with a smaller, nonprime implicant
contained in the prime implicant. An irredundant, prime
cover is a local minimum for the cost function, and RE-
DUCE moves us away from the local minimum. The hope
is that the subsequent ExpaND will determine a better set
of prime implicants.

The main component of REDUCE (and both rLastT__
Gasp__and SUPER__GASP) involves the computation of the
maximal reduction of a cube with respect to a cover:

Definition 6: The maximal reduction of a cube ¢ with
respect to a cover F is the smallest cube contained in ¢
that can replace ¢ in F without changing the function re-
alized. The maximal reduction of a cube ¢ is denoted as
c.

As described in MINI, the maximal reduction of a cube
¢ with respect to a cover F and a don’t-care cover D equals
the supercube of c#(F U D — ¢). However, computing
the reduction in this way is very inefficient.

Espresso-1I uses the identify ¢ = ¢ N supercube
((F U D — ¢),.) to compute the maximal reduction of a
cube. Hence, the operation of finding the maximal reduc-
tion of a cube can be reduced to finding the smallest cube
which contains the complement of a cover. This operation
is readily computed recursively using the generalized
Shannon cofactor.

1) RepUCE Cube Ordering: The reduction of a single
cube depends on the form of the cover for the function.
In particular, the order in which the cubes are processed
for reduction affects the results of the REDUCE operation.
The cubes which are reduced first will tend to reduce to
smaller cubes, thus possibly preventing cubes which fol-
low from reducing as much as they might have.

Experiments were performed with several ordering
strategies (including the heuristic ordering of MINI [20]
and random orderings). The solution returned by a single
execution of REDUCE would vary, but did not favor any
particular ordering. Just as in the case of cube ordering
for EXPAND, the final result returned by Espresso-MV ap-
peared to be largely independent of the actual ordering
used. Therefore, the simple heuristic ordering of MINI
was used to order the cubes. An important consideration
is the LasT__casp heuristic of Espresso which performs
the reduction in a cube-independent manner.

2) Computing the Supercube of the Complement: The
generalized Shannon cofactor is used to compute the su-
percube of the complement (i.e., the smallest cube con-
taining the complement) of a function according to the
two propositions that follow.

Proposition 22: If a set of cubes di=1-"

< m, sat-

742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

isfies U™, ¢; = land ¢ N ¢/ = @ fori # j, then

i=

supercube (F) = supercube<U dn supercube(ﬁ.,-)).
Proof: Using Proposition 3,
F=UCdNF,

which shows that

supercube (F) = supercube< Udn I—'"L.,->.
i=1
Given that supercube (¢! N F.) = ¢ N supercube (F.),
the proposition is proven. |
This recursion naturally terminates when F. becomes a
single cube where the following test is applied.
Proposition 23: Given a cube ¢,

supercube (T)
%) if ¢ depends on no variables
=1{C if ¢ depends on one variable
universe if ¢ depends on two or more variables.

Remark: If ¢ depends only on the variable X;, then ¢ is

a single cube resulting from the bitwise complement of ¢;.
Proof: The proof is trivial if one considers comput-

ing the complement of a cube using De Morgan’s law. If
the cube depends on more than two variables, then the
complement contains more than two cubes. Each of these
cubes depends on only a single variable (with the remain-
ing literals all full); hence the supercube of these cubes is
the universe. If the cube depends on only a single vari-
able, there is only one cube in the complement. Finally,
if the cube is the universe, the complement is empty.

However, there is also the following, more powerful
result.

Proposition 13: If F is a weakly unate cover and F'
represents the ith cube in the cover, then

supercube (F) = N ,l-ikl supercube (F').

Thus, if the cover is weakly unate, this result is applied
to determine the supercube of the complement of a cover.
Further, only the cubes of the weakly unate cover which
depend on a single variable need be considered (assuming
the cover does not contain a universal cube), because the
supercube of the complement of any cube which depends
on two or more variables is the universe and hence does
not affect the intersection.

There are two other results (easily derived from De
Morgan’s law) which can be useful in reducing the amount
of work necessary to compute the supercube of the com-
plement of a function.

Proposition 25: If the cover F contains a column of
0’s, form the cube ¢ which has a 0 in each position, where
F has a column of all 0’s, and 1 elsewhere. Then, from
the identity F = ¢ N F,, it is seen that

supercube (F)
= supercube (supercube (F:), supercube (¢)).

Hence, if there is a column of 0’s in the matrix for F,
this proposition is applied to compute supercube (F). In
particular, if F has a column of 0’s in two separate vari-
ables, then it is immediately determined that super-
cube (F) = universe.

Proposition 26: If F can be factored into the form F =
A U B, where A and B are over disjoint variable sets, then

supercube (F) = supercube(A) N supercube(B).

Detecting such a partition of H corresponds to finding
a row and column permutation resulting in the form

Al

1| B

where 1 represents an appropriately sized block of ali 1’s
(and the division does not split a variable between the two
halves). As in the case of tautology, such a partition is
easily determined with a simple greedy strategy. In prac-
tice, such a decomposition may not be common, and
should only be checked for when the matrix contains many
I’s.

G. LAST _GasPand SUPER__GASP

The basic iteration of Espresso-II (REDUCE, EXPAND, IR-
REDUNDANT) faces the following obstacles: (1) The Ex-
PAND step uses heuristics to choose one prime implicant
(from all of the prime implicants which cover a cube) to
replace each cube in the cover; and (2) the REDUCE algo-
rithm is cube-order dependent so that cubes which are re-
duced first tend to reduce more than cubes which are re-
duced later. Espresso-1I uses the LAST__Gasp algorithm
(and Espresso-MV adds the suPER__Gasp algorithm) for
improving the basic minimization algorithm. These are
described in this section.

1) rast__casp: This algorithm computes the maximal
reduction of every cube of the ON-set cover F. (If a cube
cannot be reduced it is ignored.) The ExpaND algorithm
is used to expand each cube, even if it becomes covered
by a previous cube expanding. As shown in [3], those
cubes that succeed in covering some other reduced cube
are potentially useful primes for reducing the cardinality
of the cover. In fact, if no maximally reduced cube can
expand to cover another maximally reduced cube, then
there is no way to improve the current cover without re-
moving or replacing two or more primes simultaneously.
In this sense, the current solution is a deep local mini-
mum. The new primes which do succeed in covering two
maximally reduced cubes are added to the cover F, and
the IRREDUNDANT procedure then extracts a minimal sub-
cover. Because the number of reduced cubes which can
expand to cover other reduced cubes tends to be very
small, this technique is applicable to a wide range of
problems.

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 743

2) suPER__Gasp: Espresso-MV also has an optional
routine SUPER__GasP. This algorithm computes the max-
imal reduction of each cube of the cover F and then gen-
erates all of the prime implicants which cover the cube
(rather than only a single prime implicant which covers
the cube). In order to generate all of the prime implicants
which cover a cube, the algorithm given in subsection
HI-C (expaND) is used. By sorting this set of prime im-
plicants, duplicate prime implicants are easily detected.
IRREDUNDANT then extracts a minimal subcover from the
remaining set of prime implicants. Note that if IRREDUN-
DANT returns the minimum number of cubes necessary to
implement the function, then no single iteration of rREe-
DUCE, EXPAND, and IRREDUNDANT can do any better from
the same starting point.

Of course, the process of generating all of the primes
which cover the maximally reduced cubes may greatly ex-
pand the size of the cover. (In particular, if the original
cover were all minterms, the generation of all of the
primes covering each minterm would be an inefficient way
to generate all of the primes for the function.) The pro-
gram Espresso-MYV is careful to terminate the generation
of all of the primes in the case where there are too many
primes, in which case the LAST__Gasp strategy is used in-
stead. Experimental results show that this option is effi-
cient for a wide range of problems, and occasionally re-
sults in a better solution.

H. MAKE __SPARSE

When the outer loop of the Espresso-MV algorithm ter-
minates, the solution consists of an irredundant cover of
prime implicants which represents the original function.
However, depending on the final implementation of the
multiple-valued function, we may desire a final cover
which does not necessarily consist of prime implicants.
One goal is to reduce the number of transistors needed to
implement each literal of a cube. This depends on the
number of 0’s and 1’s in the literal, but it also depends
on the type of variable, as shown in Table I.

For example, if the function being minimized repre-
sents a two-level multiple-output PLA function, then each
0 in the cube for a binary-valued variable corresponds to
a transistor in the AND plane of the PLA, but each 1 in
the multiple-valued output variable corresponds to a tran-
sistor in the or plane of the PLA. With these observa-
tions, we define, for each variable, whether the variable
is to be a sparse variable or a dense variable. The
MAKE__SPARSE procedure then attempts to satisfy these
goals.

MAKE__SPARSE consists of two steps: LOWER__SPARSE
removes redundant parts from the sparse variables, and
RAISE__DENSE attempts to add parts to the dense variables
(which may be possible following LOWER _SPARSE be-
cause the cubes are no longer prime implicants). These
two algorithms are iterated until there is no more reduc-
tion of any sparse variable, or until there is no more ex-
pansion of any dense variable.

During the first iteration of LOWER__SPARSE and RAISE-

TABLE 1
TRANSISTORS PER LITERAL IN A PLA
Number of
Variable Type Transistors Comment

binary-valued variable count number of 0’s dense
multiple-valued variable (for a count number of 0’s dense
two-bit decoder)
multiple-valued variable (for the count number of 1’s sparse
output part)
multiple-valued variable (for the count number of 1’s sparse
input encoding problem) (unless literal is full)

__DENSE, the cardinality of the cover cannot decrease (be-
cause the cover is an irredundant, and consists of prime
implicants). However, in extreme cases, it is possible for
the cardinality to decrease in subsequent iterations. In
fact, the procedure MAKE__SPARSE can be viewed as a
complete minimization algorithm. (The pop program from
Berkeley [23] uses essentially this simple algorithm, but
without the powerful techniques for each of the basic steps
as in MAKE_ SPARSE; however, this minimization algo-
rithm is restricted in the size of the set of prime implicants
which it can explore.)

In the discussion that follows, we assume, as usual, that
F is a cover for the ON-set, D is a cover for the DC-set,
and R is a cover for the OFF-set.

1) LOWER_SPARSE—Reduce the Sparse Variables:
The goal of LOWER__SPARSE is to remove parts from the
sparse variables so as to reduce (if possible) the number
of 1’s in these variables for each cube. This procedure can
be viewed as cube reduction applied to each cube, with
the reduction retained only for the multiple-valued vari-
ables. However, this technique suffers from the same
problem as REDUCE, namely that the order in which the
cubes are processed can greatly affect the total amount of
reduction possible.

Instead, the IRREDUNDANT routine is used to select, for
a particular part, which cubes are redundant; this part is
set to O for the redundant cubes. This way the cube or-
dering problem is avoided, and the more powerful heuris-
tics of IRREDUNDANT are used to find a good reduction of
the sparse variables. '

For each value j of a sparse variable X;, define ¢} to be
the cube of X}/}. By finding an irredundant cover for (F
U D), we can determine which cubes of F can have part
j removed. If a cube does not belong to the irredundant
subcover of (F U D)., then the part in the cube is redun-
dant and can be removed. These parts are removed, and,
after all parts for a variable have been processed, the next
variable is processed.

Note that by using the IRREDUNDANT algorithm rather
than REDUCE, the order in which the cubes are examined
in part j of variable X; is immaterial. (Further, the order
in which the parts of any variable is processed is also im-
material.) But, the order in which the sparse variables are
processed does influence the reduction of variables which

744

are not processed first. Depending on the nature of the
problem being solved, an appropriate order for the vari-
‘ables is chosen.

2) raise_ DENSE—Expand the Dense Variables: As
mentioned earlier, we desire the binary-valued variables
and the variables resulting from bit-pairing be dense. After
reducing the multiple-valued variables with LOWER-
__SPARSE, the resulting set of cubes is no longer prime.
Hence, we can try to expand this set of cubes by expand-
ing only the dense parts of each cube. This is done with
a modified version of ExpanD which removes all of the
sparse parts from the free set (cf. subsection IV-D) before
finding the expansion of a cube. Hence, none of the sparse
parts will be expanded.

Interestingly, ExranD will still check for cubes which,
when limited to only the dense variables, can expand to
cover another cube. As mentioned earlier, on subsequent
iterations of MAKE__SPARSE it is possible for the cardinal-
ity of the cover to decrease. If it is possible for a cube to
be covered, EXPAND will expand the dense variables so as
to cover the cube.

IV. Exact BOOLEAN MINIMIZATION

Two methods for generating ali of the prime implicants
of a Boolean function were presented in subsection III-C
(expanD), and an algorithm for generating the prime im-
plicant table needed by an exact minimization algorithm
was presented in subsection HI-D (IRREDUNDANT). Gen-
erating the set of all prime implicants, using IRREDUN-
DANT to generate the prime implicant table, and then solv-
ing the covering problem for this table provide an
algorithm for determining the minimum solution for a
given minimization problem.

In this section, a new technique for guiding a branch
and bound solution to the covering problem is presented.
This technique is exact in that it determines the minimum
cover for a matrix. These techniques have been used to
solve many large covering problems resulting from Bool-
ean minimization problems. A new approximate algo-
rithm of polynomial complexity (based on this technique
with no backtracking), which is more practical for heuris-
tic minimization programs, is also presented. This ap-
proximate algorithm has the advantage of providing a
lower bound on the cardinality of the exact solution, and
hence can sometimes determine that the solution provided
is in fact optimum.

A. Minimum Cover Problem

Minimum Covering Problem: Given a binary mairix
A, and a cost cost { -) for each column of the matrix, find
avector x such that A - x' = (1,1, - -+,)T and £,
x;cost (i) is minimum.

The constraint 4 - x” = (1, 1, - - -, 1) can be under-
stood as saying that each row of the matrix must have a
least one 1 in some column where x has a 1. (In this case,
the row is said to be “‘covered’ by the particular *‘col-
umn’’ of x, and the goal is to cover all rows with a vector

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5. SEPTEMBER 1987

of minimum weight.) This problem is NP-hard [19] so
that any algorithm which solves the problem can be ex-
pected to have a poor worst-case complexity.

In this section, a cost function of 1 for each column of
the matrix is used to simplify the explanation. The exten-
sions of the algorithm presented here to a more general
cost function is straightforward.

B. Reducing the Size of the Covering Problem

First, we review some results which are of interest in
reducing the size of a covering problem.

1) Partitioning: If the rows and columns of matrix 4
can be permuted to yield a block structure of the form

B

where 0 represents an appropriately sized block of all ze-
ros, then a minimum cover for A can be written as the
union of a minimum cover for 4, and a minimum cover
for B.

2) Essential elements: Any row of the matrix 4 which
has only a single 1 identifies an essential column. The
solution vector x must have a 1 in the essential column in
order to cover the row singleton. After placing a 1 in the
essential column, any other rows which become covered
can be removed from consideration.

3) Row dominance: If row i of A contains another row
jof A (i.e., row i contains a 1 for all columns in which
row j has a 1}, then row i can be removed from the matrix
A without changing the minimum solution. Clearly, once
row j has been covered, then row i will automtically also
be covered; hence row i is providing redundant informa-
tion in the covering problem.

4) Column dominance: If column / of 4 contains an-
other column j of A (i.e., column i contains a 1 for all
rows in which column j contains a 1), then column j can
be removed from the matrix A without changing the min-
imum solution. Clearly, there could be no advantage to
choosing column j because choosing column i instead
would cover the same set of rows, and perhaps more.
Hence, column j is not needed for a minimum solution.

Therefore, the strategy to reduce the size of the matrix
is as follows.

1) Look for a block partitioning.

2) Use row dominance and column dominance to re-
duce the number of rows and columns in the matrix.
Note that it is only necessary to apply either trans-
formation once, and the order in which they are ap-
plied is irrelevant.

3) Identify essential elements and add them to the cov-
ering set. The rows which are now covered and the
essential columns are removed from the matrix.

4) Repeat steps 2-4 until no essential elements are de-
tected in step 3.

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 745

After using steps 1-4 to reduce the size of the matrix,
if a solution has not been reached, an element is selected
for branching. The problem is then solved recursively as-
suming the branching element is in the solution, and then
assuming the branching element is not in the solution.

The branch and bound algorithm for solving this prob-
lem is shown in Fig. 5. The routine is entered at the top
level with the matrix (4) to be covered, a current solution
(x) which is initially the empty set, a record (best) of the
best solution known to be a cover (which is initially a full
set), a lower bound (best_ possible) on the size of the
best solution (which is initially o), and an indication
level of the current level in the recursion (which is ini-
tially 0). The routine returns a set of the columns of A4
which is a minimum cover for 4.

The routines remove_ row _dominance and remove
_ column__dominance apply row and column dominance
to A to reduce its size. The routine detect essential de-
tects rows with only a single 1, and these are added to the
selected set. The function select__column applies heuris-
tics to select a column of A for branching. The function
reduce removes those rows of A which are covered by ¢
and removes the column ¢, and the function remove(A,
gq) deletes the column ¢ and A.

First a check is made for a simple partition of the cov-
ering problem. If this fails, row dominance and column
dominance are applied iteratively to reduce the size of the
covering problem, and then the essential elements are de-
tected and added to the selected set. Then, using a tech-
nique described in the next section, a lower bound is
placed on the size of the cover for A, and the search is
terminated (or bounded) if the size of the selected set ex-
ceeds the best solution possible for 4. If there are no more
rows in A, then we have reached a new best solution, and
the solution is returned. Otherwise, a column is selected
heuristically to branch on and recursively compute the so-
lution, assuming that the element is in the covering set
and then assuming that the element is not in the covering
set.

C. Use of the Maximum Independent Set

The most important feature of the above algorithm is in
the routine maximal _independent_ set. This routine
finds a maximal set of rows of A all of which are pairwise
disjoint (i.e., they do not have 1’s in the same column}.
It should be clear that the number of rows in this inde-
pendent set is a lower bound on the solution to the cov-
ering problem, because a different element must be se-
lected from each of the independent rows in order to cover
these rows. Hence, this lower bound can be used to ter-
minate the search if the size of the current solution plus
the size of the independent set is greater or equal to the
best solution seen so far. Also, the size of the independent
set at the first level of the recursion is a lower bound for
the final minimum cover. Hence, by recording this value,
the search can be terminated if a solution is found which
meets this lower bound.

The major drawback of this technique, of course, is that

bit_vecior minimum _cover(A, x. best. level)

bit _matrix A: /* the malrix to be covered */

bit__veclor x; /* 1he current solution */

bit_vector best: 7* the best solulion seen so far */

int best__pussible: /* the best solution possible */

an fevel, /¥ recursion level ¥/

if (partition{A . /7, H N /* check for block partition */

x - minimom_cover(# ,. & . D . best_possible. O);
X+ minimum_cover{H,. @ .0, best_possible, O}
return »Ux s

do |
/* reduce the number of rows and columns */
A —remove_row_dominance(A):
A~ remove_column_dominance(A4).
/* Selec) eswentials, and remove rows covered by an essential ¥/
p — detect _essential(A):
xe=xUp:
A creduce(A. p):
} while (p#@)
independent _sel « maximal_independent _set{A):
if (evel == 0) ’
best__possible + lindependent _set | ;
/% 3f current solution exceeds the best possible from here on. bound the search */
i {Vx Uindependent _set } 2 ibest 1)
return best
7% if no rows left in A, then new best solution ¥/
eise if (numrows{A) == 0)
Telurn X ;
/* Else branch on some column ¥/
else |
g < select_column(A. independent_set);
/* recur assuming ¢ belongs 1o the minimum cover */
left vminimum_cover{reduce(A . g), x Ug . best . best_ possible , level +1):
if (Heftl < lbest 1)
best = left:
if (1hest _ possible 1= | best 1)
return best:
/* recur assuming ¢ does not belong to the minimum cover */
right ~minimum_cover(remove(A , g). x, best , best__possible . level +1);
if (iright! <ibest 1)
best = right:

return best;

Fig. 5. Covering algorithm pseudocode.

the problem of finding a maximum independent set of rows
is itself an NP-hard problem. But this is of no concern.
The problem of finding a maximal independent set of rows
can be solved heuristically while still providing a correct
lower bound on the size of the final solution. (In general,
finding the maximum independent set provides the best
bound; other minimal solutions provide less precise but,
nonetheless, accurate lower bounds.) Hence, even though
this problem is itself difficult, a good heuristic algorithm
is sufficient for finding a maximal independent set of rows.

To find a large independent set of rows, a graph is con-
structed where the nodes correspond to rows in the ma-
trix, and an edge is placed between two nodes if the two
rows are disjoint. The problem is now equivalent to find-
ing a maximal clique (a maximal, completely connected
subgraph) of this graph. To solve this problem, a greedy
algorithm is used.

1) Initialize the clique to be empty (contains no nodes).

2) Pick the node of largest degree (and not already in
the current clique) and add this node to the clique.
Break ties by choosing the node which is connected
to the most other nodes of maximum degree.

3) Remove all nodes and their edges from the graph
which are not connected to the current clique.

4) Repeat steps 1 and 2 while there are still nodes in
the graph not in the current clique.

746 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5, SEPTEMBER 1987

The node of largest degree in step 2 corresponds to the
row which is disjoint with the maximum number of other
rows of the matrix. The tiebreaker attempts to preserve as
many of the remaining nodes of maximum degree as pos-
sible.

Thus, the bounding in the branch and bound algorithm
is modified by bounding the search if | maximal__inde-
pendent__set(4) U x| equals or exceeds the best known
solution (rather than waiting until |x| equals or exceeds
the best known solution). The goal is to terminate un-
profitable searches as early as possible.

There is the further difficulty that the bound provided
by the maximum independent set may not be sharp. For
example, consider the matrix

1 1 0
01 1
1 01

A maximum independent set of rows for this matrix con-
tains only a single row, but a minimum cover requires at
least two columns. The size of the maximum independent
set remains lower bound on the size of a minimum cover;
the search may just not be terminated as early as possible.

D. Choice of Branching Column

A unique element from each set of the independent set
of rows must be in the minimum solution. Once a maxi-
mal independent set of rows has been computed, the se-
lection of a branching element is limited to some element
which belongs to one of these rows. Each element of each
row is given a weight as the reciprocal of the row sum.
Then the weights are summed for each column, and the
column of maximum weight which is also in the indepen-
dent set of rows is chosen for the branching variable. This
weighting strategy gives the elements of the smaller sets
a higher weight. For example, in a set with 2 elements,
each element receives a weight of 0.5, whereas in a set
with 10 elements, each element receives a weight of 0.1.
The larger sets are thought of as ‘‘easier’” to cover, and
the smaller sets are ‘*harder’” to cover. The heuristic is to
try to force a selection from one of the smaller sets. An-
other reason for favoring choosing an element from a
smaller set (for example, a set with two elements) is to
create more essential elements at the next step of the re-
cursion.

E. Heuristic Covering Algorithm

The heuristic covering algorithm used in Espresso-MV
is based on the above algorithm for the minimum covering
problem. In order to make the running time more pre-
dictable, the algorithm is converted into a greedy algo-
rithm in which the first leaf visited is taken as the solution
and no backtracking is performed. Note that this greedy
algorithm has the property that it can compute a lower
bound on the size of a minimum cover (even though it is
not guaranteed to generate a minimum cover). (Recall that
the size of the maximal independent set of rows at the first

level of the recursion is a lower bound for the minimum
solution to the covering problem.) Hence, sometimes this
greedy algorithm is able to demonstrate that it has
achieved a minimum solution.

V. EXPERIMENTAL RESULTS

In this section we report results from an implementation
of the Espresso-MYV algorithms. At Berkeley we have col-
lected a large set of PLA’s, and these have been used to
determine the effectiveness of various minimization tech-
niques. In particular, we present a comparison with the
McBoole [24] exact minimization algorithm for the stan-
dard multiple-output minimization problem. We then pre-
sent the results of the heuristic algorithms Espresso-MV
and compare with the exact solutions when they are
known. Some examples are presented to show that Es-
presso-MV is more efficient that Espresso-IIC, even at
solving binary-valued multiple-output minimization prob-
lems. Also, as expected, Espresso-MV is much more ef-
ficient at solving multiple-valued minimization problems
than a binary-valued minimizer with a don’t-care set [3,
ch. 5]. Finally, we will describe some design examples
where multiple-valued minimization was used to optimize
PLA from actual chip designs.

A. Espresso-MV

The program Espresso-MV implements the heuristic
and exact logic minimization algorithms described ear-
lier, as well as heuristic and exhaustive algorithms for the
output phase assignment and the input variable assign-
ment problems. The program can also be used for manip-
ulating multiple-valued logic functions. Espresso-MV is
written in the C language. The exact minimization algo-
rithm contained in Espresso-MV will be referred to as Es-
presso-EXACT.

B. The PLA Test Set

When research leading to the Espresso-II algorithms
began, PLA examples were collected as a vehicle for
comparing different minimization algorithms. By the time
book Logic Minimization Algorithms for VLSI Synthesis
was written, 56 PLA examples had been collected. Fur-
ther contributions to the test set from industry and uni-
versities have expanded it to 134 functions. Of these, 111
are designated as industrial examples (implying that their
origin is either an industrial or university chip design),
and 23 are mathematical functions such as multiply and
square root.

1) Grading the Test Set by Problem Difficulty: With a
test set so large, it is a challenge to present the results
from competing algorithms in a meaningful manner. It can
be misleading to merely report the total number of cubes
and the total number of literals for each algorithm and
then attempt to draw conclusions from these totals. Hence,
the first goal is to determine the difficulty of the minimi-
zation problem for each PLA in the test set.

For each problem in the test set, the problem is classi-
fied as shown in Table II.

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION

747

TABLE 11
PLA CLASSIFICATION BY DEGREE OF DIFFICULTY

Classification

Description

trivial

noncyclic

cyclic and solved

known

cyclic and unsolved

unknown

too many primes

minimum solution consists of essential prime
implicants

the covering problem contains no cyclic
constraints

the covering problem contains cyclic
constraints and the minimum solution is

the covering problem contains cyclic
constraints but the minimum solution is

there were too many primes to be enumerated

TABLE 111
COMPARISON OF ESPRESSO-EXACT AND McBOOLE
Espresso-EXACT McBoole
Number Number Time Number Number Time
Type Total Primes Solved (s) Primes Solved (s)

trivial 9 9 9 120 9 9 271
noncyclic 56 55 54 26524 56 56 35956
cyclic and solved 42 42 41 41330 42 21 11241
cyclic and unsolved 10 7 0 10 0
too many primes 17 0 0 0 0
Totals 134 113 104 67974 117 86 47468

The classifications were determined by allowing Es-
presso-EXACT and the exact minimization algorithm of
McBoole to run for 5 hours for each example on an Apollo
DN660." (If a program had not terminated after 5 hours,
it was aborted.) By examining the results for each pro-
gram, a classification is determined for each example. If
the problem was solved by either of the two exact min-
imization algorithms, it is easy to decide whether it be-
longs to the class trivial, noncyclic, or cyclic and solved.
An example is classified as too many primes only if nei-
ther program was able to enumerate the complete set of
prime implicants, and an example is classified as cyclic
and unsolved only if neither program was able to com-
plete the covering program after having generated the set
of all prime implicants.

2) Comparison of Espresso-EXACT and McBoole:
Both programs first generate the set of all prime impli-
cants, and then attempt to find a minimum subset of the
set of all prime implicants. Further, both programs at-
tempt to solve only the simpler covering problem, namely,
to return the cover with the fewest number of cubes with-
out consideration for the number of literals. (Both pro-
grams use a ‘‘cleanup’’ step where the number of literals
is reduced once the minimum number of rows has been

"Tests show that the Apollo DN660 with version 3.12 of the C compiler
executes Espresso-MV at the same speed as a DEC VAX 11/785 with the
4.3BSD portable C compiler. All results in this section were timed on an
Apollo DN660 with 4 megabytes of memory.

achieved, but both programs solve this problem heuristi-
cally.)

Table III summarizes the comparison between Es-
presso-EXACT and McBoole for the 134 PLA’s in the
test set. Number primes is the number of examples for
which each program was able to generate all of the primes
for, number solved is the number of the examples for
which each program was able to solve, and time gives the
total time on an Apollo DN660 (in seconds) taken for
those examples which could be solved within the S-hour
time limit. Thus, for example, Espresso-MV took more
than 30 000 seconds longer than McBoole for the cate-
gory cyclic and solved, but this involved solving 20 more
problems that McBoole.

For examples with no cyclic constraints, both Espresso-
EXACT and McBoole are usually able to find the mini-
mum solution. Espresso-EXACT failed to generate the
minimum solution for two examples (al/2 and proml). For
proml, it was unable to enumerate all of the primes
(which has 9179 primes). For al2, it was able to generate
all of the primes (there were 9326 primes), but was un-
able to generate the prime implicant table.

However, when there are cyclic constraints, the cov-
ering algorithm of Espresso-EXACT is able to find the
minimum solution for many more of the PLA’s than
McBoole. Only for example intb did Espresso-EXACT
fail to solve an example with cyclic constraints that
McBoole was able to solve. (Espresso-EXACT was un-

748

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6. NO. 5. SEPTEMBER 1987

TABLE IV
ESPRESSO-MV RESULTS
Espresso-MV Espresso-MV (SUPER__GASP)
Solution Time Solution Time
Type # Cubes Lits (s) Cubes Lits (s)
trivial 9 234 1683 23 243 1683 23
noncyclic 56 3909 45712 1674 3899 45956 2372
cyclic-s 42 4092 42030 3202 4056 42577 5403
cyclic-us 10 2023 25347 2444 2010 25438 4637
too-many-primes 16 2759 35718 6751 2755 35881 7924
Totals 133 13026 150490 15094 12963 151535 20359
TABLE V
EspPrissO-EXACT vERrsus HEURISTIC MODE
Espresso-MV
Espresso-MV (SUPER __GASP) Espresso-EXACT
Solution Time Solution Time Solution Time
Type # Cubes Lits (s) Cubes Lits (s) Cubes Lits (s)

trivial 9 243 1683 23 243 1683 23 243 1683 120

noncyclic 54 3371 34060 1366 3361 34223 2030 3360 34204 26523

cyclie-s 41 3463 36163 2532 3427 36658 4279 3395 365604 41329

Totals 104 7077 71960 3920 7031 72564 6332 6998 72451 67973

ble to generate the prime implicant table for inth which

has 6522 prime implicants.) Sometimes the results are
quite dramatic. The example sqr6 was allowed to run for
58 hours with McBoole without terminating with the min-
imum solution; however, Espresso-EXACT is able to
complete this same example in only 100 seconds. Also,
Espresso-EXACT was able to determine the minimum
cover for the example mip4 (a 4-bit multiplier) in about 1
hour. Results have been published for both of these ex-
amples without presenting the minimum solution [24],
[25]. As far as we know, no previous program has suc-
cessfully completed the minimization of these two ex-
amples.

Comparing the efficiency of the prime generation al-
gorithms, we find that in 113 cases both programs could
generate all of the prime implicants, in 4 cases (b4 with
6455 primes. bcO with 6595 primes, prom! with 9326
primes, and ¢/ with 15 135 primes) McBoole was able to
generate all of the prime implicants when Espresso-EX-
ACT could not, and in 17 cases neither program was able
to generate all of the prime implicants.

Overall, there were 83 examples which both programs
could minimize. 3 examples which McBoole could mini-
mize which Espresso-EXACT could not, 21 examples
which Espresso-EXACT could minimize which McBoole
could not, and 27 examples for which neither program
was able to complete the exact minimization (20 per-
cent). For the 83 examples which both programs could
minimize, Espresso-EXACT used 38 198 seconds, and
McBoole used 28 628 seconds. The Espresso-EXACT re-
sult had 51 821 literals, and McBoole had 53 686 literals,

indicating that MAKE__spaRrsk was more eflicient at reduc-
ing the number of literals (once the minimum number of
terms was determined). Of course, for these 83 examples,
both returned the same number of prime implicants, es-
sential prime implicants. and solution cubes.

Including the time each program used on those exam-
ples for which a solution was not found, Espresso-EX-
ACT used 6.1 days of computer time and McBoole used
10.3 days of computer time.

3) Espresso-MV Results: We are thus in an excellent
position to grade the quality of the results for the heuristic
minimization algorithm Espresso-MV as we know the
minimum solution for 107 of the 134 examples in the test
set.

Table IV shows the totals for 133 examples, broken
down by category, for Espresso-MV and Espresso-MV
(superR__Gasp mode). The examples were run on an
Apollo DN660. It is evident that the SUPER__GASP option
can be expensive; sometimes, however, the extra reduc-
tion in the number of terms might be considered worth-
while. Curiously, supPER__Gasp produces more literals in
all categories while providing solutions with fewer cubes.

Next we compare the results from Espresso-MV (again,
with and without suPErR _GasP), but consider only those
examples for which Espresso-EXACT was able to gen-
erate the minimum solution. This will allow the compar-
ison of Espresso-MV in its exact and heuristic modes. The
results are shown in Table V. It is evident that Espresso-
MYV provides a high-quality result for all of the examples
for which the minimum solution can be generated—the
difference between Espresso-MV and Espresso-EXACT

RUDELL AND SANGIOVANNI-VINCENTELLI: MULTIPLE-VALUED MINIMIZATION 749

TABLE VI
USING A BINARY-VALUED MINIMIZER FOR MULTIPLE-VALUED FUNCTIONS

Binary-Valued Multiple-Valued
Example States Terms Time* Terms Time*
DK14 7 26 4.3 26 0.5
DK16 8 55 108.6 55 1.6
PCC 12 - (3600) 48 4.4
BLUE 93 - (3600) 775 1053.0

*Time in seconds measured on an IBM 3081 using the Waterloo C Com-
piler, Version 1.1 under the VM/CMS Operating System.

TABLE VII
EsPRESSO-MV VERSUS EsprRESso-1IC
Program Cubes Literals Time
Espresso-MV 5993 60322 560
Espresso-11C 6001 60578 992

*Time in seconds measured on an IBM 3081 using the
Waterloo C Compiler, Version 1.1 under the VM/CMS
Operating System.

is about 1 percent. Also, Espresso-MV is more than 15
times faster than the exact minimizer on problems that
both algorithms can solve.

C. Multiple-Valued Minimization Results

1) Multiple-Valued Minimizer versus Binary-Valued
with a DC-set: As mentioned in Section I, it is possible
to use a binary-valued minimizer to minimize a multiple-
valued function. This technique is described in detail in
[3, ch. 5].

In this section, we compare the efficiency of this tech-
nique for a small set of examples. Table VI compares Es-
presso-MV running as a multiple-valued minimizer ver-
sus translating the problem into an equivalent binary-
valued minimization problem (using Espresso-MV as the
binary-valued minimizer). The time reported for these ex-
amples was measured on an IBM 3081. The examples
DK14, DK16, PCC, and BLUE represent problems that
are being solved by the state-assignment programs KISS
[12]. They have 7, 8, 12, and 93 states, respectively.

Solving a multiple-valued minimization problem using
a binary-valued minimization tool can be inefficient. In
the two largest cases, the binary-valued minimizer was
unable to complete the solution after 1 hour on an IBM
3081. The computation did not terminate for either PCC
or BLUE within the 1-hour time limit.

2) Multiple-Output Espresso-IIC versus Espresso-
MV: Table VII compares the performance of Espresso-
MYV against the binary-valued minimizer Espresso-1I1C for
the 56 examples published in [3].

Comparing Espresso-1IC and Espresso-MV, the quality
of the results is almost identical, but the run time has been
reduced by almost 50 percent. This is a surprising result,
as one might expect the generalization of the algorithms
of multiple-valued variables to penalize the performance
for binary-valued minimization problems. However, the

algorithms are improved by the more uniform treatment
of the output part during the multiple-valued minimiza-
tion. For example, as described in subsection III-C, the
OFF-set does not need to be represented with only a sin-
gle output active in each cube. This leads to a more com-
pact representation of the OFF-set, and to a more efficient
ExPAND procedure. Likewise, Espresso-l1IC effectively
would not split against the output part until reaching a leaf
of one of the recursive procedures (e.g., TAUTOLOGY). By
allowing the program to split against the output at any
step of the procedure, the heuristics of choosing the split-
ting against the output at any step of the procedure, the
heuristics of choosing the splitting variable leads to a more
efficient choice of splitting variables.

D. Multiple-Valued Minimization for Chip Design

The final results we report come from a chip design
currently being performed at the University of California,
Berkeley. The project, known as SPUR [26], involves the
design of a RISC-style microprocessor and a snooping,
multiprocessor cache controller. We present results from
performing an optimal assignment of opcodes to the in-
structions for the instruction decode PLA, and for two of
the largest PLA’s from the cache controller chip.

The procedure for solving these input encoding prob-
lems is described in detail in [10]. The following is an
overview of the procedure.

1) Create a representation of the function where the
possible decodes for a set of binary-valued variables
are viewed as a single multiple-valued variable.

2) Minimize the multiple-valued function.

3) Determine an encoding which satisfies all of the
constraints.

Each multiple-valued product term prescribes a con-
straint to be solved. This constraint specifies that the
codes for a set of the values are to lie on a face of the
Boolean hypercube. The number of product terms which
result in step 2 are a lower bound on the number of prod-
uct terms needed for any possible encoding of the values.
If an encoding can be found which satisfies all of the con-
straints, then the final PLA will require as many product
terms as are in the multiple-valued cover. However, in
practice, not all of the constraints can be easily satisfied,
so that the final PLA is sometimes larger than this lower
bound.

For these examples, the encoding problem was solved
manually. However, work is continuing at Berkeley on
algorithms for solving this problem efficiently.

1) Optimal Assignment of Instruction Codes: The in-
struction decoder for the SPUR microprocessor chip is
implemented as a PLA with 8 inputs (7 bits of opcode)
and 39 outputs. The PLA, after minimization, has 71
product terms. It should be noted that an attempt was made
by the designers to choose a good assignment of opcodes
to instructions. We mapped the problem into a multiple-
valued minimization problem where the 7-bit opcode was
replaced with a single multiple-valued variable assuming

750 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5. SEPTEMBER 1987

128 different values. This was then minimized using the
mutliple-valued minimizer and resulted in 37 multiple-
valued product terms. An assignment was then made to
the opcodes based on the constraints produced by the mul-
tiple-valued minimization and the resulting PLA was im-
plemented using only 45 product terms.

2) State Assignment: The controller chip contains a
large finite-state machine (known as Sequencer) consist-
ing of 74 states, 41 inputs, and 35 outputs. It is intended
that a PLA will be used to implement this finite-state ma-
chine. Another large combinational block of logic (known
as Decoder) decodes the current state into a set of control
signals for the data paths on the chip and on the micro-
processor system board. The finite-state machines are de-
scribed in the high-level language Endot, and are trans-
lated into a symbolic representation of the finite-state
machine using the program BDSYN. The input encoding
problem is then solved simultaneously for the Sequencer
and the Decoder to choose an assignment of binary codes
to the states which optimizes the amount of logic needed
to map the current state into the outputs of the decoder
and the sequencer. (This approximation of state assign-
ment treats each possible next state as a separate prob-
lem.)

The original description of the Sequencer consists of
2000 transitions in a state-diagram representation of the
machine (including don’r-care conditions). Minimization
with an arbitrary encoding of the states results in a PLA
with 326 product terms (using the don’t-care set provided
by the designer). A multiple-valued minimization results
in a PLA with 152 multiple-valued product terms. A sim-
ilar result for the Decoder shows a reduction from 121
product terms (after minimization with the arbitrary as-
signment) to 45 multiple-valued product terms as a mul-
tiple-valued cover. The constraints resulting from both of
these minimizations need to be traded off against each
other to choose the final encoding for the states. The final
size for the sequencer is 180 product terms, and 68 prod-
uct terms for the decoder.

Hence, in this design example, significant reduction in
the area required to implement these functions was
achieved using multiple-valued minimization.

REFERENCES

[11 H. Fleisher and L. I. Maissel, **An Introduction to array logic,”” IBM
J. Res. Develop., vol. 19, pp. 98-109, Mar. 1975.

2] J. C. Logue, N. F. Brickman, F. Howley, J. W. Jones, and W. W.
Wu, “*Hardware implementation of a small system in programmable
logic arrays,”” IBM J. Res. Develop., vol. 19, pp. 110-119, Mar.
1975.

[3] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSl Synthesis.
Norwell, MA: Kluwer Academic Publishers, 1984.

[4] T. Sasao, ‘‘Input variable assignment and output phase optimization
of PLA’s,”” IEEE Trans. Comput. C-33, pp. 879-894, Oct. 1984.

[S1 G. D. Hachtel, A. R. Newton, and A. Sangiovanni-Vincentelli, ‘‘An
algorithm for optimal PLA folding."” /EEE Trans. Computer-Aided
Design, vol. CAD-1, pp. 63-76, Jan. 1982,

[6] G. De Micheli and A. Sangiovanni-Vincentelli, ‘‘Multiple con-
strained folding of programmable logic arrays: Theory and applica-
tions,”” JEEE Trans. Computer-Aided Design, vol. CAD-2, pp. 151~
167, July 1983.

{7]1 G. H. Mah, **'PANDA: A PLA generator for multiple folded PLAs,”"
Tech. Rep. UCB M84/95, University of California Electronics Re-
search Laboratory, May 1984.

[8] W. V. Quine, ‘“A way to simplify truth functions,”* Amer. Math.
Mon., vol. 62, p. 627, Nov. 1955.

[9] E. J. McCluskey, ‘*Minimization of Boolean functions,”’ Bell Syst.
Tech. J., vol. 35, pp. 1417-1444, Nov. 1956.

[10] R. L. Rudell, **Multiple-valued logic minimization for PLA synthe-
sis,”” Master’s report, University of California, Berkeley, 1983.

[11] G. De Micheli, *‘Computer aided synthesis of PLA-based systems,"’
Ph.D. thesis, University of California, Berkeley, 1983.

[12] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli,
*‘Optimal state assignment for finite-state machines,’” IEEE Trans.
Computer-Aided Design, vol. CAD-4, pp. 269-285, July 1985.

[13] G. De Micheli, **Symbolic minimization of Jogic functions,’" in Proc.
IEEE Int. Conf. Computer-Aided Design, Nov. 1985, pp. 293-295.

[14] T. Sasao, **An application of multiple-valued logic to a design of
programmable logic arrays,”” in Proc. 18th Int. Symp Mult. Val.
Logic, 1978.

{15] T. Sasao, ‘*An algorithm to derive the complement of a binary func-
tion with multiple-valued inputs,”” IEEE Trans. Comput. , vol. C-34,
Feb. 1985.

[16] T. Sasao, "‘Multiple-valued decomposition of generalized Boolean
functions and the complexity of programmable logic arrays,”’ [EEE
Trans. Comput., vol. C-30, pp. 635-643, Sept. 1981.

[17] Y. H. Su and P. T. Cheung, ‘‘Computer minimization of multi-val-
ued switching functions,”’ IEEE Trans. Comput., vol. C-21, pp. 995~
1003, 1972.

{18] T. Sasao, *‘Tautology checking algorithms for multiple-valued input
binary functions and their application,”” in Proc. [4th Int. Symp. Mult.
Val. Logic, 1984.

[19] M. R. Garey and D. S. Johnson, Computers and Intractabiliry. San
Francisco: W. H. Freeman, 1979,

[20] S. J. Hong, R. G. Cain, and D. L. Ostapko, “*MINI: A heuristic
approach for logic minimization,”’ IBMJ J. Res. Develop., 443-458,
Sept. 1974.

[21] J. P. Roth, Computer Logic, Testing, and Validation.
MD: Computer Science Press, 1980.

[22] T. Sasao, **Corrections and addition to input variable assignment and
output phase optimization of PLA"s,”” private communication.

[23] P. Simanyi, **POP reference manual,”” in Berkeley CAD Tools Man-
ual. Univ. of California, Berkeley, Sept. 1983.

[24] M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, ‘*McBoole: A
new procedure for exact logic minimization,”” IEEE Trans. Com-
puter-Aided Design, vol. CAD-5, pp. 229-238, Jan. 1986.

[25] T. Sasao, **Comparison of minimization algorithms for multiple-val-
ued expressions,”’ Draft, 1982.

[26] R. Katz, et al., **Design decisions in SPUR,"” COMPUTER, pp. 8-
22, Nov. 1986.

Rockville,

Richard L. Rudell received the B.S. degree in
electrical engineering from the University of Min-
nesota in 1983 and the M.S. degree in electrical
engineering from the University of California in
1986. He is currently a Ph.D. candidate in elec-
trical engineering at the University of California,
Berkeley.

From 1980 to 1983 he worked part-time at the
Honeywell Corporate Computer Science Center in
Minneapolis in the area of computer-aided design.
This work was in the areas of the test pattern gen-
cration, high-level synthesis tools, and fioor planning algorithms for VLSI.
More recently, he has spent the summers of 1984 and 1985 working at the
IBM T. J. Watson Research Center in the area of multiple-level logic syn-
thesis. His current interests are in the area of multiple-level logic optimi-
zation, including design specification, factoring of Boolean equations,
multiple-level minimization, and optimal technology mapping.

Alberto Sangiovanni-Vincentelli (M'74-SM’81-F’83), for a photograph
and biography, please see page 693 of this issue.

