Dec. 23, 2010

COMPUTER ENGINEERING DEPARTMENT

COE 561

Digital System Design and Synthesis

MAJOR EXAM II

(Open Book Exam)

First Semester (101)

Time: 1:00-4:00 PM

Student Name	e : _KEY		
Student ID.	:		

Question	Max Points	Score
Q1	15	
Q2	20	
Q3	15	
Q4	14	
Q5	18	
Q6	18	
Total	100	

- (Q1) Consider the function F(A, B, C, D) with ON-SET= Σ m(0, 5, 7, 13, 15) and OFF-SET= Σ m(8, 10, 11, 12). Note that you do not need to use the positional-cube notation in your solution.
 - (i) Expand the minterm A'B'C'D' using ESPRESSO heuristics.
 - (ii) A cover of the function is given by F = A' + BD. Reduce the cube A' using Theorem 7.4.1.
 - (iii) Use Corollary 7.4.1 to check if the implicant **BD** is an **essential** prime implicant.
 - Free set = \(\frac{2}{2}, 4, 6, 8\right\)

 Column 2 can't be raised as it has

 distance I from the off-set.

 The overexpanded cube = A

 Thus, we need to check the cubes ABCD

 and \(\text{ABCD}, \text{ABCD}) = \text{AC} \)

 SC (\(\text{ABCD}, \text{ABCD}) = \text{AC} \)

 SC (\(\text{ABCD}, \text{ABCD}) = \text{AC} \)

 feasible

 Thus, the minterm is expanded to \(\text{ABCD} \)

 covers the other feasibly covered cubes.

 Since Free set is empty, the expanded cube is \(\text{ABCD} \).
 - (11) Reduce the cobe A

$$Q = BD + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

- = \overline{BD} [\overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC}] + \overline{AC} + \overline{AC}] + \overline{BD} [\overline{AC} + \overline{AC}] + \overline{AC} + \overline{AC}] + \overline{AC} + \overline{AC}
- $= \overline{BO} [\overline{Ac}] + \overline{BO} [\overline{A+c}]$ $+ \overline{BO} [\overline{A+c}] + \overline{BO} [\overline{A}]$

 $\overline{Q} = \overline{B}\overline{D} \left[A+\overline{C}\right] + \overline{B}D \left[AC\right] + R\overline{D} \left[A\overline{C}\right] + BD \left[A\overline{C}\right]$

 $\overline{Q}_{\overline{A}} = [\overline{Q}] Q + [\overline{Q}]$

=> A N SC (QA) = ABCD Thus, the cube A 1s reduced to ABCD.

(iii) Check If BD is an essential prime implicant

X = BD

G = { A, ABOD, ABOD, ABOD, ABOD, ABOD, ABOD, ABOD,

G#X = { AB, AD, ABCD, AB

H = consensus (G#Y, Y) = {AD, AB, ACD, ACD, ACD, ABC, ABC, ACD}

HUDC = $\{\overline{A}D, \overline{A}B, \overline{A}C\overline{D}, ABC, \overline{A}C\overline{D}\}$ $\{HUDC\}_{\alpha} = \{\overline{A}, \overline{A}, 0, AC, \overline{A}C\}$

=> Tautology

Thus, the prime implicant C is not an essential prime implicant.

[20 Points]

(Q2) Consider the following cover of a function F(A,B,C,D)

$$F = \overline{A}\overline{B}\overline{C} + AB\overline{C} + \overline{A}\overline{C}D + \overline{A}C\overline{D} + ACD + BD + \overline{A}BC$$
With $F^{DC} = \sum m(5, 11, 12)$

- (i) Determine the relatively essential set of cubes, E^r.
- (ii) Determine the totally redundant, R^t, and partially redundant, R^p, sets of cubes.
- (iii) Find a subset of R^p that, together with E^r, covers the function by solving a covering problem.
- (i) Relatively Essential Set E:
 - Check ABC: { ABC, ACD, ACD, BD, ABCGABC = 20, D, 0, 0, 0, 0 of Not Tautology => Relative Ess.
- Check ABE: { ABE, AED, ACD, ACD, BD, ABE D } ABED } ABE = {0,0,0,0,0,D,0,D3 Tautology => Not Rel. Ess.
- Check AED: {ABE, ABE, ACD, ACD, BD, ABC}AED = [B, 0, 0, 0, B, 0] Tautology > Not Rel. Ess.
- Check ACD:

 [ABE, ABE, AED, ACD, BD, ABC 3ACD

 = 50,0,0,0,0,0,8] Not Tautoky => Rel, Ess,
- Check ACD:

 { ABO, ABO, AOD, ACD, BD, ABC, ABCD } ACD

 = { 0, 0, 0, 0, 0, B, 0, B} Tautology => Not Relies.

- Check BD {ABC, ABC, ACD, ACD, ACD, ABC 3BD = {O, AC, AC, O, AC, AC} Toutology > Not. Rel. Ess
- Check ABC

 {ABC, ABC, ACD, ACD, BD3ABC

 = {0,0,0,0,0,0,0} Tavtology => Not Reliess.

 Thus, E = {ABC, ACD3
- (ii) Totally redundant set Rt;
 - Check ABT { ABT, ACD, ABCD, ABCD, ABCD, ABCD}ABT = {0,0,0,0,0,0} Not Tautology = Part. Red.
 - Check ACD

 { ABZ, ACD, ABZD, ABZD, ABZD}

 = { B, 0, B, 0,03 Tautology => Tot. Red.
 - Check ACD

 { ABO, ACD, ABOD, ABOD,
- Check BD

 {ABC, ACD, ABCD, ABCD, ABCD] BD

 = {0, 0, AC 10 103 Nut Tartology => Part Red.
- Check ABC

 {ABC, ACD, ABCD, ABCD } ABCD } ABC

 = {0,0,0,0,0,0} Not Tautology => Part Red.

Thus, $R^{t} = \{ \overline{A} = \overline{D} \}$ and $R^{f} = \{ \overline{A} B = \overline{D}, \overline{A} C \overline{D}, \overline{B} \overline{D}, \overline{A} B C \}$ (111) First, we find coverage relations: $-\frac{ABZ!}{\{ \overline{A} \overline{B} \overline{C}, \overline{A} \overline{C} \overline{D}, \overline{A} \overline{B} \overline{C} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{B} \overline{C} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{D}, \overline{A} \overline{D}, \overline{D}$

- BD:

{ABE, ACD, ABED, ABED, ABED, ABED, ABE, ACD, ABES, BD = { 0, 0, AE, 0, 0, AE, AC, AC}

- ABC'

{ABZ, ACD, ABZD, ABZD, ABZD, ABZ, ACD, BD}ARC = [0, D, 0, 0, 0, 0, 0] → added fow (0,0,1,1)

Covering Makix ".

	-0			
	ABZ	ACD	BD	ABC
ABZ	1	٥	1	٥
Acn	0	Ī	t	0
Вр	{ o	0 1 0	1	0 0 1
78C	0	0	١	ŧ

Over 1s & ABO, ACD, BD3.

(Q3) Consider the logic network defined by the following expression:

$$x = a c d + a e + a' b' f + a' b' g + b c d + b e$$

Using the recursive procedure **KERNELS**, compute all the kernels and co-kernels of x. Show all the steps of the algorithm. Assume the following lexicographic order: $\{a, a', b, b', c, d, e, f, g\}$.

- i=1 (a): Cubes (x,a) = {acd, ae} > 2, C= a The Herrel cd+e will be returned.
- i=2 (a): Cubes (x,a) = {abf, abg}=2, c=ab The Kernel f+g will be returned.
- $\underline{C} = 3$ (b): (ubes (x,b) = $\{b \in A \mid b \in \mathcal{F} \geq 2 \mid C = b\}$ The Kernel edte will be returned.
- c'=4 (b): (ubes (x,b) = {abf, abg}=2, C=ab since the cube contains literal a < 4, no Kernels will be found.
- $\underline{C} = 5(C)$: $Cubes(X,C) = 2 acd, bcd) \ge 2, C = rd$ The Kernel atb will be returned.
- i=6 (d).

 Cubes (r,d) = {acd, bcd} > 2, C=cd

 Since the cube contains literal C < 6, no Kernels will be found.

- i=7 (e): Cubes (x,e) = {ae,be} >2, C=e The Kernel a+b will be returned.
- $\underline{c} = 8 (f)$; Cubes $(x, f) = \{ \overline{ab} f \} < 2 \implies No \text{ Kernels found}$
- i=9(9).

 (ubes (X,9) = $\{abg\}$ < 2 \Rightarrow No Hernels found

 Thus, the list of Kernels and Co-Kernels of

 X are:

Kernel	Co-Kernel
cd te	a, b
f+9	ab
a+b	ed, e
χ	

(Q4) Consider the logic network defined by the following expression:

$$x = a b d + a b e + a b' d' e' + a' c d + a' c e + a' c' d' e'$$

Compute the weight of the double cube divisors $d_1 = a b + a' c$ and $d_2 = d + e$. Extract the double cube divisor with the highest weight and show the resulting network after extraction and the number of literals saved.

Doube Cube Divisor	Base
d1 = ab tac	d,e
di = ab +ac	∂ē
d2 = d+e	ab,āc

weight (d1) = $3 \times 4 - 3 - 4 + 1 + 1 + 2 = 9$ weight (d2) = $2 \times 2 - 2 - 2 + 2 + 2 + 2 = 6$ Since d1 has higher weight, it will be extracted. The resulting network after extraction of d1 is: TRE = ab + ac

$$[1] = ab + ac$$

$$X = [1]d + [1]e + [1]de$$

$$11 likerals$$

Original number of literals = 20 literals Number of literals saved = 9 literals. (Q5) Consider the logic network defined by the following expressions with inputs $\{a, b, c\}$ and output $\{z\}$:

$$x = a + b$$

$$y = x'c + ax'$$

$$z = y + c'$$

- (i) Compute the CDC set for the cut at the inputs of circuit Y.
- (ii) Compute the ODC set for node Y.
- (iii) Simplify the function of Y using both its ODC and CDC.
- (iv) Based on perturbation analysis starting with the original network, determine if it is possible to change the implementation of y to y = x'.

(11)
$$ODCy = \overline{c}$$

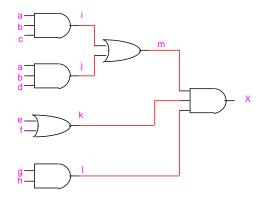
(iv)
$$f = (\overline{x}c + a\overline{x}) + \overline{x}$$

$$= \overline{x}(a+c) + \overline{x} = \overline{x}[(a+c)+1]$$

$$= \overline{x}a\overline{c}$$

since $S \subseteq ODCy = \overline{C}$, then it is possible to change the implementation of y to $y = \overline{X}$.

(Q6) Consider the logic network below with inputs $\{a, b, c, d, e, f, g, h\}$ and output $\{X\}$:



Assume that the delay of a gate is related to the number of its inputs i.e. the delay of a 2-input AND gate is 2. Also, assume that the input data-ready times are zero for all inputs.

- (i) Compute the data ready times and slacks for all vertices in the network.
- (ii) Determine the topological critical path.
- (iii) Suggest an implementation of the function *X* to reduce the delay of the circuit to the minimum possible and determine the maximum propagation delay in the optimized circuit. Has the area been affected?

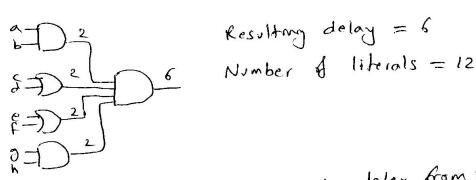
(1)	Data Ready	Time Required Time	Slack
	ta = 0	To = mm (0,0) =0	Sa = 0
	tb=0	Eb = min(0,0)=0	56=0
25	tc =0	Fc =0_	SC = 0
	td=0	Ed = 0	Sd = 0
		Fe = 3	Se = 3-0=3
	te=o	4 = 3	Sf = 3 - 0 = 3
	£f=0		Sg = 3-0=3
	tg=0	E ₀ = 3	
	th = 0	$\overline{t}_h = 3$	Sh = 3-0=3
	ti = 3	$\widehat{t}_c = 3$	$S_{i} = 3 - 3 = 0$
	$\epsilon_i = 3$	$\overline{\ell}_J = 3$	$S_{j'} = 3 - 3 = 0$
	tk = 2	En = 5	$S_{K} = 5 - 2 = 3$
	El = 2	l 1 = 5	51 = 5-2 = 3
	£m = 5	Ēm = 5	Sm = 5-5=0
	£x = 8	$\bar{t}_{x} = 8$	5x = 8-8=0

- (ii) The topological critical paths are:

 {a, i, m, x}, {b, i, m, x}, {c, i, m, x},
 {a, i, m, x}, {b, j, m, x}, {d, j, m, x}.
- (iii) To optimize the delay of the network, we need to improve the delay of nodes in the critical paths.

 We rewrite in as ab (c+d) and then we have $K = m \times l = ab (c+d)(e+f) sh$ and we combine them into a 4-input AND gate to optimize both delay and area.

 The resulting network is:



Thus, we have improved both delay from 8 to 6 and area from 15 literals to 12.