
COE 561COE 561
Digital System Design & Digital System Design &

SynthesisSynthesis
Architectural Synthesis Architectural Synthesis

Dr. Aiman H. El-Maleh
Computer Engineering Department

King Fahd University of Petroleum & Minerals

[Adapted from slides of Prof. G. De Micheli: Synthesis & Optimization of Digital Circuits]

2

OutlineOutlineOutline

Motivation
Dataflow graphs & Sequencing graphs
Resources
Synthesis in temporal domain: Scheduling
Synthesis in spatial domain: Binding
Scheduling Models
• Unconstrained scheduling
• Scheduling with timing constraints
• Scheduling with resource constraints

Algorithmic Solution to the Optimum Binding Problem
Register Binding Problem

Motivation
Dataflow graphs & Sequencing graphs
Resources
Synthesis in temporal domain: Scheduling
Synthesis in spatial domain: Binding
Scheduling Models
• Unconstrained scheduling
• Scheduling with timing constraints
• Scheduling with resource constraints

Algorithmic Solution to the Optimum Binding Problem
Register Binding Problem

3

SynthesisSynthesisSynthesis

Transform behavioral into structural view.
Architectural-level synthesis
• Architectural abstraction level.
• Determine macroscopic structure.
• Example: major building blocks like adder, register, mux.

Logic-level synthesis
• Logic abstraction level.
• Determine microscopic structure.
• Example: logic gate interconnection.

Transform behavioral into structural view.
Architectural-level synthesis
• Architectural abstraction level.
• Determine macroscopic structure.
• Example: major building blocks like adder, register, mux.

Logic-level synthesis
• Logic abstraction level.
• Determine microscopic structure.
• Example: logic gate interconnection.

4

Synthesis and OptimizationSynthesis and OptimizationSynthesis and Optimization

5

Architectural-Level Synthesis MotivationArchitecturalArchitectural--Level Synthesis MotivationLevel Synthesis Motivation

Raise input abstraction level.
• Reduce specification of details.
• Extend designer base.
• Self-documenting design specifications.
• Ease modifications and extensions.

Reduce design time.
Explore and optimize macroscopic structure
• Series/parallel execution of operations.

Raise input abstraction level.
• Reduce specification of details.
• Extend designer base.
• Self-documenting design specifications.
• Ease modifications and extensions.

Reduce design time.
Explore and optimize macroscopic structure
• Series/parallel execution of operations.

6

Architectural-Level SynthesisArchitecturalArchitectural--Level SynthesisLevel Synthesis

Translate HDL models into sequencing graphs.
Behavioral-level optimization
• Optimize abstract models independently from the

implementation parameters.

Architectural synthesis and optimization
• Create macroscopic structure

• data-path and control-unit.
• Consider area and delay information of the implementation.

Translate HDL models into sequencing graphs.
Behavioral-level optimization
• Optimize abstract models independently from the

implementation parameters.

Architectural synthesis and optimization
• Create macroscopic structure

• data-path and control-unit.
• Consider area and delay information of the implementation.

7

Dataflow Graphs …Dataflow Graphs Dataflow Graphs ……

Behavioral views of
architectural models.
Useful to represent data-
paths.
Graph
• Vertices = operations.
• Edges = dependencies.

Dependencies arise due
• Input to an operation is result

of another operation.
• Serialization constraints in

specification.
• Two tasks share the same

resource.

Behavioral views of
architectural models.
Useful to represent data-
paths.
Graph
• Vertices = operations.
• Edges = dependencies.

Dependencies arise due
• Input to an operation is result

of another operation.
• Serialization constraints in

specification.
• Two tasks share the same

resource.

8

… Dataflow Graphs…… Dataflow GraphsDataflow Graphs

Assumes the existence of variables who store
information required and generated by operations.
Each variable has a lifetime which is the interval from
birth to death.
Variable birth is the time at which the value is
generated.
Variable death is the latest time at which the value is
referenced as input to an operation.
Values must be preserved during life-time.

Assumes the existence of variables who store
information required and generated by operations.
Each variable has a lifetime which is the interval from
birth to death.
Variable birth is the time at which the value is
generated.
Variable death is the latest time at which the value is
referenced as input to an operation.
Values must be preserved during life-time.

9

Sequencing GraphsSequencing GraphsSequencing Graphs

Useful to represent data-path
and control.
Extended dataflow graphs
• Control Data Flow Graphs

(CDFGs).
• Polar: source and sink.
• Operation serialization.
• Hierarchy.
• Control-flow commands

• branching and iteration.

Paths in the graph represent
concurrent streams of
operations.

Useful to represent data-path
and control.
Extended dataflow graphs
• Control Data Flow Graphs

(CDFGs).
• Polar: source and sink.
• Operation serialization.
• Hierarchy.
• Control-flow commands

• branching and iteration.

Paths in the graph represent
concurrent streams of
operations.

10

Behavioral-level optimizationBehavioralBehavioral--level optimizationlevel optimization

Tree-height reduction
using commutativity
and associativity
x = a + b * c + d =>
x = (a + d) + b * c

Tree-height reduction
using distributivity
x = a * (b * c * d + e) =>
x = a * b * c * d + a * e

Tree-height reduction
using commutativity
and associativity
x = a + b * c + d =>
x = (a + d) + b * c

Tree-height reduction
using distributivity
x = a * (b * c * d + e) =>
x = a * b * c * d + a * e

11

Architectural Synthesis and OptimizationArchitectural Synthesis and OptimizationArchitectural Synthesis and Optimization

Synthesize macroscopic structure in terms of building-
blocks.
Explore area/performance trade-offs
• maximum performance implementations subject to area

constraints.
• minimum area implementations subject to performance

constraints.

Determine an optimal implementation.
Create logic model for data-path and control.

Synthesize macroscopic structure in terms of building-
blocks.
Explore area/performance trade-offs
• maximum performance implementations subject to area

constraints.
• minimum area implementations subject to performance

constraints.

Determine an optimal implementation.
Create logic model for data-path and control.

12

Circuit Specification for Architectural
Synthesis
Circuit Specification for Architectural Circuit Specification for Architectural
SynthesisSynthesis

Circuit behavior
• Sequencing graphs.

Building blocks
• Resources.

• Functional resources: process data (e.g. ALU).
• Memory resources: store data (e.g. Register).
• Interface resources: support data transfer (e.g. MUX and Buses).

Constraints
• Interface constraints

• Format and timing of I/O data transfers.
• Implementation constraints

• Timing and resource usage.
• Area
• Cycle-time and latency

Circuit behavior
• Sequencing graphs.

Building blocks
• Resources.

• Functional resources: process data (e.g. ALU).
• Memory resources: store data (e.g. Register).
• Interface resources: support data transfer (e.g. MUX and Buses).

Constraints
• Interface constraints

• Format and timing of I/O data transfers.
• Implementation constraints

• Timing and resource usage.
• Area
• Cycle-time and latency

13

ResourcesResourcesResources

Functional resources: perform operations on data.
• Example: arithmetic and logic blocks.
• Standard resources

• Existing macro-cells.
• Well characterized (area/delay).
• Example: adders, multipliers, ALUs, Shifters, ...

• Application-specific resources
• Circuits for specific tasks.
• Yet to be synthesized.
• Example: instruction decoder.

Memory resources: store data.
• Example: memory and registers.

Interface resources
• Example: busses and ports.

Functional resources: perform operations on data.
• Example: arithmetic and logic blocks.
• Standard resources

• Existing macro-cells.
• Well characterized (area/delay).
• Example: adders, multipliers, ALUs, Shifters, ...

• Application-specific resources
• Circuits for specific tasks.
• Yet to be synthesized.
• Example: instruction decoder.

Memory resources: store data.
• Example: memory and registers.

Interface resources
• Example: busses and ports.

14

Resources and Circuit FamiliesResources and Circuit FamiliesResources and Circuit Families

Resource-dominated circuits.
• Area and performance depend on few, well-characterized

blocks.
• Example: DSP circuits.

Non resource-dominated circuits.
• Area and performance are strongly influenced by sparse

logic, control and wiring.
• Example: some ASIC circuits.

Resource-dominated circuits.
• Area and performance depend on few, well-characterized

blocks.
• Example: DSP circuits.

Non resource-dominated circuits.
• Area and performance are strongly influenced by sparse

logic, control and wiring.
• Example: some ASIC circuits.

15

Synthesis in the Temporal Domain:
Scheduling
Synthesis in the Temporal Domain: Synthesis in the Temporal Domain:
SchedulingScheduling

Scheduling
• Associate a start-time with each operation.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.
• Determine latency and parallelism of the implementation.

Scheduled sequencing graph
• Sequencing graph with start-time annotation.

Unconstrained scheduling.
Scheduling with timing constraints
Scheduling with resource constraints.

Scheduling
• Associate a start-time with each operation.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.
• Determine latency and parallelism of the implementation.

Scheduled sequencing graph
• Sequencing graph with start-time annotation.

Unconstrained scheduling.
Scheduling with timing constraints
Scheduling with resource constraints.

16

Scheduling …Scheduling Scheduling ……

4 Multipliers, 2 ALUs 1 Multiplier , 1 ALU

17

… Scheduling…… SchedulingScheduling

2 Multipliers, 3 ALUs 2 Multipliers, 2 ALUs

18

Synthesis in the Spatial Domain: BindingSynthesis in the Spatial Domain: BindingSynthesis in the Spatial Domain: Binding

Binding
• Associate a resource with each operation with the same type.
• Determine area of the implementation.

Sharing
• Bind a resource to more than one operation.
• Operations must not execute concurrently.

Bound sequencing graph
• Sequencing graph with resource annotation.

Binding
• Associate a resource with each operation with the same type.
• Determine area of the implementation.

Sharing
• Bind a resource to more than one operation.
• Operations must not execute concurrently.

Bound sequencing graph
• Sequencing graph with resource annotation.

19

Example: Bound Sequencing GraphExample: Bound Sequencing GraphExample: Bound Sequencing Graph

20

Performance and Area EstimationPerformance and Area EstimationPerformance and Area Estimation

Resource-dominated circuits
• Area = sum of the area of the resources bound to the

operations.
• Determined by binding.

• Latency = start time of the sink operation (minus start time of
the source operation).

• Determined by scheduling

Non resource-dominated circuits
• Area also affected by

• registers, steering logic, wiring and control.
• Cycle-time also affected by

• steering logic, wiring and (possibly) control.

Resource-dominated circuits
• Area = sum of the area of the resources bound to the

operations.
• Determined by binding.

• Latency = start time of the sink operation (minus start time of
the source operation).

• Determined by scheduling

Non resource-dominated circuits
• Area also affected by

• registers, steering logic, wiring and control.
• Cycle-time also affected by

• steering logic, wiring and (possibly) control.

21

SchedulingSchedulingScheduling

Circuit model
• Sequencing graph.
• Cycle-time is given.
• Operation delays expressed in cycles.

Scheduling
• Determine the start times for the operations.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.

Scheduling affects
• Area: maximum number of concurrent operations of same

type is a lower bound on required hardware resources.
• Performance: concurrency of resulting implementation.

Circuit model
• Sequencing graph.
• Cycle-time is given.
• Operation delays expressed in cycles.

Scheduling
• Determine the start times for the operations.
• Satisfying all the sequencing (timing and resource) constraint.

Goal
• Determine area/latency trade-off.

Scheduling affects
• Area: maximum number of concurrent operations of same

type is a lower bound on required hardware resources.
• Performance: concurrency of resulting implementation.

22

Scheduling ModelsScheduling ModelsScheduling Models

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.
Simplest scheduling model
• All operations have bounded delays.
• All delays are in cycles.

• Cycle-time is given.
• No constraints - no bounds on area.
• Goal

• Minimize latency.

Unconstrained scheduling.
Scheduling with timing constraints
• Latency.
• Detailed timing constraints.

Scheduling with resource constraints.
Simplest scheduling model
• All operations have bounded delays.
• All delays are in cycles.

• Cycle-time is given.
• No constraints - no bounds on area.
• Goal

• Minimize latency.

23

Minimum-Latency Unconstrained
Scheduling Problem
MinimumMinimum--Latency UnconstrainedLatency Unconstrained
Scheduling ProblemScheduling Problem

Given a set of operations V with integer delays D and a
partial order on the operations E
Find an integer labeling of the operations ϕ : V → Z+,
such that
• ti = ϕ(vi),• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E
• and tn is minimum.

Unconstrained scheduling used when
• Dedicated resources are used.
• Operations differ in type.
• Operations cost is marginal when compared to that of

steering logic, registers, wiring, and control logic.
• Binding is done before scheduling: resource conflicts solved

by serializing operations sharing same resource.
• Deriving bounds on latency for constrained problems.

Given a set of operations V with integer delays D and a
partial order on the operations E
Find an integer labeling of the operations ϕ : V → Z+,
such that
• ti = ϕ(vi),• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E
• and tn is minimum.

Unconstrained scheduling used when
• Dedicated resources are used.
• Operations differ in type.
• Operations cost is marginal when compared to that of

steering logic, registers, wiring, and control logic.
• Binding is done before scheduling: resource conflicts solved

by serializing operations sharing same resource.
• Deriving bounds on latency for constrained problems.

24

ASAP Scheduling AlgorithmASAP Scheduling AlgorithmASAP Scheduling Algorithm

Denote by ts the start times computed by the as soon as
possible (ASAP) algorithm.
Yields minimum values of start times.

Denote by ts the start times computed by the as soon as
possible (ASAP) algorithm.
Yields minimum values of start times.

25

ALAP Scheduling AlgorithmALAP Scheduling AlgorithmALAP Scheduling Algorithm

Denote by tL the start times computed by the as late as
possible (ALAP) algorithm.
Yields maximum values of start times.
Latency upper bound λ

Denote by tL the start times computed by the as late as
possible (ALAP) algorithm.
Yields maximum values of start times.
Latency upper bound λ

26

Latency-Constrained SchedulingLatencyLatency--Constrained SchedulingConstrained Scheduling

ALAP solves a latency-constrained problem.
Latency bound can be set to latency computed by
ASAP algorithm.
Mobility
• Defined for each operation.
• Difference between ALAP and ASAP schedule.
• Zero mobility implies that an operation can be started only at

one given time step.
• Mobility greater than 0 measures span of time interval in

which an operation may start.

Slack on the start time.

ALAP solves a latency-constrained problem.
Latency bound can be set to latency computed by
ASAP algorithm.
Mobility
• Defined for each operation.
• Difference between ALAP and ASAP schedule.
• Zero mobility implies that an operation can be started only at

one given time step.
• Mobility greater than 0 measures span of time interval in

which an operation may start.

Slack on the start time.

27

ExampleExampleExample

Operations with zero mobility
• {v1, v2, v3, v4, v5}.
• Critical path.

Operations with mobility one
• {v6, v7}.

Operations with mobility two
• {v8, v9, v10, v11}

Operations with zero mobility
• {v1, v2, v3, v4, v5}.
• Critical path.

Operations with mobility one
• {v6, v7}.

Operations with mobility two
• {v8, v9, v10, v11}

28

Minimum Latency Resource-Constrained
Scheduling Problem
Minimum Latency Resource-Constrained
Scheduling Problem

Given a set of ops V with integer delays D, a partial order
on the operations E, and upper bounds {ak; k = 1, 2, … ,
nres}
Find an integer labeling of the operations ϕ : V → Z+, such
that
• ti = ϕ(vi),
• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E

• and tn is minimum.

Number of operations of any given type in any
schedule step does not exceed bound.

Given a set of ops V with integer delays D, a partial order
on the operations E, and upper bounds {ak; k = 1, 2, … ,
nres}
Find an integer labeling of the operations ϕ : V → Z+, such
that
• ti = ϕ(vi),
• ti ≥ tj + dj ∀ i, j s.t. (vj, vi) ∈ E

• and tn is minimum.

Number of operations of any given type in any
schedule step does not exceed bound.

:V→{1,2, …nres}

29

List Scheduling AlgorithmsList Scheduling AlgorithmsList Scheduling Algorithms

Heuristic method for
• Minimum latency subject to resource bound.
• Minimum resource subject to latency bound.

Greedy strategy.
Priority list heuristics.
• Assign a weight to each vertex indicating its scheduling

priority
• Longest path to sink.
• Longest path to timing constraint.

Heuristic method for
• Minimum latency subject to resource bound.
• Minimum resource subject to latency bound.

Greedy strategy.
Priority list heuristics.
• Assign a weight to each vertex indicating its scheduling

priority
• Longest path to sink.
• Longest path to timing constraint.

30

List Scheduling Algorithm for Minimum
Latency …
List Scheduling Algorithm for Minimum List Scheduling Algorithm for Minimum
Latency Latency ……

31

… List Scheduling Algorithm for Minimum
Latency
…… List Scheduling Algorithm for Minimum List Scheduling Algorithm for Minimum
LatencyLatency

Candidate Operations Ul,k
• Operations of type k whose predecessors are scheduled and

completed at time step before l

Unfinished operations Tl,k are operations of type k that
started at earlier cycles and whose execution is not
finished at time l

• Note that when execution delays are 1, Tl,k is empty.

Candidate Operations Ul,k
• Operations of type k whose predecessors are scheduled and

completed at time step before l

Unfinished operations Tl,k are operations of type k that
started at earlier cycles and whose execution is not
finished at time l

• Note that when execution delays are 1, Tl,k is empty.

}),(:)(:{, Evvjl dtkvΤypeVvU ijjjiikl ∈∀≤+=∈= and

}),(:)(:{, Evvjl dtkvΤypeVvT ijjjiikl ∈∀>+=∈= and

32

ExampleExampleExample

Assumptions
• a1 = 2 multipliers with delay 1.
• a2 = 2 ALUs with delay 1.

First Step
• U1,1 = {v1, v2, v6, v8}• Select {v1, v2}• U1,2 = {v10}; selected

Second step
• U2,1 = {v3, v6, v8}• select {v3, v6}• U2,2 = {v11}; selected

Third step
• U3,1 = {v7, v8}• Select {v7, v8}• U3,2 = {v4}; selected

Fourth step
• U4,2 = {v5, v9}; selected

Assumptions
• a1 = 2 multipliers with delay 1.
• a2 = 2 ALUs with delay 1.

First Step
• U1,1 = {v1, v2, v6, v8}• Select {v1, v2}• U1,2 = {v10}; selected

Second step
• U2,1 = {v3, v6, v8}• select {v3, v6}• U2,2 = {v11}; selected

Third step
• U3,1 = {v7, v8}• Select {v7, v8}• U3,2 = {v4}; selected

Fourth step
• U4,2 = {v5, v9}; selected

33

ExampleExampleExample

Assumptions
• a1 = 3 multipliers with delay 2.
• a2 = 1 ALU with delay 1.

Assumptions
• a1 = 3 multipliers with delay 2.
• a2 = 1 ALU with delay 1.

34

List Scheduling Algorithm
for Minimum Resource Usage
List Scheduling AlgorithmList Scheduling Algorithm
for Minimum Resource Usagefor Minimum Resource Usage

35

ExampleExampleExample
Assume λ=4
Let a = [1, 1]T

First Step
• U1,1 = {v1, v2, v6, v8}• Operations with zero slack {v1, v2}• a = [2, 1]T
• U1,2 = {v10}

Second step
• U2,1 = {v3, v6, v8}• Operations with zero slack {v3, v6}• U2,2 = {v11}

Third step
• U3,1 = {v7, v8}• Operations with zero slack {v7, v8}• U3,2 = {v4}

Fourth step
• U4,2 = {v5, v9}• Both have zero slack; a = [2, 2]T

Assume λ=4
Let a = [1, 1]T

First Step
• U1,1 = {v1, v2, v6, v8}• Operations with zero slack {v1, v2}• a = [2, 1]T
• U1,2 = {v10}

Second step
• U2,1 = {v3, v6, v8}• Operations with zero slack {v3, v6}• U2,2 = {v11}

Third step
• U3,1 = {v7, v8}• Operations with zero slack {v7, v8}• U3,2 = {v4}

Fourth step
• U4,2 = {v5, v9}• Both have zero slack; a = [2, 2]T

36

Allocation and BindingAllocation and BindingAllocation and Binding

Allocation
• Determine number of resources needed

Binding
• Mapping between operations and resources.

Sharing
• Assignment of a resource to more than one operation.

Optimum binding/sharing
• Minimize the resource usage.

Allocation
• Determine number of resources needed

Binding
• Mapping between operations and resources.

Sharing
• Assignment of a resource to more than one operation.

Optimum binding/sharing
• Minimize the resource usage.

37

Compatibility and ConflictsCompatibility and ConflictsCompatibility and Conflicts

Operation compatibility
• Same resource type.
• Non concurrent.

Compatibility graph
• Vertices: operations.
• Edges: compatibility relation.

Conflict graph
• Complement of compatibility

graph.

Operation compatibility
• Same resource type.
• Non concurrent.

Compatibility graph
• Vertices: operations.
• Edges: compatibility relation.

Conflict graph
• Complement of compatibility

graph.

Multiplier ALU

38

Algorithmic Solution to
the Optimum Binding Problem
Algorithmic Solution toAlgorithmic Solution to
the Optimum Binding Problemthe Optimum Binding Problem

Compatibility graph.
• Partition the graph into a minimum number of cliques.
• Find clique cover number.

Conflict graph.
• Color the vertices by a minimum number of colors.
• Find chromatic number.

NP-complete problems - Heuristic algorithms.

Compatibility graph.
• Partition the graph into a minimum number of cliques.
• Find clique cover number.

Conflict graph.
• Color the vertices by a minimum number of colors.
• Find chromatic number.

NP-complete problems - Heuristic algorithms.

39

ExampleExampleExample

ALU1: 1, 3, 5
ALU2: 2, 4

1 2

3 4

5

1

3

5

2

4

40

Register Binding ProblemRegister Binding ProblemRegister Binding Problem

Given a schedule
• Lifetime intervals for variables.
• Lifetime overlaps.

Conflict graph (interval graph).
• Vertices ↔ variables.
• Edges ↔ overlaps.

Find minimum number of registers storing all the
variables.
Compatibility graph.

Given a schedule
• Lifetime intervals for variables.
• Lifetime overlaps.

Conflict graph (interval graph).
• Vertices ↔ variables.
• Edges ↔ overlaps.

Find minimum number of registers storing all the
variables.
Compatibility graph.

41

ExampleExampleExample

Six intermediate variables that need to be stored in
registers {z1, z2, z3, z4, z5, z6}
Six variables can be stored in two registers

Six intermediate variables that need to be stored in
registers {z1, z2, z3, z4, z5, z6}
Six variables can be stored in two registers

42

ExampleExampleExample

7 intermediate variables, 3 loop variables, 3 loop invariants
5 registers suffice to store 10 intermediate loop variables
7 intermediate variables, 3 loop variables, 3 loop invariants
5 registers suffice to store 10 intermediate loop variables

