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Chapter 1

Introduction and Motivation

1.1 Introduction

Technological advancements in Very Large Scale Integration (VLSI) have em-

powered the industry to integrate millions of transistors on a single chip. The

contemporary approach adopted to address design of devices with high com-

plexity is by following concepts of structured designing and design abstrac-

tion [1]. Abstraction is used to utilise the efforts of designers at higher levels.

This allows fast initial prototyping with refinements left to be added at lower

stages using detailed circuit information. Typical levels of abstraction, to-

gether with their corresponding functionalities, are illustrated in Figure 1.1.

Computer Aided Design (CAD) tools automate the VLSI design process at all

levels of design abstraction.

CAD subproblem level

Behavioral/Architectural

               

Register transfer/logic 

               

Cell/mask 

Generic CAD tools

 Behavioral modeling and

 Simulation tool

Tools for partitioning,

placement, routing, etc.

Functional and logic minimization,

logic fitting and simulation tools

Idea

Architectural  design

Logical  design

Physical  design  

Fabrication

New chip

Figure 1.1: Levels of abstraction and corresponding design steps.

With the rapid increase in system functionality, new paradigms such as

mobile computing have emerged. Mobile computing has added a new facet

1
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of power efficiency in the complexity of VLSI design [2]. At the same time,

the increasingly complex VLSI devices are proving more and more difficult to

test. Efficient testing is no longer the sole responsibility of test engineers and

the focus is now on better design strategies to make the device more easily

testable [3]. Thus, testability of a VLSI chip adds another objective to the

increasingly complex task of designing VLSI circuits.

1.2 Motivation

The complexity of today’s digital systems is tackled by partitioning and au-

tomating the design process using CAD tools. Digital Systems are broadly

composed of two subcomponents namely a controller and a datapath. The

datapath performs all the arithmetic and logical operations required on the

data. The controller is responsible for controlling the sequence of operations

on the datapath and is generally implemented as a finite state machine (FSM).

The increasing complexity in VLSI systems along with increasing number

of issues is posing ever increasing challenge for CAD industry to automate the

tasks for a VLSI designer. Literature reports a wealth of research to address

the issues (see chapter-2). Most of the heuristics reported address the problem

of FSM state assignment for either a single or dual objectives. These heuristics

are discussed in detail in chapter-2. However there is a lack of research that

targets all the three objectives simultaneously. As will be shown later, there

exists a strong interaction among area, power and testability issues. This

correlation makes it more necessary to address the three objectives together.

Traditionally, synthesis of FSMs is targeted for area minimization which

itself is an NP-hard problem [4]. The degree of diversity in reported results

suggests that there is a strong need to further investigate the problem to come

up with measures that have better correlation with the objectives. The three

objectives focus of this work, area, power and testability, may also not be

in total harmony with one another. This makes the problem of FSM state-

assignment for area, power and testability, even more challenging.

Non-deterministic evolutionary heuristics/meta-heuristics like Genetic Al-

gorithms and Tabu Search have shown good results in solving various com-

binatorial optimization problems [5]. These heuristics try to optimize user

defined goals of the problem encapsulated within a cost function. The quality

of the solution thus depends on how closely the problem is modeled using the

cost measures.

There have been several attempts in using genetic algorithm (GA) for FSM
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state assignment problem. However there has been no study that compares

the design alternatives to optimize the performance of GA for the problem.

Similarly, Tabu Search (TS) has been more promising than GA in solving

other combinatorial optimization problems. However, the use of Tabu Search

in solving the problem of FSM state assignment is yet to be addressed.

1.3 FSM State Assignment Problem

An FSM M can be formally defined as a 5-tuple M = (S, I, O, T, δ) where

S represents the finite state space, I represents the finite input space and O

the finite output space, δ : IxS → S is the next state function and T is the

transition relation defined as I x S → O (for a Mealy machine) or T : S → O

(for a Moore machine).

State assignment involves an injective mapping f: S → Bn where n is the

code length (n ≥ dlog2 |S|e) and Bn is an n-dimensional boolean space, a

boolean hypercube.

1.4 Thesis Objective

The focus of this work is to address the NP-hard problem of FSM state assign-

ment such that area and power are reduced while increasing the testability of

the circuit synthesized by the assignment. Minimum code-length is considered

as constraint in this work.

Individual objectives are initially explored using existing heuristics re-

ported in literature and optimized using new measures. The individual objec-

tives are then combined using various integrating mechanisms (discussed later)

to solve multi-objective combinatorial optimization problem. Non-deterministic

evolutionary heuristics like Genetic Algorithm and Tabu Search are utilized

for search space exploration. Thus another objective of this work is the design

of the exploration-heuristics for efficiently exploring FSM state assignment

search space.

1.5 Contributions

The work presents the results of investigations related to the objectives dis-

cussed in the previous section. In particular, the main contributions can be

summarized as follows:
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• The work proposes use of Expand-function as an efficient measure for

FSM state assignment for multilevel area minimization.

• A new power reduction strategy is explored that combines the traditional

minimum weighted hamming distance approach with area estimate ob-

tained using Expand cover. The objective of the technique is to minimize

the fanout of frequently switched states.

• A new loop detection algorithm is proposed.

• The work demonstrates initializability detection of sequential elements

as an important factor affecting testability of a circuit, along with tra-

ditional depth and number of loops.

• A new method of initializability detection using Expand cover is pro-

posed.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. In chapter-2, literature survey is

presented. This chapter builds up the basics in FSM state assignment for area,

power and testability and covers various methodologies reported in literature

concerning the objectives of this work.

Chapter-3 formally defines the problem and discusses some new measures

that are developed in this work. This is followed with a detailed discussion on

the design of iterative heuristics for the current problem in chapter-4.

In chapter-5, experimental setup and results are presented using the mea-

sures discussed in chapter-3 and compared with those discussed in chapter-2.

Implementation details for Genetic Algorithm and Tabu search are also dis-

cussed and their relative performance is compared in solving single as well as

multiobjective optimization problem. The results thus obtained are also com-

pared and contrasted with those reported in the literature. This thesis ends

with conclusion and some future directions in chapter-6.



Chapter 2

Literature Review

In this chapter, a detailed survey of heuristics for FSM synthesis for area, power

and testability is reported. FSM synthesis for area is usually targeted inde-

pendently for two-level and multi-level realizations. FSM synthesis for power

involves calculating transition probabilities in between states and to reduce

switching involved. FSM synthesis for higher testability is usually targeted by

reducing the sequential depth and the number of loops in the synthesized cir-

cuit. Description of various cost models to model the optimization objectives

at a higher level are also detailed.

Review for FSM synthesis strategies is followed by a survey of iterative

heuristics, genetic algorithm and tabu search. These heuristics have shown

good results in optimizing hard combinatorial problems.

2.1 Finite State Machine State Assignment

State assignment in FSMs [4] is one of the main problems in the synthesis

of sequential machines. The complexity of FSMs lie in their combinational

circuit that heavily depends on chosen state assignment or encoding for its se-

quential elements. Similarly power dissipation and testability of the FSM are

also functions of the state assignment. Thus, depending on the requirements,

the assignment of states can be subject to different constraints. Gaining in-

sight into the problem of assigning state codes is thus useful in coming up

with solutions which will lead to structures and complexity that will satisfy

the required objectives and constraints. This section thus proceeds with a

discussion on relevant mathematics concerning state assignment problem.

5
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2.1.1 Encoding and Partitioning

The state assignment problem of an FSM can be viewed as a coding problem

or as a partitioning problem [6, 7, 4]. The coding problem requires each state

to be assigned a unique binary pattern. From the partitioning point of view,

each state variable, yi (one of the bits of the memory part of FSM), partitions

the assigned states into two sets. All states in one set are those for which yi

is 1, and those in the other set for which yi is 0.

Therefore a partition on a set S of states is a collection of disjoint subsets

whose set union is S. The disjoint subsets are called the blocks of the partition.

A partition is called an m-block partition if the number of blocks in it are m.

The partition induced by a state variable yi is represented with the Greek

symbol Tau, τ(yi). As an example, consider a machine M with four states

(A,B,C,D) and a single input (x) as given in Table 2.1.1. The above state

PS NS
x=0 x=1

A A D
B A C
C C B
D C A

Table 2.1: State Machine - 1

machine with a state assignment is shown in Table 2.2.

y1y2 Y1Y2

x=0 x=1
A → 00 00 10
B → 01 00 11
C → 11 11 01
D → 10 11 00

Table 2.2: A sample encoding for State Machine - 1

In the assignment used in Table 2.2, y1 = 0 for states A and B, and

y1 = 1 for states C and D. Therefore, y1 induces a 2-block partition τ(y1) =

(AB; CD). Similarly, y2 induces another 2-block partition τ(y2) = (AD; BC),

on the states of machine M .
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If every state of the state machine is assigned a unique code then the

product of all the partitions is a partition that has as many blocks as the

number of states. We call such a partition as a zero partition represented by

π(0). Mathematically

k∏
i=1

τ(yi) = π(0) (2.1)

where k is number of partitions (which is also the number of state variables).

For example, the product of the partitions induced by coding of Table 2.2,

τ(y1) and τ(y2) is given as

τ(y1) · τ(y2) = (A; B; C; D) = π(0) (2.2)

where the dot operator (·) refers to the intersection operation on the states

of blocks in the individual partitions.

The problem of state assignment is to find a set of partitions such that

(2.1) is true.

Closed Partition

A partition is said to be closed if for any two states Si and Sj which are

in the same block, and for any input Ik, the next states denoted by Ik.Si

and Ik.Sj are in a common block of the partition. This condition must be

true for all pairs of states in every block. Such a partition is said to be

closed and is represented by π. For example, partition τ(y1) in Table-2.2 is a

closed partition. A closed partition is a special form of a partition in which

the next block can be uniquely determined from the knowledge of present

block and inputs. For example, suppose that r state variables are assigned

to a closed partition, where r = dlog2 |π|e (|π| is the number of blocks in a

closed partition) among k state variables of the sequential machine, where

k = dlog2(n)e, n being the number of states. Then, according to the definition

of closed partition, the r state variables are independent of the remaining

k − r state variables. Closed partition is thus referred to as zero-dependency

condition. In the above example, y1 is independent of y2. The equation for Y1

is

Y1 = XY1 + XY1 (2.3)

Note that the partition τ(y2) is not a closed partition
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Parallel and Serial Decompositions

The presence of closed partition indicates that some of the state variables can

be independently determined irrespective of the other state variables. Thus,

if we can find a set of closed partitions such that Condition (2.1) above is

satisfied, then the machine can be decomposed into parallel sub-machines,

equal to the number of closed partitions in the set, operating independently.

Such a decomposition is referred to as parallel decomposition. Mathematically

π(1).π(2) · · · π(k) = π(0) (2.4)

However, if such a set of closed partitions could not be found, we need to find

a partition denoted by T such that Condition (2.1) can be satisfied, i.e.,

π(1) · π(2) · · · π(v) · T = π(0); (v < k) (2.5)

In such a case, the partitions π(1) to π(v) are still closed and so self-

dependent. However, the partition T is not closed and so is dependent on state

variables other than those assigned to itself. This yields a serial decomposition

of a state machine in which independent subsets of the state machine feed the

dependencies required for dependent subset of the machine.

Partition Pairs

The structure of sequential machines is much more complicated than a bunch

of parallel or serially connected sub-machines. There are sub-machines that

are cross dependent. The concept of partition-pairs helps analyze such depen-

dencies.

A partition pair (T, T’) on the states of a sequential machine M is an

ordered pair of partitions such that, if Si and Sj are in the same block of T,

then for every input Ik in I, Ik.Si and Ik.Sj are in the same block of T’. The

partition T is called the predecessor partition and T ’ the successor partition.

Consider a state machine with a state assignment shown in Table-2.3. Par-

titions induced by state variables, y2 and y3 are given as

τ(y2) = τ1 = ( A,E; B,C,D, F ) (2.6)

τ(y3) = τ2 = ( A,C,D,E; B, F ) (2.7)

Clearly, (τ1, τ2) form a partition pair since the next state at any input

for a pair of states in a block in τ1 lie in some block of τ2. τ1 is said to be
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NS
PS y1y2y3 x1x2

00 01 10 11
A 000 A C D F
B 011 C B F E
C 010 A B F D
D 110 E F B C
E 100 E D C B
F 111 D F B A

Table 2.3: State Machine - 2

predecessor partition and τ2 the successor. Thus, to uniquely determine the

next block in the successor partition, one needs to know the present block in

the predecessor partition along with inputs. That is to say that the successor

partition is dependent on the information of the state variables that induce

the predecessor partition. Thus, a partition pair can be thought of as one (or

single) dependency condition.

P-Dependency Condition

A P-dependency condition, where P is greater than one, can be derived in

a similar manner. This requires the computation of what is known as Mm-

pairs [4].

A partition M(T’) is the summation (union) of all partitions Ti such that

(Ti, T’) is a partition pair. Thus, M(T’) is the largest partition, i.e., a parti-

tion containing the biggest blocks whose successor blocks are contained in T’.

Similarly, a partition m(T) is the product (intersection) of all partitions Ti′

such that (T, Ti′) is a partition pair; where m(T) is the smallest partition,

i.e., a partition containing the smallest blocks that can be the successors of

the blocks of T.

Consider again the state machine of Table-2.3. The smallest partition that

can be implied by states A and C may be called as τAC . Such a partition

includes states A and C together in a block (AC) and leaves all other states

in separate blocks, i.e.,

τAC(A,B; B; D; E; F ) (2.8)

then a set of partition pairs (τAC , τx) and (τAC , τy) can be given as in



10

equations-2.9 and 2.10 respectively.

(τAC , τx) = ((A,C; B; D; E; F ), (A; B, C; D, F ; E)) (2.9)

(τAC , τy) = ((A,C; B; D; E; F ), ( A,B, C; D, F ; E)) (2.10)

Though both τx and τy contain the successor blocks for partition τAC but

partition τx is said to contain more information. This is because there are lesser

number of possible states in successor blocks, i.e. more information about

possible next state(s) from a given predecessor block. Thus there can exist a

number of successor partitions containing different degrees of information.

As described perviously, the smallest successor partition for a partition T ,

i.e. a partition having highest number of blocks or smallest block sizes, is given

by m(T). Hence, m(T) describes the largest amount of information that can

be obtained from T regarding the next state of machine-M . In the example

partition pairs above, τx is actually m(τAC). A formal procedure for evaluating

m(T) will be described shortly.

The P-dependency condition states that if the next-state variable Yi can

be computed from the external inputs and a subset Pi of the state variables,

then the product of partitions induced by the subset Pi should be contained

within M of the partition induced by yi. Mathematically

∏
yj∈Pi

τ(yj) ⊆ M [τ(yi)] (2.11)

where τ(yk) represents the partition induced by variable yk. The product is

taken over all τ(yj), such that yj is contained in the subset Pi. The subset

is started with minimum number of variables and gradually expanded until

the condition is met. The satisfaction of condition means that Yi can be

derived using the variables used in the subset. Of course, the condition will

remain satisfied if the subset is further expanded but we are only interested in

minimum number of support variables.

The P-dependency condition is also referred to as information flow inequal-

ity [4]. The condition can be efficiently used to find the number of dependencies

of state variables. Such a use of the inequality will next be explained using an

example.
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An Example

Consider the state machine whose state table is given in Table-2.4. We begin

by finding smallest partitions implied by pairs of states. Let τAB be partition

that includes a block (AB) and leaves all other states in separate blocks (τAB

=(AB; C; D; E). Then, by definition, the smallest such partition containing

the block implied by τAB is m(τAB), which can be determined by looking at

the successive or next states of states in τAB. In the present case,

PS NS z
I0 I1 I3 I2

A C A D B 0
B E C B D 0
C C D C E 0
D E A D B 0
E E D C E 1

Table 2.4: State Machine - 3

m(τAB) = { A,C,E; B,D } = τ ′1

Clearly, (τAB,m(τAB)) is a partition pair.

Similarly, the rest of the smallest partitions implied by other pairs of states

can be found as follows.

m(τAC) = m(τDE) = (A,C, D; B, E) = τ ′2
m(τAD) = m(τCE) = (A; B; C,E; D) = τ ′3

m(τAE) = m(τCD) = (A,B, C, D, E) = π(I)

m(τBC) = m(τBE) = (A; B, C, D,E) = τ ′4
m(τBD) = (A, C; B, D; E) = τ ′4

Let the three state variables needed to encode the 8-states be y1, y2 and y3

and their partitions represented as τy1, τy2, τy3 respectively. Then the problem

of state assignment is to encode y1, y2 and y3 such that

τy1.τy2.τy3 = π(0)

One such state assignment can be
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τy1 = (A,C,E; B,D)

τy2 = (A,B,D; C,E)

τy3 = (A,C,D; B, E)

The corresponding M of the above partitions are found out as follows

M(τy1) = τAB + τAD + τCE + τBD = (A,B, D; C, E)

M(τy2) = τAD + τCE = (A,D; B; C,E)

M(τy3) = τAC + τDE = (A, C; B; D,E)

where the operator + is the union of two partitions defined as union of

every two blocks in the two partitions provided that the intersection of the

two blocks is not empty.

We can now use information flow inequality 2.11 to find out dependencies

of state variables for the given state assignment. The inequality states that

dependency of a state variable inducing partition τyi is equal to the smallest

subset of the product of partitions τy1τy2τy3 that is lesser or equal to M(τyi).

Thus, we see that

τy2 = M(τy1)

τy2.τy3 ⊂ M(τy2)

τy1.τy3 ⊂ M(τy3)

Consequently, Y1 is dependent on y2 while Y2 depends on the information

supplied by y2 and y3. Similarly, Y3 receives its inputs from y1 and y3. This

can be translated as

Y1 = f1(Inputs, y2)

Y2 = f2(Inputs, y2, y3)

Y3 = f3(Inputs, y1, y3)

2.2 FSM Encoding for Area

The encoding for a finite state machine (FSM) determines its combinational

component. The number of storage bits nb used to store the state assignment

also affects the encoding and so the FSM’s complexity. The area of an FSM

is also a function of the type of flip-flop being employed. Encoding for finite

state machines has traditionally been targeted for reducing the complexity of

its combinational part. A good survey of FSM encoding for area can be found

in [8].
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The use of D-type flip-flops is most prevalent in VLSI circuits today. This

work will also be implicitly using D-type flip-flops for storing the finite state

machine’s state assignment.

The minimum number of state variables needed for state assignment is

given as

r0 = dlog2(s)e (2.12)

where s is equal to the number of states of the FSM.

An assignment using the minimum number of state variables has the benefit

of using the minimum number of storage devices. However, with such an

assignment, there is a potential of reduced flexibility in satisfying the number

of encoding constraints (discussed later). The problem is further investigated

in [9, 10, 11, 12, 13, 14]

Even if we consider minimal state assignments with D type flip-flop, the

number of possible combinations is exhaustively large [15].

N =
2nb !

(2nb − s)!
(2.13)

Thus, exhaustive evaluation is not feasible and heuristics are generally

employed to tackle the problem of FSM encoding.

Logic minimization aims to optimize the combinational logic of an FSM.

This in turn depends on the degree of freedom provided by an efficient FSM

encoding. A good encoding can help the logic minimizer to achieve a better

realization in terms of logic cost. Logic minimizers employ different heuristics

for two-level and multilevel circuits as their cost measures differ.

A two level implementation realizes a logic function as a sum of product

terms. The circuit complexity of such a representation is related to the number

of inputs, outputs, number of product terms and number of variables utilized

in a product term, i.e. the number of literals.

The simplest way to encode an FSM is by assigning 1-hot state codes. In

1-hot encoding for a state, the corresponding code bit for a state is set to 1 and

all others to 0. Thus, 1-hot encoding is a case of non-minimal state assignment

such that the number of variables required is equal to the number of states.

It is further noticed [16, 17] that such an encoding is poor to minimizing the

size in sum of products representation.

An objective of state encoding could be to reduce dependencies among

states [18, 19]. The rationale is that by having dependencies reduced, literal

count will decrease and so will interconnect. However, reduced dependencies
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correlate weakly with the minimality of sum of products representation.

The complexity of a two level realization can be reduced by using mecha-

nisms such as implicant merging, code covering and disjunctive coding [8]. The

idea behind Implicant Merging (See Table-2.5) is to assign adjacent codes

to states that produce either same next-state or output or both at similar in-

put conditions. This yields bigger cubes while doing Karnaugh minimization,

and results in a simpler final expression. Implicant merging requires adjacency

constraints to be met by the state assignment algorithm. Code Covering

involves a code word of a state covering a code word of some other state(s), i.e.

all the bit positions for which the second code word is 1, correspond to 1 in the

first code word. An example utilizing code covering is illustrated in Table-2.6.

Assume that S1 is encoded with 110 and S2 with 100. In this case, the input

condition (s, 001) can be treated as don’t care condition for the next state S2,

reducing the cover cardinality from three to two. Covering constraints produce

covering codewords. Reducing cover cardinality using Disjunctive Coding

is illustrated in Table-2.7. Disjunctive constraints require that the disjunction

of state codes is equal to some other state code. In the example shown, the

states are encoded such that the code for S2 is the disjunction of the state

codes for S1 and S3. As such, the second implicant with the input field 101

gets contained in other input conditions and thus is completely saved.

PS I NS z

S1 i S o
S2 i S o
S3 i S o

0-- i S o

Table 2.5: Implicant Merging

The major difficulty for 2-level realization of an FSM is the simultaneous

consideration of all the types of constraints [14]. In general, it is not possible

to satisfy all the coding conditions with a code using the minimum number

of bits r0. By increasing the number of code bits to r > r0, more coding

constraints can be satisfied. The increase in the number of storage elements

and state signals to be generated has to be justified against the potential of

reducing combinational logic by satisfying additional coding constraints.
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PS I NS z

S 001 S1 o
S 000 S2 o
S 01- S2 o

S 001 110 o
S 0-- 100 o

Table 2.6: Code Covering

PS I NS z

S 001 S1 o
S 101 S2 o
S 111 S3 o

S -01 100 o
S 1-1 010 o

Table 2.7: Disjunctive Coding
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The problem with many approaches to two-level assignment is that no ex-

act predictions are possible, as to how the satisfaction of coding conditions

affects the complexity of the resulting combinational logic, since the different

coding conditions interact with each other in a complex way. The application

of coding constraints and finding out their effect would be excessively costly

as it would require a huge number of logic minimizations. To mitigate this

problem, [11] proposed an elegant solution of symbolic minimization. By

using symbolic minimization techniques, it is possible to optimize the func-

tion independently of the encoding and determine the codes at a later time.

This requires performing the minimization at the symbolic level, before the

encoding.

In contrast to two level circuits, multiple level circuits provide much more

degree of freedom in optimizing combinational network and satisfying coding

constraints. This is because of the flexibility provided due to operations such as

common subexpression extraction and factorization. Unfortunately, it comes

with an increase in the difficulty of modeling and optimizing the multilevel

network themselves.

The complexity measure for multilevel circuits is the encoding length and

the number of literals in the optimized logic network. Since encoding length

is mostly taken constant, literal saving by extracting common subexpressions

has been the focus of most of the work done for multilevel FSM optimization.

This involves finding the state pairs which when encoded carefully can result in

extracting common subexpressions. In contrast to two level circuits, state pairs

in multilevel implementations do not necessarily have to be given adjacent

codes. If two states have n state bits in common, the combination of the

two states result in a common subexpression with n literals. To identify the

states to assign close codes, two heuristics proposed by [20, 21] standout.

The first called fanout oriented, tries to assign closer codes to the states that

have same next state transition. The rationale is to maximize the size of

common cube by assigning closer codes (lesser hamming distance) to such

states. The second approach is referred as fanin oriented in which state pairs

with incoming transitions from the same states are given high weights for

closer code assignment. Here the motivation is to maximize the frequency of

common cubes in the encoded next state function. The schemes are improved

upon in [22]. Rules for detecting potential common cubes and formulae for

more precise evaluation of literal savings have been proposed in [23]

There have been a few attempts of utilizing genetic algorithm for solving

state assignment problem [24, 25]. Almaini et al [24] utilize ESPRESSO tool in

SIS for their cost calculation which though being accurate is computationally
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infeasible. Amaral et al [25] used a cost function proposed by Armstrong [26].

The cost model tries to combine the properties of fanin and fanout oriented

algorithms. The contribution in the above works is in the design of genetic

algorithm for state assignment problem. However, the authors did not try to

take advantage of having the state codes in cost function computation.

2.2.1 Jedi

In Jedi [22], the encoding affinity cost is modeled as a function of how many

times a pair of states are represented in next state and output functions. The

cost function of Jedi is given in equation-2.14.

JP
k,l =

m0∑
i=1

(P o
k,i + P o

l,i) +
nE

2

ns∑
i=1

(P s
k,i + P s

l,i) (2.14)

where,

P o
k,i is number of times state k is represented in output i,

P s
k,i is number of times state k is represented in state i,

mo is the number of outputs,

ns is the number of states,

nE is the number of encoding bits.

For example, consider the state machine in Table-2.4. The next state

equations for states A-E are given as.

A = A.I1 + D.I1

B = A.I2 + B.I3 + D.I2

C = A.I0 + B.I1 + C.I0 + C.I3 + E.I3

D = A.I3 + B.I2 + C.I1 + D.I3 + E.I1

E = B.I0 + C.I2 + D.I0 + E.I0 + E.I2

and the output equation is given as

O0 = E

Here, P s
C,D is the number of times state C is present in next-state equation

of state D which is equal to one. Similarly, P s
E,E is two. P o

C,00
= 0 and

P o
E,00

= 1

2.2.2 Mustang

In Mustang [21], the authors observed that if P
s/o
k,i = 50 and P

s/o
l,i = 2, states

k and l will have less common cubes due to the state assignment than if they
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were P
s/o
k,i = 26 and P

s/o
l,i = 26, even though the sums are the same. They thus

proposed the use of multiplication in place of addition to represent encoding

affinity. The cost function of Mustang is given in equation-2.15

MP
k,l =

m0∑
i=1

(P o
k,i ∗ P o

l,i) +
nE

2

ns∑
i=1

(P s
k,i ∗ P s

l,i) (2.15)

Jedi and Mustang both try to reduce the Hamming distance between highly

recurring states in the next state functions. The flip-flop equations employ

some of these next-state equations depending on state assignment. Thus,

Jedi and Mustang encodings rely on increased probability of states occurring

together if they are frequently occurring in next-state functions and try to

minimize hamming distance between them.

It is also possible that two states, though highly recurrent in next state

functions, do not appear together in the flip-flop equations. This is to say

that either Pk,i or Pl,i in output or next-state terms is zero. Jedi, because of

summation, can give affinity-weight to such a pair of states. However, this

situation is more efficiently handled in Mustang by the use of multiplication

operation. By multiplying recurrences of pair of states in a next state equation,

Mustang guarantees to give weight to only those pair of states that occur

together in a next state and consequently in flip-flop functions.

2.2.3 Armstrong

Armstrong defined adjacency cost by combining fanout and fanin based ap-

proaches. The cost function describing the desired adjacency is given by

equation-2.16

AP
i,j = R1

s−1∑

l=1

αliαljδij StateFanin

+R2

c−1∑
a=0

s−1∑

l=0

βliaβljaδij StateFanout

+R3M

v−1∑

b=0

γijbδij OutputFanout(Moore)

+R3(1−M)
c−1∑
a=0

v−1∑

b=0

Φijabδij OutputFanout(Mealy)

+R4(αij + αji)δij TieBreaker (2.16)
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where c, v and s denote number of input conditions, output variables and

states respectively, and

αlm =

{
1 if Sm ⊆ Successor(Sl)

0 otherwise

βlma =

{
1 if Sm ⊆ Predecessor(Sl, Ia)

0 otherwise

γijb =

{
1 if Zb(Si) = Zb(Sj)

0 otherwise

δij =

{
1 if i 6= j

0 if i = j

φijab =

{
1 if Zb(Si, Ia) = Zb(Sj, Ia)

0 otherwise

M =

{
1 for Moore machines

0 for Mealy machines

where Si denotes state-i, Ia being input condition-a, and Zb(Si) and Zb(Si, Ia)

denotes outputs in state-i for moore machine and in state-i along with input-a

for mealy machine respectively. The terms R1, R2, R3 to R4 are scaling factors

whose values used in this work are 4, 3, 2 and 1 respectively.

The first term in the Armstrong equation gives a weight of R1 to pair of

states that have a common predecessor or a common fanin state. Similarly the

second term gives a weight of R2 to pair of states that fanout to a common next-

state. The third and fourth terms add a weight of R3 to pair of states having

similar output at similar input conditions. The two terms for R3 distinct

between Mealy and Moore types of machines. Finally, R4 is used as a tie

breaker if two states have transitions in between them.

An Example

The above three cost models are next explained by constructing their ad-

jacency graphs using state-machine-4 as given in Table-2.8. The adjacency

graphs for the three cost models are shown in Figure-2.1.

Consider the weighted arc between states S1 and S2 in Armstrong’s graph

(Figure-2.1(a)). The weight on the edge is calculated as follows: states S1 and

S2 have a common predecessor state S0 so R1 is added. States S1 and S2 are
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Figure 2.1: Adjacency Graphs

both predecessors of states S3 so R2 is added. The state machine is of Mealy

type and outputs for both the states at I = 0 are same (which is logic-1) so

we add R3. Finally there are transitions in between the two states and so R4

is also added. Thus the total arc weight is 4 + 3 + 2 + 1 = 10.

The arc between S0 and S1 in Figure-2.1(b) is derived as follows: State

S0 does not appear in output equation while S1 appears twice. Thus the

summation of the first term in equation-2.14 evaluates to 2. States S0 and S1

are present in next state equations of states S1, S2, and S3 while number of

encoding bits used is 2. Thus the second term evaluates to 4 and the total

arc weight to 6. Similar calculations using equation-2.15 lead to the Mustang

graph in Figure-2.1(c).

Affinity cost as modeled in adjacency graphs is next used to minimize

equation-2.17.

ns∑
i=1

ns∑
j=1

AP
i,j.∆(i, j) (2.17)

where ∆(i, j) is the Hamming distance between codes of state i and j

AP
i,j being the affinity as given by Jedi, Mustang or Armstrong by their respec-

tive equations.

Jedi employed Simulated Annealing to solve equation-2.17. Mustang pro-

vided a constructive algorithm while Amaral [25] used Genetic algorithm in

solving Armstrong’s cost model.

2.2.4 Expand

Expand-function as used in ESPRESSO tool [27] is also utilized in this work

in pursuit of a cost measure for area estimation. The Expand-function is

discussed in detail in the next chapter.
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PS NS z
I = 0 I = 1 I = 0 I = 1

S0 S1 S2 0 0
S1 S2 S3 1 1
S2 S1 S3 1 0
S3 S3 S1 0 1

Table 2.8: State Machine - 4

2.3 FSM Encoding for Low Power

Power dissipation has always been one of the major concerns in logic circuits

design. Excessive power dissipation often causes chip run-time failure, reduc-

tion in chip life-time, and costs more expensive packaging. In recent times,

portable electronics applications have given power-aware computing a whole

new importance. This is due to the fact that limitations in battery capaci-

ties and progress trail far behind the ever increasing computing requirements.

Power consumption is thus constrained and optimized at all levels of design

hierarchy including technology selection, architectural transformation, logic

synthesis and physical design [2]. VLSI designers have thus been faced with

another optimization parameter of low power. Recently, a lot of work is re-

ported in the literature to automate the exploration of low power solutions at

different levels of VLSI hierarchy [2, 28]

Power Estimation for FSMs

The exact power consumption of a VLSI device is a complex function of many

parameters and thus can only be accurately found out by running numerous

power simulations on the final device. However, a simpler measure for power

dissipation by a CMOS logic gate can be found out by the following equation.

Pave =
CLV dd2ESW

2.Tcyc

(2.18)

where Tcyc is the cycle time, CL the load capacitance of a CMOS gate and

ESW being the expected switching activity at the gate’s outputs.

The above equation shows that by reducing switching, supply voltage or

capacitance seen by the gate, the power consumption of a CMOS device can

be reduced.
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There is a rich amount of work reported in the literature for power esti-

mation of sequential circuits [29, 30, 31, 32]. The power estimation techniques

can be broadly classified into statistical [33] or probabilistic [34]. Both the ap-

proaches are implemented in SIS [35] version 1.2. The statistical approaches

work by simulating the state machine using the user provided input vectors

and determining the state probabilities based on it. Probabilistic approaches

on the other hand try to correlate the various probabilities in order to calculate

state probabilities if the FSM is simulated for infinite amount of time. Sta-

tistical techniques can be fast and accurate if a short representative sequence

for an FSM can be determined. However, determining such a sequence is an

open research problem. Najm in [36] reports a statistical power estimation

technique using randomly generated input sequences until a desired accuracy

is achieved. Najm et al in [37] propose a technique to estimate power within a

desirable accuracy of an FSM by simulating fraction of a large input set. The

technique tries to simulate FSM repeatedly by blocks of consecutive vectors

at random until a desired accuracy is achieved. A Monte-Carlo approach for

power estimation for sequential circuits is also proposed [38]. The technique

generates mutually independent power samples using multiple copies of the

circuit that are simulated in parallel with mutually independent input vec-

tor streams. Samples are collectively analyzed to check for the terminating

condition.

The power estimation problem is addressed even at a more higher level

using entropy as power estimating function [39, 40]. The rationale is that

since entropy is a measure of information-carrying capacity, a higher entropy

on a state line means higher number of transitions on it. The maximum

transition can be attributed when the probability on a line is exactly half and

corresponds to its maximum entropy value.

A state transition graph (STG) is denoted by G(V, E) where a vertex

Si ∈ V represents a state of the FSM and an edge ei,j ∈ E represents a

transition from state Si to Sj. Let PSi denote the state probability, that is,

the probability of finding the state machine in Si at any given time, and pij

denotes the conditional (state) transition probability, which is the probability

of the machine making a transition from state Si to state Sj, that is

pij = Probability(Next = Sj|Present = Si) (2.19)

A STG can be interpreted as a Markov chain. A Markov chain is a repre-

sentation of a finite state Markov process [41]. A Markovian process is termed

as memoryless since the probability distribution at any time depends only on
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the present time and not on how the process arrived till that period. For a

large class of Markovian processes for which our STG is also a member, the

probability of a state is the limiting value approached as it is run for infi-

nite amount of time. This is termed as limiting state probability theorem [42].

Mathematically

PSj = limitt−>∞pijPSj(t) (2.20)

The above can be iteratively found out by solving Chapman-Kolmogorov

equations [43] as follows

PSi(n + 1) =
∑

j∈In State(i)

pjiPSj(n)

i = 1, 2, · · · ,M − 1

1 =
∑

j

PSj(n + 1) (2.21)

where n is iteration number and In State(i) is the set of fanin states of i

in the STG.

The process is terminated once state probabilities converge so that the

difference between successive iterations is within a user defined tolerance value.

To tackle the complexity of solving the above system of equations, approximate

methods have been proposed in [44, 45]

The Total State Transition Probability for a transition from a state Si to

state Sj is the probability that the machine transits to state Sj given that it

is in state Si. The total state transition probability can thus be calculated as

follows [46]

Pij = pij.PSi (2.22)

where Pij is the total state transition probability from state Si to state Sj.

The sum of total state transition probabilities in between two states indi-

cates the amount of switching in between them. This sum can be treated as a

weight between the two states attributed on a single edge connecting them.

Wij = Pij + Pji (2.23)

A STG in which all the transitions between two states are replaced with

a weighted edge is called a weighted graph. The weight on an edge indicates

the relative proximity in the state assignment of the two connected states

on that edge. By assigning shorter distance codes to states connected with
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higher weights, i.e higher transition probability, the overall switching on the

state lines of the FSM can be minimized. Thus a cost model for minimizing

power consumption can be to have Minimum Weighted Hamming Distance

(MWHD). Mathematically

∑
SiSj∈S

WijH(Si, Sj) (2.24)

Consider a state machine as shown in state transition graph (STG) of

Figure-2.2(a). The edge labels correspond to input configurations that cause

a transition from a state at the tail of the edge to the state at its head. For

example, in state S0, an input of either 00, 01 or 10 will cause the machine

to transit to state S1, whereas an input of 11 will cause a transition to state

S2. The information contained in STG is next used to compute a static prob-

abilistic model of the FSM based on transition probabilities of the FSM. This

is done by interpreting FSM as a Markov chain. The Markov chain model of

the FSM can be described by a directed graph with a structure isomorphic to

the STG and with weighted edges. The weight on the edges for a transition

from state Si to state Sj represents the conditional probability of the transi-

tion, pij. This model is shown in Figure-2.2(b). Calculation of weights on the

edge is straightforward. For example, p0,1 = P (00) + P (01) + P (10) = 3/4,

where P (X) is the probability of input taking the value X. The next step

is the computation of steady state and total transition probabilities from the

Markovian model. Steady state probabilities are calculated by repeatedly it-

erating equation-2.21 until difference in successive iterations gets within user

defined limits, i.e. convergence in values is achieved. The procedure can be

started with any initial value. A detailed description of calculating steady state

probabilities is given in Appendix-A. Figure-2.2(b) shows steady state proba-

bilities achieved for the given example. The figure also shows total transition

probability of the edges obtained using equation-2.22. The total transition

probabilities between two states are finally added to construct affinity model

for power minimization referred to as weighed graph. This weighted graph for

the example is shown in Figure-2.2(d) and is next used to optimize MWHD

problem.

Previous Work

Most of the work reported in the literature [47, 48, 49] tries to achieve minimum

weighted hamming distance by optimizing the above equation for low power

realization of FSMs.

However, as (2.18) shows, power consumption depends on how much ca-
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Figure 2.2: MWHD formulation

pacitance is switched. A reduced amount of switching on greatly increased

load capacitance may well offset any savings achieved. Thus, by reducing the

switching activity, the problem is only half solved. However, the knowledge of

the gate loading can only be accurately found out once the design is synthe-

sized and mapped on a specific library.

Kang et al in [50] try to take into account area into their cost equation for

low power FSM realization. The cost function used is a linear combination

of minimum weighted hamming distance for power and the literal savings by

Jedi cost model for area. However, since there is no correlation between the

two terms, the technique does not aim at minimizing switched capacitance

but merely tries to achieve a low power and area FSM solution. The rationale

being that a low area solution will anyhow contribute towards a low power

solution. The problem is solved using genetic local search algorithm.

Suresh et al [51] describe a modification of MWHD scheme. The algorithm

tries to identify code swaps between states such that the final cost in terms of

weighted switching can be reduced. The authors define base switching as the

minimum amount of switching that is possible if the all the states are assigned

a unidistance code. Relative switching is defined as a measure of goodness

of how close the average switching is to the minimal possible base switching

value. The algorithm then identifies ’slack’ values which is the amount by
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which the cost can be decreased if two state codes are exchanged. Edges with

high slack values are first identified, then sorted and finally those that yield

better costs are exchanged. The algorithm terminates when there is no more

good exchanges remaining. The algorithm suffers from complexity of O(n3) as

for every exchange, it has to take care of its effect on other edges connected to

the two nodes in focus. Moreover, the greedy algorithm proposed is vulnerable

to get stucked in a local minima.

Roy et al addressed the problem of minimizing power in sequential circuits

in Syclop [52]. The authors use conditional transition probabilities in place of

steady state probabilities while solving a MWHD solution. The hard nature

of the problem is addressed by using simulated annealing algorithm. Once the

state codes with reduced MWHD cost are found out, constrained multilevel

logic synthesis is performed. A set of kernels are computed for each logic

expression and a non-trivial intersection of kernels is selected so that fanout

for nodes having high transition density can be reduced. The rationale is

that reduced fanout on highly switched state lines will result in low switched

capacitance.

A MWHD scheme is employed for non-minimal state encoding by Koegst

et al in [53]. The authors advocate the use of a user specified input sequence

for measuring total state transition probabilities, and thus weights, instead of

equation-2.21. Koegst in [54] used a multi-criteria non-minimal state assign-

ment for low power where assignment helps deactivating idle parts of FSM

along with reducing MWHD.

A novel technique for low power state assignment is proposed by Majid et

al [55]. The authors note that an optimal solution for MWHD problem can be

otbained using Integer Linear Programming (ILP). However, any such tech-

nique suffers from exponential complexity of ILP itself. This can be mitigated

if ILP has to be applied on small finite sets. They thus proposed a semi-gray

encoding technique in which the states are partitioned into small groups in

decreasing order of their weights. The states within a group are then assigned

gray codes using ILP.

A low power FSM realization is proposed using Huffman style to provide

non-uniform state codes in [56]. The technique proposes shorter codes for

states with higher switching activities and more for lesser switched states.

The rationale being that lesser state lines will yield lesser weighted switching

as well as switched capacitance. However, the overhead of the scheme barred

the authors to implement it as it is. Instead, the state set is encoded using

only two different code lengths. Moreover, a logic is proposed to shut off clock

for the inactive set.
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Another interesting variation in MWHD approach is proposed by Silvano

et al [57]. The authors note that the state assignment procedure can be broken

down into state ordering and state encoding sub-steps. For state ordering, var-

ious techniques have been proposed so that a chain of highly probable states

is formed. The rationale in doing so is that consecutive states from a highly

probable state are more likely to be visited than stand alone nodes with high

probability. Once states are ordered, they are encoded using encoding tech-

niques described in [58]. The sate encoding techniques try to reduce hamming

distance between consecutive states in the state ordering list as well as the

states that are connected to those states.

Benini [59] proposed state assignment technique for low power based on

total state probabilistic MWHD algorithm. The authors propose the use of

a greedy variation of column-based encoding [17, 60]. The cost function also

tries to minimize area using cost metrics of multilevel minimizers used in Jedi

and Mustang. The two costs are minimized independent of one another and

thus the technique essentially aims for low power and low area solutions si-

multaneously.

Pedram et al in [61] describe a novel technique for low power state assign-

ment by introducing the concept of literal power savings. A power value to

every literal is assigned based on its switching estimate. The literal weight

is then used to find minimum weighted (switched) literal solution similar to

MWHD. Power cost models for both two and multi-level logic implementa-

tion are described. Simulated Annealing algorithm is utilized for search space

exploration.

Another interesting work for power and area minimization is presented in

[62] by Chao et al. The authors use entropy measure to calculate the probabil-

ity distribution of an FSM. They then distribute the number of possible codes

into groups such that the codes within a group have equal number of ones.

Each state is then assigned to a group so as to minimize the overall switching.

A state is finally assigned a unique code within a group using literal saving

estimates.

In some recent work, Almaini et al [63] have employed Genetic Algorithm

[5] for independent power and area optimization. The area estimate utilized

is based on exact number of cubes in a synthesized machine while MWHD

metric is used for estimating power. The two estimates are combined using

linear summation and also by having their product. Pomeranz et al [64] have

also used Genetic Algorithm to partition the FSM such that inactive partitions

be turned off to reduce power. They propose to do state encoding such tshat

it can also determine the partition as well as state assignment.
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2.4 FSM Encoding for Testability

Testability of a VLSI circuit is attributed to how efficiently the various faults

in the circuit can be excited and observed. This involves generation and appli-

cation of test sets at primary inputs of a circuit to excite its various faults and

observe them at the outputs. The test sets can either be manually generated

or using automatic CAD tools. Automatic test generation tools are efficient in

terms of cost and effectiveness and so are generally employed to find the test

patters. This work will also consider the use of Computer Aided Automatic

Test Pattern Generation (ATPG) tools.

ATPG tools use both random and deterministic techniques to build the

test set. Deterministic test set takes into account the behavior and structure

of the circuit under test to build its test set. They thus yield higher fault cov-

erage though being more computationally expensive. The complexity and type

of a circuit, whether combinational or sequential, determines how efficiently

automatic test pattern generator performs.

Test generation for combinational circuits is known to be NP-hard problem

[65]. The worst case size of the search space is bounded by 2i, where i is

equal to the number of inputs. However, techniques have been developed to

reduce this large search space by an intelligent search of the primary input

combinations. These techniques include D-algorithm [66, 67], PODEM [68],

and FAN [69]. ATPG tools based on these algorithms are quite efficient in

finding test patterns to detect all the testable faults in an integrated circuit.

Automatic test pattern generation for sequential circuit is much more in-

volved than combinational circuits. Unlike combinational ATPG, existing se-

quential ATPG tools may not produce satisfactory results for some class of

circuits due to their complexity. For this reason, design for test techniques

like partial scan [70] have been used to improve the testability of the circuit.

The increased complexity of sequential circuits arises from memory feature in

their behavior. To excite a fault, memory elements have to be first initialized

to a proper fault exciting value. This requires a justification sequence to tra-

verse a circuit from its current state to the initialized state. Fault excitation is

followed by fault propagation to the primary outputs. Thus, sequential testing

involves a time domain component and is usually performed in multiple clock

periods. To cope with this difficulty, Iterative Array Model was proposed [3].

The model transforms the time domain aspect of sequential circuit into space

domain by unrolling the sequential behavior into multiple iterations of its com-

binational circuit, effectively making it as a large combinational circuit. The

iterative model thus permits the automatic test pattern generation algorithms
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for combinational circuit to be extended to sequential logic.

A sequential circuit can be classified as cyclic or acyclic. If a node can be

revisited after starting from that node in the forward direction without visiting

any other node again, then a cycle is said to be present in the sequential circuit.

The length of the cycle (cycle length) is said to be the number of sequential

elements encountered during the traversal. Sequential depth refers to the

number of sequential elements from primary input to the primary output.

The complexity of an ATPG can be attributed to the time it takes to at-

tain the required level of test completeness. This in turn is a strong function

of the complexity of the circuit. The upper bound on the number of vectors

needed to test all testable faults in an acyclic sequential circuit with i inputs

and sequential depth d is d ∗ 2i [71], which is comparable to the complexity of

a combinational circuit. However, a cyclic sequential circuit may require an

initialization sequence to test the combinational logic in a given state. This

initialization sequence can be as long as the M−1, M being the number of pos-

sible states for the state machine. Thus the upper bound for a cyclic sequential

circuit having i primary inputs and M states, using s number of sequential

elements is M ∗ 2s+I = 22s+I [71]. It clearly shows that the complexity

for ATPG of sequential circuit increases exponentially with the number and

length of the cycles. The complexity of sequential ATPG is investigated by

Lioy et al in [72]. The authors contend that that the complexity of sequential

ATPG depends on the number of flip-flop per loop (FF/L) and the number

of loops per flip-flop (L/FF). The former estimates the cyclic structure of the

circuit and the latter predicts how much the design is ’winded up’ on itself or

how much interdependence exists between the loops. The authors note that

the test generation complexity increases with FF/L and L/FF, while increas-

ing the number of state-controlling inputs reduces its complexity. The authors

further propose a formal algorithm to identify the loops within a sequential

circuit. Marchok et al in [73] also note that the complexity of sequential ATPG

varies with retiming. Furthermore, the authors cite a new factor, density of

encoding, which gives the measure of degree of valid states compared to the

number of possible states in the state machine, to be key indicator in the com-

plexity of structural sequential ATPG. The complexity of ATPG is carefully

investigated in [74].

As described earlier, the nature of encoding strongly determines the struc-

ture of the sequential circuit, its various dependencies, cycles and interconnec-

tions. The information flow inequality of state machines (section-2.1) enables

us to quickly realize its structure prior to its synthesis. This can help provide

an accurate measure of complexity of a sequential circuit at a higher level of
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abstraction.

Pomeranz et al [75] explored the possibility of controlling more state lines

in order to increase the testability of a sequential circuit. They have proposed a

synthesis technique that evaluates some state variable functions using primary

inputs or primary output functions. The motivation is that since primary

outputs are directly observable and primary inputs directly controllable, an

increase in testability can be achieved.

Cheng et al [76] have proposed a novel method of encoding that reduces

the feedbacks in a sequential circuit. The motivation is to reduce the cyclic

nature of the sequential circuit. The authors propose state encoding by fol-

lowing states merging according to some rules. The first rule tries to maximize

the number of blocks in a partition while the second tries to merge two states

having the same next state. The rationale for the former rule is that by having

a large number of blocks in a partition, more information can be derived from

primary inputs alone for the next state function, that in turn reduces the num-

ber of feedbacks. The latter rule aims at area minimization by incorporating

the commonly used cost metrics used in multilevel area minimization for a

sequential circuit.

Mohat et al in [77] try to take into account the testability for PLA-based

FSMs. The authors propose K-hot encoding scheme to deal with various types

of PLA faults. In K-hot code, exactly K-bits are set equal to 1. The rationale

is that many types of PLA faults can be easily detected if exactly K lines are

high.

Prinetto et al in [78] discuss testability measure for inputs and outputs

of an FSM. The authors note that optimal testability using pseudo-random

patters is achieved when outputs are high for half of the possible inputs and

low for the other. They further note that such a condition runs counter to

power minimization condition where the aim is to have reduced switching.

2.4.1 Testability Parameters

Testability of a circuit is generally measured in terms of three important pa-

rameters namely Fault Coverage, Fault Efficiency and CPU-Time. Fault Cov-

erage denotes the ratio of faults that can be detected with the total number

of faults in a circuit. Mathematically,

FaultCoverage =
Total Number of Detected Faults

Total Number of Faults
(2.25)

Fault coverage thus denotes the degree of coverage obtained by the testa-
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bility tool in detecting or covering the faults of the circuit.

Fault Efficiency is another ratio describing the number of faults that are

detected or proven to be undetectable with the total number of faults in the

circuit. Fault efficiency signifies the efficiency of the testability tool in ex-

ploring the total number of faults. A difference between fault-efficiency and

fault-coverage means that some of the faults in the circuit, though attempted

or explored by the ATPG tool, could not be excited or detected. This is

generally due to the circuit structure as will be shown in the next chapter.

CPU-Time is CPU or system-time consumed by the ATPG software for its

processing. CPU-time denotes the degree of difficulty in doing the ATPG. For

example in a sequential circuit, a higher CPU time maybe because the circuit

had to be unrolled for a bigger number of sequential iterations. In other words,

the circuit may have series of interdependent flip-flops or loops due to which

there exists a difficulty in justification and propagation of faults. There can be

other factors effecting CPU-time like fault excitation through unused states in

a sequential machine.

2.5 Multiobjective Optimization

Many real-world optimization problems involve two types of difficulties: a)

multiple, conflicting objectives, and b) a highly complex search space. On the

one hand, instead of a single optimal solution, competing goals give rise to

a set of compromise solutions, generally denoted as Pareto-Optimal. In the

absence of preference information, none of the corresponding trade-offs can be

said to be better than the others. On the other hand, the search space can

be too large and too complex to be solved by exact methods. Thus, efficient

optimization strategies are required that are able to deal with both difficulties.

FSM state assignment problem is not far from these real-world problems as

it also involves multiple, possibly conflicting objectives and a highly complex

search space.

A general multiobjective optimization problem (MOP) includes a set of n

parameters (decision variables), a set of k objectives, and a set of m constraints.

Objective functions and constraints are functions of the decision variables. The

optimization goal is defined as,

minimize y = f(x) = (f1(x), f2(x), ..., fk(x)) (2.26)

subject to e(x) = (e1(x), e2(x), ..., em(x)) ≤ 0 (2.27)
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where

x = (x1, x2, ..., xn) ∈ X

y = (y1, y2, ..., yk) ∈ Y

and x is the decision vector, y is the objective vector, X is denoted as the

decision space, and Y is called the objective space. The constraints e(x) ≤ 0

determine the set of feasible solutions. The feasible set Xf is defined as the

set of decision vectors x that satisfy the constraints e(x)[79].

In the state assignment problem (SAP) addressed in this work, two of the

three objectives area and power, are to be minimized while testability is to

be increased under the constraint that minimal length encoding is used. The

encoding length is fixed at minimal during the assignment so the constraint

is always being met. Then an optimal solution might be an assignment which

achieves minimal area, minimal power dissipation, with total testability. If

such a solution exists, we actually only have to solve a single objective opti-

mization (SOP). The optimal solution for any objective is also the optimum

for other objectives [79]. However, what makes MOP’s difficult is the common

situation when the individual optima corresponding to the distinct objective

functions are sufficiently different. Then the problem has usually no unique,

perfect solution, but a set of equally efficient, or non-inferior, alternative solu-

tions, known as the Pareto-optimal set [80]. SAP is not far from this difficulty,

because it is possible that for a particular change in assignment solution there

is a decrease in one cost but it may result in the increase in other cost. For ex-

ample it is possible that certain change results in decrease in overall area, but

the number of nets having high switching probability may increase resulting in

high power dissipation, or the power dissipation may decrease but it may also

increase testability difficulty as certain logic values may be difficult to con-

trol/observe due to lesser logic switching in the resulting circuit. Therefore, it

is needed to solve SAP as an MOP.

2.5.1 Search and Decision Making

Depending on how optimization and the decision process are combined, multi-

objective optimization methods can be broadly classified into three categories

[79].



33

(a) Decision making before search

The objectives of the MOP are aggregated into a single objective which implic-

itly includes preference information given by a human decision maker (DM).

(b) Search before decision making

Optimization is performed for individual objectives, without any preference

information given. The result of the search process is a set of (ideally Pareto-

optimal) candidate solutions from which the final choice is made by the DM.

(c) Decision making during search

The DM can articulate preferences during the interactive optimization process.

After each optimization step, a number of alternative trade-offs are presented

on the basis of which the DM specifies further preference information, which

guide the search.

The aggregation of multiple objectives into one optimization criterion has

the advantage that the classical single-objective optimization strategies can

be applied without further modification. In this thesis the same approach is

used. In order to combine all the objectives into a single objective function,

a fuzzy goal based aggregation is used. In this aggregation, fuzzy logic is

combined with a modified goal programming approach. In the next two sec-

tions goal programming and fuzzy logic concepts are presented, followed by

the formulation of fuzzy goal based aggregating function for SAP problem.

2.5.2 Goal Programming

In this aggregation method, the decision maker has to assign targets or goals

that he/she wishes to achieve for each objective. These values are incorporated

into the problem as additional constraints. The objective function will then

try to minimize the absolute deviation from the targets to the objectives. The

simplest form of this method may be formulated as,

minimize f(x) =
k∑

i=1

wi |fi(x)− Ti| , subject to x ∈ Xf (2.28)

where Ti denotes the target or goal set by the decision maker for the ith ob-

jective function fi(x), wi is the weight of fi(x), and Xf is the set of feasible

solutions as mentioned before. A more general formulation of goal program-

ming objective function is weighted sum of the pth power of the deviation
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|fi(x)− Ti|. Such a formulation has been called generalized goal programming

[81]

The main strength of this technique is its computational efficiency in case

we know the desired goals that we wish to achieve, and if they are in feasible

region. However, its main weakness is that, it needs appropriate weights or

priorities for the objectives, which in most cases is difficult unless there is prior

knowledge about the shape of the search space. Also, if the feasible region is

difficult to approach, this method becomes very inefficient. This technique is

useful if a linear or piecewise-linear approximation of the objective functions

can be made.

2.5.3 Fuzzy Logic

Fuzzy Logic is a mathematical tool invented to express human reasoning. In

classical (crisp) reasoning a proposition is either true or false whereas in fuzzy

system a proposition can be true or false with some degree.

Fuzzy Sets

A classical (crisp) set is normally defined as collection of elements or objects

x ∈ X. Each single element x either belongs to the set X (true statement),

or does not belong to the set (false statement). Whereas a fuzzy set can be

defined as,

A = {(x, µA(x))|x ∈ X}
µA(x) is called the membership function or grade of membership (or degree

of truth) of x in A that maps X to the membership space M . The range of

the membership function is a subset of the non-negative real numbers whose

supremum is finite [82]. Elements with zero degree of membership are normally

not listed.

Like crisp sets, operations such as union, intersection, and complementa-

tion etc., are also defined on fuzzy sets. There are many operators for fuzzy

union and intersection. For fuzzy union, the operators are known as s-norm

operators (denoted as ⊕). While fuzzy intersection operators are known as

t-norm (denoted as *).

Fuzzy Reasoning

Fuzzy reasoning is a mathematical discipline to express human reasoning in

vigorous mathematical notation. Unlike classical reasoning in which proposi-

tions are either true or false, fuzzy logic establishes approximate truth value of
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Figure 2.3: Membership function of a fuzzy set A.

propositions based on linguistic variables and inference rules [83]. By linguistic

variable we mean a variable whose values are words or sentences in natural

or artificial language [84]. The linguistic variables can be composed to form

propositions using connectors like AND, OR and NOT. Formally, a linguistic

variable comprises five elements [85].

1. The variable name.

2. The primary term set.

3. The Universe of discourse U .

4. A set of syntactical rules that allows composition of the primary terms
and hedges to generate the term set.

5. A set of semantic rules that assigns each element in the term set a lin-
guistic meaning.

For example area can be used as linguistic variable for FSM state-assignment

problem. According to the syntactical rule, the set of linguistic values of area

may be defined as very big, big, medium, small, and very small. The universe

of discourse for linguistic variable is positive range of area of a design, eg.,

[150 literals, 30 literals]. The set of semantic rules define fuzzy sets for each

linguistic value. A linguistic value is characterized by its corresponding fuzzy

set. The membership in fuzzy set is controlled by membership functions like

Fig. 2.3. It shows the designer knowledge of problem [83].
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Fuzzy Operators

There are two basic types of fuzzy operators: operators for the intersection,

interpreted as the logical “and,” and union, interpreted as the logical “or,”

of fuzzy sets. The intersection operators are known as triangular norms (t-

norms), and union operator as triangular conorms (t-conorms or s-norms) [82].

Normally “or” logic is implemented using maximum operator defined as,

µ(x) = max{µA(x), µB(x)} (2.29)

Whereas, “and” logic is normally implemented using minimum operator

defined as,

µ(x) = min{µA(x), µB(x)} (2.30)

Also the fuzzy complementation operator is defined as,

µ̄B(x) = 1− µB(x) (2.31)

Ordered Weighted Averaging Operator

Generally, formulation of multi criteria decision functions do not desire pure

“anding” of t-norm nor the pure “oring” of s-norm. The reason for this

is the complete lack of compensation of t-norm for any partial fulfillment

and complete submission of s-norm to fulfillment of any criteria. Also the

indifference to the individual criteria of each of these two forms of operators led

to the development of Ordered Weighted Averaging (OWA) operators [86, 87].

This operator allows easy adjustment of the degree of “anding” and “oring”

embedded in the aggregation. According to [86, 87], “orlike” and “andlike”

OWA for two fuzzy sets A and B are implemented as given in Eqn. 2.32 and

Eqn. 2.33 respectively,

µA∪B(x) = β ×max(µA, µB) + (1− β)× 1

2
(µA + µB) (2.32)

µA∩B(x) = β ×min(µA, µB) + (1− β)× 1

2
(µA + µB) (2.33)

β is a constant parameter in the range [0,1]. It represents the degree to which

OWA operator resembles a pure “or” or pure “and” respectively.

To solve MOP using fuzzy logic, first all the objectives are defined in terms

of linguistic variable. A linguistic rule is made using (“and” and “or” logic)

in order to combine these linguistic variable. Each linguistic variable is also

mapped to a fuzzy membership value in the fuzzy set of good in terms of that
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objective. This membership value is the functions of some base value based

on the numerical value of the actual cost. All the membership values are

combined into one membership value, using t-norm or s-norm operators. The

selection of t-norm or s-norm operator depends upon the predefined linguistic

rule. The combined membership value is now used as aggregating function.

The best solution is that, which results in the highest combined membership

value.

2.6 Iterative Algorithms

A number of iterative algorithms are proposed in the literature. The moti-

vation for using iterative algorithms becomes clear when recalling the hard

nature of the FSM encoding problem as mentioned above. These algorithms

are capable of efficiently searching for a near optimal solution in a large solu-

tion space and have been very successful in solving a number of combinatorial

optimization problems in various disciplines of science and engineering. In the

following, a brief description of genetic algorithm (GA) and tabu search (TS)

algorithms is presented.

2.6.1 Genetic Algorithm (GA)

GA is an elegant search technique that emulates the process of natural evo-

lution as a means of progressing towards the optimal solution. A high level

algorithmic description of GA is given in Figure 2.4 [5]. GA uses an encoded

representation of a solution in the form of a string made up of symbols called

genes. The string of genes is called chromosome. The algorithm starts with

a set of initial solutions called population that may be generated randomly or

taken from the results of a constructive algorithm. Then, in each iteration

(known as generation in GA terminology), all the individual chromosomes in

the population are evaluated using a fitness function. Then, in the selection

step, two of the above chromosomes at a time are selected from the popula-

tion. The individuals having higher fitness values are more likely to be selected.

After the selection step, different operators namely crossover, mutation, and

inversion act on the selected individuals for evolving new individuals called

offsprings. These genetic operators are described below.

Crossover is an important genetic operator. It is applied on two individuals

that are selected in the selection step to generate an offspring. The generated

offspring inherits some characteristics from both parents in a way similar to
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Algorithm (Genetic_Algorithm) 
  (Np = Population Size) 
  (Ng = Number of Generations) 
  (No = Number of Offsprings) 
  (Pi = Inversion Probability) 
  (Pµ = Mutation Probabilty) 
  Begin 
    (Construct initial population) 
    Construct_Population(Np); 
    For j = 1 to Np 
      Evaluate_Fitness (Population[j]) 
    EndFor; 
    For i = 1 to Ng 
      For j = 1 to No 
(Choose parents with probability proportional to fitness value) 
 (x,y) Å Choose_parents; 
 (Perform crossover to generate offsprings) 
 offspring[j] Å Crossover(x,y) 
 For k = 1 to Np 
   With probability Pµ apply Mutation (Population[k]) 
   With probability Pi apply Inversion (Population[k]) 
 EndFor; 
 Evaluate Fitness(offspring[j]) 
    EndFor; 
    Population Å Select(Population, offspring, Np) 
  EndFor; 
  Return highest scoring configuration in population 
End. (Genetic Algorithm)    

    

Figure 2.4: Outline of simple Genetic Algorithm [5].
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natural evolution. There are different crossover operators namely simple, or-

der, partially mapped, and cycle. The simple crossover operation for instance,

works by choosing a random cut point in both parent chromosomes (the cut

point should be the same in both parents) and generating the offspring by

combining the segment of one parent to the left of the cut point with the seg-

ment of the other parent to the right of the cut [5]. For description of other

crossover operators, see [88, 5, 89].

The mutation operator is used to introduce new random information in

the population. It helps to prevent the search process from trapping in local

minima. An example of mutation operation is the swapping of two randomly

selected genes of a chromosome. The importance of this operation is that it

can introduce a desired characteristic in the solution that could not be intro-

duced by the application of the crossover operator alone. However, mutation

is applied with a low rate so that GA does not turn into a memory-less search

process [88].

There is an addition of offsprings in the population size after crossover

operation. In order to keep the number of members in a population fixed, a

constant number of individuals are selected from this set which consists of both

the individuals of the initial population, and the generated offsprings. If M is

the size of the initial population and No is the number of offsprings created in

each generation, then, before the beginning of next generation, we select M

new parents from M + No individuals. There can be various selection policies

to select the next set of parents within the pool. One such policy could be to

greedily select the best individuals from the set. Another policy could be to

be random in selection.

The quality of the solution obtained from GA is dependent on the choice of

certain parameters such as population size, number of generations, crossover

and mutation rates and also the type of crossover used. The selection of values

for these parameters is problem specific and so there are no hard and fast rules

for this purpose. The choice of these parameters is left to the conception and

intuition of the person applying GA to a specific problem.

2.6.2 Tabu Search (TS)

Tabu search is an iterative heuristic that has been applied for solving a range

of combinatorial optimization problems in different fields [5]. Tabu search

starts from an initial feasible solution and carries out its search by making

a sequence of random moves or perturbations. A tabu list is maintained that
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stores the attributes of a number of previous moves. This list prevents bringing

the search process back to already visited states. In each iteration, a subset of

neighbor solutions is generated by making a certain number of moves and the

best move (the move that resulted in the best solution) is accepted, provided

it is not in the tabu list. Otherwise, if the said move is in the tabu list,

the best solution is checked against an aspiration criterion and if satisfied,

the move is accepted. Thus, the aspiration criterion can override the tabu list

restrictions. It is desirable in certain conditions to accept a move even if it is in

the tabu list, because it may take the search into a new region due to the effect

of intermediate moves. The behavior of tabu search heavily depends on the

size of tabu list as well as on the chosen aspiration criterion. Different sizes

of tabu list result in short-term, intermediate term, and long-term memory

components that can be used for intensifying or diversifying the search. The

aspiration criterion determines the extent to which the tabu list can restrict

the possible moves. If a tabu move satisfies aspiration criterion, then the move

is accepted and tabu restriction is overridden. The structure of TS is given in

Figure 2.5. The detailed description of tabu search can be found in [5].
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Algorithm  Tabu_Search 
 
ΩΩ : Set of feasible solutions 
S : Current solution 
S* : Best solution 
Cost : Objective function 
ΝΝ(S) : Neighborhood of S ∈ Ω 
V* : Sample of neighborhood solutions 
T : Tabu list 
AL : Aspirartion level 
 
Begin 
 
Start with an initial feasible solution S ∈ Ω 
Initialize tabu list and aspiration level 
For fixed number of iterations Do 
 Generate neighbor solutions V* ⊂ N(S) 
 Find best S* ∈ V* 
 If move S to S* is not in T Then 
  Accept move and update best solution 
  Update T and AL 
 Else 
  If  Cost(S*) < AL Then 
   Accept move and update best solution 

  Update T and AL 
 End If 
End If 

End For 
 
End. 

Figure 2.5: Outline of Tabu Search algorithm [5].



Chapter 3

Problem Formulation and

Solution Methodology

3.1 Introduction

A typical VLSI design process is divided into several levels of design abstraction

as depicted in Figure 1.1. More knowledge of design is added as we move down

the abstraction levels. Thus a more accurate estimation of circuit attributes

is possible down the hierarchy. However, the increase in accuracy is mostly

gained at a cost of increase in complexity of cost estimation as there are

additional details down the hierarchy that were abstracted at the higher level.

In this work, we have utilized a number of cost/fitness functions to model

the problem of finite state machine state assignment and discussed their effec-

tiveness in solving our objectives. This chapter formulates the state assignment

problem and details the cost models we have used in our work.

3.2 Problem Statement

An FSM M can be formally defined as a 5-tuple M = (S, I, O, T, δ) where

S represents the finite state space, I represents the finite input space and O

the finite output space, δ : IxS → S is the next state function and T is the

transition relation defined as I x S → O (for a Mealy machine) or T : S → O

(for a Moore machine).

State assignment involves an injective mapping f: S → Bn where n is

the code length (n ≥ dlog2 |S|e) and Bn is an n-dimensional boolean space, a

boolean hypercube. Objectives addressed in this thesis are the minimization of

area, power and testability of the synthesized state machine circuit. Minimum

42
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code-length is considered as constraint.

3.3 Cost Functions for Multilevel Area Mini-

mization

As discussed earlier in chapter-2, multilevel area is estimated in terms of num-

ber of literals synthesized from a state assignment. In this work, a number of

cost measures for multilevel area are experimented with. These include Jedi,

Mustang and Armstrong cost measures as described in section-2.2. We also

have used Expand-function that is utilized in ESPRESSO tool. Moreover,

this work also investigates the use of support function as discussed earlier in

section-2.1 and four new literal saving estimates that are the focus of this

section.

3.3.1 Literal Savings - 1

The first literal saving measure, given in equation-3.1, is an exact number of

literals that can be saved from a pair of states.

LS1SiSj
=

m0∑

k=1

2(nE −∆ij − 1)TOk
ij +

ns∑

k=1

2λk(nE −∆ij − 1)TNSk
ij − (nE −∆ij)

(3.1)

where,

∆ij represents the hamming distance between states i and j,

TOk
ij and TNSk

ij are boolean values representing if both states i and j are present

in an output function Ok, or next-state functions NSk, respectively,

mo is the number of outputs,

ns is the number of states,

nE is the number of encoding bits,

λk is the number of ones in the statecode of state k.

The first two terms give the number of literals that can be saved by taking

out a pair of common-literal set from output and next-state functions respec-

tively, while the last term accounts for a single instantiation of the saved term.
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3.3.2 Literal Savings - 2

The second literal saving measure improves upon the previous literal saving

estimate by noting that a common-literal set can be extracted from several

terms in an output or next-state equation. This exact number is obtained by

summing the recurrences of a pair of states in output or next state equations.

Equation-3.2 gives the cost model for second literal savings function.

LS2SiSj
=

m0∑

k=1

(nE−∆ij−1)(P o
jk+P o

ik)+
ns∑

k=1

λk(nE−∆ij−1)(PNS
jk +PNS

ik )−(nE−∆ij)

(3.2)

where,

P o
k,i is the number of times state k is represented in output i,

P s
k,i is the number of times state k is represented in state i.

The above model is very similar to Jedi (equation-2.14) with the terms

abstracted before are accounted by exact values. This is because of availability

of state-coding information in the algorithms used in this work.

3.3.3 Literal Savings - 3

The third literal saving model is based on Mustang (equation-2.15) by multi-

plying the recurrences instead of addition. The third literal saving model is

given in equation-3.3

LS3SiSj
=

m0∑

k=1

(nE−∆ij−1)(P o
jk∗P o

ik)+
ns∑

k=1

λk(nE−∆ij−1)(PNS
jk ∗PNS

ik )−(nE−∆ij)

(3.3)

3.3.4 Literal Savings - 4

The final literal saving model used in this work combines two-level savings with

multilevel literal savings models. Model-3 is used for estimating multilevel

savings. The cost model is depicted in equation-3.4. The two-level savings

estimation is based on the principle of implicant merging (2.2) in which a pair

of terms unidistance apart can be merged together. Such a sharing results in

a literal savings of (nE + #inputs + 1) per merged pair. The literal savings

are abstracted to nE in the model.
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LS4SiSj
=

m0∑

k=1

nEUSiSj
TOk

ij +
ns∑

k=1

nEUSiSj
TNSk

ij + LS3 (3.4)

where,

USiSj
is boolean high if states Si and Sj are unidistance apart.

3.3.5 Expand

Expand operation is used by many heuristic two-level minimizers, notably

ESPRESSO [27] and Mini [90]. The goal of Expand-function is to increase the

size of each implicant of a given cover F , so that implicants of smaller size

can be covered and deleted. Maximally expanded implicants are primes of the

function. As a result, the Expand operator makes a cover prime and minimal

with respect to single-implicant containment.

Expand operation uses positional-cube notation (POS) for binary encoding.

The binary codes are encoded in positional-cube notation by 2-bit fields as

follows:

Binary POS
0 10
1 01
- 11

Table 3.1: POS Notation/Encoding

The POS notation doubles the number of columns in an implicant table

but simplifies various implicant manipulation operations as will be seen with

Expand operation.

The expansion of an implicant is done by raising one (or more) of its 0s

to 1. This corresponds to increasing its size (by a factor of 2 per raise),

and therefore to covering more minterms. The fundamental question in the

expansion process is whether the expanded cube is still valid, i.e., it is still an

implicant of the function f. This is accomplished by checking for an intersection

of the expanded implicant with the off-set, FOFF .

The computational efficiency and the quality of expanded cover depends

on the order in which the implicants are being selected for expansion. Heuris-

tics are used for ordering the implicants. The rationale behind the ordering

heuristic is to expand those cubes first that are unlikely to be covered by other
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cubes, i.e, those having fewer 1s in the densely populated columns. The tech-

nique works by computing a vector whose entries are the column sums of the

matrix representing F . Each cube is next assigned a weight that is the inner

product of the cube itself and the previously computed vector.

The Expand operation is next considered on the state machine given in

Figure-3.1(a). A sample state-assignment for the state machine is given in

the Figure-3.1(b). The state machine is next represented in the form of state-

table with the symbolic state assignments replaced with actual assignments

as shown in Figure-3.1(c). We will use the state machine to show Expand

operation on F1 (FON
1 ) input cover. Input cover for F1 in POS notation is

given in Figure-3.1(d). The off-set FOFF
1 for the given example is the set of

all implicants that are not in F1. The information regarding the off-set is also

available in the state-table. Input combinations that remain unspecified in the

state-table is the set of don’t care values. The given example has completely

specified inputs and thus empty don’t-care set.

The Expand operation begins by constructing column count vector repre-

senting the number of 1s in individual columns of F1 cover in POS notation.

Let the column count vector be ordered from left to right in the same ordering

as the cover. Then the vector is [14144123]T . Weights of the implicants are

next determined by having the product of the cover with the column count

vector. For e.g, the weight of the first implicant W1 is found as

W1 = 0x1 + 1x4 + 0x1 + 1x4 + 1x4 + 0x1 + 1x2 + 0x3 = 14

The weights of the implicants thus calculated in F1 are (14, 12, 12, 15, 11)

Thus the fifth implicant is processed first, i.e., 01 01 01 10.

The Expand operator first tries to raise the 0 in column 1 to 1. This

yields a temporary implicant 11 01 01 10 that intersects with the off-set of F1

(10 01 01 10 lies in FOFF
1 ), and thus is rejected. Similarly, raising of columns

3 and 8 also interest with the off-set and are rejected. However, column 5 can

be raised to an implicant 01 01 11 10 that covers the first implicant of F1.

Thus as the result of expansion, the fifth and the first implicants of F1 get

covered in a bigger cube. The two implicants covered are deleted from the list

of implicants to be covered.

Among the remaining set of implicants to be covered, there are two least

weighted implicants with weights of 12. The second implicant (10 01 10 01)

is randomly selected for Expand operation. Column-2 in the implicant is next

raised due to which the fourth implicant also gets covered. The last remaining

implicant, the third implicant (01 10 10 01), is finally selected for expansion

which can only be expanded in the fourth column to re-cover the already
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covered fourth implicant. The final cover thus obtained for F1 is shown in

Figure-3.1(e). The final cover for both the sequential elements in PLA format

is given in Figure-3.1(f).

The Expand cover for F0 and F1 is composed of 8 and 9 literals, respectively.

This is done by counting the number of 1s and 0s in the respective covers.

There are five implicants where the literal for f0 is not a don’t care, i.e., there

are five implicants depending on f0 or in other words there are five branches

stemming out of flip-flop-0. Similarly, flip-flop-1 is being fed to five implicants.

The flip-flop fanout calculation is utilized in fanout based power cost measure

as will be discussed in the next section.

The current work utilizes the off-set of a function available in the state-

table and thus bypasses an expensive operation of complement to find out the

off-set from the on-set and don’t-care set. Expand operation on an implicant

is allowed by only checking the non-intersection with the off-set. Such an

expansion thus implicitly uses the undefined values in don’t care set as valid

positions for expansion.

3.4 Cost Functions for Power

Two formulations for power minimization problem in finite state machine are

explored in this work. Both the formulations utilize total steady state transi-

tion probability between states as discussed in section-2.3. This work utilizes

Matlab software for calculation of steady state probabilities. A detailed de-

scription of using Matlab software for calculating steady state probabilities is

given in Appendix-A.

Power can be reduced if the logic being switched, or in other words the

switched capacitance in a circuit can be reduced. This can be achieved by

either reducing the total switching in the logic or by reducing the logic itself

or both of them. In case of sequential circuit, switching activity in the com-

binational logic is due to logic transitions on the flip-flops as well as primary

inputs. The transitions on sequential elements propagate to the combinational

logic cone that is dependant on those flip-flops causing switchings in parts of

that logic. Thus, to reduce switched capacitance in an FSM, one can:

1. Minimize flip-flops transition frequencies. A lesser number of transitions

will ensure lesser switching in the combinational logic cone and thus

reduced power.

2. Minimize fanout branches (fanout) from flip-flops. By reducing fanout of
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flip-flops, the load capacitance they encounter is reduced thus reducing

switched capacitance.

3. Minimize the logic being switched. Fanout from a flip-flop can also be

used as an estimate of size of combinational logic cone that is dependant

on that flip-flop. A high fanout from a flip-flop means a big cone of logic

being fed from that flip-flop which may eventually translate into a bigger

combinational circuit. Thus by reducing the fanout size, one may expect

to reduce the logic being switched.

The first formulation based on minimum weighted hamming distance (MWHD)

was discussed in detail in previous chapter. MWHD approach tries to min-

imize the total transition probability of the state machine in the hope that

the total number of logic transitions in the synthesized circuit will also get

reduced, i.e. it tries to maximize power reductions only due to point-1 above.

The second formulation used in this work tries to combine all the factors

discussed above. It can be observed that points 2 and 3 are interrelated as

one factor can be traded for the other. For example, a big combinational logic

having lesser switching frequency may be equivalent in power consumption to

smaller logic with higher switching frequency. Thus to maximize reduction in

switched capacitance, fanout branches can be weighted with respect to flip-

flop transition frequency in order to give higher reduction priority to fanouts

branches stemming out of frequently switched flip-flops. This can be stated

mathematically as minimizing equation-3.5

Fanout =

nE∑
i=1

TiBi (3.5)

where Bi and Ti are the number of fanout branches and the transition

frequencies of flip-flop-i, respectively. In this work, Expand cover is used to

calculate the fanout. A procedure of fanout calculation was discussed in the

previous section. Calculation of flip-flop transition frequencies is discussed

next.

The steady state transition probabilities of states can be combined with

state assignment to determine steady state transition probability of flip-flops.

Consider for example the four-state FSM in Figure-2.2. The weighted graph

along with a sample state assignment is reproduced in Figure-3.2. The weight

on edges connecting two states represent transition probability between the

two states.

Two memory elements, F0 and F1, are used in encoding the state machine.

A flip-flop will switch its logic value if the state machine traverses to a state
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Figure 3.2: Weighted Graph & State Assignment for Fanout based approach

having value opposite to the current value of the flip-flop. Thus, transition for

F0 takes place when the state machine switches between states S0 and S1 or

between S0 and S3. Similarly, F1 switches during state machine transition in

between states S1 and S3, S0 and S2 and S0 and S3, respectively. Flip-flop

transition probability can thus be obtained by summing those edge weights

where the flip-flop logic transition occurs. Flip-flop transition probabilities

can thus be calculated as

T0 = 0.1552 + 0.1552 = 0.3104

T1 = 0.1552 + 0.1034 + 0.4655 = 0.7211

These values can now be used in equation-3.5 to yield the second formu-

lation used in this work, minimum weighted fanout. The approach is also

referred as fanout in the thesis.

3.5 Cost Functions for Testability

This work addresses testability objective by adapting previously used mea-

sures and further building them by utilizing the information available from

the Expand cover. The Expand cover provides a good estimate for calculating

dependencies of sequential elements resulting from a state assignment. The

dependencies are then further processed to provide an estimate of number and

depth of loops in the synthesized circuit.

As discussed earlier (see section-2.4), one of the testability measures used

previously sums depths for all the loops in a synthesized circuit. This measure
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was implemented in the current work and is referred as TDepth. Mathemat-

ically,

TDepth =

#loops∑

k=1

Depthk (3.6)

TDepth measure tries to ease difficulty in justification of a desired value

by reducing the number and depths of loops. This has the effect of reducing

the number of time frames required for processing a value.

ATPG tools like HITEC [91] are based on three-valued logic; the allowed

value set being (0, 1, X). Boolean algebra using the three basic gates on three

valued logic is tabulated in Tables-3.2 and 3.3.

Inputs AND OR
(0, 0) 0 0
(0, 1) 0 1
(1, 0) 0 1
(1, 1) 1 1
(1, X) X 1
(0, X) 0 X
(X, X) X X

Table 3.2: Boolean Algebra using 3-valued logic on two-input AND/OR gates

Inputs NOT
0 1
1 0
X X

Table 3.3: Boolean Algebra using 3-valued logic on NOT gate

ATPG tools initialize the sequential elements with don’t care value (X).

To test the faults present in a circuit, sequential elements are usually required

to be initialized to some known state of either logic-1 or logic-0. One way to

achieve this is to provide an explicit reset for all the flip-flops. However, if

the design does not provision a reset line, the sequential elements are to be

initialized using the available control lines, i.e. by using primary inputs of the

circuit.
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There can be a situation where a flip-flop never gets initialized. This may

happen due to three valued logic as is shown in Figure-3.3. Such a circuit con-

verts the D-type flip-flop into a T-type and is a usual occurrence in counter-

circuits. The flip-flop is initially initialized to a don’t care. This don’t care

value no matter which input value is XORed with remains a don’t care at

flip-flop’s inputs, inhibiting the flip-flop initialization. Due to this uninitial-

izability, any fault on line A or B will remain untested. The circuit, though

being optimal according to equation-3.6, is in fact untestable and should be

avoided for testability concerns.

Input

Q


Q
SET


CLR


D
A


B


Figure 3.3: Uninitializable Flip-Flop

The second testability measure used in this work estimates uninitializabil-

ity of a circuit resulting from an assignment and tries to favor initializable

implementations. The estimation is based on information contained in the

Expand cover.

A flip-flop can be initialized to logic-zero if all the product terms in its

cover can be set to logic-zero. In SOP realization, this can be realized as

having all inputs of the OR-gate set at logic low. Similarly, to set a flip-flop

at logic-high, at-least one of the product terms have to be raised to logic-high.

This zero initializability of a flip-flop can be evaluated by computing com-

plement of its on-set. Presence of a complement term then denotes availability

of a condition that can simultaneously turn off all the implicants in the on-set.

For example, in the Expand cover of Figure-3.1(e), F1 can be set to low by

setting the inputs, I0 and I1, to logic-low. F1 can also be set to low by set-

ting both the sequential elements at logic-high. However as initially flip-flops

are initialized to unknown values according to three-valued logic, only inputs

can be used for initializing flip-flops to some binary value in the beginning.

The initialized flip-flops can later on be used for initializing the rest of the

sequential elements.

Thus, a logic-low or a logic-high initialization for the first flip-flop after

startup can be summarized as follows.

Logic-High Initialization: A flip-flop can be initialized to logic-high if there



53

exists an implicant in its cover that only depends on inputs.

Logic-Low Initialization: A flip-flop can be initialized to logic-low if their

exists an implicant in its complement cover that only depends on inputs.

Initialization of subsequent flip-flops may then proceed by utilizing the flip-

flops initialized. Initialization sequence can be best explained with an example.

Consider a cover of a circuit having two inputs, I0 and I1, and two flip-flops

(FF), F0 and F1 as shown in Figure-3.4(a).
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Figure 3.4: Zero Initialization Sequence

The initialization sequence can start with any flip-flop. In the sequel, FF0

is considered first. There are two product terms in the cover of FF0. As

the flip-flops are initialized to don’t-cares, initialization may only be possible

through controlling input set of the two product terms. There is no product

term that depends only on inputs and so logic-one initialization is currently not

possible. Input set of the two product terms, reproduced in the upper part of

Figure-3.4(b), is next considered for zero initialization through complement.

The complemented cover is given in the lower part of Figure-3.4(b). The

existence of complement cover for FF0 predicts its zero-initializability.

FF1 is next considered using the initialization information available from

FF0. The zero initialization of FF0 ensures that the last product term in the

cover of FF1, 1101, will automatically be turned off. Thus, the remaining

three terms are complemented to get the complemented-cover, FF ′
1, given in

Figure-3.4(c). This indicates that FF1 is zero-initializable. Moreover, with

the zero initialization of FF0, all the literals in the first product term for FF1

can be set to logic-high. Thus, FF1 can also be initialized to logic one.

The initialization may then proceed back to see if this new information can

be utilized for logic-one initializability of FF0. In the given example, FF0 can

now be initialized to logic-one using initialization of FF0 and FF1 to logic-zero

and logic-one respectively.
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An accurate initializability measure would keep on considering all the flip-

flops iteratively as long as there is some new initializability information avail-

able. However, such an iterative measure becomes too costly to compute.

To keep the calculations simple, an iterative initialization is considered where

only those flip-flops that were not previously initialized to any logic value are

considered. The rationale is that the availability of a number of initialized

flip-flops may increase the probability that the previously initialized flip-flops

can now be initialized to the other logic values.

Initialization of flip-flops is essential for full testability of a sequential cir-

cuit. Ease of testing using the first measure can now be combined with a

measure of initializability of the machine to yield an estimate of a fully and

easily testable sequential circuit. The second cost model for testability thus

developed is given in equation-3.7.

Integrated Testability Measure =
TDepth + 1

aI0 + bI1

(3.7)

where I0 and I1 are boolean values indicating zero and one-initializability

of flip-flops and a and b are weights given to them.

Total loops depth is incremented by one to account for a situation where

there are no loops in the circuit. The denominator in the equation estimates

initializability of the circuit. A higher number of initialized values on flip-flops

thus translates into a reduced final cost. This work uses weights of 2 and 1 for

a and b respectively. The use of such weights is explained next.

The cover produced by Expand-function may contain redundant terms that

subsequently get removed by other heuristics in the synthesis process. There

is thus a potential inaccuracy in the initialization estimate that needs to be

further analyzed.

A logic-one initializable cover may not remain logic-one initializable if the

product terms responsible for logic-one initializability get eliminated during

synthesis process. This can happen if the implicants responsible for logic-one

initializability were detected redundant in the cover. Heuristic Irredundant,

which is the next operation performed after literal expansion in ESPRESSO,

removes redundant terms in the cover. However, invalidation of logic-zero ini-

tializability may happen due to the alteration in the cover by addition of new

product terms. This can happen by the iterative application of Reduce and

Expand functions in ESPRESSO. As gradual steps in the synthesis procedure

try to further simplify expanded cover, there is lesser probability of invali-

dation of logic-zero initializability in the cover than invalidation of logic-one

initializability.
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The inaccuracy in estimation of logic-one initialization can be best under-

stood using an example. Consider an Expand-cover as

F1 = I1I2 + I1F
′
1 + I2F1 + F1F2

There exists a term in the cover that is only dependant on the inputs and

thus the flip-flop is predicted as logic-one initializable. The sequential element

cannot be initialized to logic-zero. This cover when synthesized yields the

following minimized form

F1 = I1F
′
1 + I2F1 + F1F2

The term essential for logic-one initialization gets reduced in the final cover,

as a consequence of which the flip-flop is no longer logic-one initializable. Such

an inaccuracy in estimation of logic-one initialization is encapsulated in the

cost model by giving it half the weight to logic-zero initializability.

3.6 Complementation

Complement of a function can be formally defined as the set of all possible

values of a function that do not intersect with either the on-set or don’t-care-

set of a function.

Complement of a function is an important requirement for Expand opera-

tion and in evaluation of zero-initializability for the current work. As discussed

earlier, the current work bypasses the use of complement during the course of

Expand operation. However, complement is an important requirement for

evaluating zero-initializability of a flip-flop.

This work employs two methods of computing complement. The first

method, a formal way of computing complement, is similar to the one em-

ployed in program ESPRESSO which is based on unate recursive paradigm.

However, the formal complement is an expensive recursive operation that be-

comes too costly for bigger sized circuits. Moreover, the complete complement

set is also not a requirement for checking logic-zero initializability. The pres-

ence of a single complement is enough to predict zero initializability. Thus,

the formal complement method is an expensive operation which is also beyond

the requirements. To overcome these shortcomings in formal complement, a

new heuristic is proposed that quickly checks the presence of complement of a

function. These two methods of complementation are discussed next.
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3.6.1 Formal Complement

The complement of a function implemented in program ESPRESSO is based on

unate recursive paradigm [92]. The idea behind the unate recursive paradigm

is to carry out an operation on a variable-by-variable basis, breaking the prob-

lem into subproblems of smaller variable sizes. Each variable is individually

considered in both its positive (logic-value high) and negative (logic-value low)

unate forms or cofactors and their partial results combined. The recursive

complement of a function f can thus be expressed as

f ′ = x.f ′x + x′.f ′x′ (3.8)

where f ′x and f ′x′ denote complement of the cofactors of the function w.r.t.

variable x and x′ respectively.

The recursive procedure terminates if the (sub)function is found to be

tautology or the problem breaks down into a single implicant where the com-

plement can be computed using De Morgan’s law. Detailed rules concerning

the stopping criteria of complement are described in [92]. Formal complemen-

tation is next explained using an example.

Consider a function f = ab + ac + a′ whose cover in POS notation can be

described as

01 01 11

01 11 01

10 11 11

The efficiency of complement computation depends on the choice of vari-

able used for splitting at each step of recursion while using equation-3.8. Vari-

ables that are binate (having both logic-zero and logic-one forms) are preferred

choice for splitting.

The only binate variable is a, which is chosen for splitting. The cofactor

fa is given as

11 01 11

11 11 01

and fa′ as

11 11 11
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The cover fa′ is a row of all 1s. Being independent of any other variable, the

cover is thus a tautology and will no longer be used in computing complement

of f .

We next consider variable b in fa. The cofactor fab is [11 11 − 11] which

is again a tautology. The cofactor fab′ however is [11 11 − 01] which being

a single implicant can be complemented using De Morgan’s law. Complement

of cofactor fab′ thus is [11 11 − 10]. This being the only complement results

in the complement of the function that can be also be expressed in the form

f ′ = ab′c′.

3.6.2 Quick Complement Check

The formal complement method is an expensive recursive operation that be-

comes too costly as the size and number of implicants increase. The comple-

ment cover provided by formal complement is also beyond the requirements

for zero-initialization. Quick complement check (QCC) heuristic is thus pro-

posed in this work to quickly check the presence of complement in a cover.

The heuristic is detailed in this section.

The heuristic tries to find a variable assignment that can turn-off all the

implicants in the on-set of a cover. The search for such an assignment is carried

out variable by variable basis in steps called decision steps. At every decision

step of the algorithm, an assignment is made to a variable from the set of

unassigned variables; such assignments are referred to as decision assignments

and unassigned variables as decision variables.

Quick complement check falls in the class of deterministic heuristics that

constructs a solution by choosing the best local decision assignment at every

decision step. The choice is local as the order of variable selection is prede-

termined. For example, the variable selection order taken by the heuristic in

the previous example will be from left to right, i.e. variable a, b and finally

variable-c. The order is fixed so to limit the possible number of choices to

decide from at every decision step.

The heuristic is based on selecting decision assignment on a chosen decision

variable in order to turn-off the implicant(s) that have least flexibility of being

turned-off in successive decision steps. To aid the decision assignment based on

the above criteria, certain rules have been proposed for QCC to work. These

rules can be formally stated as follows:

1. Highest priority in decision assignment is to be given to implicant(s)

having least flexibility of being turned-off in successive decision assign-

ments. That is, in other words, implicant(s) having least dependencies
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on input controlling variables. The condition can be easily evaluated by

counting don’t care set in the implicant(s). A high number of don’t cares

translate into lesser dependency on input controlling variables.

2. If there is a tie in rule-i then preference is to be given to a decision

assignment that turns-off maximum number of implicants.

Once a variable gets assigned, it is eliminated from the decision set. If

by successive applications of the above rules, an implicant is reduced to only

one controlling variable in the decision set then an assignment to that variable

becomes mandatory. Such an assignment is called mandatory assignment.

QCC is terminated if

1. Decision variable set becomes empty, i.e. all the variables are assigned

in the decision set. After assigning all the variables, if there still exist

implicants that could not be turned-off then QCC indicates absence of

complement for the given cover.

2. There exist a situation where opposite mandatory assignments are re-

quired on a decision variable. Complement for the cover is again reported

void in such a case.

3. The given on-set is covered (turned-off) by the decision set. QCC signals

presence of complement of the cover.

The heuristic is next explained using examples.

Consider an input cover as shown below.

a b c d

01 11 10 11

10 11 01 01

01 11 01 11

The variable set from left to right are marked as a, b, c and d, respectively

that will also be the order in decision assignments.

To assist in the decision assignment according to the above stated rules,

the implicants are first given priority weights. The weight on an implicant is

equivalent to the number of minterms it covers. The weighted implicants in

the current example can thus given as
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01 11 10 11 ;Wt = 4

10 11 01 01 ;Wt = 2

01 11 01 11 ;Wt = 4

DecisionV ariables = (a, b, c, d)

DecisionSet = (0)

According to the rules above, implicant having highest priority weight is to

be selected for assignment on a decision variable. In the current sequel, the first

and third implicants have highest priority weights and variable-a is the first

decision variable to be considered for an assignment. Implicant-1 is randomly

selected among the two, which has a logic-one assignment to chosen decision

variable. Thus to turn-off implicant-1, an opposite logic-zero assignment is

taken for variable-a. As a by-product of the variable assignment, implicant-3

also gets turned off. Thus after the first decision step, the problem status is

as follows:

11 11 01 01 ;Wt = 2

DecisionV ariables = (b, c, d)

DecisionSet = (a = 0)

Variable-b is next considered in the second decision step. However the

remaining implicant is independent of variable-b. Thus the example snapshot

after second step is as follows

11 11 01 01 ;Wt = 1

DecisionV ariables = (c, d)

DecisionSet = (a = 0, b = −)

In the third decision step, variable-c is considered. Variable-c has a logic-

one assignment to the remaining implicant in the on-set. Thus to turn the

implicant off, variable-c is assigned logic-low. All the implicants are turned off

without using variable-d and the decision set obtained is as follows

DecisionSet = (a = 0, b = −, c = 0, d = −)

As an another example, consider the cover used in the example for formal

complement previously. The weighted implicants with snapshot of internal

variables is given below
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a b c

01 01 11 ;Wt = 2

01 11 01 ;Wt = 2

10 11 11 ;Wt = 4

DecisionV ariables = (a, b, c)

DecisionSet = (0)

Decision variables will again be considered in a fixed left to right order for

simplicity. Variable-a is thus selected as the first variable to be considered. The

highest implicant weight is of implicant-3 for which variable-a has a logic-low

assignment. To turn-off this implicant, variable-a is thus assigned logic-high

in the first decision step. The updated snapshot is as follows

11 01 11 ;Wt = 2

11 11 01 ;Wt = 2

DecisionV ariables = (b, c)

DecisionSet = (a = 1)

In the second decision step, both the remaining implicants have the same

priority weight; however, implicant-1 requires a mandatory assignment for

variable-b. Variable-b is therefore assigned logic-low to turn off the first impli-

cant to yield the following snapshot

11 11 01 ;Wt = 2

DecisionV ariables = (c)

DecisionSet = (a = 1, b = 0)

Finally, variable-c is used to turn off the remaining implicant with a logic-

low assignment. The decision set thus obtained using QCC is (a = 1, b = 0, c = 0)

which is the same as obtained using formal complement.

QCC was tested by using formal complement on a large number of cases

and was seen to have a high accuracy. Further discussion on accuracy of QCC

and its counter-examples will be discussed in the next chapter.

3.7 Loops Calculation

This work proposes a new method of evaluating loops of sequential-elements-

dependencies or simply loops. Besides providing number of loops, the method

also gives the depth of each loop in the cover.
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The method proposed for loops calculation in this work is based on S-

Graph based representation of sequential elements dependencies [93][94]. An

S-Graph is a directed graph where the vertices represent sequential elements

and information dependency between sequential elements is represented with

a directed edge. The head of the edge pointing to the node which is dependant

on the information of the node at the edge’s tail. For example, in the directed

graph given in Figure-3.5(a), sequential element F1 is dependant on F0.

The algorithm used for calculating the number and depths of loops in this

work is presented in pseudo-code form in Figure-3.6. The algorithm is next

explained using the S-Graph of Figure-3.5(a).
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d


path_count = [1 0 0 0]
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(a) Initial S-Graph
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(h) Finding loop aefd

Figure 3.5: Loops Evaluation

Initially all the vertices and arcs in the S-Graph are marked as unvisited.
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function
  find_cycles()

 for
(each node N){
 // Initialize all nodes and arcs in the graph as unvisited


    N.visited = FALSE

for
(all arcs A from N){


      A.visited = FALSE

}


  }


for
(each node N)
 {

    path_count = empty
 // path_count stores the sequence number of visiting a node

    path_count(N) = 1
 // Node N is the first node in the itinerary


if
(N.visited == FALSE) 
 {

      N.visited = TRUE

      cycle_search(N, 1, path_count, false)


 }

  }

endfunction


function
  cycle_search(CurrentNode, Seq_Num, path_count, IsNewLoop)

  NewSelfLoop = FALSE


for
(all arcs A out of CurrentNode)
 {

    NextNode = Destination(A)
 // NextNode is the node being pointed by arc A


 if
(A.visited == FALSE) 
 {
 // A new loop can exist if visiting arc A for the first time

      A.visited = TRUE


if
(NextNode == CurrentNode)

        NewSelfLoop = TRUE


else

        IsNewLoop = TRUE


  }


if
(path_count(NextNode) != NULL) 
 {

if
(NewSelfLoop or IsNewLoop) 
 {


        // NextNode was previously visited and itinerary contains at least one unvisited arc

        // => a new loop has been discovered

        Loop = Loop + 1

        Depth(Loop) = | path_count(CurrentNode) - path_count(NextNode) | + 1    
 // 1 is added for self-loops

      }

    }


else
 {

if
(NextNode.visited == FALSE) 
 {


 // Add NextNode in the itinerary with proper visit number and search for loops arising from it

        Seq_Num = Seq_Num + 1

        path_count(NextNode) = Seq_Num

        NextNode.visited = TRUE

        cycle_search(NextNode, Seq_Num, path_count, IsNewLoop)


// Pop back NextNode from itinerary after loops exploration from it

        path_count(NextNode) = 0

        IsNewLoop = FALSE
 // All the arcs are now visited


}

    }

  }

endfunction


Figure 3.6: Loops evaluation algorithm
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An array path count is also maintained that marks the sequence in which the

nodes are visited. The procedure starts from node, F0, marking it as the first

node traversed in the path count variable as shown in Figure-3.5(a). Recursive

procedure cycle search is then called that evaluates all the cycles containing

CurrentNode, or F0 in the present case.

The procedure cycle search explores the graph in a depth-first-search man-

ner. A new cycle is discovered if the traversal leads back to a previously visited

node using an un-traveled path or in other words at least one non-traversed

arc. The array path count stores the previously visited nodes and their order

of traversal. Any new path traversed is remembered in a boolean variable

IsNewLoop. When a new loop is found, the associated sequence number of

the last two nodes traversed are subtracted to find its depth. Self-loops are

handled in a similar manner with the exception that any new arc visited in

a self-loop is not taken as a new path. Self-loops are considered to be at a

sequential-depth of 1 in this work. Thus 1 is added to all the loops evaluated.

Various iterations of the recursive procedure cycle search in detection of cycles

present in the S-Graph of Figure-3.5(a) are detailed next.

1. There is only one arc stemming out of F0. The arc is traversed to reach

to node F1. The previously un-traveled arc is marked as visited arc-a

or in short a in Figure-3.5(b). A new arc traveled also sets possibility of

finding a new loop by setting IsNewLoop to true. Node F1 is added to

path count list as the second node to be reached in the itinerary. Visited

nodes in the current itinerary are marked as bold. Recursive procedure

is recalled to search for cycles stemming from node F1.

2. F1 is new CurrentNode. There are two paths branching out of F1. Path

leading to F2 is randomly selected and arc thus traversed is marked as

arc-b in Figure-3.5(c). F2 is added as third node visited in the cycle

searching sequence.

3. A self-loop is found out at F2 (Figure-3.5(d)). Self-loop arc is marked

as arc-c.

4. The other arc at F2, arc-d is traversed reaching back to a previously

visited node F0 in Figure-3.5(e), marking discovery of a new loop abd.

Visit numbers for F2 and F0 are subtracted and added with self-loop

bias to calculate the depth of the loop abd to be 3.

5. As all the arcs at the current node (F2) are covered and there exists no

unvisited next node, the recursive depth-first search procedure rolls back
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to F1 in Figure-3.5(f). The boolean IsNewLoop is set to false marking

covering of all previously traveled arcs in loop(s).

6. Arc-e is next traveled to reach to an unvisited node F3 in Figure-3.5(g).

A new path traversed sets again the possibility of finding a new loop by

setting boolean IsNewLoop to true.

7. From F3, arcs-f and d are next traveled in a similar manner to deduce

the final loop aefd as shown in Figure-3.5(h). There lies no new node

or path in the graph and so the procedure cycle search terminates.

3.8 Fuzzy Goal Based Aggregation for SAP

In this method, it is assumed that there are Γ Pareto-optimal solutions. Also

a p-valued cost vector C(x) = (C1(x), C1(x), ..., Cp(x)), where x ∈ Γ is given.

There are vectors O = (O1, O2, ..., Op) and U = (U1, U2, ..., Up) that give the

lower bounds and upper bounds on the cost for each objective respectively

such that Oj ≤ Cj(x) ≤ Uj ∀j, and ∀x ∈ Γ. These lower bounds and upper

bounds are dynamically calculated and updated periodically.

In order to solve multiobjective placement problem, linguistic variables are

defined as: area, power dissipation, and testability. The following fuzzy rule

is used to combine the conflicting objectives.

Rule R1:
IF a solution is within

acceptable area
AND/OR
acceptable power dissipation
AND/OR
acceptable testability cost

THEN it is an acceptable solution.

The above mentioned linguistic variables are mapped to the membership

values in fuzzy sets within acceptable area, within acceptable power dissipation

and within acceptable testability cost. These membership values are computed

using the fuzzy membership functions shown in Fig. 3.7.

For each objective the goal is to have membership value equal to one. Using

Eqn. 2.33 and minimum operator, rule R1 is interpreted as follows,

µc
(x) = βc ×O(µc

a(x), µc
p(x), µc

t(x)) + (1− βc)× 1

3

∑
j=a,p,t

µc
j(x) (3.9)
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where O is min or max operator and µc(x) is the membership of solution x in

fuzzy set of acceptable solutions, i.e. having “acceptable area AND/OR ac-

ceptable power AND/OR acceptable testability”. µc
j(x) for j = a, d, t, are the

membership values in the fuzzy sets within acceptable area, within acceptable

power, within acceptable testability respectively. βc is the constant in the range

[0, 1], the superscript c represents the “cost”. This work gives equal weightage

to averaging and degree of anding/oring in OWAO formulation above by hav-

ing value of βc to be 0.5. The solution that results in maximum value of µc(x)

is reported as the best solution found by the search heuristic.



Chapter 4

Non-Deterministic Evolutionary

Heuristics for FSM State

Assignment

4.1 Introduction

This chapter discusses the non-deterministic evolutionary heuristics, Genetic

Algorithm and Tabu Search that are employed in solving the objectives of this

work. In particular, the chapter focusses on the design of various operators

and parameters used by the heuristics in exploring the search space of FSM

state assignment problem (SAP). It also discusses the operators as designed by

previous researchers along with an analytical discussion on their efficacy when

targeting FSM state assignment problem. This is done by carefully analyzing

the nature of the problem with a detailed example. The design of evolution-

ary heurisitcs as discussed in this chapter will be empirically evaluated and

analyzed in forthcoming chapter.

To better comprehend the intuition behind operators designed for SAP,

the chapter begins with a brief description on the nature of the problem itself.

This is followed by discussion on evolutionary heuristic, Genetic Algorithm,

and finally Tabu Search.

4.2 SA Inheritance

Genetic Algorithms work on the principles of genetic evolution where charac-

teristics of parents are passed on to offsprings. Thus an important considera-

tion in the design of GA for SAP is to quantify inheritance for SAP.
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We shall investigate inheritance by preserving next state functions and

state assignments one at a time. These two have an interacting nature which

can be best understood using an example. Consider the state machine in

Table-4.1 with three different state assignments, alpha, beta, and gamma.

PS NS z Assignt-α Assignt-β Assignt-γ
Ia Ib Id Ic

I0I1 I0I1 I0I1 I0I1 F2F1F0 F2F1F0 F2F1F0

A C A D B 0 100 110 010
B E C B D 0 111 101 111
C C D C E 0 000 000 000
D E A D B 0 110 100 110
E E D C E 1 010 010 100

Table 4.1: State Machine - 1

The unminimized next state equations, F2F1F0, for assignment-α are given

as follows:

F0 = AIc + DIc + BId (4.1)

F1 = BIa+EIa+DIa+CIb+EIb+AIc+BIc+CIc+DIc+EIc+AId+BId+DId

(4.2)

F2 = AIb + CIb + DIb + EIb + AIc + BIc + DIc + AId + BId + DId (4.3)

Assignment-α is next used to synthesize the FSM using ESPRESSO tool

with multi-output minimization heuristic. The above functions are reduced to

a literal cost of 24 in the following forms:

F0 = I0 ∗ I1 ∗ F2 ∗ F0 + I0 ∗ I1 ∗ F0; (4.4)

F1 = I0 ∗ I1 ∗ F2 + I1 ∗ F1 + I0 ∗ F2 + I0 ∗ I1; (4.5)

F2 = I1 ∗ F2 ∗ F0 + I0 ∗ I1 ∗ F2 + I0 ∗ F2; (4.6)
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The next state function for F0 in the above sequence is reduced from three

implicants (terms) to two after minimization. This is because the codes for

states A and D are unidistance apart, resulting in implicant-merging of the

terms AIc and DIc before into I0∗!I1 ∗ F2!F0 after synthesis (see section-2.2).

Similar implicant-mergings reduce the size of state functions for F1 and F2 as

well.

The next state equation for F1 in equation-4.2 was originally expensive

having the highest number of implicants and thus remains so in the minimized

form in equation-4.5. A slight modification from Assignment-α to Assignment-

β can reduce the implicant size of F1 without effecting the functions for F0

and F3. The next state equation for of F1 using Assignment-β thus reduces

its size from 13 terms to 7 as follows:

F1 = BIa + DIa + EIa + AIb + DIb + CIc + EIc (4.7)

The minimized expressions using Assignment-β after synthesis are found

to be:

F0 = I0 ∗ I1 ∗ F2 + I0 ∗ F0; (4.8)

F1 = I0 ∗ I1 ∗ F0 ∗ F2 + I0 ∗ I1 ∗ F0 ∗ F1 + I1 ∗ F0 ∗ F1 + I0 ∗ I1 ∗ F0; (4.9)

F2 = I0 ∗ I1 ∗ F0 ∗ F2 + I0 ∗ I1 ∗ F2; (4.10)

The minimized literal count using assignment-β increases to 26 literals.

It can also be observed that in spite of reducing the size of unminimized

form of F1, its actual cost after synthesis increases from 9 literals to 14 by

using assignment-β. An analysis is thus next carried out to see the cause of

discrepancy in the minimized forms of F1 using the two assignments.

In assignment-α, the set of states requiring adjacent codes for their merger

in single cubes are (B, E, D), (E, C), (A, B, C, D, E) and (A, B, D). It can

be seen that the given sets are unidistant with each other and with don’t-

cares resulting in a reduced expression of equation-4.5. The similar sets for

assignment-β are (B,D,E), (A,D) and (E,C). However in the first set, assign-

ment of state-E is not unidistant with either assignment of other states in the

set or with don’t-cares. Therefore minimized expression of F1 is composed of

four terms in equation-4.9.

The above example demonstrates the importance of state-codes in preserv-
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ing inheritance for SAP. We next modify assignment-α into assignment-γ such

that the original hamming distance between states is preserved.

Assignment-α is next modified so as the original hamming distance between

states is preserved. One such possible assignment is assignment-γ in which

assignment for only state-D is changed by swapping it with a previously unused

assignment having similar number of ones. Thus, all the codes in assignment-

γ remain either the same or are equivalent hamming distance apart as in

assignment-α.

F0 = I0 ∗ I1 ∗ F1 ∗ F0 + I0 ∗ I1 ∗ F0

F1 = I1 ∗ F1 ∗ F2 + I0 ∗ I1 ∗ F0 + I0 ∗ F1

F2 = I0 ∗ I1 ∗ F1 + I0 ∗ F1 + I1 ∗ F2 + I0 ∗ I1

Assignment-γ when synthesized yields a literal count of 24 literals which

is again an inferior solution as compared to the original assignment-α. This is

because although state codes with original hamming distances are retained in

assignment-γ, the next state functions have changed. The new functions re-

quire different adjacency constraints that remain un-satisfied with assignment-

γ.

The example can be summarized as follows:

• Initially, next state equations from assignment-α were tried to be opti-

mized to yield assignment-β. However this also perturbed the hamming

distances between states. The changed codes resulted in adjacency con-

straints remaining unsatisfied between states and yielding a solution with

inferior cost.

• Next we tried preserving the original hamming distances in assignment-

α by perturbing the solution to assignment-γ. But by doing so, the

original next-state equations for whom the adjacency constraints were

being satisfied got disturbed, resulting again in a solution with inferior

cost .

It can thus be observed from the above example that inheritance in SAP is

a complex function of both next state equations and state assignment. These

two interact in an intricate way that makes it difficult to predict and preserve

inheritance in SAP.
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Figure 4.1: Chromosome Representation-1 for Code-α in State Machine-1

4.3 Genetic Algorithm

Genetic Algorithm (GA) (see section-2.6.1) has been applied to state assign-

ment problem (SAP) for area minimization [25, 24]. The problem of state

assignment has a search space of S!, where S is number of states, having

many local minima [50].

As discussed earlier, Genetic algorithms need to preserve inheritance from

previous generation while exploring the search space. Furthermore to effi-

ciently explore and find an optimal solution, GA need to come out of any local

minima.

This section discusses design of GA for state assignment problem. In par-

ticular, the various GA parameters that are utilized in this work are detailed.

4.3.1 Chromosome Representation

The first and foremost task in GA is how the problem is encapsulated in its

chromosome. Chromosome representation is important as it decides efficiency

of crossover and mutation operators, the two main tools for search space ex-

ploration in GA.

Two types of representations are utilized in this work that are suited for

two types of crossover operators (discussed next) employed. The first repre-

sentation considers a solution to be an array of states. A gene is a state placed

at its code. An unassigned code or a don’t care (DC) is represented with -1.

For example, Code-α for state machine -1 is shown in Figure-4.1. Alphabetical

state names are replaced with integer values, shown inside parenthesis in the

figure.

In the second representation, each state code is described as an array of bits

equal to the number of storage elements required. Code-α for state machine-1

is shown with second chromosome representation in Figure-4.2
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Figure 4.2: Chromosome representation-2 for code-α in state machine-1

4.3.2 Crossover

Crossover operation is responsible for preserving inheritance from parents to

the offsprings. Thus, a good crossover operator is essential for efficient ex-

ploration of solutions by GA. As discussed earlier, inheritance is difficult to

preserve in SA problem. Therefore, a number of crossover operators are tried

in this work. The operators utilized are next discussed.

PMX crossover

PMX crossover is a popular crossover operator that has been utilized previ-

ously in many problems [5]. PMX works by using a random cut-point on

two parents such that all the genes before the cut-point in an offspring are

taken from corresponding positions in parent-1 while parent-2 is utilized for

the genes after the cut-point. If a gene in parent-2 has already been taken

in the offspring, that gene is searched in parent-1 and its corresponding gene

in parent-2 is selected for the offspring. The process is continued until the

offspring is created with all unique genes.

Representation-1 of the chromosome is straightforward for PMX crossover

and is thus utilized in this work. An example utilizing representation-1 of

the chromosome for PMX is illustrated in Figure-4.3. Code-α and Code-γ for

State Machine-1 are utilized for parents-1 and 2 respectively. A random cut-

point is taken at position 5. To preserve uniqueness among don’t care codes, a

unique negative identifier is given to each don’t care instead of homogeneously

assigning −1 to all of them. The creation of the offspring is discussed next.

Initially part of the parent-1 before the cut-point is copied as it is into off-

spring. Next genes in parent-2 after the cut-point are scanned and new unique
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Figure 4.3: Chromosome Representation-2 for Code-α in State Machine-1
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Figure 4.4: Amaral Crossover for Code-α in State Machine-1

gene are also copied in the offspring. For e.g. gene-B is copied at the last posi-

tion. So far PMX has ensured that as many genes from selected parents retain

their positions into the created offspring as possible. The remaining genes in

parent-2 after the cut-point represent those that are already present in the

offspring, for e.g. gene-E at position 5 is present in the offspring at position-3.

This duplication of genes is avoided by selecting a gene from parent-2 at the

same location where gene-E is present in parent-1. Thus gene-A is selected

which being unique is selected into the offspring at position-5. The remaining

genes are filled in a similar fashion.

Amaral crossover

Amaral et al in [25] described another crossover operator based on preserving

next-state functions. Individual next-state functions are randomly selected
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from any of the two parents to create the offspring. It then involves a post

processing step to resolve any duplicates. Duplicates are resolved such that

next-state functions derived from parent of higher fitness are not disturbed.

Amaral’s crossover is illustrated on Code-α and Code-γ for State Machine-1 in

Figure-4.4. Next-State functions F0 and F2 are selected from parent-1 and F1

from parent-2 to create transition chromosome. Transition chromosome has

two duplicate pairs between states A and D and states C and E. Since parent-1

has got higher fitness (lesser cost), next-state functions for F0 and F2, which

are taken from parent-1, are not disturbed. F1 is randomly perturbed to yield

the unique offspring.

Amaral’s crossover selects random number of next-state equations from

either parent. As shown previously, preserving inheritance for SA problem

is very delicate job. Any large perturbation may totally disturb inheritance

from either parent. To counter such a problem, minimum amount of pertur-

bation is required. This can be achieved if only a single next-state equation is

switched at a time. Such a minimal crossover is a subset of Amaral’s crossover.

The crossover example shown in Figure-4.4 is also an example for minimum

crossover.

4.3.3 Mutation

The crossover operator explores the search space by keeping the parents char-

acteristics. This may result in the search being stuck in a local minima when

the diversity among parents reduces to such a level that no new offsprings

can be created. To ensure such a situation arises only near to the optimal

solution, new characteristics must be induced in the population. Mutation op-

erator performs this crucial task by randomly selecting parents and changing

characteristics of some of their genes. The amount of randomness is what is

called mutation probability and is a GA parameter.

The mutation operator used in this work selects a parent based on mutation

probability and swaps two codes in it. An assigned code represents a code as-

signed to a state. Unused state codes or don’t cares like are unassigned codes.

Mutation swap can take place between any combination of assigned or unas-

signed space of state codes. Thus mutation brings about new characteristics

in a generation by assigning unused state codes.

Unlike crossover, the mutation operator discussed gaurantees uniqueness

of created solution.
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4.3.4 Parents Selection

The choice of parents for crossover from the set of individuals that comprise

the population is probabilistic. In keeping with the ideas of natural selection,

stronger individuals, that is those with lower cost values, are more likely to

mate than the weaker ones. One way to simulate this is to select parents with

a probability that is proportional to their cost values. That is, the smaller

the cost of a certain chromosome, the grater is its chance of being selected

as one of the parents for crossover. To accomplish this type of selection,

roulette wheel method [5] is used in this work. In this method, a wheel is

constructed on which each member of the population is given a sector whose

size is proportional to the relative cost of that individual. To select a parent

the wheel is spun, and whichever individual comes up becomes the selected

parent. Therefore, in this method, individuals with higher cost values also

have a finite but lower probability of being selected for crossover.

4.3.5 Next Generation Selection

To keep the number of members in a population fixed, a constant number of

individuals are to be selected after every generation from the pool of previous

generation members and newly created offsprings. The selection can be totally

greedy in nature, selecting the best in the whole set, or even random. While

Greedy selection has the benefit of preserving qualities of best individuals

in the next generation, a random selection has the advantage of improved

variety in the available set while also being quicker to perform. In this work,

a combined selection criteria is employed that integrates merits of both the

selection policies by being greedy for upper half-set and random in selection

of lower half-set of next generation members.

4.3.6 Uniqueness of Offsprings

Increasing the diversity among the generation improves the probability of get-

ting a good solution in a smaller number of generations. The crossover or mu-

tation operations can result in duplicate offsprings. These duplicate offsprings

are discarded and only a unique offspring is entered in a new generation.
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4.4 Tabu Search

Tabu Search (TS) algorithm (see section-2.6.2) is a non-deterministic iterative

heuristic that has previously been successfully applied in solving combinatorial

optimization problems in different fields [5]. Tabu Search has previously shown

to outperform the solution quality when compared to GA and as such there

exists a good potential in utilizing TS for SAP. However, there is no work

as yet available in the literature that utilizes TS for FSM state assignment

problem.

In this section, the various parameters utilized in TS are discussed in solv-

ing the objectives of this work.

4.4.1 Tabu Move and Solution Representation

A tabu move consists of a small perturbation in the current solution to explore

solutions that are adjacent to it, i.e. in the neighborhood of the solution. An

efficient tabu move is one that possess the diversity as well as ease of evaluation

to quickly explore neighborhood of a solution.

There can be several types of tabu-moves for FSM state assignment prob-

lem. One strategy could be based on having minimum perturbation of a single

bit in a state code. Such a move will require binary representation of a solution

(Chromosome in GA terminology) similar to one shown in Figure-4.2. A move

will then consist of swapping of states that are unidistance apart.

A second type of tabu-move may involve swapping of two columns of the

current solution. However both the strategies would quickly saturate as there

are much lesser number of combinations to swap than the possible neighbor-

hood size. They thus lack the diversity needed in a tabu-move to efficiently

search the neighborhood.

Another type of tabu-move could involve swapping codes of two randomly

picked states. The first form of chromosomal representation, as shown in

Figure-4.1, is ideally suited for evaluating such a move. The move will then

consist of swapping genes at two randomly picked codes if at least one of

the genes being swapped is a state. The move is thus quick to evaluate as

it by default takes care of uniqueness of state-codes in a resulting solution.

Moreover, such a move on average will perturb half the number of columns

for any state, thus having more diversity as compared to the previous two

approaches. This work thus utilizes the third type of tabu-move for exploring

the neighborhood of a solution.
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4.4.2 Neighborhood Size

Neighborhood or candidate list size decides the amount of search space to

be explored in the neighborhood of a solution. It thus holds a key place in

the search space exploration by TS algorithm. A small neighborhood size

(NS) of less than 10 solutions is usually considered as a good figure. A small

neighborhood also ensures quicker iterations where the saved time can be used

to increase the number of generations, thus trading space saved from smaller

NS with iterations/time.

A bigger NS provides bigger exploration space at a cost of increased com-

putation overhead. A bigger NS may ensure arrival of the same solution in

lesser number of iterations. It is theoretically possible that the same solu-

tion is reached in equivalent amount of time by either using smaller NS and

higher number of iterations or bigger NS and smaller number of iterations. An

optimal NS may thus have to be empirically evaluated.

4.4.3 Tabu List Size and Tabu Specification

Tabu specification is an identification signature/mark of a previously explored

solution. This mark is stored in tabu-list and tabus any new solution that

has the identical mark. The idea is to avoid repetition of similar moves, as

they might cycle the current solution back to a previously reached solution, as

well as to encourage new moves in a sequence of solutions. The length of this

sequence is equal to the tabu list size which is implemented as a queue (LIFO).

The idea behind favoring new moves is to have more diversity by perturbing

unperturbed characteristics (genes) in a solution (chromosome).

This work utilizes one of the states swapped during the move as tabu-

mark. A Tabu-list size of 7 happens to be a favored figure using TS algorithm

[5] and thus is also used in this work. However, there can be a potential

problem using a fixed tabu-list size for SAP. Consider an FSM having lesser

than 7 states. In such a case, there can occur a situation where all the states

get tabued. This will cause the algorithm to be totally greedy in selection

of the next solution, i.e. solely relying on aspiration criteria. This deadlock

situation is handled in the current work by slightly modifying the algorithm.

The modified algorithm accepts any random solution in the neighborhood if

faced with three consecutive tabus. After the selection, the algorithm resets

its memory to repeat the modification if again faced with three consecutive

tabus. The rest of the algorithm remains the same.
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4.4.4 Aspiration Criteria

A standard aspiration criteria is used in the work. The criteria allows a tabued

solution to be selected if it has a better cost than the current solution.



Chapter 5

Experimental Results and

Analysis

5.1 Introduction

In this chapter, results obtained from different optimization techniques as de-

scribed in chapter-3 are reported and compared with those given in the lit-

erature (see chapter-2). The algorithms and cost functions are evaluated on

industry-standard MCNC/LGSynth’89 FSM benchmark suite [95].

The chapter begins by discussion of the simulation environment and bench-

mark circuits used for experimentation. This is followed by evaluation of ge-

netic and tabu-search algorithms for state assignment problem as discussed in

chapter-4. Thereafter, evaluation of cost functions for area, power and testa-

bility for single and later multi-objective optimization is presented along with

comparison between the search algorithms employed in this work. The chapter

also compares the results of single and multi-objective optimizations achieved

using the proposed techniques with those reported in literature.

5.2 Simulation Environment

The algorithm and cost functions are coded using C/C++ language simu-

lated on multi-user SUN system using 648 MHz UltraSPARC-IIe processor,

1GB RAM and 512 KB cache. The evaluation is done by using SIS [35],

ESPRESSO [27] and HITEC [91] tools to find the actual cost for the best so-

lution of the cost/fitness function utilized. Simulations are terminated either

after prescribed number of generations or on achieving a termination condition.

The termination condition used terminates the simulations either if the

78
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number of non-unique discarded offsprings exceeds 500 in a single generation

or the average population fitness does not increase for 40 consecutive gener-

ations. In the case of tabu-search, simulations are stopped if no new better

solution is found for 40 consecutive iterations after reaching ceiling for adaptive

neighborhood-size.

5.2.1 Benchmarks

The work utilizes 20 benchmark circuits of varying sizes and complexity from

MCNC/LGSynth ’89 benchmark suite [95] for evaluation and comparison of

cost functions and algorithms employed in this work. The selection provides

flavor of circuits of different complexities that are also utilized in previous

works. Details of the circuits used in this work are shown in Table-5.1.

Benchmark States Inputs Outputs
bbara 10 4 2
bbsse 16 7 7
cse 16 7 7

dk14 7 3 5
donfile 24 2 1

ex2 19 2 2
ex3 10 2 2
keyb 19 7 2
lion9 9 2 1
planet 48 7 19
pma 24 8 8
s1 20 8 6

s1494 48 8 19
s832 25 18 19
sand 32 11 19

shiftreg 8 1 1
styr 30 9 10
tbk 32 6 3

traian11 11 2 1

Table 5.1: Benchmarks Statistics [95]



80

5.3 Genetic Algorithm

This section evaluates the performance of various genetic operators utilized in

Genetic Algorithm (GA) as discussed in section-4.3. To abstract any anomaly

based on inaccurate cost function, an exact cost measure using ESPRESSO

single output minimization followed by fast extraction (fx) is utilized. Initially,

optimum mutation rate is evaluated by fixing population and generation sizes.

This is followed by experimentation to select a good population size by fixing

generation size. Once population size is known, it is then used to evaluate a

good generation size. These parameters are thereafter used in experimentation

employing GA in the rest of the thesis.

5.3.1 Mutation Rate

The mutation rate (Mr) as suggested in the literature [5] is to be within the

range of 1% to 5% such that the total number of mutations in a generation are

approximately around Mr.M.n, where M and n being the population size and

number of genes affected by mutation. However, as n is small in the present

case, i.e. 2, a suitable mutation rate is evaluated through experimentation.

The experiments were carried on four benchmark circuits and their average

and best costs were analyzed using a generation size of 250 and a population

size of 64 to experiment with 6 different mutation rates. Table-5.2 tabulates

the results.

Mr 1 5 10 15 20 25
bbara 80.22/87 90.14/89 87.01/85 87.50/85 87.37/85 88.17/85
bbsse 167.47/165 161.91/157 164.01/161 164.85/160 163.74/160 164.57/160
ex2 141.83/130 170.71/151 169.89/163 171.53/157 174.73/156 177.60/166

train11 26.084/24 25.412/23 23.644/22 23.516/21 25.32/21 27.324/26
planet 994.79/970 1013/970 981.28/953 967.93/920 962.82/902 1038.12/1015

Table 5.2: Mutation Rates (Average/Best)

It can be observed from the above table that a mutation rate of 20 assures

the best solution in most of the cases. Moreover, the average cost is also the

best in two of the cases, bbara and bbsse, with a slight deterioration in ex2

and train11 circuits. However, any further increase in mutation rate adversely

affects average cost and solution quality. This is because too many solutions

get disturbed due to which inheritance of genetic gets negatively affected.

Thus, a mutation rate of 20 is a good choice and will be used in the rest of

the experiments using GA.
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5.3.2 Effect of Population Size

Four different population sizes as shown in Table-5.3 are selected to observe

their effect on quality of solution. Generation size is fixed to 250. Numbers in

brackets in the table represent simulation time that denotes the earliest time

in reaching the best solution.

Benchmark 4 8 16 32 64 128
bbara 75(12.73) 59(20.21) 57(34.59) 54(44.52) 51(12.03) 49(133.28)
bbsse 138(2.23) 118(19.73) 105(18.62) 105(36.4) 97(32.88) 97(171.49)
donfile 191(2.87) 148(19.47) 138(44.04) 92(69.26) 68(87.37) 53(147.63)

ex2 159(11.16) 117(15.94) 109(51.52) 80(40.23) 66(136.15) 73(216.63)
keyb 264(27.83) 232(847.81) 167(82.33) 143(110.85) 156(207.92) 151(561.13)
lion9 25(14.16) 10(7.58) 12(11.04) 10(19.7) 10(4.98) 10(65.03)
planet 600(23.69) 541(83.73) 516(110.06) 493(165.95) 472(411.38) 439(753.52)
sand 631(48.96) 578(134.88) 513(153.89) 487(204.99) 473(496.3) 460(928.37)

shiftreg 13(1.02) 2(5.37) 2(0.12) 2(1.13) 2(1.2) 2(1.47)
styr 652(43.24) 525(129.49) 469(146.26) 430(222.55) 423(349.34) 418(782.71)

traian11 34(17.94) 24(17.71) 21(17.3) 20(27.73) 18(12.48) 18(89.65)

Table 5.3: Effect of varying population size

It is observed from the table that literal count decreases by less than 10

literals in 8 out of 11 circuits when population size is increased from 64 to 128.

The three circuits where improvement of more than 10 literals is seen, donfile,

planet and sand, comes at a cost of increase in simulation time overhead by

68%, 83% and 87%, respectively. However, there is notable literal count de-

crease in 4 of the circuits with also low simulation time overhead when going

from 32 to 64 generation size. Thus, population size of 64 gives a reasonable

tradeoff between quality of the solution versus cost paid in terms of simulation

time and will therefore be used in rest of the experimentations.

The search space in FSM state assignment is characterized with many local

minimas; some of them being very difficult to get out from. A higher number

of generations or a bigger population size are two tools available in genetic to

come out of such minimas. Thus on average, a higher population size yields

better solution quality. However, there is no such guarantee as can be seen

from the circuits, ex2, keyb and lion9, where the cost increased with increasing

population size.

5.3.3 Effect of Generation Size

In this subsection, the population size of 64 is used for exploring proper gen-

eration size for further experiments. The simulation results for six different
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generation sizes is shown in Table-5.4. The simulation time reported in brack-

ets is the time after the corresponding number of generations.

Benchmark 50 100 200 350 500 1000
bbara 51(16.84) 51(30.27) 51(56.91) 51(97.08) 51(143.4) 51(295.1)
bbsse 100(16.45) 99(32.18) 97(67.83) 93 (121.83) 93(194.82) 93(421.97)
donfile 121(25.65) 97(45.04) 68(98.55) 61(175.24) 52(242.71) 49(424.99)

ex2 103(30.07) 87(53.24) 72(106.76) 66(194.67) 66(286.53) 66(582.59)
keyb 185(91.53) 162(131.28) 161(188.32) 143(273.95) 134(382.16) 134(768.17)
lion9 10(6.61) 10(17.31) 10(34.91) 10(61.34) 10(83.66) 10(167.84)
planet 567(150.1) 503(233.72) 476(410.85) 468 (621.14) 458(891.04) 458(1768.32)
sand 537(107.46) 505(207.06) 473(511.57) 473(993.3) 473(1458.88) 473(3010.25)

shiftreg 2(1.08) 2(2.33) 2(4.66) 2(6.7) 2(11.65) 2(23.3)
styr 515(155.94) 477(260.34) 423(398.83) 423(664.63) 420(895.5) 379(1732.25)

traian11 18(11.14) 18(20.67) 18(35.3) 18(62.21) 18(88.85) 18(177.77)

Table 5.4: Effect of varying generation size

By following the same reasonings used for selection in proper population

size, a proper generation size can be evaluated by comparing the literal count

decrease against the processing time cost it incurred. It is observed that from

generation size 100 to 200 that 160 literals were saved at an average processing

cost of 5.34 seconds per saved literal. Similar costs between generation size

200 and 350 and between 350 to 500 increased to 32.27 seconds and 45.4 sec-

onds respectively. Besides increase in processing times, the number of circuits

showing improvements also gradually decreased from 7 between 100 and 200

generation sizes to 5 and 4 circuits between 200 and 350 and 350 to 500 re-

spectively with maximum number of literals saved not being more than 10 in

the latter. Generation size of 350 is seen to be a reasonable tradeoff between

number of literals being saved, number of circuits offering improvement and

the processing cost overhead. Generation size of 350 is thus selected for the

rest of the experimentations involving GA.

5.3.4 Crossover Operators

The crossover operators, PMX and Amaral, discussed in section 4.3.2 are next

evaluated in this subsection using the generation and population sizes selected

above. The results obtained are tabulated in Table-5.5. The values represent

the quality of solution obtained after 250 generations using the corresponding

crossover. Values in the brackets represent simulation time.

It is seen from the above table that Amaral crossover reaches to better

solutions in equal number of generations whereas PMX operator saturates

quickly. The observation be observed in more detail from the plot of generation

runs using the two operators as shown in Figure-5.1 to Figure-5.4.
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Benchmark Amaral PMX
bbara 51(34) 57(35.79)
bbsse 103(33.8) 102(50.69)
donfile 68(46.51) 99(52.16)

ex2 66(52.17) 99(63.84)
keyb 156 (142.36) 173(517.34)
lion9 10(25.1) 15(25.24)
planet 472(513.56) 532(153.29)
sand 473(673.14) 513(142.94)

shiftreg 2(5.825) 2(5.73)
styr 423(472.84) 489(237.04)

train11 18(47.01) 21(22.66)

Table 5.5: Amaral Vs PMX comparison for 250 generation size
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Figure 5.1: Amaral vs PMX on ex2 circuit
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Figure 5.2: Amaral vs PMX on keyb circuit
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Figure 5.3: Amaral vs PMX on planet circuit
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Figure 5.4: Amaral vs PMX on styr circuit

The number of thrown away offsprings are next compared between Amaral

and PMX crossovers. Graphs plotting the number of thrown away offsprings

between the two crossover operators with increasing generations are given from

Figure-5.5 to Figure-5.7.
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Figure 5.5: Amaral and PMX #thrown offsprings comparison on ex2 circuit
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Figure 5.6: Amaral and PMX #thrown offsprings comparison on keyb circuit

0

20

40

60

80

100

120

140

160

180

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244

Generations

#T
h

ro
w

n

Amaral

PMX

Figure 5.7: Amaral and PMX #thrown offsprings comparison on styr circuit

The thrown away offsprings comparison show that Amaral crossover has

more duplicated offsprings than PMX crossover. The reason being the de-

gree of diversity being offered in the two crossovers. While PMX crossover

can take the same two parents and generate a number of different offsprings

depending on the random cut point, there is lesser such choices available in
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Amaral’s crossover. The number of choices available for random cut point in

PMX being 2n − 1 where n is the number of sequential elements or available

choices for Amaral’s crossover. Thus Amaral’s crossover has approximately

log2(States) lesser options than PMX that results in frequent repetition of

generated offsprings. An increase in thrown away offsprings translates into

increased processing overheads that as can also be seen in Amaral crossover’s

results in Table-5.5.

To gain a more useful insight in selection of a crossover, simulation time is

next fixed to compare the quality obtained from the two crossovers at similar

time instant. The time chosen is the lesser of the two times in Table-5.5. For

e.g, time 34 seconds is the quicker of the two times in reaching a solution

for bbara circuit by either Amaral or PMX. Thus for a fair comparison, the

solution obtained at time instant 34 seconds by Amaral is to be compared

with a solution obtained by PMX at the similar time. Such a comparison is

presented in Table-5.6

Amaral PMX
bbara 51 57
bbsse 101 102
donfile 68 99

ex2 66 99
keyb 156 193
lion9 10 15
planet 529 532
sand 524 513

shiftreg 2 2
styr 477 489

train11 18 21
Average 182 192.9091

Table 5.6: Amaral Vs PMX quality comparison at similar time instants

It can be observed that Amaral crossover at similar time instants is sav-

ing nearly 10 literals on every circuit. Therefore, it can now be concluded

that Amaral crossover is more efficient in search space exploration than PMX

crossover. Amaral crossover is thus selected for use as GA crossover in the rest

of the experimentations.



88

5.4 Tabu Search

This section presents results and analysis of experimentation done on Tabu

Search (TS) algorithm as discussed in section-4.4. An optimal neighborhood

size is empirically evaluated which is later used in the thesis for experimen-

tation on the objectives of this work. The section concludes with a brief

comparison of TS with GA with detailed comparisons left for later sections of

this chapter.

5.4.1 Neighborhood Size

Neighborhood sizes of 8, 32, 64 and 128 are experimented with in this section.

The work also experiments with an adaptive neighborhood size that adapts

NS according to the difficulty in overcoming a local minima. Graphs show-

ing the results of varying NS on two circuits, keyb and planet, are plotted

next. For clarity purposes, simulation plot for keyb circuit is duplicated with

a zoomed-in plot of early stages of the algorithm shown in Figure-5.8 whereas

the complete graph is given in Figure-5.9. Simulation plot for planet circuit is

given in Figure-5.10. Expand-SO is used as the cost function. The graphs are

normalized along time scale. Thus the different curves representing different

neighborhood do not actually scale to similar number of iteration sizes.
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Figure 5.9: Effect of Neighborhood Size on Keyb circuit - 2



90

60

70

80

90

100

110

120

130

140

150

0 1000 2000 3000 4000 5000 6000 7000

Time

Sc
al

ed
 C

os
t

8 32 64 128 Adaptive

Figure 5.10: Effect of Neighborhood Size on Planet circuit

It can be observed from the above graphs that different neighborhood sizes

vary in the quality of results when simulated for equivalent amount of time.

A conclusive argument can also not be built for any particular NS. A small

NS is quicker in iterations and so quickly explores better new solutions at early

stages of the algorithm. However, it has lesser capability of escaping a local

minima and thus saturates quickly as well. On the other hand, a bigger NS,

though having an increased processing overhead, is also more capable of search

space exploration and outperforms smaller NS in the longer run.

The above observations are combined into an adaptive NS where the NS

increases or decreases according to the difficulty of overcoming the local min-

ima. The adaptive NS shown in the above graphs is based on this principle.

An upper limit of NS of 512 and a lower limit of 8 is used in adaptive ap-

proach. The adaption increases NS in steps of 8 if a consecutive iteration does

not lead to a better solution. However, on achieving a new better solution, NS

is immediately halved its current size. The adaption mechanism is based on

the idea that there are few local minimas that require excessive effort. Once

these minimas are overcome, there is a higher probability that better solutions

are easier to reach. This principle can be observed in more detail by analyzing

plots of NS with solution quality. Figure-5.11 and Figure-5.12 represent such

plots for the keyb and planet circuits.
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Figure 5.11: Performance of adaptive NS on keyb circuit
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An adaptive NS is selected to be used in the rest of the experiments em-

ploying Tabu Search in this work. It can be seen from the above graphs that

there is little improvement in solution quality by having large NS. As larger

NS is computationally expensive to evaluate, a moderate size of 128 is seen to

be appropriate to be used as upper limit for NS.

5.4.2 Performance Comparison of TS and GA

A comparison of TS with GA is next presented using Expand-SO as cost

measure. The comparison is presented in Figure-5.13 and Figure-5.14
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Figure 5.13: TS vs GA on planet circuit
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Figure 5.14: TS vs GA on keyb circuit

It is seen that TS quickly achieves solutions of better quality than GA

whereas GA sometimes is not able to meet the same solution quality even if

simulated for extended amount of time.

5.5 Area

This section discusses the performance of various area cost measures that

were described in chapters 2 and 3. The analysis is done by synthesizing and

evaluating actual literal count of the best solutions obtained using the cost

measures. The values so obtained are then compared with measures reported

in the literature. The section also details on the degree of accuracy of the

different cost measures by plotting their correlations with actual cost.

A comparative table between different cost functions is given in Table-5.7

and Table-5.8. Values in the table represent number of literals after synthe-

sizing the best solutions obtained using GA. The synthesis is carried out by

ESPRESSO single output (SO) minimization followed by fast extraction (Fx).

Accurate cost measure tabulated in the last column of the table uses Espresso-

SO followed by Fx as cost measure.
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Benchmark Jedi Mustang Armstrong LS1 LS2 LS3 LS4
bbara 83 64 59 65 81 73 92
bbsse 167 140 127 146 165 149 185
dk14 137 128 124 145 126 130 142

donfile 235 136 171 121 289 219 280
ex2 184 155 138 131 190 188 182
keyb 327 179 334 358 350 184 379
lion9 57 43 27 40 46 34 35
planet 631 669 607 669 710 670 740
sand 655 602 619 565 645 605 751

shiftreg 21 13 2 14 21 2 8
styr 618 498 546 580 705 573 734

train11 52 54 32 39 80 46 57
Average 263.9167 223.4167 232.1667 239.4167 284 239.4167 298.75

Table 5.7: Comparison of Cost Functions-1

Benchmark Expand-MO Expand-SO Accurate

bbara 57 56 51

bbsse 120 109 103

dk14 115 104 98

donfile 106 87 49

ex2 130 78 66

keyb 161 199 134

lion9 25 11 10

planet 557 439 439

sand 514 492 473

shiftreg 4 2 2

styr 466 405 379

train11 29 20 18

Average 190.333 166.833 151.833

Table 5.8: Comparison of Cost Functions-2

A cost function can be considered a good estimate of the actual cost if it

possesses correlation with the accurate cost. In other words, the actual cost

shows proportional deviations with the corresponding fluctuations in estimated
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cost. Cost-function correlation is an important aspect in the design of a cost-

function, particularly in evolutionary heuristics like genetic algorithms that

proceed by retaining good characteristics from previous generations.

Correlation of the cost measures used are therefore next evaluated to esti-

mate their accuracy with actual cost. This is achieved by taking a number of

random solutions for a cost function and sorting them based on their actual

cost. The actual cost is again obtained by synthesizing the circuit obtained

using the solutions’ state-codes using Espresso-SO followed by quick factoriza-

tion. Figure-5.15 to 5.38 plot the correlation graphs of the used cost measures.

Support (dependencies) of a flip-flop as discussed in section-2.1 is also uti-

lized in pursuit of development of a cost measure for multilevel area estimation.

The correlation graphs plotted for analyzing support function dependency em-

ploy summation of input and flip-flop dependencies on all the flip-flops and

outputs of a circuit. The graphs are shown in Figure-5.39 to Figure-5.41.
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Figure 5.15: Jedi Correlation on train11 circuit
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Figure 5.16: Jedi Correlation on keyb circuit
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Figure 5.17: Jedi Correlation on planet circuit
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Figure 5.18: Mustang Correlation on train11 circuit
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Figure 5.19: Mustang Correlation on keyb circuit
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Figure 5.20: Mustang Correlation on planet circuit
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Figure 5.21: Armstrong Correlation on train11 circuit
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Figure 5.22: Armstrong Correlation on keyb circuit
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Figure 5.23: Armstrong Correlation on planet circuit
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Figure 5.24: LS1 Correlation on train11 circuit
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Figure 5.25: LS1 Correlation on keyb circuit
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Figure 5.26: LS1 Correlation on planet circuit
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Figure 5.27: LS2 Correlation on train11 circuit
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Figure 5.28: LS2 Correlation on keyb circuit
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Figure 5.29: LS2 Correlation on planet circuit
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Figure 5.30: LS3 Correlation on train11 circuit
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Figure 5.31: LS3 Correlation on keyb circuit
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Figure 5.32: LS3 Correlation on planet circuit
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Figure 5.33: LS4 Correlation on train11 circuit
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Figure 5.34: LS4 Correlation on keyb circuit
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Figure 5.35: LS4 Correlation on planet circuit
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Figure 5.36: Expand-SO Correlation on train11 circuit
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Figure 5.37: Expand-SO Correlation on keyb circuit
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Figure 5.38: Expand-SO Correlation on planet circuit
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Figure 5.39: Support Correlation on train11 circuit
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Figure 5.40: Support Correlation on keyb circuit
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Figure 5.41: Support Correlation on planet circuit
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It can be seen from the correlation graphs that except Expand-SO, none

of the cost measures correlate well with the final cost. This is especially true

as it is very difficult to model FSM state-assignment problem at a higher level

of abstraction(see section-4.2)

Convergence of Jedi cost with respect to generations is next compared by

plotting Jedi’s best cost in a generation with its actual cost. Actual cost is

calculated using method used before. The convergence plots thus obtained

using 350 generations size are plotted in Figure-5.42 to Figure-5.44.
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Figure 5.42: Jedi generation convergence graph on train11 circuit
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Figure 5.43: Jedi generation convergence graph on keyb circuit
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A comparison of Expand-SO using GA with other area minimization heuris-

tics is next presented in Table-5.9 and Table-5.10. Table-5.9 presents the

comparison of Expand-function with heuristics whose implementations were

available. Table-5.10 gives a comparison of Expand-function with results as

reported in literature. Values in brackets represent time taken by the GA in

seconds to achieve the corresponding solution.

The implementations of Jedi and Nova available in SIS-1.2 are utilized

for computing their respective values in Table-5.9. There are various options

available for both Jedi and Nova and the best results obtained in all the options

are shown in the table. Armstrong cost function was implemented for its

comparison. All the values in the table are reported after fast-extraction(Fx).

Benchmark1 Expand Jedi Nova Armstrong
bbara 56(113) 73 57 59
bbsse 110(30) 134 140 127
cse 198(219) 240 214 220

dk14 104(8) 108 111 124
donfile 87(388) 82 154 171

ex2 78(224) 123 127 131
ex3 56(14) 65 71 71 68
keyb 199(1838) 260 201 334
lion9 11(7) 19 27 27
planet 486(3259) 603 591 607
pma 165(933) 263 241 218
s1 227(629) 282 340 291

s1494 570(19375) 679 715 696
s832 231(6754) 257 274 301
sand 498(6408) 554 558 619

shiftreg 2(1) 2 2 2
styr 419(4265) 518 502 546
tbk 440(91433) 305 365 711

train11 22(32) 34 32 32
Average 208.37 247.4211 248.5263 278.10252

Table 5.9: Cost functions comparison - I

The comparison given in Table-5.10 uses script.rugged after synthesis ex-

cept in the case of Armstrong where the reported results are after factorization.

However, as the script has evolved with time, care should be taken while in-

terpreting the results. The current work utilizes script.rugged available with
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SIS-1.2.

Benchmark2 Expand Jedi [22] Mustang [21] Armstrong3[26]
bbara 52 57 64 86
bbsse 105 111 106 180
cse 228 200 206 NA

dk14 86 106 117 252
donfile 72 76 160 257

ex2 68 122 119 NA
ex3 48 66 71 NA
keyb 205 140 167 NA
lion9 11 13 17 21
planet 438 547 544 NA
pma 152 NA NA NA
s1 105 152 183 NA

s1494 624 NA NA NA
s832 218 NA NA NA
sand 494 437 462 NA

shiftreg 2 2 2 10
styr 429 508 546 NA
tbk 355 278 547 NA

train11 20 27 37 47

Table 5.10: Cost functions comparison - II

The comparison in Table-5.9 and Table-5.10 shows that except with three

circuits, keyb, sand and tbk, Expand-SO achieves better literal count as com-

pared to all other area minimization heuristics. The improved averages in

Table-5.9 highlight savings of approximately 40 literals with Jedi and Nova

while 70 literals with Armstrong’s on every circuit. These results along with

the previous observation of Expand-SO correlation justifies the use of Expand-

SO as an efficient cost measure to be utilized for FSM area optimization.

5.5.1 Tabu Comparison

This section uses TS algorithm for multilevel area minimization and compares

the results with those obtained using GA. Expand-SO is used as the cost

1Espresso-SO + Fx
2Espresso-SO + script.rugged
3Espresso-SO + factorization
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measure.

Table-5.11 compares GA with TS using 350 iteration (generation for GA)

size. LC in the table represent literal count values obtained using the synthesis

methodology as used previously. The simulation time reports the time it took

for arriving to the best solution.

GA TS

LC Time LC Time

bbara 56 113 55 18

bbsse 110 30 115 6

cse 198 219 213 40

dk14 104 8 108 1

donfile 87 338 75 1088

ex2 78 224 81 115

ex3 56 14 57 25

keyb 199 1838 154 267

lion9 11 7 12 2

planet 486 3259 434 2508

pma 165 933 154 963

s1 227 629 158 1783

s1494 570 19375 493 8283

s832 231 6754 222 2785

sand 498 6408 494 6403

shiftreg 2 1 2 1

styr 419 4265 412 7729

tbk 440 91433 386 93638

train11 22 32 20 119

Average 208.3684 7151.579 191.8421 6619.6842

Table 5.11: Literal count comparison between TS and GA

It can be seen from the averages that TS is more efficient in exploring the

search space. However, as there are two variables, quality and time, such a

conclusion is difficult to draw in the previous table from averages alone. A

more accurate comparison could be done by fixing either simulation time or

solution quality and comparing the other parameter between the two search

algorithms.

Simulation time is next fixed to compare solution quality when the search



114

algorithms are ran for equivalent amount of times. The time at which simu-

lation snapshot is taken is the time to reach the better of the two solutions

using either GA or TS for a given circuit. Thus from the above table, TS

gives a better solution for bbara circuit at time 20 seconds and is therefore

the selected snapshot for quality comparison. Such a snapshot comparison is

tabulated in Table-5.12.

GA TS

bbara 62 55

bbsse 127 115

cse 257 213

dk14 104 108

donfile 87 84

ex2 94 81

ex3 56 53

keyb 224 154

lion9 16 12

planet 494 434

pma 165 160

s1 227 195

s832 570 493

s1494 250 222

sand 498 494

shiftreg 2 2

styr 419 435

tbk 440 386

train11 22 21

Average 216.5263 195.6316

Table 5.12: Literal count comparison between TS and GA by fixing time

The above table shows that TS on average is reducing 22 more literals

per circuit as compared to GA when both are simulated for equal amount of

time. There are only four circuits where GA is performing better than TS with

literal count difference in three being less than 5 literals. These observation

thus further confirm the earlier analysis of TS being more efficient in search

space exploration for area minimization.
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5.6 Power

This section evaluates cost functions for FSM power minimization as discussed

in chapters 2 and 3 and compares their efficiency with those reported in the lit-

erature. Minimum Weighted Hamming Distance (MWHD) and Fanout based

measures as discussed previously are used to experiment with FSM power

minimization problem. These cost measures are also integrated with Expand-

function area estimate for further power-tuning. All the results in this section

are calculated using the script file given in Figure-5.45. The power values re-

ported are in microwatts assuming 20 MHz clock and 5 voltage power supply.

The steady state probabilities of the set of benchmark circuits used is given in

Appendix-B.

stg_to_network -e 2

fx


read_library lib2.genlib

map


power_estimate -t SEQUENTIAL


Figure 5.45: Power calculation script

Circuits ex2 and ex3 have a unique characteristic of having no fanouts

from state-0. Thus after infinite execution, these circuits will always be found

in state-0. The steady state probability of state-0 is thus 1 with all the rest as

0. Such a probability distribution makes these circuits infeasible with power

reduction heuristics used in this work as their power-cost always turn out to

be zero. For this reason, ex2 and ex3 circuits are not used as benchmarks for

power experimentation.

5.6.1 MWHD

Table-5.13 summarizes the results using MWHD measure on the selected set of

benchmark circuits. Results obtained by using genetic (GA) and tabu-search

algorithms are compared with those results obtained using Jedi’s option that

gives best literal count from all of its options.

It can be seen that MWHD performs inferior to area minimizer Jedi in

terms of power. This is because MWHD measure is blind to area being syn-

thesized which is a strong function of power.

MWHD measure’s correlation with actual area and power of a circuit is

next presented by using similar methodology as used in previous section for
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MWHD-GA MWHD-Tabu Jedi-Best
Power Area Power Area Power Area

bbara 214.7 82 158.2 71 156.5 73
bbsse 446.1 140 499.1 144 496.6 134
cse 528.9 217 478.5 217 525.5 240

dk14 661.2 140 649.1 137 628.1 108
donfile 895.9 206 691.6 150 399 82
keyb 655.3 263 572.9 227 767.6 260
lion9 142 20 184 25 145.6 19
planet 1788.6 656 1612 623 1919.1 603
pma 653.4 198 902.1 195 883.7 236
s1 1165.1 406 1349.3 409 1087.2 282

s1494 1376.3 734 1253.7 727 1708.8 644
s832 922.1 368 948 395 1011.5 357
sand 1645.5 599 1475.8 579 1243.9 554

shiftreg 163.3 27 155.6 26 96.3 2
styr 1277.5 540 1223.9 530 1100.7 518
tbk 1682 630 1612.8 612 721.2 305

train11 180.4 38 187.4 37 207.1 34
Average 846.9588 309.6471 820.8235 300.2353 770.4941 261.8235

Table 5.13: Power consumption comparison of MWHD with Jedi
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demonstrating area-measures’ correlations. The correlation graphs are plotted

in Figure-2.24. It can be observed from the graphs that MWHD measure has

no correlation with circuit’s area and as such it depicts very little correlation

with circuit’s power as well.
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Figure 5.46: MWHD Correlation on train11 circuit

5.6.2 Fanout

Fanout based measure as discussed in chapter-2 is next experimented for

power-minimization problem. Table-5.14 summarizes the results using the

selected set of benchmark circuits.

The reduced average power consumption of Fanout measure substantiates

the benefit of minimizing frequently switched fanout branches of flip-flops than

minimizing total transition probability between states as is done in MWHD

measure. There is also a reduction in average area as fanout measure incorpo-

rates circuit area information available from expanded cover in its search for

power optimal solutions. TS is seen to perform better as compared to GA.

The correlation graphs for Fanout measure are next presented in Figure-

3.2. Power-trend lines are again plotted to demonstrate the variance in actual

power with fanout-cost. The linearly increasing trend lines with fanout-cost
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Figure 5.47: MWHD Correlation on keyb circuit
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Figure 5.48: MWHH Correlation on planet circuit
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Fanout - GA Fanout-Tabu
Power Area Power Area

bbara 150.5 55 169.7 56
bbsse 412.2 122 489 123
cse 424.8 211 474.9 215

dk14 561.4 103 592.1 109
donfile 513.7 109 236.4 49
keyb 645 237 558.1 222
lion9 116.7 19 123 22
planet 1795.1 553 1523.3 516
pma 778 180 718.1 159
s1 766.5 187 828.6 206

s1494 1553.1 625 1122.4 588
s832 677.5 271 683.4 272
sand 1541.4 559 1346.4 524

shiftreg 96.3 2 96.3 2
styr 1062.9 431 1125.1 409
tbk 1589.3 488 864.6 318

train11 136.3 23 163.6 24
Average 754.1588 245.5882 653.8235 224.3529

Table 5.14: Results for Fanout measure
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follow the actual power closely and there are lesser variations along the trend

line as compared to MWHD approach. This signifies an increase in level of

correlation with actual power using fanout measure that is also evident from

the results.

However, fanout trend graphs still show bumps along the trend line that

highlight a certain degree of inaccuracy in the estimation. The primary rea-

son behind this is inaccuracy of fanout estimation by utilizing Expand-area

estimate that itself is not an accurate estimation of the final circuit. Sec-

ondly, logic cone dependant on primary-inputs is not taken into account by

the fanout measure. A bigger such portion may offset the savings achieved

from minimization of area being switched by flip-flops alone. Another reason

is the possibility that the less switching-active (or active in short) area is big

in size, thus contributing to a considerable chunk in total power consumption

of a circuit due to static power dissipation in it. These inaccuracy yielding

factors in fanout measure are next addressed by combining the estimate with

previously employed area estimate in next section.
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Figure 5.49: Fanout Correlation on train11 circuit
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Figure 5.50: Fanout Correlation on keyb circuit
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Figure 5.51: Fanout Correlation on planet circuit
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5.6.3 Power and Area Estimates Integration

FSM power consumption is a function of its area being switched as discussed

previously in chapter-2. Whereas MWHD measure tried to reduce the total

switching probability between states of an FSM, Fanout measure also tried to

incorporate circuit’s area by minimizing total switching on fanout branches out

of FSM’s sequential elements. However, as earlier analyzed, fanout measure

still requires further integration with the area being switched.

This section utilizes two techniques for integrating area estimate from

Expand-function with MWHD and Fanout based power estimates. In the first

method, product of literal count and power estimates is used as cost measure.

The second method integrates area and power measures using fuzzy logic.

Product based integration

Table-5.15 tabulates the results for first integrating mechanism based on prod-

uct of the measures. The product of MWHD and Area estimate is represented

as MA and with Fanout as FA in the table.

It is observed that power and area costs have consistently improved over

MWHD using integrated approach, MA. The only circuit where power decrease

occurred, pma, happened in spite of a decrease in area. This can be attributed

to the inaccuracy in the power estimate.

A similar decrease is also seen in integrated FA measure from fanout alone.

However, there are many cases where both area and power cost has deteri-

orated. A major reason for this deviation is because of non-compensatory

behavior of product measure towards two differently scaled costs. This issue

will be addressed next by using fuzzy based integration.

Tabu search is seen to be yet again performing better as compared to

genetic algorithm.

Fuzzy-logic Based Integration

Fuzzy logic based integration of area and power measures is carried out by

using both Min and Max operators as discussed in chapter-3. TS is used for

search space exploration. Table-5.16 summarizes the results.

It is observed that the shortcomings seen in product based integration

in FA approach are much more efficiently handled in fuzzy based integration.

There are now only three cases in Fanout(Max) as compared to 9 before where

power has deteriorated from original Fanout. Among the three cases, only one

comes along with an increase in circuit area as well.
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MA - GA MA - Tabu FA - GA - FA - Tabu
Power Area Power Area Power Area Power Area

bbara 148.7 57 163.1 51 181.2 65 164.3 57
bbsse 435.6 110 382.1 112 394.5 118 427.4 118
cse 526.2 213 442.7 209 391.3 209 425.9 212

dk14 559.8 104 529.6 101 561.4 103 529.6 101
donfile 313.4 65 292.6 68 474.1 100 292.6 68
keyb 601.8 228 570.9 208 517.3 215 510.8 195
lion9 135.6 12 131.3 11 100.8 15 92.9 16
planet 1568.9 540 1646.3 542 1889.7 510 1666.8 475
pma 766.6 172 706.5 172 693.1 165 737.6 157
s1 705.9 205 656.7 178 771.4 197 552.6 162

s1494 1366.8 592 1214.4 534 852.4 569 1033.2 563
s832 638.9 271 577.9 230 665.2 260 612 228
sand 1395.9 537 1367 516 1617.2 585 1498.5 553

shiftreg 96.3 2 96.3 2 98.8 4 96.3 2
styr 1090.2 429 1249.1 436 1086.8 453 1099.6 417
tbk 1281.7 385 706.5 172 1766.6 556 936.7 327

train11 147.6 21 177.1 25 142.4 22 115.2 22
Average 692.94 231.94 622.90 224.18 717.89 243.88 634.84 216.06

Table 5.15: Product based integration of area and power estimates
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MWHD(Max) MWHD(Min) Fanout(Max) Fanout(Min)
Power Area Power Area Power Area Power Area

bbara 163.8 61 166.4 62 181.2 58 181.2 58
bbsse 391.2 120 511.8 130 436.8 122 446.1 127
cse 488.6 207 478.3 214 485.4 206 545.3 218

dk14 580.7 124 554.3 113 529.6 101 584.6 112
donfile 678.6 152 460.8 96 286.3 62 211.6 41
keyb 507.1 176 487.4 177 505.8 193 509.5 191
lion9 131.1 16 152 21 97.4 14 129.9 11
planet 1763.3 496 1693.4 518 1670.7 450 1946.6 470
pma 672.7 163 694.4 158 607.1 153 687.1 145
s1 811.3 224 801.9 222 734.4 181 614.3 157

s1494 1116.3 551 1125.9 522 838.5 531 1056.2 508
s832 625.2 236 620 240 627.4 238 619.1 250
sand 1535.7 576 1499.6 532 1254.2 487 1349.9 496

shiftreg 151.9 26 173.8 20 96.3 2 96.3 2
styr 1002.5 370 1070 426 1016.1 422 1006.8 376
tbk 1181.6 351 998.7 350 886.2 354 1016.3 341

train11 179.8 33 180.7 33 122.2 23 150.1 21
Average 704.79 228.35 686.43 225.53 610.33 211.59 655.93 207.29

Table 5.16: Fuzzy based integration of area and power estimates



125

Fanout(Min) that tries to optimize both the objectives simultaneously is

seen to be performing inferior to Fanout(Max) in terms of power, although the

area results are little better. One reason of this could be the unpredictable

interaction between the two as fanout influences circuit area as well. Per-

formance of Fanout(Min) is however still comparable in terms of power with

fanout alone while substantially better in area.

Fanout(Max) produces the best power results among all the approaches

considered so far. The case is thus used for literature comparison in the next

subsection

5.6.4 Literature Comparison

Comparison of our techniques with best area yielding option in Jedi has already

been reported earlier. A comparison of our best technique (Fanout(Max)) with

default output dominant option in Jedi along with ensuing percentage power

and area reductions is presented in Table-5.17. It is observed that except with

one case, our technique performs better than Jedi in area and as well as power.

There is a significant improvement in both power and area using Fanout(Max)

approach saving nearly 200uW as well as 66 literals per circuit from Jedi.

Comparison with Jedi above further indicates a strong correlation of cir-

cuit’s power with its area as savings in power are always being achieved with

reduction in circuit’s area. An argument can thus be made to optimize circuit’s

area alone for minimal power. Power consumption of the best area solutions

obtained previously in section 5.5 are therefore presented next in Table-5.18.

It can be observed from the results that minimum area solution is no guar-

antee for minimum power. Average power using minimum area is significantly

high as compared to Fanout(Max). It is further observed that Fanout(Max)

is competing very closely to minimum area while being significantly better in

terms of power.

There has been rich amount of work done to reduce power consumption

in an FSM as reviewed in chapter-2. However, the tools and techniques to

estimate power consumption have evolved over the years. The method to

synthesize a state-assignment, library being employed, and tool being used

for power estimation, all greatly vary from one work to another. Apart from

these difficulties, some works rely on reporting switching activity only instead

of actual power consumption. Due to these reasons, it is very difficult to have

an accurate comparison between works.

The above mentioned comparison difficulty is also highlighted in previous

works, most of whom only compare their performance with Jedi tool. Thus,
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Fanout(Max) Jedi - Default % Reduction
Power Area Power Area Power Area

bbara 181.2 58 187.7 74 3.462973 21.62162
bbsse 436.8 122 538.8 149 18.93096 18.12081
cse 485.4 206 495.8 251 2.09762 17.92829

dk14 529.6 101 714.4 157 25.86786 35.66879
donfile 286.3 62 380.8 89 24.81618 30.33708
keyb 505.8 193 767.6 260 34.10631 25.76923
lion9 97.4 14 145.6 19 33.1044 26.31579
planet 1670.7 450 2001.5 675 16.5276 33.33333
pma 607.1 153 883.7 236 31.30022 35.16949
s1 734.4 181 1205.3 353 39.06911 48.72521

s1494 838.5 531 1668.9 679 49.75733 21.79676
s832 627.4 238 1068.4 376 41.27668 36.70213
sand 1254.2 487 1458.9 651 14.03112 25.19201

shiftreg 96.3 2 132.5 9 27.32075 77.77778
styr 1016.1 422 1118.6 567 9.16324 25.57319
tbk 886.2 354 721.2 305 -22.8785 -16.0656

train11 122.2 23 218.2 35 43.99633 34.28571
Average 610.3294 211.5882 806.3471 287.3529 23.05589 29.30892

Table 5.17: Comparison between Fanout(Max) and Jedi-Default

Jedi with its default output dominant option, has become a base algorithm

for power comparisons. However, there still remain other variables because

of which for an accurate comparison, the compared-to algorithm has usually

been re-implemented in previous works.

Four recent works reported in literature are used for comparison in this

section. A relative comparison is given for three of them ([61], [96] and [97])

whereas actual power value comparison is given for [63] as its authors have

provided their final obtained solutions.

A relative comparison compares percentage power reductions achieved from

Jedi instead of actual power values. This approach has an advantage of ab-

stracting the various variables in accurate power comparison while also provid-

ing an insight on relative efficiencies of different techniques on a given circuit.

Relative comparisons with Pedram et al[61], Ciesielski et al[96] and Chat-

topadhyay and Reddy’s, IITG8 [97], are given in Table-5.19 to Table-5.21 re-

spectively. Actual power comparison between this work and Xia and Almaini

[63] is given in Table-5.22
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Power Area
bbara 166.7 55
bbsse 513.1 115
cse 601.9 213

dk14 587.8 108
donfile 380.7 75
keyb 589.7 154
lion9 135.6 12
planet 2212.4 434
pma 691 154
s1 617.5 158

s1494 1622 493
s832 701.9 222
sand 1301.1 494

shiftreg 96.3 2
styr 1201.3 412
tbk 1282.6 386

train11 117 20
Average 754.0353 206.2941

Table 5.18: Power consumption when optimizing for area alone

Pedram’s work targeted low power and area FSM solution. It can be seen

that our technique not only offers reduced power dissipation but nearly 5 times

area improvement as compared to Pedram’s. Ciesielski aimed at reducing

power and increasing testability. There is again an improvement in percentage

power reduction in the case of Ciesielski. Similarly, there is marked improve-

ment in power from IITG8 and Almaini’s approaches using Fanout(Max).
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Pedram Fanout(Max)
% red. Power Area Power Area
bbara 17.97 -10.14 3.46 21.62
bbsse 18.37 6.56 18.93 18.12
cse 12.15 -1.41 2.1 17.93

dk14 4.92 -0.98 25.87 35.67
donfile 6.22 22.64 24.82 30.33
sand 10.52 16.12 14.03 25.19

Average 11.69167 5.465 14.8683 24.81

Table 5.19: Power and Area reduction comparison with Pedram et al [61]

%red Celiski Fanout(Max)
bbsse 5.66 6.56
keyb 35.56 34.11
s832 7.75 41.28
tbk 5.03 -22.88

s1494 6.89 49.76
Average 12.178 21.766

Table 5.20: Power reduction comparison with Ciesielski et al [96]

%red IITG8 Fanout(Max)
bbara 17.65369 3.46
cse 18.47769 2.1

dk14 16.19344 25.87
keyb 20.86835 34.11
s1 -22.4591 39.07

s832 26.67556 41.28
shiftreg -29.075 27.32

styr -9.00385 9.16
train11 11.6103 44
Average 4.916343 22.79625

Table 5.21: Power reduction comparison with IITG8 [97]
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Almiani Fanout(Max)
bbara 235.9 181.2
cse 483 485.4

donfile 402 283.6
keyb 748.2 505.8

planet 2386.2 1670.7
s1 1293.6 734.4

sand 1740.3 1254.2
styr 1016.1 1016.1

train11 189.4 122.2
Average 943.8556 694.8444

Table 5.22: Power comparison with Xia and Almaini [63]
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5.7 Testability

This section presents the results for testability measures discussed in section-

3.5. This work uses HITEC to calculate testability of a circuit synthesized

using espresso single-output minimization. HITEC is run for two iterations

where the maximum time-limit, backtrack limit and state backtrack limits

used are 200 seconds, 1,000,000 and 1,000,000 iterations respectively.

The performance of TDepth measure is first analyzed by plotting depen-

dency graphs on circuits synthesized with and without using the cost-measure

optimization. The dependency graphs for two benchmark circuits obtained

from circuit implementations along with the measure’s cost and actual to-

tal depth are shown in Figure-5.52 and Figure-5.53. Circles in the figures

represent sequential elements and pointed arrows describe their dependency

requirement. Head of an arrow points to a sequential element dependant on in-

formation provided by the element on its tail. A double pointed arrow denotes

cross dependency between the sequential elements.

F1
 F2
 F3


Cost = 10

Actual Total Depth = 10


(a) Initial

F1
 F2
 F3


Cost = 0

Actual Total Depth = 0


(b) Final

Figure 5.52: Loops reduction on shiftreg circuit

F1
 F2
 F3
 F4


Cost = 20

Actual Total Depth = 20


(a) Initial

F1
 F2
 F3
 F4


Cost = 2

Actual Total Depth = 4


(b) Final

Figure 5.53: Loops reduction on train11 circuit

The loops reduction graphs graphically depict the performance of TDepth

measure in reducing loops in a circuit. The graphs also demonstrate a high

degree of accuracy in the estimation of total depth of a circuit. However, as

cover produced by Expand-function can be completely changed by successive
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heuristics in synthesis, there is a possibility that the total depth as calculated

from the cover may not be exact. This is illustrated in the final implementation

of train11 circuit in Figure-5.53 where there are two more loops in actual

synthesized circuit than in Expand cover.

Table-5.23 to Table-5.25 tabulate results comparing Fault Coverage, Fault

Efficiency and CPU-Time between the proposed measures and other heuristics.

Average for all the approaches are also tabulated in the last row. Int-OC and

Int-QC in the table represent the Integrated testability measure employing

total depth of loops and initializability detection using original complement

and quick complement check respectively.

Circuit donfile is not used in the benchmark set as its only output remains

always set due to which all its flip-flops get simplified by testability scripts.

Tabu GA
Tdepth Int-OC Int-QCC Int-QCC Jedi Nova Amaral

bbara 0.9167 0.8333 0.8333 0.958 0.8412 0.8686 0.9333
bbsse 1 1 1 1 0.9245 0.9527 1
cse 0.9962 1 1 1 0.0121 0.9571 0.998

dk14 1 1 1 1 0.8918 0.8961 1
ex2 0.0053 0.7528 0.7528 0.9271 0 0 0
ex3 0 0.8966 0.5909 0.9302 0.7483 0.0674 0.9071
keyb 0.8917 0.965 0.965 0.9951 0.9273 0.9433 0.9974
lion9 0.0568 0.8689 0.8689 0.0769 0.8235 0 0
planet 0.0047 0.0025 0.0047 0.0047 0.033 0.0027 0.0056
pma 0.9982 0.0036 0.9964 0.0026 0 0 0
s1 0.0019 0.0034 0.0019 0 0 0.0027 0.9774

s1494 0.5 0.9976 0.9976 0.8943 0.8733 0.8592 0.9986
s832 0.6374 0.7523 0.9989 0.9956 0.9644 0.9135 0.9969
sand 0.0026 0.0026 0.0026 0.002 0.0021 0.0027 0.0024

shiftreg 1 1 1 1 0 1 1
styr 0.0042 0.0042 0.0042 0.0031 0.005 0.0027 0.0037
tbk 0.9627 0.9627 0.9627 0.9721 0.9926 0.904 0.9458

train11 0.9205 0.945 0.945 0.8571 0.8553 0 0.9714
Average 0.5499 0.6661 0.7181 0.6455 0.4941 0.4651 0.6521

Table 5.23: Fault Coverage

It is seen that certain circuits remain untestable using TDepth measure.

The reason for their untestability lies in their uninitializable sequential ele-

ments. As earlier discussed in section 3.5, ATPG tools require initialization
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Tabu GA
Tdepth Int-OC Int-QCC Int-QCC Jedi Nova Amaral

bbara 0.9679 1 1 0.986 0.9941 1 0.9778
bbsse 1 1 1 1 1 1 1
cse 1 1 1 1 1 1 1

dk14 1 1 1 1 1 1 1
ex2 0.9813 1 1 1 0.9972 1 1
ex3 1 1 1 1 1 1 1
keyb 1 1 1 1 1 1 1
lion9 1 1 1 1 1 1 0.9853
planet 1 1 1 1 1 1 1
pma 1 1 1 0.9987 1 1 1
s1 0.646 0.7621 0.646 0.782 0.9972 1 0.9907

s1494 1 1 1 1 1 1 1
s832 1 1 1 1 0.9988 0.9976 0.9985
sand 1 1 1 1 1 1 1

shiftreg 1 1 1 1 1 1 1
styr 1 1 1 0.755 1 1 1
tbk 0.9996 0.9996 0.9996 0.9997 1 0.9379 0.9458

train11 1 1 1 1 1 0.9857 1
Average 0.9775 0.9868 0.9803 0.9731 0.9993 0.9956 0.9943

Table 5.24: Fault Efficiency

of sequential elements for higher fault-coverages. Some of these circuits, ex2,

ex3 and lion9, show improved fault-coverages using integrated testability ap-

proach. This is because integrated-measure further incorporates initializability

information in a circuit arising from the state-assignment. These observations

show that state-assignment can render a circuit without a dedicated reset

line, uninitializable. Incorporating initializability information helps to increase

fault-coverage as is evident from the best overall fault-coverage obtained using

Integrated measure.

However, integrated measure also suffers from certain inaccuracies by the

use of Expand-function as discussed in section 3.5. Such an inaccuracy is

highlighted in the case of s1 circuit that was predicted initializable by the

initializability detection routine. The initialization in s1 circuit initiated from

logic-low initialization on one of its sequential elements that rippled further

initializations on other sequential elements. However, due to further simplifi-

cations during synthesis, the initial sequential element predicted as logic-low
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Tabu GA
Tdepth Int-OC Int-QCC Int-QCC Jedi Nova Amaral

bbara 1.2 2.017 3.133 0.717 2.017 1.2 0.0617
bbsse 0.167 0.117 0.133 0.083 0.1 0.15 0.033
cse 0.383 0.117 0.183 0.167 0.267 0.217 0.1

dk14 0.033 0.017 0 0.017 0.117 0.033 0
ex2 17.283 2.567 2.517 4.483 28.067 35.683 0.733
ex3 0.767 0.15 0.617 0.083 0.583 2 0.1
keyb 6.017 14.95 14.567 1.5 0.867 2.55 1.133
lion9 0.467 0.05 0.033 0.15 0.017 0.017 0.717
planet 2.617 2.183 2.617 2.1 2.417 1.467 0.483
pma 0.017 0.167 0.033 4.617 0.017 0.033 0.017
s1 30.23 28.73 31.25 35.58 28.3 1.617 12.483

s1494 0.017 7.817 7.783 8.9 2.783 4.733 3.167
s832 0.017 11.25 9.117 9.2135 4.083 6.95 1.197
sand 1.2 1.383 1.2 1.367 1 1.667 0.367

shiftreg 0.05 0.017 0.033 0.017 0.017 0.033 0
styr 2.783 2.6 2.783 1 0.4 1.533 0.117
tbk 3.483 3.417 3.7 3.245 0.017 244.817 17.367

train11 0.05 0.017 0.067 0.033 0.067 3.033 0
Average 3.7101 4.3092 4.4314 4.071 3.952 17.0963 2.1153

Table 5.25: CPU Time

initializable did not remain logic-low initializable, rendering s1 circuit unini-

tializable. A similar erroneous initializability was predicted for lion9 circuit

using QCC and GA.

Circuits, planet, sand and styr, that were predicted uninitializable by the

initializability routine also remained uninitializable after synthesis. The valid-

ity of their uninitializability can also be seen from their low fault-coverages in

all the measures.

The inconsistency in initialization estimate can be corrected by using actual

synthesized cover in place of Expand-function for the last few iterations. The

search process can then be guided to select initializable assignment. As most of

the initialization estimates using Expand-cover show a high degree of accuracy,

correction using exact cover can be achieved with minimal cost.

There are three cases where integrated-measure using original and QCC

differ. Two of the cases, s832 and pma, were ran for lesser number of itera-

tions with OC as they required excessive processing due to their wider (higher
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number of inputs) and bigger (higher number of terms) cover sizes. How-

ever, as the complexity of QCC is linear with respect to cover size, the two

circuits were ran till completion using the heuristic. An improvement in the

fault-coverages is thus seen with the two circuits using QCC.

The third case where OC and QCC differ, ex3, was analyzed in more de-

tail. It was seen that QCC sometimes fail to correctly check the presence of

complement. For example, a sample cover from the circuit is shown below

a b

01 10

10 01

01 10

10 10

There is an equal probability that variable-a be selected logic-low or logic-

high by the QCC heuristic as all the terms carry equal weights. A selection

of logic-low on variable-a may however cause the QCC to incorrectly predict

absence of complement from the cover. The situation occurred due to presence

of two identical terms in the cover. QCC can thus be modified to take care of

such duplicates in the input cover for a more accurate estimation. However,

probability of such a situation is fairly low, as can be seen from its occurrence

in only one circuit, and is mostly limited to narrow (small number of inputs)

sized covers like the one above. Such covers can also be quickly processed

using OC and thus another solution could be to do error correction in last

few iterations using OC for smaller input sized covers. It should also be noted

that QCC prediction is a subset of OC prediction and thus any presence of

complement predicted using QCC will always be true using OC.

A comparison between GA and TS using the most efficient integrated quick

complement technique shows TS being more efficient in exploring testable

solutions.

Integrated measure using QCC is seen to be an efficient heuristic and will

now be used in the remaining set of experiments for estimation of testability

of a circuit in this thesis.

5.7.1 Literature Comparison

A comparison of Integrated-QCC with those available in literature is next

presented. The comparison is done with a recent work by Ciesielski et al [96].

Table-5.26 gives the comparison of respective fault-coverages achieved.
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Int-QCC Ciesielski
bbsse 1 0.9913
keyb 0.965 0.9203
s1494 0.9976 0.9866
s832 0.9989 0.9598
tbk 0.9627 0.9914

Average 0.98484 0.96988

Table 5.26: Fault Coverage comparison with Ciesielski[96]

The results show an improvement in fault-coverage using our method as

compared to Ciesielski. Fault-coverages as compared between the technique

validate the benefit of integrated testability measure.
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5.8 Area, Power and Testabilty

This section presents integration of all the three objectives, area, power and

testability, that are the focus of this thesis. Fuzzy logic is used as integration

mechanism. The work employs fuzzy logic with both Min and Max operators

as discussed in chapter-2 using TS and GA as search algorithms. A com-

bined MaxMin strategy is also used that initially combines area and power

objectives using the better performing Max-operator as seen in section 5.6.

The two are later combined with testability estimate using Min-operator. Ge-

netic Algorithm is also used for comparison with the best performing approach.

Tables-5.27 to 5.31 summarize the individual area, power and testability results

achieved using the various integration mechanisms. The tables also provide

comparison with previously obtained best results of the objective of interest

of the table when it was optimized as a singe-optimization objective. The

comparison is provided in the last column in the tables.

Tabu GA
Max Min MaxMin Min Best

bbara 57 57 57 55 55
bbsse 121 120 118 131 115
cse 212 202 212 208 213

dk14 109 109 109 111 108
donfile 72 49 64 97 75

ex2 87 85 85 135 81
ex3 55 58 58 63 57
keyb 176 181 201 241 154
lion9 11 14 13 24 12
planet 480 502 502 545 434
pma 176 153 156 235 154
s1 531 159 169 222 158

s1494 527 539 582 593 493
s832 252 247 249 263 222
sand 730 500 500 527 494

shiftreg 2 2 2 21 2
styr 780 407 376 544 412
tbk 351 347 344 893 386

train11 23 23 26 27 21
Average 250.1053 197.5789 201.2105 259.7368 191.8421

Table 5.27: Integrated Area
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The area results show that Min and MaxMin types of integration using TS

are performing very closely to the optimal area results. However, the power

results clearly hold better for Min type integration using TS. MaxMin type

integration, which has the effect of optimizing for both testability and best of

area or power, is also seen to be performing below par in terms of testability

from Min type integration which is seen to be performing very close to the best

achieved testability results. The reason lies in an unpredictable way testability

measure interacts with area and power integration in the MaxMin type of

integration, effectively giving more weight in optimizing either testability with

area or testability with power.

The inaccuracy in testability estimate is reflected once again in the Min

type and MaxMin type of integrations. The low fault-coverage of pma circuit

in the techniques is because of the inaccuracy and can be handled using the

proposed correction mechanism. However, the low fault-coverages in Max-

type integration cannot be attributed to the inaccuracy as Max integration

is biased towards optimizing either of the three objectives. The biasing has

a preference for the most optimized of the objectives which could also be an

objective other than testability.
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Tabu GA
Max Min MaxMin Min Best

bbara 166.6 166.6 166 151.5 181.2
bbsse 484.9 433.6 439.6 471.2 436.8
cse 438.9 501.7 520 443.2 485.4

dk14 592.1 592.1 592.1 560.3 529.6
donfile 375.6 251.7 300.3 451.2 286.3
keyb 536.9 487.9 518.4 605.4 505.8
lion9 132.5 97.4 98.4 178.7 97.4
planet 1852.2 2000.5 2000.5 2145 1670.7
pma 668.2 698.5 708.2 1033.2 607.1
s1 1802.6 605.3 656.3 904.9 734.4

s1494 1021.1 1130.9 1494.5 1374 838.5
s832 711.9 648.5 670.4 672.1 627.4
sand 2088.2 1425 1425 1478.3 1254.2

shiftreg 96.3 96.3 96.3 243.1 96.3
styr 2314.2 1197.3 961.8 1313.6 1016.1
tbk 993.9 958.3 998.2 2456.5 886.2

train11 114.2 113.8 171.1 145.7 122.2
Average 846.4882 670.9059 695.1235 860.4647 610.3294

Table 5.28: Integrated Power
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Tabu GA
Max Min MaxMin Min Best

bbara 0.8365 0.9538 0.8636 0.9191 0.8333
bbsse 0.9406 1 0.931 1 1
cse 0.0157 0.9912 0.0124 0.9955 1

dk14 0.8598 1 0.8598 1 1
ex2 0 0.0504 0.0504 0 0.7528
ex3 0.9178 0.9576 0.9576 0.9231 0.5909
keyb 0.9821 0.995 0.8935 0.9983 0.965
lion9 0.8333 0.9211 0.9048 0.8475 0.8689
planet 0.007 0.0069 0.0036 0.0065 0.0047
pma 0.0058 0.0032 0.0022 1 0.9964
s1 0.0051 0.9863 0.9231 0.9231 0.0019

s1494 0.9953 0.9972 0.9067 0.8597 0.9976
s832 0.9858 0.9904 0.9944 0.9377 0.9989
sand 0.002 0.0031 0.0045 0.0028 0.0026

shiftreg 1 1 1 0 1
styr 0.0031 0.0051 0.0074 0.0053 0.0042
tbk 0.98 1 1 0.8583 0.9627

train11 1 0.9767 0.9275 0.9375 0.945
Average 0.5761 0.7132 0.6246 0.6786 0.71805

Table 5.29: Integrated Fault Coverage
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Tabu GA
Max Min MaxMin Min Best

bbara 1 1 0.9805 1 1
bbsse 1 1 1 1 1
cse 1 1 1 1 1

dk14 1 1 1 1 1
ex2 0.9953 1 1 0.9971 1
ex3 1 1 1 1 1
keyb 1 1 1 1 1
lion9 1 1 1 1 1
planet 1 1 1 1 1
pma 0.9971 1 1 1 1
s1 0.7821 1 1 1 0.646

s1494 1 1 0.9994 1 1
s832 0.9878 0.9942 0.9944 0.9967 1
sand 1 1 1 1 1

shiftreg 1 1 1 1 1
styr 1 1 1 1 1
tbk 1 1 1 0.9486 0.9996

train11 1 1 1 1 1
Average 0.986794 0.999678 0.998572 0.9968 0.980311

Table 5.30: Integrated Fault Efficiency
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Tabu GA
Max Min MaxMin Min Best

bbara 0.5 0.3 2.6 0.217 3.133
bbsse 0.033 0 0.017 0.017 0.133
cse 0.217 0.183 0.1 0.067 0.183

dk14 0.083 0 0.133 0.017 0
ex2 3.533 1.983 1.983 21.483 2.517
ex3 0.05 0.083 0.083 0.483 0.617
keyb 0.333 0.183 1.317 0.683 14.567
lion9 0.017 0.033 0.017 0.017 0.033
planet 0.55 0.683 1.683 0.483 2.617
pma 0.817 0.05 0.033 0.017 0.033
s1 26.24 0.117 0.583 0.467 31.25

s1494 1.833 1.767 2.15 3.717 7.783
s832 1.517 2.017 2 0.883 9.117
sand 1.233 0.083 0.517 0.233 1.2

shiftreg 0 0.017 0.017 0.033 0.033
styr 0.8 0.133 0.5 0.8 2.783
tbk 0.067 0.083 0.017 17.917 3.7

train11 0.033 0.033 0.017 0.083 0.067
Average 2.103111 0.430444 0.764833 2.645389 4.431444

Table 5.31: Integrated CPU Time
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The Min type of integration, that tries to optimize all the objectives to-

gether, is observed to be the best integration technique for all the three ob-

jectives. In the case of area and testability, the Min integration achieves close

to previously best found results while depicting a moderate loss in quality of

power solutions. This work utilized Min type of integration with equal weights

to the objectives for a fair comparison with other integration techniques. In

a multiobjective optimization environment, where a designer has a set of rel-

ative priorities of the objectives, the above set of experiments can be used to

find the relative weights in optimizing individual objectives according to the

priorities. For e.g, priority of power objective can be increased to trade it with

area and/or testability objectives. The current set of experiments can then

be used to guide in the selection of priority weight to be given to the power

objective that corresponds to its optimization priority.

5.8.1 Literature Comparison

There is a shortage of work that simultaneously addresses area, power and

testability objectives for FSM state assignment problem in literature. Al-

though, a similar work could not be found in literature, a comparison with

recent work by Ciesielski et al [96] that addresses power and testability objec-

tives is reused for comparison.

A relative comparison comparing percentage power reduction from Jedi

state-assignment heuristic between Ciesielski and our Min-type integration is

presented in Table-5.32. Testability results comparing the respective fault-

coverages is tabulated in Table-5.33

%red Celiski MIN
bbsse 5.66 19.52487
keyb 35.56 36.43825
s1494 6.89 32.2368
s832 7.75 39.30176
tbk 5.03 -32.8758

Average 12.178 18.92518

Table 5.32: Integrated CPU Power

It can be seen from the tables that our aggregation using OWA-MIN op-

erator, that further carries the effect of area estimate in the aggregation, still

achieves better results with objectives of Ciesielski et al’s work.



143

Ciesielski MIN
bbsse 0.9913 1
keyb 0.9203 0.995
s1494 0.9866 0.9972
s832 0.9598 0.9904
tbk 0.9914 1

Average 0.96988 0.99652

Table 5.33: Integrated CPU Fault-Coverage

5.9 Conclusion

In this chapter, several optimization heuristics for FSM area, power and testa-

bility and their search strategies employing non-deterministic algorithms, Tabu-

Search and Genetic-Algorithms, are compared. Initially, the search algorithms

were experimented with to optimize their exploration capabilities. Various

parameters of the search heuristics were empirically evaluated for later exper-

imentations. It was seen that an adaptive TS is more efficient in search space

exploration than GA.

Heuristics for FSM multilevel area are next evaluated and compared with

results available in literature or obtained from their implementations. It was

seen that Expand-SO shows a high level of correlation with FSM’s multilevel

area. The quality of results are also seen to be close to optimal results obtained

using ESPRESSO synthesis and performing fast-extraction. ESPRESSO is an

efficient synthesis tool that iteratively utilizes Expand-function along with

several different heuristics in synthesizing a circuit. A single application of

Expand is thus seen to be achieving close to optimal results while being many

times faster than ESPRESSO.

The cover returned by Expand-function is further utilized in optimization

for FSM power. A new Fanout approach is proposed that uses the cover along

with switching information to minimize logic being switched. The Fanout

heuristic is integrated with Expand-SO area estimate and seen to be bet-

ter optimizing FSM power than recently reported heuristics in the literature.

Similarly, Expand cover is reutilized in developing a new efficient Integrated-

testability estimate. A new method for quickly checking presence or absence

of complement in the Expand cover is also proposed that further enhances

the efficiency of the testability measure. The optimized testability estimate,

Integrated-QCC, was compared with a recently proposed work and was ob-
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served to be more efficient.

Finally, the three objectives of this work are fuzzy-integrated by using

combination OWA operators. The OWA parameter β is used as 0.5 to have

equal weight distribution between degree of anding/oring and averaging in

OWAO aggregation. The OWA aggregation using MIN operator was seen

to be best in integration, performing close to optimal for area and testability

objectives, while showing a moderate loss in power solutions quality. Although

no work combining all the three objectives could be found in the literature, the

combination was compared with a recent work employing integration of power

and testability objectives and was still observed to be performing better.

This chapter presented a detailed empirical examination of various heuris-

tics and search algorithms for optimizing FSM state assignment problem for

multilevel area, power and testability objectives. The results achieved demon-

strate the benefit of using the proposed heuristics, in particular Expand-

function, whose minimal extra cost is used for significant savings in all the

three objectives.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

FSM state assignment problem (SAP) for optimization of area, power and

testability objectives has attracted considerable amount of interest in the re-

search community. Most of the work reported in literature addresses SAP

for either single or dual-objectives among the set of objectives that are focus

of this thesis. This work addresses FSM SAP for multilevel area, power and

testability objectives for single as well multiobjective optimization problems

(MOP) as one of the first works to combine them.

The objectives of interest are carefully analyzed and heuristics previously

addressing them are detailed and experimented with in search for better es-

timates. Expand-function, that is also utilized in ESPRESSO synthesis tool,

was seen to offer both abstraction in estimation as well as improvement of so-

lution quality. Expand single-output (SO) function achieved significant literal

savings as compared to previously proposed heuristics. The cost of Expand-

function was further amortized over power and testability objectives. Infor-

mation available in Expand-SO cover was reutilized along with switching in-

formation to achieve further savings in FSM power consumption. Similarly,

Expand-SO cover is used in initialization estimation for sequential elements to

yield a better testability estimate.

As FSM state assignment is NP-Hard problem, the search cannot be per-

formed using exhaustive enumeration. Therefore intelligent heuristics are used

to get suboptimal results of the solution in feasible amount of times. In

this thesis, Genetic Algorithm (GA) and Tabu-Search (TS) are utilized as

search space exploration tools. The work thus further experiments in develop-

ing/tuning the search algorithms. An efficient set of search parameters

145
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In order to solve MOP, fuzzy logic based aggregation function is used where

user preferences are given in terms of fuzzy goal vectors. Various types of

aggregation functions were experimented with involving combination of the

objectives.

Following are the conclusions of this research

• The use of adaption mechanism in TS makes the exploration using TS

more efficient. TS is further seen to be better with GA in search space

exploration.

• Expand-SO provides a good quick estimation for multilevel area. The

results obtained using Expand-SO as cost estimate were only 20% deteri-

orated to savings achieved if a more accurate estimate using ESPRESSO

synthesis followed by fast extraction is used. The slight depreciation in

quality, however, comes with many times savings in processing cost over

the more accurate measure.

• Proposed Fanout measure performs better than traditional MWHD mea-

sure.

• State assignment can render a circuit without an explicit reset uninitial-

izable and thus untestable. By incorporating initializability information

due to an assignment, an increased fault-coverage is obtained by the

proposed integrated-testability measure.

• Proposed quick complement check heuristic can quickly check for pres-

ence of input cover-complement with linear complexity and high level of

accuracy.

6.2 Future Research

This work can be extended to cover the following issues

• In this work, Fanout measure tries to minimize switched area by mini-

mizing the number of fanouts out of frequently switching sequential el-

ements. In order to have a more accurate switched-area reduction, area

being switched by primary inputs can be coupled with with the current

fanout-estimate.

• QCC heuristic is observed to have a high level of accuracy. However,

QCC may not detect presence of complement in certain input covers.
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The probability of such an inaccuracy is inversely proportional to the

width of input cover. For a more accurate estimation, QCC heuristic

can be improved by running a preprocessing step of removing duplicates

in the input cover. Another correction strategy could be to utilize OC

for QCC verification either intermittently or in the last few iterations of

the simulation.

• Expand-SO, being a quick estimate, is seen to possess certain inaccura-

cies. The final cover can get altered from Expand-SO cover by successive

simplification heuristics used in the synthesis process. Such an inaccu-

racy was observed to impart a noticeable degree of uncertainty in the

testability estimate. The issue can again be addressed by using exact

final cover for error detection/correction of Expand-SO cover either in-

termittently or in the last few iterations of the simulation.

• A state machine may have some don’t-care states equal to the difference

between the number of valid states of the machine and possible number

of states (see equation-2.12). For correct operation of the machine, it is

essential that there are no transitions from valid domain to the invalid

don’t-care domain. Furthermore, it is also required that the machine

quickly traverses itself into the valid domain if it gets started in the

other one. Although the former is taken care of in the definition of the

machine itself, the latter is a subject of state-assignment. Constraining

state-assignment to further achieve quick valid domain traversal can thus

be an interesting idea to explore.

• The presence of don’t-care states along with requirement to have only

valid domain traversals may effect testing time for a machine. The test-

ing time may abhorrently increase if justification sequence required by

the testability tool needs certain flip-flop initializations that are possi-

ble only through traversing to the invalid domain. The issue can be

addressed by further constraining the assignment process so to have all

possible initializations available through the valid domain.



Appendix A

Solving Discrete-Time Markov

Chains

When the number of states in an ergodic, discrete-time Markov chain is finite,

we can solve for the steady-state probability vector in several ways. Although

the computations could be performed by hand for small problems, Matlab

provides simple and efficient operations for finding the solution and can be

used even when the number of states is large. Define the state probability

vector of a discrete-time Markov chain with m states after the nth transition,

given some initial state probability vector p(0), to be

p(n) =




[p(n)]1
[p(n)]2

.....

[p(n)]m




where [p(n)]i is the probability that the system is in state i after transition

n, given p(0). Recall that P = (pjk) is the single-step transition probability

matrix: pjk is the probability that the next state will be k given that the

current state is j. If we know the state probability vector at time n, we can

compute the ith component of the vector at time n+1 as

[p(n + 1)]i = [p(n)]1p1i + [p(n)]2p2i + + [p(n)]mpmi (A.1)

The set of m such equations can be summarized as p(n+1)=p(n)P. These are

called Chapman-Kolmogorov equations.

As an example, consider the Markov chain described by the state transition

diagram
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Figure A.1: A state machine

The single-step transition probability matrix is

P =




0.1 0.4 0

0.7 0 0.5

0.2 0.6 0.5




This is clearly an ergodic Markov chain. If the initial state probability

vector is p(0) = (0.3, 0.4, 0.3)T , we can compute the evolution of the state

probability vector for as many transitions as we want by repeated applications

of the Chapman-Kolmogorov equations.

[p(1)]1 = (0.3)(0.1) + (0.4)(0.4) + (0.3)(0) = 0.19

[p(1)]2 = (0.3)(0.7) + (0.4)(0) + (0.3)(0.5) = 0.36

[p(1)]3 = (0.3)(0.2) + (0.4)(0.6) + (0.3)(0.5) = 0.45

[p(2)]1 = (0.19)(0.1) + (0.36)(0.4) + (0.45)(0) = 0.163

[p(2)]2 = (0.19)(0.7) + (0.36)(0) + (0.45)(0.5) = 0.358

[p(2)]3 = (0.19)(0.2) + (0.36)(0.6) + (0.45)(0.5) = 0.479

The resulting sequence of state probability vectors is

p(0) = (0.3, 0.4, 0.3)T

p(1) = (0.19, 0.36, 0.45)T

p(2) = (0.163, 0.358, 0.479)T

p(3) = (0.1595, 0.3536, 0.4869)T

p(5) = (0.1578, 0.3539, 0.4883)T

p(6) = (0.1573, 0.3546, 0.4881)T

p(7) = (0.1576, 0.3542, 0.4883)T

p(8) = (0.1574, 0.3544, 0.4881)T

p(9) = (0.1575, 0.3543, 0.4882)T

p(10) = (0.1575, 0.3544, 0.4882)T

.....

p(11) = (0.1575, 0.3543, 0.4882)T
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As expected, the state probability vectors are converging to the steady

state probability vector p. After the 11th transition, the state probabilities

remain unchanged to four decimal places. The Ergodicity Theorem tells us not

only that the state probability vector will converge, but that the steady-state

probability vector is unique and does not depend on the initial state. If we

start with p(0) = (1, 0, 0)T and apply the same procedure, we approach the

same result. Convergence is a little slower than for the previous initial state

probability vector because the new initial vector is farther from steady state

p(0) = (1, 0, 0)T

p(1) = (0.1, 0.7, 0.2)T

p(2) = (0.29, 0.17, 0.54)T

p(3) = (0.097, 0.473, 0.430)T

p(4) = (0.1989, 0.2829, 0.5182)T

p(5) = (0.1331, 0.3983, 0.4686)T

p(6) = (0.1726, 0.3274, 0.4999)T

p(7) = (0.1482, 0.3708, 0.4810)T

p(8) = (0.1631, 0.3442, 0.4926)T

p(9) = (0.1540, 0.3605, 0.4855)T

p(10) = (0.1596, 0.3505, 0.4898)T

p(11) = (0.1562, 0.3566, 0.4872)T

....

p(20) = (0.1575, 0.3542, 0.4882)T

Matlab software can be used to solve the above set of equations to cal-

culate steady-state probabilities. One way for determining the steady-state

probabilities is to treat the problem as one of solving the set of linear equa-

tions represented by πP = π. However, P is a stochastic matrix (each of its

rows sums to 1) and hence is singular. One other independent equation in the

πs is thus required to go with any m − 1 of the m equations from πP = π.

Fortunately, we always have one: the normalization equation

m∑
i=1

πi = 1 (A.2)

To implement this method, first any column i (for instance, the last col-

umn, representing the equation for πm), is replaced with 1s, corresponding to

the normalization equation. P1 can be entered in Matlab like
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P1 =




0.1000 0.7000 1.0000

0.4000 0.0000 1.0000

0 0.5000 1.0000




or using the following commands, which is equivalent to above if P has

been previously entered.

À P1 = P ;

À P1(:, 3) = [111]′

An mxm identity matrix is next entered with the ith diagonal element

replaced by 0.

J =




1 0 0

0 1 0

0 0 0




which can also be entered using the following Matlab command

À J = diag([110], 0)

Finally, the system of linear equations π(P1 − J) = (0, 0, , 0, 1, 0, , 0)T is

solved where P1 is P with the ith column replaced by 1s. J is the diagonal

matrix with 1s along the diagonal except for a 0 in the ith diagonal element,

and the vector on the right-hand side is all 0’s except for a 1 in the ith com-

ponent. This can be done by Matlab commmand

À π = [001]/(P1− J)

that gives

π =
[
0.1575 0.3543 0.4882

]

which is the same set of steady state probabilities as earlier achieved.



Appendix B

Steady State Probabilities of

the Benchmark Circuits

bbara bbsse dk14 ex3 lion9 shiftreg train11

S1 1.55E-01 2.25E-01 1.88E-01 1.00E+00 1.11E-01 1.25E-01 1.67E-01

S2 2.67E-01 2.14E-01 1.88E-01 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S3 1.33E-01 1.38E-02 2.43E-01 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S4 1.33E-01 3.46E-03 1.25E-01 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S5 1.97E-01 1.45E-02 1.87E-01 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S6 4.92E-02 3.63E-03 5.38E-02 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S7 1.64E-02 2.59E-04 1.57E-02 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S8 3.74E-02 3.24E-05 0.00E+00 1.11E-01 1.25E-01 8.33E-02

S9 9.36E-03 9.25E-06 0.00E+00 1.11E-01 8.33E-02

s10 2.34E-03 1.18E-06 0.00E+00 8.33E-02

S11 3.14E-07 8.33E-02

S12 4.50E-01

S13 7.50E-02
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cse donfile ex2 keyb s1

S1 8.65E-01 4.17E-02 1.00E+00 7.22E-01 6.04E-02

S2 2.89E-02 4.17E-02 0.00E+00 4.51E-02 7.06E-02

S3 1.86E-03 4.17E-02 0.00E+00 1.35E-01 1.05E-02

S4 6.21E-05 4.17E-02 0.00E+00 9.02E-02 1.69E-02

S5 4.14E-06 4.17E-02 0.00E+00 3.52E-04 1.02E-02

S6 6.67E-05 4.17E-02 0.00E+00 6.34E-03 1.47E-02

S7 3.38E-02 4.17E-02 0.00E+00 7.05E-04 1.05E-01

S8 6.51E-03 4.17E-02 0.00E+00 5.51E-06 1.16E-01

S9 2.98E-02 4.17E-02 0.00E+00 1.76E-04 8.55E-02

s10 3.19E-02 4.17E-02 0.00E+00 1.10E-05 6.61E-02

S11 2.13E-03 4.17E-02 0.00E+00 1.72E-07 1.09E-02

S12 1.42E-04 4.17E-02 0.00E+00 7.74E-06 7.71E-02

S13 2.03E-05 4.17E-02 0.00E+00 3.44E-07 1.25E-02

S14 1.58E-06 4.17E-02 0.00E+00 2.15E-08 1.14E-01

S15 6.60E-08 4.17E-02 0.00E+00 1.12E-06 3.12E-02

S16 5.11E-08 4.17E-02 0.00E+00 5.38E-09 2.75E-02

S17 4.17E-02 0.00E+00 2.90E-07 1.93E-02

S18 4.17E-02 0.00E+00 2.69E-09 1.20E-01

S19 4.17E-02 0.00E+00 3.51E-08 1.92E-02

S20 4.17E-02 1.27E-02

S21 4.17E-02

S22 4.17E-02

S23 4.17E-02

S24 4.17E-02
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planet pma s832 s1494 sand styr tbk

S1 1.35E-02 1.14E-01 6.40E-01 8.10E-01 1.04E-01 6.38E-01 3.42E-01

S2 5.39E-02 9.11E-02 3.79E-03 1.37E-05 1.84E-02 2.04E-02 5.79E-03

S3 4.15E-02 1.37E-01 4.83E-03 3.70E-08 4.80E-03 1.45E-02 5.79E-03

S4 3.58E-02 1.14E-01 6.44E-04 3.85E-06 7.07E-04 6.60E-04 5.79E-03

S5 3.13E-02 5.69E-02 7.32E-04 4.31E-03 7.07E-04 2.16E-05 5.79E-03

S6 3.13E-02 9.49E-02 3.05E-06 4.89E-07 9.90E-02 2.06E-05 5.79E-03

S7 4.98E-02 1.52E-01 2.03E-07 6.51E-08 1.65E-02 3.07E-05 5.79E-03

S8 4.05E-02 3.80E-02 1.70E-09 1.26E-03 4.38E-02 3.30E-04 5.79E-03

S9 4.05E-02 1.52E-02 5.65E-11 3.15E-09 7.01E-02 1.07E-02 5.79E-03

s10 2.96E-02 2.28E-02 3.77E-12 3.45E-07 4.38E-03 1.60E-02 5.79E-03

S11 2.02E-02 8.69E-02 2.51E-13 3.36E-08 8.25E-03 9.45E-02 5.79E-03

S12 2.96E-02 1.45E-02 3.69E-09 4.99E-09 2.06E-03 2.10E-02 5.79E-03

S13 2.02E-02 1.81E-03 4.69E-10 8.76E-04 8.25E-03 1.66E-01 5.79E-03

S14 2.96E-02 4.52E-04 1.25E-10 1.29E-06 6.19E-03 1.28E-02 6.56E-02

S15 2.02E-02 4.52E-04 2.00E-02 1.01E-01 6.19E-03 3.49E-03 1.16E-02

S16 4.98E-02 1.48E-05 1.00E-02 3.16E-04 1.24E-02 2.18E-04 1.16E-02

S17 4.98E-02 2.37E-04 2.13E-01 1.27E-02 1.24E-02 1.96E-04 3.42E-01

S18 4.98E-02 3.16E-05 1.07E-01 2.19E-04 1.86E-02 1.96E-05 5.79E-03

S19 2.80E-02 1.98E-06 8.48E-09 1.30E-07 1.86E-02 1.23E-06 5.79E-03

S20 1.49E-02 1.24E-07 6.02E-11 8.31E-03 2.48E-02 1.36E-05 5.79E-03

S21 7.47E-03 2.85E-02 2.69E-13 1.66E-02 2.48E-02 1.36E-06 5.79E-03

S22 3.73E-03 2.85E-02 6.17E-13 2.74E-05 3.09E-02 2.18E-06 5.79E-03

S23 1.87E-03 3.56E-03 9.25E-12 1.49E-04 3.09E-02 1.25E-04 5.79E-03

S24 1.87E-03 2.22E-04 1.70E-09 1.75E-03 3.71E-02 4.31E-06 5.79E-03

S25 1.12E-02 1.39E-10 3.80E-02 3.71E-02 1.35E-07 5.79E-03

S26 3.73E-02 2.49E-09 4.33E-02 4.04E-06 5.79E-03

S27 3.73E-02 1.38E-06 4.33E-02 1.39E-07 5.79E-03

S28 1.40E-02 2.19E-04 4.95E-02 1.54E-07 5.79E-03

S29 9.34E-03 8.62E-08 4.95E-02 3.47E-04 5.79E-03

S30 9.34E-03 5.47E-05 5.57E-02 1.64E-05 6.56E-02

S31 1.87E-02 1.97E-07 5.57E-02 1.16E-02

S32 1.87E-02 5.47E-05 6.19E-02 1.16E-02
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planet s1494

S33 1.07E-02 1.04E-06

S34 5.34E-03 2.53E-03

S35 4.00E-03 2.16E-08

S36 9.34E-03 2.88E-04

S37 9.34E-03 9.97E-09

S38 9.34E-03 3.72E-05

S39 4.98E-03 1.09E-04

S40 1.87E-03 1.22E-07

S41 2.49E-03 2.60E-07

S42 8.71E-03 1.09E-04

S43 1.85E-02 2.16E-08

S44 1.85E-02 6.32E-04

S45 1.85E-02 2.79E-05

S46 1.85E-02 1.30E-07

S47 6.22E-03 5.47E-05

S48 3.11E-03 8.40E-09
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