
1

Maurizio Palesi 1

SISSIS Logic OptimisationLogic Optimisation and and
SynthesisSynthesis

Maurizio Palesi

Maurizio Palesi 2

AboutAbout SISSIS
SIS: Sequential Interactive Synthesis

Is a software package for logic design developed at the
University of California, Berkeley

SIS can synthesise combinational, synchronous
and asynchronous circuits, generating either two-
level or multi-level (factorised) equations
These equations can then be mapped onto a user-
defined component library representing gates, flip-
flops, standard cells, etc, and these circuits
optimised for minimum size, maximum speed, etc.

2

Maurizio Palesi 3

Example Example –– Full Full AdderAdder
The PLA FormatThe PLA Format

SIS can take as input a
truth table or a set of
equations
The file FA.PLA, contains
the truth-table for a full
adder

.i 3

.o 2

.ilb a b cin

.ob sum co

.p 8
000 0 0
001 1 0
010 1 0
011 0 1
100 1 0
101 0 1
110 0 1
111 1 1
.e

Maurizio Palesi 4

Example Example –– Full Full AdderAdder
The print commandThe print command

We invoke SIS and read in the network:

$ sis
UC Berkeley, SIS 1.3 (compiled May 28 1995)
sis>
sis> read_pla fa.pla

To see the equations in sum-of-products form,
type the "p" (print) command:

sis> p
{sum} = a b cin + a b' cin' + a' b cin' + a' b' cin
{co} = a b cin + a b cin' + a b' cin + a' b cin

3

Maurizio Palesi 5

Example Example –– Full Full AdderAdder
The simplify commandThe simplify command

To carry out a two-level minimisation on all the nodes of
current network, we will use a version of the "simplify"
command - simply type "sim1 *" to simplify all of the output
functions

sis> sim1 *
sis> p
{sum} = a b cin + a b' cin' + a' b cin' + a' b' cin
{co} = a b + a cin + b cin

Maurizio Palesi 6

Example Example –– Full Full AdderAdder
The print_stats CommandThe print_stats Command

The "ps" (print_stats) command will show the number of
literals required to represent the functions in both sum-of-
products and factored forms

sis> ps
fa.pla pi= 3 po= 2 nodes= 2 latches= 0
lits(sop)= 18 lits(fac)= 15

sis> pf
{sum} = cin (a' b' + a b) + cin' (a b' + a' b)
{co} = cin (b + a) + a b

The factorised form is:

4

Maurizio Palesi 7

Example Example –– Full Full AdderAdder
The rlib & map CommandsThe rlib & map Commands

We will now carry out technology
mapping, that is, the mapping of
the current network onto a
predefined library of gates.
In this case, we will use the library
ANDOR4.GEN (found in SIS_LIB)
To use a library, we must first issue
a "rlib" command followed by the
"map" command.

sis> rlib andor4.gen
sis> map
sis> pf
[122] = b'
[123] = cin'
[97] = [122] [123]
[98] = b cin
[124] = [98] + [97]
[151] = [124] + a
[152] = [151]'
[96] = [124] a
{sum} = [96] + [152]
[145] = cin + b
[93] = [145] a
[94] = b cin
{co} = [94] + [93]

Maurizio Palesi 8

Example Example –– Full Full AdderAdder
The print_gate CommandThe print_gate Command

A number of new nodes have been
introduced during the mapping onto
the library components.
The "pg" (print_gate) command will
print out the gates used in deriving
each of the non-leaf nodes of the
network (the leaf nodes describe
input literals)
We see that SIS has implemented
the circuit using 2-input AND and
OR gates and inverters

sis> pg
[122] inv 2.00
[123] inv 2.00
[97] and2 3.00
[98] and2 3.00
[124] or2 3.00
[151] or2 3.00
[152] inv 2.00
[96] and2 3.00
{sum} or2 3.00
[145] or2 3.00
[93] and2 3.00
[94] and2 3.00
{co} or2 3.00

Gate name Cost or area

5

Maurizio Palesi 9

Example Example –– Full Full AdderAdder
The print_gate CommandThe print_gate Command

We can now investigate the
effect of adding XOR gates to
the library.
The AOXOR.GEN library contains
a 2-input XOR gate
Let we add to the current library
using the "rlib -a" command
We now see that the full-adder
has been implemented using the
XOR gates, even though they
are more expensive, since this
has reduced the overall cost and
delay of the circuit

sis> rlib -a aoxor.gen
sis> map
sis> pf
[124] = b cin' + b' cin
{sum} = [124] a' +
[124]' a
[318] = cin + b
[93] = [318] a
[94] = b cin
{co} = [94] + [93]
sis> pg
[124] xor 5.00
{sum} xor 5.00
[318] or2 3.00
[93] and2 3.00
[94] and2 3.00
{co} or2 3.00

Maurizio Palesi 10

Example Example –– Full Full AdderAdder
The print_gate ComandThe print_gate Comand

A summary of the gates used is given by the "pgc"
command

sis> pgc
and2 : 2 (area=3.00)
or2 : 2 (area=3.00)
xor : 2 (area=5.00)
Total: 6 gates, 22.00 area

The circuit propagation delay is given by the "pat“
command

sis> pat sum co
... using library delay model
{sum} : arrival=(6.10 6.10)
{co} : arrival=(4.40 4.40)

6

Maurizio Palesi 11

Algebraic ManipulationsAlgebraic Manipulations
Normally, logic equations are manipulated in order
to reduce the number of literals that they contain,
since this is taken as an indicator of the number
and size of logic gates that will be required to
implement the circuit
An equation may be ‘factorised’ in order to extract
literals common to a number of terms.
The following example shows an input file F2.EQN
written in the form of an equation

z = a b + a c + a d + a e + b c + b d + b e;

Maurizio Palesi 12

Algebraic ManipulationsAlgebraic Manipulations
sis> re f2.eqn
sis> p
{z} = a b + a c + a d + a e + b c + b d + b e
sis> pf
{z} = a (e + d + c) + b (e + d + c + a)
sis> ps
f2.eqn pi= 5 po= 1 nodes= 1 latches= 0
lits(sop)= 14 lits(fac)= 9

7

Maurizio Palesi 13

Algebraic ManipulationsAlgebraic Manipulations
The factor ComandThe factor Comand

Better quality results are typically obtained
using the "factor -good" or "gf" command :

sis> gf z
sis> pf
{z} = (b + a) (e + d + c) + a b
sis> ps
f2.eqn pi= 5 po= 1 nodes= 1
latches= 0
lits(sop)= 14 lits(fac)= 7

Maurizio Palesi 14

Algebraic ManipulationsAlgebraic Manipulations
The decomp ComandThe decomp Comand

Decomposition may be used to break down
complex functions into simpler components

sis> re f2.eqn

sis> decomp -g

sis> p

{z} = [8] b + [9] a

[9] = [8] + b

[8] = c + d + e

8

Maurizio Palesi 15

Algebraic ManipulationsAlgebraic Manipulations
The eliminate ComandThe eliminate Comand

The ‘eliminate’ command carries out the reverse of decomposition by
replacing a node with the equation it represents, according to the
number of times that node is used in the network
For example, the command "eliminate -1" will remove any nodes which
are only used once :

sis> el –1
sis> pf
{z} = [8] (b + a) + a b
[8] = e + d + c

In this case, node [9] has been eliminated.

The eliminate command will tend to reduce the number of levels in a
network

Maurizio Palesi 16

Algebraic ManipulationsAlgebraic Manipulations
The factor ComandThe factor Comand

For a multiple-output circuit, the common factors, or ‘divisors’, must be chosen
in order to minimise the overall number of literals in the combined equations

sis> re f6.eqn
sis> p
{y} = a f + b f + c f + d f + g
{z} = a f + b f + c f + e f + g
sis> gf *
sis> pf
{y} = f (d + c + b + a) + g
{z} = f (e + c + b + a) + g
sis> ps
f6.eqn pi= 7 po= 2 nodes= 2 latches= 0
lits(sop)= 18 lits(fac)= 12

This shows the result of factoring each equation seperately

9

Maurizio Palesi 17

Algebraic ManipulationsAlgebraic Manipulations
The gkx ComandThe gkx Comand

The "gkx" command may be used to extract the largest factor common to both
equations

sis> gkx
sis> pf
{y} = f ([2] + d) + g
{z} = f ([2] + e) + g
[2] = c + b + a
sis> ps
f6.eqn pi= 7 po= 2 nodes= 3 latches= 0
lits(sop)= 13 lits(fac)= 11

We see that in this instance the use of the common factor gives a
result which is less than optimal in each individual case, but gives a
better overall result

Maurizio Palesi 18

Technology MappingTechnology Mapping
The process of ‘technology mapping’ describes the conversion of a
network described only by Boolean equations into a circuit made up of
logic components chosen from a particular device library
In general, we begin technology mapping with a network containing a
minimum number of literals - on the basis that this will generate the
simplest logic circuit

However, if the component library does not contain a component
corresponding to a particular expression in the network, then the given
expression will be automatically decomposed
For example, if a library contains only simple NAND gates, then the
network will be decomposed until it consists only of NAND functions, even
though this may increase the number of literals (and logic levels).
It is normally possible to implement a design using different combinations
of components, and SIS can be directed to choose components on the
basis of their speed or their cost, allowing the designer to make a trade-off
between these factors

10

Maurizio Palesi 19

Technology MappingTechnology Mapping
The following example shows the equations for a four-bit ripple-carry
adder rip4.eqn being mapped onto a library of standard cells

4-bit ripple-carry full adder
s0 = a0 ^ b0 ^ ci0 ;
co0 = ci0 * (a0 ^ b0) + a0 * b0 ;
ci1 = co0 ;
s1 = a1 ^ b1 ^ ci1 ;
co1 = ci1 * (a1 ^ b1) + a1 * b1 ;
ci2 = co1 ;
s2 = a2 ^ b2 ^ ci2 ;
co2 = ci2 * (a2 ^ b2) + a2 * b2 ;
ci3 = co2 ;
s3 = a3 ^ b3 ^ ci3 ;
co3 = ci3 * (a3 ^ b3) + a3 * b3 ;

Maurizio Palesi 20

Technology MappingTechnology Mapping
The input file is read, and the equations printed in SOP form

sis> re rip4.eqn
sis> p
{s0} = a0 b0 ci0 + a0 b0' ci0' + a0' b0 ci0' + a0' b0' ci0
co0 = a0 b0 + a0 b0' ci0 + a0' b0 ci0
ci1 = co0
{s1} = a1 b1 ci1 + a1 b1' ci1' + a1' b1 ci1' + a1' b1' ci1
co1 = a1 b1 + a1 b1' ci1 + a1' b1 ci1
ci2 = co1
{s2} = a2 b2 ci2 + a2 b2' ci2' + a2' b2 ci2' + a2' b2' ci2
co2 = a2 b2 + a2 b2' ci2 + a2' b2 ci2
ci3 = co2
{s3} = a3 b3 ci3 + a3 b3' ci3' + a3' b3 ci3' + a3' b3' ci3
{co3} = a3 b3 + a3 b3' ci3 + a3' b3 ci3

The "ps" command shows the literal count for these equations as 83 (sop) or
71 (factored)

11

Maurizio Palesi 21

Technology MappingTechnology Mapping
The map ComandThe map Comand

We now open the library lib2.gen
which contains a set of simple and
complex combinational devices
representative of a VLSI standard cell
library :

sis> rlib lib2.gen

The "pgc" command will be used to
display the gates used, and the "pat -p
1" command will show the maximum
propagation delay present in the
resulting circuit. Since these
commands will be used each time the
circuit is mapped, the "alias" command
is used to define a name, ‘pr’, to
represent the required command string

sis> alias pr "pgc; pat -p 1"

sis> re rip4.eqn
sis> map -m 0 –AFW
sis> pr
aoi21 : 3 (area=1856.00)
aoi22 : 1 (area=2320.00)
inv1x : 6 (area=928.00)
inv2x : 12 (area=928.00)
inv4x : 2 (area=1392.00)
nand2 : 6 (area=1392.00)
nand3 : 3 (area=1856.00)
oai21 : 9 (area=1856.00)
oai22 : 3 (area=2320.00)
Total: 45 gates, 64960.00 area
... using library delay model
{s3} : arrival=(12.27 12.33)

specifies a minimum-area mapping

Maurizio Palesi 22

Technology MappingTechnology Mapping
The example is now repeated using different delay-area trade-offs :

Command Area Delay

map -m 0.5 -AFW 45 gates, 64960.00 area 12.33

map -n 1 -AFGW 43 gates, 63104.00 area 11.89

map -m 0 27 gates, 47328.00 area 16.45

map -m 0.5 35 gates, 54752.00 area 14.00

map -m 1 39 gates, 66352.00 area 14.97

These results show that a range of results may be obtained, with a
variation of around 1.7:1 in cost and 1.4:1 in worst-case delay

12

Maurizio Palesi 23

Technology MappingTechnology Mapping
The results above are obtained by mapping the source equations as given, with no
optimisations being carried out. The mappings are now repeated, but with the equations
processed by SCRIPT.BOO giving a literal count of 60 (sop) or 48 (factored).

Command Area Delay

so script.boo
map -m 0 -AFW 38 gates, 54288.00 area 10.73

so script.boo
map -m 0.5 -AFW 38 gates, 54288.00 area 10.73

so script.boo
map -n 1 -AFGW 38 gates, 54288.00 area 11.20

so script.boo
map -m 0 25 gates, 41760.00 area 13.60

so script.boo
map -m 0.5 29 gates, 45472.00 area 13.20

so script.boo
map -m 1

37 gates, 59856.00 area 12.80

The simplification of the original equations has been reflected in the circuits obtained

Maurizio Palesi 24

Technology MappingTechnology Mapping
Finally, the simplified equations are collapsed before mapping, in an attempt to
reduce the propagation delay irrespective of the effect on area. The literal count
increases to 684 (sop) or 134 (factored).

Command Area Delay

so script.boo ; collapse
map -m 0 -AFW 80 gates, 126208.00 area 9.06

so script.boo ; collapse
map -m 0.5 -AFW 80 gates, 120640.00 area 8.44

so script.boo ; collapse
map -n 1 -AFGW 76 gates, 120640.00 area 11.20

so script.boo ; collapse
map -m 0 61 gates, 106256.00 area 10.90

so script.boo ; collapse
map -m 0.5 67 gates, 110896.00 area 10.50

so script.boo ; collapse
map -m 1

71 gates, 125280.00 area 9.80

13

Maurizio Palesi 25

Technology MappingTechnology Mapping
ParetoPareto--frontfront

Pareto front

Maurizio Palesi 26

Sequential SynthesisSequential Synthesis
This BLIF format file seq735.blf shows the state table which will be
processed

.model

.inputs x

.outputs z

.start_kiss

.i 1

.o 1
0 f1 f8 0
1 f1 f3 0
0 f2 f8 0
1 f2 f6 0
0 f3 f8 1
1 f3 f1 0
0 f4 f1 1
1 f4 f9 0
0 f5 f4 0

1 f5 f7 0
0 f6 f4 1
1 f6 f2 0
0 f7 f4 1
1 f7 f5 0
0 f8 f5 1
1 f8 f9 0
- f9 f10 –
0 f10 f1 0
1 f10 f5 0
.end_kiss

.end

F7 F5

1/0

14

Maurizio Palesi 27

Sequential SynthesisSequential Synthesis
The state_minimize ComandThe state_minimize Comand

The file is read in using the "read_blif" ("rl") command, and the "ps"
command shows that the design contains 10 states, but that no circuit
equations yet exist
sis> rl seq735.blf
sis> ps
seq735.blf pi= 1 po= 1 nodes= 1 latches= 0
lits(sop)= 0 lits(fac)= 0 #states(STG)= 10

The "sm" command is now used to carry out state minimisation :

sis> sm
Running stamina, written by June Rho, University of
Colorado at Boulder
system(stamina < d:\sis\SISBAAa00057 >
d:\sis\SISCAAa00057)
Number of states in original machine : 10
Number of states in minimized machine : 5

Maurizio Palesi 28

Sequential SynthesisSequential Synthesis
The state_assign CommandThe state_assign Command

The minimised state table may now be displayed

sis> write_kiss
.i 1
.o 1
.p 9
.s 5
.r S1
0 S0 S2 1
1 S0 S1 0
0 S2 S1 1
1 S2 S3 0
0 S1 S2 0
1 S1 S0 0
- S3 S4 –
0 S4 S1 0
1 S4 S1 0

To carry out state assignment, the "jedi"
program is used

sis> sa jedi -e c

Note that the " -e c " option was used to
attempt to generate an optimal state
assignment.
Several other options may be used, for
example, to generate natural binary (-e s) or
one-hot (-e h) assignments.
See the Reference Manual for details.

15

Maurizio Palesi 29

Sequential SynthesisSequential Synthesis
sis> write_blif
.model seq735.blf
.inputs x
.outputs z
.latch [3] LatchOut_v1 1
.latch [4] LatchOut_v2 0
.latch [5] LatchOut_v3 1
.start_kiss
.i 1
.o 1
.p 9
.s 5
.r S1
0 S0 S2 1
1 S0 S1 0
0 S2 S1 1
1 S2 S3 0
0 S1 S2 0
1 S1 S0 0
- S3 S4 –
0 S4 S1 0
1 S4 S1 0
.end_kiss

.latch_order LatchOut_v1 LatchOut_v2
LatchOut_v3
.code S0 011

.code S2 111

.code S1 101

.code S3 001

.code S4 110

...remainder of file not shown.

Maurizio Palesi 30

Sequential SynthesisSequential Synthesis
The network equations may now be displayed

sis> p
[3] = LatchOut_v1' + LatchOut_v3' + x'
[4] = LatchOut_v1' x' + LatchOut_v2'
[5] = LatchOut_v1 + LatchOut_v2
{z} = LatchOut_v2 LatchOut_v3 x'
sis> ps
seq735.blf pi= 1 po= 1 nodes= 4 latches= 3
lits(sop)= 11 lits(fac)= 11 #states(STG)= 5

16

Maurizio Palesi 31

Sequential SynthesisSequential Synthesis
The extract_seq_dc ComandThe extract_seq_dc Comand

In cases where unused states exist, the "extract_seq_dc" command will
identify them so that they can be used as dont-care states which may help to
further simplify the circuit equations

sis> extract_seq_dc
number of latches = 3 depth = 4 states
visited = 5
sis> full_simplify
sis> ps
seq735.blf pi= 1 po= 1 nodes= 4 latches= 3
lits(sop)= 11 lits(fac)= 11 #states(STG)= 5

In this case, no improvement has been achieved

Maurizio Palesi 32

Sequential SynthesisSequential Synthesis
Technology mapping may now be carried out

sis> rlib lib2.gen
sis> rlib -a lib2_lat.gen
sis> map -W
sis> pgc
dff : 3 (area=4640.00)
inv2x : 3 (area=928.00)
nand2 : 1 (area=1392.00)
nand3 : 1 (area=1856.00)
nor3 : 1 (area=1856.00)
oai21 : 1 (area=1856.00)
Total: 10 gates, 23664.00 area

We can see that the resulting circuit contains three d-type flip-flops as
expected

17

Maurizio Palesi 33

Explicit State AssignmentExplicit State Assignment
The following example, count5.blf , shows a
specification for a simple 5-state binary up-
counter.
Although this design requires no primary inputs,
the KISS format does require that at least one
input be present in the state table
In this example, an input called a is included, but
its value is ‘dont-care’ throughout the table and
consequently it does not appear in the circuit
equations
The binary values of the states zero to four are
defined explicitly using the .code statements

Maurizio Palesi 34

Explicit State AssignmentExplicit State Assignment
The code StatementThe code Statement
.model
.inputs a
.outputs qc qb qa
.start_kiss
.i 1
.o 3
.s 5
- zero one 000
- one two 001
- two three 010
- three four 011
- four zero 100
.end_kiss
.code zero 000 #state assignment
.code one 001
.code two 010
.code three 011
.code four 100
.end

18

Maurizio Palesi 35

Explicit State AssignmentExplicit State Assignment

sis> rl count5.blf
sis> stg_to_network
sis> print_latch -s
input: {[3]} output: LatchOut_v1 init val: 0 cur val: 0
input: {[4]} output: LatchOut_v2 init val: 0 cur val: 0
input: {[5]} output: LatchOut_v3 init val: 0 cur val: 0

The assigned state table is now read in and the "stg_to_network" command
used to generate the circuit equations

The "print_latch" command shows the signal names and current states of the
d-type latches that have been generated

sis> ps
count5.blf pi= 1 po= 3 nodes= 6 latches= 3
lits(sop)= 17 lits(fac)= 15 #states(STG)= 5
sis> p
[3] = LatchOut_v2 LatchOut_v3
[4] = LatchOut_v2 LatchOut_v3' + LatchOut_v2' LatchOut_v3
[5] = LatchOut_v1' LatchOut_v3'
{qc} = LatchOut_v1
{qb} = LatchOut_v2 LatchOut_v3 + LatchOut_v2 LatchOut_v3'
{qa} = LatchOut_v2 LatchOut_v3 + LatchOut_v2' LatchOut_v3

Maurizio Palesi 36

Design VerificationDesign Verification
The "simulate" command is used to display the values of the primary output
signals as a function of the primary inputs (and, for sequential designs, the
current state).

sis> rl count5.blf
sis> stg_to_network
sis> print_state
Network state: 000
STG state: zero (000)
sis> sim 0
Network simulation: Outputs: 0 0 0 Next state: 001
STG simulation: Outputs: 0 0 0 Next state: one (001)
sis> sim 0
Network simulation: Outputs: 0 0 1 Next state: 010
STG simulation: Outputs: 0 0 1 Next state: two (010)
sis> sim 0
Network simulation: Outputs: 0 1 0 Next state: 011
STG simulation: Outputs: 0 1 0 Next state: three (011)

