
University of Ulm

Department of Microelectronics
U

L
M

S
C

IE
N

D
O

DOCENDO

C
U

R
A

N
D

O
U

N
I V E R S I T A T

entity VEND_CONT is
generic (PRICE : money := 30);
port (COIN_IN : in coin;

COICE : in bit_vector(0 to 7);
CLK, NR : in bit;
COIN_OUT : out coin;
ITEM_OUT : out item);

end VEND_CONT;
architecture SEQUENTIAL of VEND_CONT is

signal temp : bit;
begin

Technology

VHDL Manual

Richard Gei�ler

Slavek Bulach

September 1998

Contents

1 Introduction 1

1.1 Motivation: IC Design Methodologies 1

1.2 Contents and Structure of this Manual 2

2 Basic VHDL Concepts 3

2.1 Components of a VHDL Model 3

2.2 Entity Declaration . 4

2.3 Architecture . 6

2.3.1 Concurrent Behavioral Description 7

2.3.2 Sequential Behavioral Description 10

2.3.3 Structural Description . 15

2.4 Con�guration Declaration . 17

2.4.1 Con�guration of Behavioral Descriptions 17

2.4.2 Con�guration of Structural Descriptions 18

2.5 Packages . 19

2.5.1 Package Declaration . 19

2.5.2 Package Body . 20

2.5.3 Important Packages . 20

2.6 Additional Signal Characteristics 22

2.6.1 Delay Models . 22

2.6.2 Resolution Functions . 23

2.7 Analysis of VHDL Models . 24

2.8 Simulation . 24

3 Data Types 27

3.1 Scalar Types . 27

3.2 Composite Types . 29

3.3 Access Types . 32

3.4 File Types . 33

3.5 Type and Field Attributes . 34

4 Declarations and Identi�ers 37

5 Expressions and Operators 39

6 Sequential Modeling 42

6.1 Assignments . 43

6.2 Subprograms . 47

7 Signals 51

7.1 Signal Declaration . 51

7.2 Signal Assignments in Process . 52

7.3 Implicit Type Resolution and Drivers 53

7.4 Signal Attributes . 56

8 Concurrent Modeling 57

9 Structural Descriptions 61

9.1 Generation of Instances . 62
9.2 Use of Packages . 63
9.3 Con�gurations . 64
9.4 Generics . 67

10 Packages and Libraries 69

Bibliography 72

A Package TEXTIO 73

1

1 Introduction

1.1 Motivation: IC Design Methodologies

In the last twenty years a change took place in the methodology of digital cir-
cuits design. In the past, integrated circuits were manually composed with
graphical CAD-tools. For that purpose basic elements (logic gates from a
library, or rather their symbols) had to be selected, placed on a schematic
and connected with each other. In this way simple modules could be created
which were then used to assemble complex circuits. This methodology is called
bottom-up. It could take a long time to generate large circuits and the result
was diÆcult to change because this meant laborious redrawing of the schemat-
ics.

Today, designing electrical systems deals with more and more complex sys-
tems, which can be integrated in single chips due to the increasing packing
density. A short development cycle is another decisive factor designers have
to consider in order to stay on top of the competition and to satisfy the re-
quirements of the customers. Therefore, the reuse of once generated functional
blocks and module in new systems is important. This requires a technology
independent description of the circuits.

As far as digital circuits are concerned, the above considerations lead to
the adoption of a top-down design ow. Using hardware description languages,
modeling of systems at various levels of abstraction is possible. Due to the step-
wise re�nement in the top-down design ow, such a description language has
to support all levels of abstraction: system speci�cation, algorithmic descrip-
tion, functional blocks, and gate-level netlists. An important aspect in today�s
design ows is the use of synthesis tools which automatically create gate-level
netlists from behavioral descriptions. This requires a standardized language
which would allow the simulation of the modeled system at di�erent levels of
abstraction.

VHDL (VHSICHardwareDescription Language; VHSIC (VeryHigh Speed
Integrated Circuit)) meets all these requirements. It is possible to describe
concurrent or sequential behavior of digital circuits, with or without timing, at
various levels of abstraction. Hierarchical designs may be created by instantiat-
ing submodules and connecting them with each other. Nowadays, the language
is supported by all major design tools mainly because it was standardized by
the IEEE. Therefore, it can be used as an exchange medium between di�erent
CAD tools, or CAD tool users and chip vendors.

VHDL was initiated in the early 80's under the VHSIC program in the
USA. The aim of this program was to develop a hardware description language
for unambiguous documentation of digital systems. At that time, a number of
companies designed VHSIC chips for the Department of Defense. Each used a
di�erent description language for developing and modeling their circuits. Data
exchange, reuse and reproduction of designs was a big issue under these condi-
tions. After the public release of VHDL in 1985 and additional enhancement
in the following two years, VHDL was standardized by the IEEE in December
1987. It has also been recognized as an American National Standards Institute

2 1 INTRODUCTION

(ANSI) standard. The oÆcial language description appears in the IEEE Stan-
dard VHDL Language Reference Manual (LRM). According to IEEE rules, it
has to be reviewed every �ve years. This lead to the latest IEEE Standard,
known as Std 1076-1993.

1.2 Contents and Structure of this Manual

This VHDL manual is based on the older IEEE Standard 1076-1987. The
reason is that most of today�s design tools support this standard only and not
the newer 1993 one.

The �rst part of the manual (Chapter 2) allows to cover the basics of VHDL
in a very short time. This knowledge should be suÆcient to describe simple
digital circuits. The topics serve as a reference material for the introductory
course (Design of Integrated Circuits with VHDL) lectures.

The second part, starting with Chapter 3, is based on the VHDL manual of
the Group TECH, Department of Computer Science, University of Hamburg.
It serves as a supporting documentation to the �rst part. The original version,
written in German, and a lot of other useful information along with VHDL
links can be found in the WWW under the following URLs:

http://tech-www.informatik.uni-hamburg.de/Dokumentation
http://tech-www.informatik.uni-hamburg.de/vhdl/vhdl.html

3

2 Basic VHDL Concepts

This chapter is intended to give a short introduction to the VHDL by presenting
the basic concepts. Describing simple VHDL models should be possible after
covering this material. Therefore, the chapter starts with an overview of the
di�erent components of VHDL models followed by a more detailed description
in separate sections. Finally, the concepts of the VHDL library, analysis and
simulation are presented.

The less exciting material on things like prede�ned types, allowed object
identi�ers and available operators for expressions, all of which are very similar
to other programming languages like C or Pascal, is left out of this introductory
chapter. This information, which has to be considered even in simple models,
can be found in chapters 3, 4 and 5.

2.1 Components of a VHDL Model

The purpose of VHDL descriptions is to provide a model for digital circuits and
systems. This abstract view of the real physical circuit is referred to as entity.
An entity normally consists of �ve basic elements, or design units, shown in
Figure 1.

ENTITY
(interface description)

ARCHITECTURE
(functionality)

CONFIGURATION
(connection entity architecture)↔

PACKAGE
DECLARATION

PACKAGE
BODY

(often used
functions,
constants,
components,...)

Figure 1: Basic elements of a VHDL model

In VHDL one generally distinguishes between the external view of a module
and its internal description. The external view is reected in the entity declara-
tion which represents an interface description of a 'black box'. The important
part of this interface description consists of signals over which the individual
modules communicate with each other.

The internal view of a module and, therefore, its functionality is described
in the architecture body. This can be achieved in various ways. One possibility
is given by coding a behavioral description with a set of concurrent or sequential
statements. Another possibility is a structural description which serves as a base
for the hierarchically designed circuit architectures. Naturally, these two kinds

4 2 BASIC VHDL CONCEPTS

of architectures can also be combined. The lowest hierarchy level, however,
must consist of behavioral descriptions. One of the major VHDL features is the
capability to deal with multiple di�erent architectural bodies belonging to the
same entity declaration. In this case, it is necessary to bind one architecture to
the entity in order to have a unique hierarchy for simulation or synthesis.

Being able to investigate di�erent architectural alternatives permits the de-
velopment of systems to be done in an eÆcient top-down manner. The ease of
switching between di�erent architectures has another advantage, namely, quick
testing. This also includes switching between behavioral descriptions based on
di�erent algorithms, as well as switching to gate-level netlists, for example, after
a partial synthesis is performed.

Which architecture should be used for simulation or synthesis in conjunction
with a given entity is speci�ed in the con�guration section. If the architecture
body consists of a structural description, then the binding of architectures and
entities of the instantiated submodules, the so-called components, can also be
�xed by the con�guration statement.

The package is the last element mentioned here. It contains declarations
of frequently used data types, components, functions, and so on. The package
consists of a package declaration and a package body. The declaration is used,
like the name implies, for declaring the above mentioned objects. This means,
they become visible to other design units. In the package body, the de�nition of
these objects can be carried out, for example, the de�nition of functions or the
assignment of a value to a constant. Packages are language elements which can
be compared with header �les and the belonging codes, or object �les, found in
the programming language C. The partitioning of a package into its declaration
and body provides advantages in compiling the model descriptions. This is
further elaborated in section 2.7.

2.2 Entity Declaration

An entity declaration speci�es the name of an entity and its interface. This cor-
responds to the information given by the symbols in traditional design methods
based on drawing schematics. Signals which are used for communication with
the surrounding modules are called ports.

Fulladder

A

B

C

SUM

CARRY

Figure 2: Interface of a full-adder module.

An entity declaration for the full-adder module shown in Figure 2 is as
follows:

2.2 Entity Declaration 5

Example: entity FULLADDER is

-- (After a double minus sign (-) the rest of

-- the line is treated as a comment)

--

-- Interface description of FULLADDER

port (A, B, C: in bit;

SUM, CARRY: out bit);

end FULLADDER;

The module FULLADDER has �ve interface ports. Three of them are the input
ports A, B and C indicated by the VHDL keyword in. The remaining two are
the output ports SUM and CARRY indicated by out. The signals going through
these ports are chosen to be of the type bit. This is one of the prede�ned
types besides integer, real and others types provided by VHDL. The type
bit consists of the two characters '0' and '1' and represents the binary logic
values of the signals.

Every port declaration implicitly creates a signal with the name and type
speci�ed. It can be used in all architectures belonging to the entity in one of
the following port modes:

Mode in: The port can only be read within the entity and its architectures.

Mode out: This port can only be written.

Mode inout: This port can be read and written. This is useful for modeling
bus systems.

Mode buffer: The port can be read and written. Each port must have only
one driver.

In order to improve the re-usability of VHDL codes these descriptions can
be implemented with parameters, known as generics. For example, in a large
hierarchical design it eÆcient to describe a register with an unconstrained bit
width only once, and instantiate it in a structural description with the desired
bit width speci�ed by a generic. The entity declaration for such a register is
given below:

Example: entity DFF is

-- parameter: width of the data

generic (width: integer);

-- input and output signals

port (CLK, NR: in bit;

D: in bit vector(1 to width);

Q: out bit vector(1 to width));

end DFF;

The parameter width a�ects the width of the input bus D and the output bus
Q. These buses are declared as bit vector(1 to width) which is equivalent to
an array of signals (the number of elements in the array is speci�ed by width) of
the type bit, whose elements can be accessed by the index 1, 2, ..., width.

In general, the entity declaration has the following format:

6 2 BASIC VHDL CONCEPTS

Syntax: entity entity name is

[generics]
[ports]
[declarations (types, constants, signals)]
[de�nitions (functions, procedures)]

[begin -- normally not used

statements]
end [entity name];

A detailed description of generic and port declarations syntax is found in
Section 2.3.3. The above examples can be used as templates. Besides the decla-
ration of generics and ports, it is possible to declare types, constants, functions
and signals which are accessible within the entity and the corresponding archi-
tectures. In the region between the keywords begin and end passive statements
and procedures can be called. Passive means that no signal assignment neither
in this procedure nor in any procedure called within the procedure is allowed.
Passive statements could be used to generate warnings, for example, in case of
setup and hold time violations on the inputs of a ip-op.

2.3 Architecture

Following the entity declaration, the second important component of a VHDL
description is the architecture. This is where the functionality and the internal
implementation of a module is described. In general, a complex hierarchically
structured system may have the topology shown in Figure 3.

B/S

B B B B B

B

S

S

S

S

S: structural description
B: behavioural description
B/S: mixed description

Figure 3: Hierarchical circuit design.

In order to describe such a system both behavioral and structural descrip-
tions are required. A behavioral description may be of either concurrent or
sequential type. Overall, VHDL architectures can be classi�ed into the three
main types:

� concurrent behavioral description

� sequential behavioral description

� structural description

2.3 Architecture 7

All of these modeling styles share the same organization of an architecture.

Syntax: architecture architecture name of entity name is

[arch declarative part]

begin

[arch statement part]
end [architecture name];

As mentioned before, the architecture speci�es the implementation of the
entity entity name. A label architecture name must be assigned to the archi-
tecture. In case there are multiple architectures associated with one entity
this label is then used within a con�guration statement to bind one particu-
lar architecture to its entity. The architecture block consists of two parts: the
arch declarative part before the keyword begin and the arch statement part after
the keyword begin. In the declaration part local types, signals, components
etc. are declared and subprograms are de�ned. The actual model description
is done in the statement part. In contrast to programming languages like C,
the major concern of VHDL is describing hardware which primary works in
parallel and not in a sequential manner. For this reason, the statements in the
arch statement part are executed concurrently, or in parallel. However, during
the simulation of a VHDL description all concurrent statements are executed
on a processor which processes all instructions sequentially. Therefore, a special
simulation algorithm is used to achieve a virtual concurrent processing. This
algorithm is explained in the following section.

2.3.1 Concurrent Behavioral Description

This kind of description speci�es a dataow through the entity based on con-
current signal assignment statements. A structure of the entity is not explicitly
de�ned by this description but can be derived from it. As an example, consider
the following implementation of the entity FULLADDER shown in Figure 2.

Example: architecture CONCURRENT of FULLADDER is

begin

SUM <= A xor B xor C after 5 ns;

CARRY <= (A and B) or (B and C) or (A and C) after 3 ns;

end CONCURRENT;

Two concurrent signal assignment statements describe the model of the en-
tity FULLADDER. The symbol <= indicates the signal assignment. This means
that the value on the right side of the symbol is calculated and subsequently
assigned to the signal on the left side. A concurrent signal assignment is exe-
cuted whenever the value of a signal in the expression on the right side changes.
In general, a change of the current value of a signal is called an event. Due to
the fact that all signals used in this example are declared as ports in the entity
declaration (see section 2.2) the arch declarative part remains empty.

Information about a possibly existing delay time of the modeled hardware
is provided by the after clause. If there is an event on one of the inputs A, B
or C at time T, the expression A xor B xor C is computed at this time T, but

8 2 BASIC VHDL CONCEPTS

the target signal (the output SUM) is scheduled to get this new value at time
T + 5 ns. The signal assignment for CARRY is handled in exactly the same way
except for the smaller delay time of 3 ns. If an explicit information about the
delay time is missing then it is assumed to be 0 ns by default. This means
that the signal assignment is executed immediately after an event on a signal
on the right side is detected and the calculation of the new expression value is
performed.

The simulation of concurrent signal assignments is explained with the help
of a second example which gives an alternative implementation of the entity
FULLADDER.

Example: architecture CONCURRENT VERSION2 of FULLADDER is

signal PROD1, PROD2, PROD3 : bit;

begin

SUM <= A xor B xor C; -- statement 1

CARRY <= PROD1 or PROD2 or PROD3; -- statement 2

PROD1 <= A and B; -- statement 3

PROD2 <= B and C; -- statement 4

PROD3 <= A and C; -- statement 5

end CONCURRENT VERSION2;

A speci�cation of delay time is missing in each of these signal assignments.
Therefore, the delay time is set to 0 ns. Nevertheless, during the VHDL simula-
tion the signal assignment is executed after an in�nitesimally small delay time
�, the so-called delta-delay. This is necessary to execute all concurrent signal
assignment statements in virtually parallel fashion.

To observe what happens during VHDL simulation with concurrent signal
assignments and to understand the delta-delay mechanism, assume an event on
the input signal A which changes its value from a logical '0' to '1' at time T.
For the values of other input signals assume a constant '0' on input B, and a
constant '1' on input C. Due to the event on input A the statements 1, 3, and 5
are executed. The statement 1 results in a new value '0' for the signal SUM, the
statement 3 leaves the signal PROD1 unchanged at '0', and the statement 5 cal-
culates a change from '0' to '1' for PROD3. The new values get assigned at time
T + � due to the missing explicit delay time information in the statements.
The resulting event on PROD3 implicates that statement 2 has to be computed
now. This causes a change of the signal CARRY from '0' to '1' which is as-
signed at time T + 2�. Due to this incremental computation with delta-cycles
all concurrent statements are executed in virtually parallel manner. Figure 4
illustrates the sequence of signal changes during the simulation, starting with
the event on A at time T and ending with the event on CARRY at T + 2�.
Because no further events are scheduled for a third �, the system has stabi-
lized and no more delta-cycles are necessary. All delta-cycles are hidden and
do not appear on signal waveforms obtained during VHDL simulation. Signal
waveforms show the state of signals before and after all delta-cycles associated
with the simulation time T are executed.

The examples presented so far used only one kind of concurrent signal as-
signments. A set of additional concurrent statements is listed below. This list is
not complete but it includes all statements necessary to describe simple VHDL

2.3 Architecture 9

simulation time

CARRY

SUM

PROD3

PROD2

PROD1

A

T T+∆ T+2∆

Figure 4: Simulation cycle with delta-delay ; B = '0', C = '1'

models.

concurrent signal assignment statement: This statement is equal to the
ones used in the previous examples.

Syntax: [label:]
signal name <= [transport] expression [after time expr] f,

expression [after time expr]g;

Up to now the label was not used. With this element it is possible to
assign a label to the statement which can be useful for documentation.
Furthermore, it is possible to assign several events with di�erent delay
times to the target signal. In this case the values to be assigned and
their delay times have to be sorted in ascending order. The keyword
transport a�ects the handling of multiple signal events coming in short
time one after another. This is explained in section 2.6.1.

conditional signal assignment statement: In this case there are di�erent
assignment statements related to one target signal. The selection of one
assignment statement is controlled by a set of conditions condition. The
conditional signal assignment statement can be compared with the well
known if - elsif - else structure.

Syntax: [label:]
signal name <= expression when condition else

fexpression when condition elseg
expression;

Each time one signal either in expression or condition changes its value
the complete statement is executed. Starting with the �rst condition, the
�rst true one selects the expression which is computed and the resulting
value is assigned to the target signal signal name. To make the above
syntax description more clear the optional statements transport and
after time expr are left out.

10 2 BASIC VHDL CONCEPTS

selected signal assignment statement: With this statement a choice be-
tween di�erent assignment statements is made. The selection of the right
assignment is done by the value of select expression. The statement re-
sembles a case structure.

Syntax: [label:]
with select expression select

signal name <= expression when value f,
expression when valueg;

assertion statement: This statement serves to generate warnings or error
messages during simulation after testing a certain condition. It can be
used, for example, to ensure the timing restrictions (setup, hold, . . .) are
met.

Syntax: [assert label:]
assert condition
[report string expr]
[severity failurejerrorjwarningjnote];

If the test of the condition results in false then the message string expr
is displayed. Di�erent severity levels of the generated message provide
control over the VHDL simulator behavior. Most simulators allow to
specify at which severity level the message is shown and at which level
the simulation gets interrupted.

process statement: A process statement de�nes a region of code within all
statements are executed sequentially. This concept is explained in detail in
Section 2.3.2. Here it should be emphasized that every process statement
as a whole is treated as a concurrent statement which is executed in
parallel with all other concurrent statements.

2.3.2 Sequential Behavioral Description

Sequential behavioral descriptions are based on the process environment. As
already mentioned, a process statement as a whole is treated as a concurrent
statement within the architecture. Therefore, in the simulation time a process
is continuously executed and it never gets �nished. The statements within the
process are executed sequentially without the advance of simulation time. To
ensure that simulation time can move forward every process must provide a
means to get suspended. Thus, a process is constantly switching between the
two states: the execution phase in which the process is active and the statements
within this process are executed, and the suspended state.

The change of state is controlled by two mutually exclusive implementations:

� With a list of signals in such a manner that an event on one of these sig-
nals invokes a process. This can be compared with the mechanism used
in conjunction with concurrent signal assignment statements. There, the

2.3 Architecture 11

statement is executed whenever a signal on the right side of the assign-
ment operator <= changes its value. In case of a process, it becomes
active by an event on at least one signal belonging to the sensitivity list.
All statements between the keywords begin and end process are then
executed sequentially.

Syntax: [proc label:]
process (sensitivity list)
[proc declarativ part]

begin

[sequential statement part]
end process [proc label];

The sensitivity list is a list of signal names within round brackets, for
example (A, B, C).

� With wait statements in such a way that the process is executed until it
reaches a wait statement. At this instance it gets explicitly suspended.
The statements within the process are handled like an endless loop which
is suspended for some time by a wait statement.

Syntax: [proc label:]
process

[proc declarativ part]

begin

[sequential statements]
wait ...; -- at least one wait statement

[sequential statements]
end process [proc label];

The structure of a process statement is similar to the structure of an archi-
tecture. In the proc declarativ part various types, constants and variables can be
declared; functions and procedures can be de�ned. The sequential statement part
contains the description of the process functionality with ordered sequential
statements.

An implementation of the full adder from Figure 2 with a sequential behav-
ioral description is given below:

Example: architecture SEQUENTIAL of FULLADDER is

begin

process (A, B, C)

variable TEMP : integer;

variable SUM CODE : bit vector(0 to 3) := "0101";

variable CARRY CODE : bit vector(0 to 3) := "0011";

begin

if A = '1' then TEMP := 1;

else TEMP := 0;

end if;

if B = '1' then TEMP := TEMP + 1;

12 2 BASIC VHDL CONCEPTS

end if;

if C = '1' then TEMP := TEMP + 1;

end if; -- variable TEMP now holds the number of ones

SUM <= SUM CODE(TEMP);

CARRY <= CARRY CODE(TEMP);

end process;

end SEQUENTIAL;

The functionality of this behavioral description is based upon a temporary
variable TEMP which counts the number of ones on the input signals. With
this number one element, or one bit, is selected from each of the two prede�ned
vectors SUM CODE and CARRY CODE. The initialization of these two vectors reects
the truthtable of a full-adder module.

The reason for this unusual coding is the attempt to explain the character-
istics of a variable. A variable di�ers not only in the assignment operator (:=)
from that of a signal (<=). It is also di�erent with respect to time when the
new computed value becomes valid and, therefore, readable to other parts of
the model. Every variable gets the new calculated value immediately, whereas
the new signal value is not valid until the beginning of the next delta-cycle, or
until the speci�ed delay time elapses.

If the above example had been coded with a signal as the temporary counter
instead of the variable, then the correct functionality of this architecture as a
full adder could not be ensured. After an event at time T on one of the input
signals A, B or C, which are members of the sensitivity list, the process is executed
once. Now, assume that TEMP is declared as a signal. In the �rst if statement
the signal TEMP is either reset to zero or in case A = '1' it is set to '1'. The
assignment of the new value is scheduled for time T + �, which means that the
appropriate event is written to an event queue for signal TEMP. The simulation
continues with executing the second if statement at time T because computing
a sequential statement does not advance the simulation time. Therefore, the
signal TEMP still holds the same value it had before the process activation! This
means that the intended counting of ones does not work with TEMP declared as
signal.

In general, signal assignment statements within a process have to be handled
with care, especially if the target signal will be read or rewritten in the following
code before the process gets suspended (at the wait statement or, if a sensitivity
list exists, at the end of the process). If this e�ect is taken into consideration,
the process statement provides an environment in which a person familiar with
programming languages like C or Pascal can easily generate a VHDL behavioral
description. This remark, however, should not be understood that the process
statement is there for people switching to VHDL. In reality, some functions can
be implemented much more easily in a sequential manner. As an example, the
implementation of a register belonging to the entity declaration on page 5 is
shown:

Example: architecture SEQUENTIAL of DFF is

begin

process (CLK, NR)

begin

2.3 Architecture 13

if (NR = '0') then

-- Reset: assigning "000...00" to the

-- parameterized output signal Q

Q <= (others => '0');

elsif (CLK'event and CLK = '1') then

Q <= D;

end if;

end process;

end SEQUENTIAL;

Not explained until now is the use of attributes. In the above example,
the attribute CLK'event is used to detect an edge on the CLK signal. This is
equivalent to an event on CLK. The ability to detect edges on signals is based
upon the storage of all events in event queues for every signal. Therefore,
old values can be compared with the actual ones or even read. In contrast,
variables always get the new assigned value immediately and the old value is
not stored. Subsequently, during the simulation more memory is required for a
signal for a variable. In complex system descriptions this fact should be taken
into consideration.

Generally speaking, attributes exist not only in conjunction with signals.
For instance, there are attributes associated with types and arrays. Some ad-
ditional information on attributes is found in Section 7.4 on page 56.

Due to the similarity between sequential assignment statements in VHDL
and common statements in other programming languages, only a brief descrip-
tion of their syntax is provided here.

sequential signal assignment statement: The syntax of a sequential signal
assignment is very similar to the concurrent assignment statement, except
for a label which can not be used.

Syntax: signal name <= [transport] expression [after time expr] f,
expression after time exprg;

variable assignment statement: A variable assignment statement is very
similar to a signal assignment. As already mentioned, a variable di�ers
from a signal in that it gets its new value immediately upon assignment.
Therefore, the speci�cation of a delay time in a variable assignment is not
possible. Attention must be paid to the assignment operator which is :=
for a variable and <= for a signal.

Syntax: variable name := expression;

assertion statement: Generating error or warning messages is possible also
within the process environment. The syntax is nearly identical to a con-
current assertion statement, except for a label which can not be used.

Syntax: assert condition
[report string expr]
[severity failurejerrorjwarningjnote];

14 2 BASIC VHDL CONCEPTS

wait statement: This statements may only be used in processes without a
sensitivity list. The purpose of the wait statement is to control activation
and suspension of the process.

Syntax: wait [on signal names]
[until condition]
[for time expression];

The arguments of the wait statement have the following interpretations:

� on signal names: The process gets suspended at this line until there
is an event on at least one signal in the list signal names. The sig-
nal names are separated by commas; brackets are not used. It can
be compared to the sensitivity list of the process statement.

� until condition: The process gets suspended until the condition be-
comes true.

� for time expression: The process becomes suspended for the time
speci�ed by time expression.

� without any argument: The process gets suspended until the end of
the simulation.

if-elsif-else statement: This branching statement is equivalent to the ones
found in other programming languages and, therefore, needs no further
explanation.

Syntax: if condition then

sequential statements
felsif condition then

sequential statementsg
[else

sequential statements]
end if;

case statement: This statement is also identical to its corresponding equiva-
lent found in other programming languages.

Syntax: case expression is

fwhen choices => sequential statementsg
[when others => sequential statements]

end case;

Either all possible values of expression must be covered with choices or the
case statement has to be completed with an others branch.

null statement: This statement is used for an explicit de�nition of branches
without any further commands. Therefore, it is used primarily in case

statements, and also in if clauses.

Syntax: null;

2.3 Architecture 15

loop statement: is a conventional loop structure found in other programming
languages.

Syntax: [loop label:]
while condition loop j --controlled by condition

for identi�er in value1 to|downto value2 loop j --with counter

loop --endless loop

sequential statements
end loop [loop label];

In the for loop the counter identi�er is automatically declared. It is
handled as a local variable within the loop statement. Assigning a value
to identi�er or reading it outside the loop is not possible.

exit and next statement: With these two statements a loop iteration can
be terminated before reaching the keyword end loop. With next the
remaining sequential statements of the loop are skipped and the next it-
eration is started at the beginning of the loop. The exit directive skips
the remaining statements and all remaining loop iterations. In nested
loops both statements skip the innermost enclosing loop if loop label is
left out. Otherwise, the loop labeled loop label is terminated. The op-
tional condition expression can be speci�ed to determine whether or not
to execute these statements.

Syntax: next [loop label][when condition];
exit [loop label][when condition];

2.3.3 Structural Description

In structural descriptions the implementation of a system or model is described
as a set of interconnected components, which is similar to drawing schematics.
Such a description can often be generated with a VHDL netlister in a graphical
development tool. Since there are many di�erent ways to write structural de-
scriptions, to explain all of them in one section would be more confusing than
enlightening. Therefore, only one alternative approach is presented here.

A

B

C

SUM

CARRYHA
C

SI1

I2

HA
C

SI1

I2 XOR
X

I1

I2

S1

C1

C2

Figure 5: Structural implementation of a full adder.

As an introductive example, consider the implementation of a full-adder
circuit shown in Figure 5. The corresponding entity declaration was discussed
in Section 2.2 on page 5. The components HA and XOR are assumed to be
prede�ned elements.

16 2 BASIC VHDL CONCEPTS

Example: architecture STRUCTURAL of FULLADDER is

signal S1, C1, C2 : bit;

component HA

port (I1, I2 : in bit; S, C : out bit);

end component;

component XOR

port (I1, I2 : in bit; X : out bit);

end component;

begin

INST HA1 : HA

port map (I1 => B, I2 => C, S => S1, C => C1);

INST HA2 : HA

port map (I1 => A, I2 => S1, S => SUM, C => C2);

INST XOR : XOR

port map (I1 => C2, I2 => C1, X => CARRY);

end STRUCTURAL;

In the declarative part of the architecture (the part between the keywords
is and begin), all objects which are not yet known to the architecture have
to be declared. In the example above, these are the signals (S1, C1 and C2)
used for connecting the components together, excluding the ports of the entity
FULLADDER. In addition, the components HA and XOR have to be declared. The
declaration of a component consists of declaring its interface ports and generics
to the actual model.

Often used components could be selected from a library of gates de�ned in
a package and linked to the design. In this case the declaration of components
usually is done in the package, which is visible to the entity. Therefore, no
further declaration of the components is required in the architecture declarative
part.

The actual structural description is done in the statement part of the archi-
tecture (between the keywords begin and end arch name) by the instantiation
of components. The components' reference names INST HA1, INST HA2 and
INST XOR, also known as instance names, must be unique in the architecture.
The port maps specify the connections between di�erent components, and be-
tween the components and the ports of the entity. Thus, the components' ports
(so-called locals) are mapped to the signals of the architecture (so-called actu-
als) including the signals of the entity ports. For example, the input port I1
of the half adder INST HA1 is connected to the entity input signal B, input port
I2 to C, and so on.

The instantiation of a component is a concurrent statement. This means
that the order of the instances within the VHDL code is of no importance.

Syntax: component declaration:
component component name
[generic (generic list: type name [:= expression] f;

generic list: type name [:= expression]g);]
[port (signal list: injoutjinoutjbuffer type name f;

signal list: injoutjinoutjbuffer type nameg);]
end component;

2.4 Con�guration Declaration 17

component instantiation:
component label: component name

port map (signal mapping);

The syntax of a component declaration statement consists of a general spec-
i�cation of generics and ports which were discussed in Section 2.2 in reference
to the entity declaration. The connection of the architecture's signals to the
ports of the components can be done in various ways. The syntax used in the
above example makes the assignment in the following way:

Syntax: signal mapping: declaration name => signal name

It is important to note that the symbol '=>' is used within a port map in
contrast to the symbol '<=' used for concurrent or sequential signal assignment
statements!

2.4 Con�guration Declaration

The concept of con�guration in VHDL allows an entity to have multiple as-
sociated architectures. The role of the con�guration declaration is to de�ne a
unique system description from the various design units.

2.4.1 Con�guration of Behavioral Descriptions

In this case, the generation of a con�guration declaration is very simple. The
only information which the con�guration has to include is the choice of one
architecture for the given entity. This binding is established by naming the
entity architecture pair as follows:

Syntax: configuration con�guration name of entity name is

for architecture name
end for;

end con�guration name;

The con�guration name can be any name. It is allowed to have more than
one con�guration for one entity such that for every architecture an appropriate
con�guration exists.

For the behavioral descriptions of the full adder two con�gurations are spec-
i�ed:

Example: configuration CFG ONE of FULLADDER is

for CONCURRENT

end for;

end CFG ONE;

configuration CFG TWO of FULLADDER is

for SEQUENTIAL

end for;

end CFG TWO;

The �rst con�guration CFG ONE binds the concurrent behavioral description
CONCURRENT to the entity FULLADDER. The second con�guration CFG TWO selects
the sequential behavioral description SEQUENTIAL.

18 2 BASIC VHDL CONCEPTS

2.4.2 Con�guration of Structural Descriptions

If the con�guration binds a structural description to an entity then further
information about the instantiated components is required. Due to the fact
that the name of a component in the component declaration needs not be the
same as the entity name of the instantiated component, their binding must be
done by the con�guration. Furthermore, the binding of the component's entity
and architecture must be established by the con�guration.

The following example illustrates the use of con�guration statements in a
structural description. It refers to the architecture STRUCTURAL of the full-
adder circuit in Section 2.3.3, page 15. Assuming that the entities HALFADDER
and XOR2D1 exist for the instantiated components HA and XOR respectively, and
that the architecture CONCURRENT is provided for each of these entities, then the
con�guration may look like the following:

Example: configuration THREE of FULLADDER is

for STRUCTURAL

for INST HA1, INST HA2: HA

use entity WORK.HALFADDER(CONCURRENT);

end for;

for INST XOR: XOR

use entity WORK.XOR2D1(CONCURRENT);

end for;

end for;

end THREE;

The �rst and second line contain the con�guration name and the binding of
the entity and architecture. Since the architecture STRUCTURAL is a structural
description, the components HA and XOR have to be con�gured. This is done
by the two inner for-loops. The �rst loop speci�es that for the two instances
INST HA1 and INST HA2 of the component HA an entity HALFADDER with its
architecture CONCURRENT has to be used. In addition, it is stated that the
HALFADDER is taken from the library WORK (more about libraries in Section 2.7).

In general, a con�guration declaration belonging to an architecture with
instantiated components is of the form:

Syntax: configuration con�guration name of entity name is

for architecture name
for labeljothersjall: comp name
use entity [lib name.]comp entity name(comp arch name) j
use configuration [lib name.]comp con�guration name
[generic map (...)]
[port map (...)] ;

end for;

...

end for;

end con�guration name;

If there exists a con�guration for the entity of the instantiated component,
then the binding of the entity and architecture is already done by this con�g-
uration. Therefore, it is possible to refer to the con�guration of the submod-
ule by using the statement use configuration ... instead of de�ning the

2.5 Packages 19

entity-architecture pair explicitly. Furthermore, the mapping of generic and
port names between the component declaration (so-called locals)and the entity
declaration of the submodule (so-called formals)can be done by the generic

map and port map statements. This can be useful if the order of the ports or
generics is di�erent or rearranging the order on purpose or locals and formals
are di�erent.

2.5 Packages

A packages is used as a collection of often used datatypes, components, func-
tions, and so on. Once these object are declared and de�ned in a package,
they can be used by di�erent VHDL design units. In particular, the de�nition
of global information and important shared parameters in complex designs or
within a project team is recommended to be done in packages.

It is possible to split a package into a declaration part and the so-called
body. The advantage of this splitting is that after changing de�nitions in the
package body only this part has to be recompiled and the rest of the design
can be left untouched. Therefore, a lot of time consumed by compiling can be
saved.

2.5.1 Package Declaration

As the name implies, a package declaration includes all globally used decla-
rations of types, components, procedures and functions. A possible package
declaration is presented by means of an example:

Example: package MY PACK is

type SPEED is (STOP, SLOW, MEDIUM, FAST);

component HA

port (I1, I2 : in bit; S, C : out bit);

end component;

constant DELAY TIME : time;

function INT2BIT VEC (INT VALUE : integer)

return bit vector;

end MY PACK;

The name of this package is MY PACK. It consists of di�erent declarations,
such as a type SPEED, a component HA, and so on. Attention should be paid
to the declaration of the constant DELAY TIME and the function INT2BIT VEC

which are declared but are not de�ned. Their de�nitions will be done in the
package body but it would be possible to de�ne the constant DELAY TIME in the
package declaration part as well. The de�nition of functions must be done in a
package body.

If the above package had been compiled into the library MY LIB (Section
2.7) then the following statements were also needed in the VHDL model which
uses this package:

Example: library MY LIB;

use MY LIB.MY PACK.all;

entity EXAMPLE is

20 2 BASIC VHDL CONCEPTS

...

The library statement makes the library MY LIB accessible for the following
VHDL description. With the subsequent use statement all elements (indicated
by the keyword all) from the package MY PACK are included in the entity of the
module EXAMPLE.

2.5.2 Package Body

In the package body the de�nition of functions and procedures that were only
declared in the package declaration must be speci�ed. Constants which were
declared only must get a value assigned to them in the package body.

The body of the package MY PACK could be de�ned as:

Example: package body MY PACK is

constant DELAY TIME : time := 1.25 ns;

function INT2BIT VEC (INT VALUE : integer)

return bit vector is

begin

-- sequential behavioral description (omitted here)

end INT2BIT VEC;

end MY PACK;

The binding between the package declaration and the body is established
by using the same name. In the above example it is the package name MY PACK.

2.5.3 Important Packages

There are four important packages often used in VHDL descriptions.

STANDARD: The package STANDARD is usually integrated directly in the
simulation or synthesis program and, therefore, it does not exist as a
VHDL description. It contains all basic types: boolean, bit, bit vector,
character, integer, and the like. Additional logical, comparison and arith-
metic operators are de�ned for these types within the package.

The package STANDARD is a part of the STD library. Thus, it does not
have to be explicitly included by the use statement.

TEXTIO: The package TEXTIO contains procedures and functions which are
needed to read from and write to text �les.

This package is also a part of the library STD. It is not included in every
VHDL description by default. Therefore, if required, it has to be included
by the statement use STD.TEXTIO.all;.

STD LOGIC 1164: The STD LOGIC 1164 package has been developed and
standardized by the IEEE. It introduces a special type called std ulogic

which has nine di�erent logic values. The reason for this enhancement is
that the type bit is not suitable for the precise modeling of digital circuits
due to the missing values, such as uninitialized or high impedance.

The type std ulogic consists of the following elements:

2.5 Packages 21

Declaration: type std ulogic is (

'U', -- uninitialized

'X', -- forcing unknown

'0', -- forcing 0

'1', -- forcing 1

'Z', -- high impedance

'W', -- weak unknown

'L', -- weak 0

'H', -- weak 1

'-'); -- "don't care"

Besides this type used for modeling single wires other types are declared
in the STD LOGIC 1164 package. Frequently used in descriptions of bus
systems are the types std ulogic vector and std logic vector. In ad-
dition, the also includes the de�nitions of resolution functions (see Section
2.6.2) and simple boolean functions.

The use of the types std ulogic and std logic is strongly recommended.
The package STD LOGIC 1164, if it is available on the system installa-
tion, is usually be kept in the logical library IEEE. It could be referenced
with the two statements:

Syntax: library IEEE;

use IEEE.STD LOGIC 1164.all;

STD LOGIC ARITH or NUMERIC STD: Two additional packages,
STD LOGIC ARITH (provided by SYNOPSYS) and NUMERIC STD
(provided by the IEEE), represent an additional part for the STD LOGIC 1164
package. They contain basic arithmetic functions to enable calculations
and comparisons based on the types std ulogic vector and std logic vector.
These types represent buses { a bunch of signal lines { whose state can be
interpreted as a binary or as a two's complement number. Therefore, it is
necessary to specify which number representation is valid for a given bus
system. This can be done by a conversion into the data types unsigned
and signed. The appropriate conversion functions are also de�ned in
these packages.

Example: library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC ARITH.all;

architecture DETAILED of EXAMPLE is

signal A, B : std logic vector (7 downto 0);

signal SUM : std logic vector (8 downto 0);

signal SUM S : signed (8 downto 0);

signal PROD : std logic vector (15 downto 0);

signal PROD S : signed (15 downto 0);

begin

-- extension by one digit, conversion into a two's

-- complement number and calculation of the sum:

SUM S <= signed(A(7) & A) + signed(B(7) & B);

-- conversion to 9 bit std logic vector:

22 2 BASIC VHDL CONCEPTS

SUM <= conv std logic vector(SUM S, 9);

-- calculation of the product:

PROD S <= signed(A) * signed(B);

-- conversion to 16 bit std logic vector:

PROD <= conv std logic vector(PROD S, 16);

end DETAILED;

In the above example the sum and the product of the two busses A and B

are calculated. Because the width of the resulted sum is the same as those
of the operands, the width of A and B has to be extended by one bit in order
to avoid an overow. Since both A and B are two's complement numbers
their MSB's have to be doubled. This is achieved by the catenations A(7)
& A and B(7) & B. After converting signals A and B with the signed(...)
and adding, the result is assigned to a temporary signal SUM S. This signal
is then converted back to a 9 bit wide bus of the type std logic vector

with the function conv std logic vector(SUM S, 9). For the multipli-
cation, the width of the result is 16 bit, which is equal to the sum of the
widths of the operands A and B. The appropriate information is required
in the conversion of PROD S to PROD.

2.6 Additional Signal Characteristics

As already mentioned in Section 2.3.2, signals di�er from the concept of VHDL
variables, as well as variables found in other programming languages. In the
following section additional important characteristics of signals are presented.

2.6.1 Delay Models

During the VHDL simulation event queues, which contain all future signal
events, are created and manipulated. The handling of new generated events
and the events already existing in the event queues is inuenced by di�erent
delay models. Based on the so-called preemption mechanism, actions already
existing in the event queue are partially removed when a new event is scheduled.

The following two delay models are distinguished:

transport delay model: All entries, which are scheduled for the same or later
time in the event queue, are deleted. This delay model is speci�ed by the
keyword transport in the signal assignment statement.

inertial delay model: The inertial delay model is the default and the most
commonly used one. In this model all entries of the event queue which
would be deleted by the transport delay model are also removed. In
addition, the following rules are applied:

1. Mark the entry directly before the new one if it has the same value.

2. Mark the current and the new entry.

3. Delete all entries which are not marked.

2.6 Additional Signal Characteristics 23

The consequence of this delay model is that all signal impulses shorter
than the delay speci�ed in the signal assignment statement are swallowed.

Figure 6 illustrates the di�erence between the two delay models with an
example. The starting point is a signal SIG which consists of impulses with
di�erent durations. Signals SIG T and SIG I are generated from the signal SIG
by the following two statements:

Statement: SIG T <= transportSIG after 3 ns;

SIG I <= SIG after 3 ns;

0 5 10 15

SIG

SIG_I

SIG_T

t / ns

Figure 6: Waveforms generated by di�erent delay models.

Due to the speci�ed delay time of 3 ns all impulses shorter than 3 ns are
�ltered out in case of the inertial delay model. This is illustrated by the signal
waveform SIG I. This behavior is similar to real hardware in which charging an
output node of a gate needs some time and, therefore, a spike or glitch cannot
propagate through logic gates.

The assumption that a spike does not propagate through a gate if its dura-
tion is less than the delay time of the gate is sometimes not accurate enough.
Therefore, a third delay model was de�ned in the newer 1993 VHDL standard
in which the delay time and the maximum �ltered pulse width can be speci�ed
separately.

2.6.2 Resolution Functions

Another interesting feature of signals is that multiple signal assignment state-
ments may write onto one signal. This means that there exists more than one
driver for such a signal. This feature is necessary for modeling bus systems
where normally more than one module can write to a bus. In these cases, the
resolution function is used to calculate the resulting value of the signal depend-
ing on the values written from all drivers.

The STD LOGIC 1164 package contains the de�nition of such a resolution
function for the type std ulogic (u = unresolved) named resolved. Within
the declaration of the subtype std logic an implicit call to the resolution func-
tion resolved is de�ned. Consequently, every new value assigned to a signal
of type std logic �rst goes through the resolution function. The function cal-
culates the real value of the target signal taking into consideration the values
produced by the remaining drivers.

24 2 BASIC VHDL CONCEPTS

2.7 Analysis of VHDL Models

Once the VHDL description of an electronic system is complete, the next step
within the design ow is to simulate the system in order to verify the correct
functionality. The second step is to synthesize a gate level netlist for the target
technology. In both cases the VHDL models have to be analyzed, which is
similar to the compilation in other programming languages like C. From the
circuit developer's point of view, the most important action during the analysis
process is the checking of the used syntax. The output data generated by this
process are stored in design libraries.

A design library is a directory on the computer system where certain ana-
lyzed designs are stored. Due to the fact that the path to this physical location
depends on the installation of the VHDL system and is usually di�erent for
di�erent hosts, logical library names (STD, IEEE, etc.) are used in VHDL
descriptions. The mapping of logical library names and the physical storage
location is done by the system administrator after installation of the VHDL
system. In addition, each user can create personal libraries but then he is re-
sponsible for the proper mapping. The concept of logical libraries ensures that
VHDL codes are portable. It is highly useful for the exchange of design data.

Many di�erent design libraries may exist simultaneously. Only one of them
can be used as the actual working library. The logical name of this library
is WORK. Which library is actually used as the design library is de�ned by
settings of the system. During the analysis process all design units are stored
in the library WORK. Figure 7 illustrates the library concept.

design units

VHDL-File

VHDL
Analyzer

output data in libraries

Lib1 Lib2

IEEESTD

working library WORK

Figure 7: Analysis process.

During the analysis of VHDL models it is important to follow the proper
order. Hierarchical systems have to be analyzed starting from the bottom level
to the top. In addition, di�erent design units have to be analyzed in the order
shown in Figure 8.

2.8 Simulation

After the successful analysis of VHDL models, their simulation could be per-
formed to verify the correct functionality. For this purpose, the elements in the
lowest hierarchy level must be available as behavioral descriptions. Starting

2.8 Simulation 25

Package
Declaration

Package
Body Entity

Architecture

Configuration

Figure 8: Dependencies during analysis.

point of the simulation is the analyzed con�guration declaration of a testbench
or the top-level module.

Before the actual simulation takes place, the following two step are executed
(without the interaction between the circuit developer and the simulation tool):

1. Elaboration phase: The most important part of this step is assembling the
hierarchy. This is where all entity-architecture pairs are built as speci�ed
by the con�gurations. This is similar to the activities taking place during
linking in other programming languages like C. Furthermore, memory is
allocated for signals, variables and constants, and their values are initial-
ized as speci�ed.

2. Initialization phase: All processes are executed once until they get sus-
pended by the �rst encountered wait statements, or after one complete
pass in case of an existing sensitivity list. Signals are assigned their starting
values and the simulation time is set to zero.

The simulation is usually done by stimulating the input signals of the unit
under test (UUT) with the appropriate waveforms. This is easily achieved by
the so-called testbench, a special entity which resides on top of the complete
unit under test. The testbench generates the stimuli waveforms for the input
signals of the unit under test by either a behavioral description or by reading
them from a �le. It is also possible to have the output signals from the UUT
read, checked for correctness or written to a �le by the testbench. Figure 9
illustrates the testbench concept.

26 2 BASIC VHDL CONCEPTS

Figure 9: Test environment during simulation

27

3 Data Types

Every data object, such as a constant, variable or signal, stores a value of the
given type: integer, real or bit. The type is speci�ed in the object's declaration.
VHDL is a strongly typed language. This means that operations and assignments
are allowed only if the types of the operands and the result match. In case of
mismatch the use of conversion functions is required.

Among the basic types of the STANDARD package, which are always rec-
ognized by the VHDL, the types of the following two packages are explained:

std logic 1164 in library IEEE

textio in library STD

3.1 Scalar Types

The basic data types in VHDL are similar to those of programming languages
like Pascal or C:

Boolean: Both boolean values true and false are boolean literals.

Integer: Integer numbers in the range �231+1 to +231� 1 (�2 147 483 647 to
+2 147 483 647). The default number representation is decimal. In order
to use another base it must be explicitly speci�ed:

binary 2#...#

octal 8#...#

hexadecimal 16#...#

Format: [+j-][2#j8#j16#]number[#]

The following additional subtypes of integer are de�ned:

positive : 1 . . . n
natural : 0 . . . n

Real: Floating point numbers are provided within the range between�1:0e+38
and +1:0e+ 38. The default number representation is decimal.

Format: [+j-][2#j8#j16#]number.number[#][e[+j-]number]

Character: The character literals enumerate the ASCII character set. Non-
printing characters are represented by a three-letter name, such as NUL
for the null character. Printable characters are represented by themselves,
in single quotation marks: '0'{'9', 'a'{'z', 'A'{'Z'. 1

Bit: The two logical values '0' and '1' are bit literals. 1

Std Ulogic and Std Logic: The standard 1164 of IEEE is de�ned within the
package std logic 1164 which resides in the library IEEE. It introduces

1Due to the strongly typed characteristic of VHDL it can be necessary to specify the type
of a value explicitly: character'('1')

bit'('1')

28 3 DATA TYPES

a system, named std ulogic, consisting of nine di�erent logical values.
The reason for this enhancement is given by the fact, that the type bit

is not suitable for the precise modelling of digital circuits due to missing
values, for example, uninitialized or high impedance states. The type
std ulogic consists of the the following elements:

'U' uninitialized
'X' forcing unknown

'0' forcing logical 0

'1' forcing logical 1

'Z' high impedance { for three-state bus systems
'W' weak unknown

'L' weak logical 0

'H' weak logical 1

'-' don't care { for logic synthesis

This data type includes values for modelling three-state bus systems. In
addition, a resolution function is de�ned which allows modeling of multiple
drivers for one signal (see 7.3, page 53).

Physical Types: A physical type represents a physical value, such as time,
length, voltage, and so on. It consists of an integer or a oating point
literal followed by a unit name. The package STANDARD de�nes the
type TIME with the following units:
fs, ps, ns, us, ms, sec, min, hr.
With this physical type delay times can be described as:
C <= ... after 2 ns;

Enumeration Types: In order to describe a problem without specifying a
coding scheme any appropriate enumeration type can be de�ned.2

Syntax: type enum name is (enum liter f, enum literg);

Any desired identi�er (�rst example) or literal (character literals in the
second example) can be used for enum liter.

Example: -- for traffic lights:

type LIGHT is (RED, YELLOW, GREEN);

-- logic system with four values for simulation:

type FOURVAL is ('X', '0', '1', 'Z');

Subtypes: A subtype is a type with a constraint. The constraint de�nes a
subset of values by specifying certain restrictions to the range of the parent
type. Such restrictions can also be speci�ed in the declaration of an object.
The de�nition of a subtype has the advantage that it can be done once in
a package, and then globally shared.

Example: subtype DIGIT is integer range 0 to 9;

2The types character, bit and boolean are prede�ned as enumeration types in the package
STANDARD.

3.2 Composite Types 29

...

variable MSD, LSD: DIGIT;

| is equal to |
variable MSD, LSD: integer range 0 to 9;

3.2 Composite Types

Array: Similarly to other programming languages, an array consists of consec-
utively numbered elements of the same type. The declaration of an array
type includes the name of the array type, the description of the index
type and range, and the speci�cation of the element type.

Syntax: type array name is array (index description) of element type;

Possibilities for index description:
index range j integer range
index type j enumeration type as index
index type range index range j general description
index type range <> unconstrained type;

range must be speci�ed in variable/signal declaration

Certain characteristics of arrays are explained in the following examples:

Index types: Besides the commonly speci�ed indices of the type integer,
user de�ned enumeration types can also be used.

Example: type INSTRUCTION is

(ADD, SUB, LDA, LDB, STA, STB, OUTA);

subtype FLAGS is integer range (0 to 7);

...

-- array of flag values

type INSTR FLAG is array (INSTRUCTION) of FLAGS;

Loop varables as index: Indices can be incremented or decremented within
a loop by the loop variable.

Example: ...

process ...

type T SHIFT MEM is array (0 to 7) of integer;

variable SHIFT MEM : T SHIFT MEM;

begin

... DATA OUT <= SHIFT MEM(7); for I in 7 downto 0 loop

SHIFT MEM(I) := SHIFT MEM(I-1);

end loop;

SHIFT MEM(0) := DATA IN;

end process;

Unconstrained indices: Indices are often declared over the whole range of
the index type. In this case the restriction of the range to the desired one
must be done in the variable or signal declaration.

30 3 DATA TYPES

Example: -- the declaration within the package STANDARD:

type BIT VECTOR is array (NATURAL range <>) of BIT;

...

-- now the index range becomes restricted:

variable BYTE: BIT VECTOR (0 to 7);

Index range: The sequence of the index is important:

Example: type AVEC is array (0 to 3) of bit;

type BVEC is array (3 downto 0) of bit;

...

variable AV: AVEC;

variable BV: BVEC;

...

AV := "0101";

) AV(0)='0' AV(1)='1' AV(2)='0' AV(3)='1'

BV := "0101";

) BV(0)='1' BV(1)='0' BV(2)='1' BV(3)='0'

Array assignment: Assignments can be done either by positional associa-
tion, by named association or in a mixed way.

Syntax for named association: [typ name'] optional type quali�er
(selector => expressionf,

selector => expressiong[,
others => expression])

Example: variable C: BIT VECTOR (0 to 3);

variable H, I, J, K: bit;

possible assignments
C := "1010"; 4-bit string
C := H & I & J & K; concatenation
C := ('1', '0', '1', '0'); aggregate

array aggregates
C := ('1', I, '0', J or K); positional association
C := (0=>'1', 3=>J or K, 1=>I, 2=>'0'); named association
C := ('1', I, others => '0'); mixed

An aggregate is a set of comma-separated elements enclosed in parenthe-
sis.

Slice of an array: It can be choosen by specifying the desired index range.

Example: variable A: BIT VECTOR (3 downto 0);

variable B: BIT VECTOR (8 downto 1);

...

B(6 downto 3) := A;

Multi-dimensional arrays: They can be declared by specifying more than
one index.

Example: type MEMORY is array (0 to 7, 0 to 3) of bit;

... 8� 4 bit array
constant ROM: MEMORY := (('0','0','0','0'),

3.2 Composite Types 31

('0','0','0','1'),

('0','0','1','0'),

('0','0','1','1'),

('0','1','0','0'),

('0','1','0','1'),

('0','1','1','0'),

('0','1','1','1'));

variable DATA BIT: bit;

...

-- access to one element:

DATA BIT := ROM (5,3); is '1'

It is possible to declare an array type which is an array of an other array
type. Note the di�erence in adressing a two-dimensional array of the
above the example and an array of an array like the example below.

Example: type WORD is array (0 to 3) of bit; a 4-bit storage element
type MEMORY is array (0 to 7) of WORD; 8� 4-bit array
...

constant ROM: MEMORY := (('0','0','0','0'),

('0','0','0','1'),

...

('0','1','1','1'));

variable DATA: WORD;

variable DATA BIT: bit;

variable ADDR, INDEX: integer;

...

DATA := ROM (ADDR);

DATA BIT := ROM (ADDR)(INDEX);

Array subtypes: They can be de�ned for existing array types or uncon-
strained types.

Example: subtype BYTE is BIT VECTOR (7 downto 0);

subtype of the unconstrained type BIT VECTOR

The following array types are prede�ned in the appropriate packages:

String: Array type of the type character.
| in package STANDARD
type STRING

is array (POSITIVE range <>) of CHARACTER;

Bit Vector: Array type of the type bit
| in package STANDARD
type BIT VECTOR is array (NATURAL range <>) of BIT;

Std Logic Vector: Array type of the type std logic

| in package STD LOGIC 1164

type STD LOGIC VECTOR

is array (NATURAL range <>) of STD LOGIC;

32 3 DATA TYPES

In order to use logic or arithmetic operators with the type STD LOGIC VECTOR

it is necessary to specify whether the value should be interpreted as un-
signed or signed (see 5 on page 40). Where appropriate, this must be
done by type conversion functions (see 2.5.3 on page 20) or by declaring
the data object of the adequate type. The following two data types are
prede�ned in the package STD LOGIC ARITH or NUMERIC STD:

type UNSIGNED is array (NATURAL range <>) of STD LOGIC;

type SIGNED is array (NATURAL range <>) of STD LOGIC;

Record: Data elements of di�erent types can be collected in one data object
by de�ning a record type. This is useful for abstract data objects. Single
elements of a record can be accessed by their name.

Example: type TWO DIGIT is numbers from �99 to +99
record SIGN : bit;

MSD : integer range 0 to 9;

LSD : integer range 0 to 9;

end record;

...

process ...

variable ACNTR, BCNTR: TWO DIGIT;

begin

ACNTR.SIGN := '1'; access to a element
ACNTR.MSD := 1;

ACNTR.LSD := ACNTR.MSD;

...

BCNTR := TWO DIGIT'('0',3,6); aggregate, type quali�ed
...

end process;

3.3 Access Types

Data objects of the type access are pointers to dynamically allocated scalar
or complex data objects. They are similar to pointers in other programming
languages (C or Pascal). Only a variable can be declared of type access.

Syntax: type ptr type name is access type name;

In order to allocate and deallocate memory for an access type variable two
operators are de�ned:

New: This function is used to allocate memory for the object to which a vari-
able of type access is pointing. It is, therefore, used in conjunction with
an assignment to an access type variable. Initial values for the newly
created object can be explicitly speci�ed.

If the access type variable is pointing to an unconstrained type like string
then the restriction must be de�ned within the function call new.

Deallocate: This procedure is provided to free the memory allocated for the
object to which an access type variable is pointing.

3.4 File Types 33

Example: type CELL; incomplete type
type LINK is access CELL; access type
type CELL is full type declaration for CELL

record

VALUE : integer;

NEXTP : LINK;

end;

variable HEAD, TEMP : LINK; pointer to CELL

...

TEMP := new CELL'(0, null); new data object with initial values
for I in 1 to 5 loop

HEAD := new CELL; additional objects
HEAD.VALUE := I; access to record element
HEAD.NEXTP := TEMP;

TEMP := HEAD;

end loop;

...

deallocate(TEMP); free the memory

allocate new memory
new CELL; new object
new CELL'(I, TEMP); . . . with initial values

. . . with the required range restriction
new BIT VECTOR (15 downto 0); by specifying an index range
new BIT VECTOR'("001101110"); by assigning an initial value

3.4 File Types

In the package TEXTIO the data types text and line are declared. These
types and some additional functions provide access to text �les similarly to other
programming languages. This can be useful during simulation, for example, for
reading stimuli data from a text �le or for storing the output data of the unit
under test (UUT).

Example: use std.textio.all;

-- read data from file-1 (test.dat)

-- write data to file-2 (out.dat)

entity COPY4 is without ports
end COPY4;

architecture FIRST of COPY4 is

begin

process (go)

-- file with the input data:

file INSTUFF: text is in "\path\test.dat";

-- file for the output data:

file OUTFILE: text is out "\path\out.dat";

variable L1, L2: line;

variable VECT: bit vector(3 downto 0);

begin

34 3 DATA TYPES

while not (endfile(INSTUFF)) loop until the end of �le
readline (INSTUFF, L1); read one line
read (L1, VECT); copy the input data to VECT

write (L2, VECT); copy VECT under a pointer to string
writeline (OUTFILE, L2); write one line to OUTFILE

end loop;

end process;

end FIRST;

The package TEXTIO consists mainly of the following declarations and
de�nitions:

type LINE: A pointer to a string value.

type TEXT: A �le of variable length with ASCII records.

file INPUT: The standard input device.

file OUTPUT: The standard output device.

procedure READLINE: Input routine to read one line of the input �le into
the string pointer line. The allocation of memory for the string object is
done automatically.

procedure READ: Copy the contents of the string pointer into an object of
one of the prede�ned types bit, bit vector, boolean, character, string,
integer, real or time. The memory required for the copied data is freed
afterwards.

procedure WRITE: Copy or add a data object of the above mentioned types
to the contents of a string pointer line. Various possibilities exist to specify
the width of the string and to justify the data. The allocation of memory is
done also automatically.

procedure WRITELINE: Write the data to which the string pointer line

points to the output �le. Afterwards, the memory needed to store the data
to which line points is also freed.

function ENDFILE: This function returns a boolean value which indicates
whether or not the end of �le is reached.

All declarations found in the package TEXTIO are itemized in Appendix A.

3.5 Type and Field Attributes

It is possible to write more general VHDL codes using attributes. The desired
properties of objects or types are then determined by the attributes during the
elaboration phase. Attributes can be classi�ed into the following categories:

Dimension: These attributes determine ranges and bounds of arrays and enu-
meration types, or of signals/variables of these types. In the case of
multidimensional arrays the index number must be speci�ed.

3.5 Type and Field Attributes 35

Syntax: The bounds of a range
...'left[(n)] left bound (of the nth dimension)
...'right[(n)] right bound (of the nth dimension)
...'high[(n)] upper bound (of the nth dimension)
...'low[(n)] lower bound (of the nth dimension)

Length of arrays
...'length[(n)] number of elements (in the nth dimension)

Ranges
...'range[(n)] range ..to/ downto.. (of the nth dimension)
...'reverse range[(n)] range ..downto/ to.. (of the nth dimension)

Example: The bounds of ranges
type T RAM DAT is array (0 to 511) of integer;

variable RAM DAT: T RAM DAT;

...

for I in RAM DAT'low to RAM DAT'high loop

...

The bounds of ranges for a multidimensional array
variable MEM (0 to 15, 7 downto 0) of MEM DAT;

...

MEM'left(1) is 0

MEM'right(1) is 15

MEM'left(2) is 7

MEM'right(2) is 0

MEM'low(2) is 0

MEM'high(2) is 7

Length of arrays
type BIT4 is array (0 to 3) of BIT;

type BIT STRANGE is array (10 to 30) of BIT;

...

BIT4'length is 4

BIT STRANGE'length is 21

Ranges
function VEC2INT (INVEC: bit vector) return integer is

...

begin

for I in INVEC'range loop

...

Position: These attributes determine values, positions or the base types of
enumeration or physical types.

Syntax: Values
type'succ(value) Value of the parameter whose position

is one larger than the position of value
type'pred(value) Value of the parameter whose position

is one less than the position of value

36 3 DATA TYPES

type'leftof(value) Value of the parameter that is to the
left of value

type'rightof(value) Value of the parameter that is to the
right of value

Position information
type'pos(value) Position of value
type'val(position) Value of position

Base type
type'base Base type to the subtype type

Example: type COLOR is (RED, BLUE, GREEN, YELLOW, BROWN, BLACK);

subtype TLCOL is COLOR range RED to GREEN;

...

COLOR'low is RED

COLOR'succ(RED) is BLUE

TLCOL'base'right is BLACK

COLOR'base'left is RED

TLCOL'base'succ(GREEN) is YELLOW

Several characteristics of signals can be tested by signal attributes. For
example, whether a signal changed its value or has been stable for a certain
amount of time can be determined by these attributes.

The prede�ned attributes for signals are explained in Section 7.4 on page 56.

37

4 Declarations and Identi�ers

Identi�ers are used to assign programmer de�ned names to objects. With the
exception of a few reserved words, any word could be used. Following rules
apply:

1. Characters 'a'. . . 'z', '0'. . . '9', ' '.

2. the �rst character must be a letter.

3. VHDL is not case sensitive.

When reference to Libraries and Packages is made, the complete object
name must be given of the form:
lib name.package name.item name

Comments: start with two adjacent hyphens-- and extend to the end of the
line.

Constants: assign a speci�c value to an object within a package, entity or
architecture, and preserve it throughout the entire design.

Syntax: constant identi�er: type [range expr][:= expression];

Example: constant Vcc: real := 4.5;

constant CYCLE: time := 100 ns;

constant FIVE: bit vector := "0101";

Variables: contain values assigned within a process. These are used sequen-
tially according to the control ow. Variables can not be used to exchange
information between di�erent processes.

Syntax: variable identi�er list: type [range expr][:= expression];

Variable declarations may specify the range of the data type and option-
ally initialize it to the desired value within that range.

Example: variable INDEX: integer range 1 to 60 := 27;

variable CYCLE TIME:time range 10 ns to 50 ns := 10 ns;

variable REGISTER: std logic vector (7 downto 0);

Signals: connect together Design-Entities and propagate value changes within
a design. They are the primary means of communication between pro-
cesses.3

Syntax: signal identi�er list: type [range expr][:= expression];

Signal declaration may specify the range of the data type and optionally
initialize it to the desired value within that range.

3Due to the importance of signals in VHDL they are given a more detailed description in
Section 7.

38 4 DECLARATIONS AND IDENTIFIERS

Example: signal COUNT: integer range 1 to 31;

signal GROUND: bit := '0';

signal INT BUS: std logic vector (1 to 8);

Caution:

Signals can not be declared within a process. They can be used within a
process; however, signal value assignment occurs in the simulation time.
That is, signal values are not updated in the sequential order, as is the
case with variables, rather at the wait-Statement. At this point the signal
acquires a value assigned to it immediately before the wait-Statement.

Signal assignments are using special operators to indicate their peculiar
time behavior. Explicitly stated signal assignment delays take e�ect dur-
ing the simulation:

signal xyz: bit;

...

xyz <= '1' after 5 ns;

The use of signals in the sequential ow of processes often produces unan-
ticipated erroneous results. Therefore, it is recommended to use variables
in the sequential ow of a process (with read and write operations) and
then to assign newly computed values to signals just before the next wait
statement.

Two additional remarks regarding the variables and signals:

Initialization: variables and signals that are not explicitly initialized during
the declaration receive default values according to the following rules:

Enumerated types : the �rst values in the list
integer, real : the lowest allowable value

The initialization of enumerated types is often used, for example, by de�n-
ing the desired initial state of �nite state machines as the �rst one in the
list of states, or with std_logic where the special value 'U' (uninitial-
ized) is assigned to every signal/variable without an explicit initial value.

it may be desirable to start with 'U' (uninitialized) value.

Range constraints: in order to obtain correct hardware synthesis results,
variables and signals must be constrained to the desired bit-width. This
is especially critical with the unspeci�ed integer-type synthesis, where a
default 32-bit datapath is generated.

Example: signal CNT100: integer range 0 to 99; unsigned 7-bit
signal ADDR BUS: std logic vector (7 to 0); 8-bit

39

5 Expressions and Operators

Expressions in VHDL may be constructed using the operators listed in the table
in order of increasing precedence. The desired precedence may also be achieved
through the explicit use of parentheses.

Operator Function Operands Type1 - Type2

Logical Operators

and a ^ b bit, bit vector, boolean - =
or a _ b bit, bit vector, boolean - =
nand :(a ^ b) bit, bit vector, boolean - =
nor :(a _ b) bit, bit vector, boolean - =
xor a 6= b bit, bit vector, boolean - =

Relational Operators

= a = b same type
/= a 6= b same type
< a < b same type
<= a � b same type
> a > b same type
>= a � b same type

Arithmetic Operators - Additive

+ a+ b integer, real - =
- a� b integer, real - =
& a&b bit, bit vector, character, string - same type

Arithmetic Operators - Sign

+ +a integer, real
- �a integer, real

Arithmetic Operators - Multiplicative

* a � b integer, real - =
/ a=b integer, real - =
mod a div b integer - =
rem a mod b integer - =

Other Operators

** ab integer, real - integer
abs jaj integer, real
not :a bit, bit vector, boolean

40 5 EXPRESSIONS AND OPERATORS

Since VHDL is a strongly typed language, it is sometimes useful to perform
conversions between di�erent types as well as explicitly specify the exact type
that the expression should attain.

Quali�ed Expressions: allow explicit speci�cation of the type. This is help-
ful when there is no unambiguous classi�cation of objects.

Syntax: type'(expression)

Example: type MONTH is (APRIL, MAY, JUNE);

type NAMES is (APRIL, JUNE, JUDY);

... MONTH'(JUNE) ... for months

... NAMES'(JUNE) ... for names

Conversions: are used to convert an object of one type to another. Conversion
functions for the standard types are prede�ned. A user is responsible for
conversions between user-de�ned types.4

Example: type FOURVAL is ('X', 'L,', 'H', 'Z'); four-value logic
type VALUE4 is ('X', '0,', '1', 'Z'); . . . , di�erent logic
...

function CONVERT4VAL (S: FOURVAL) return VALUE4 is

begin conversion function
case S is

when 'X' => return 'X';

when 'L' => return '0';

when 'H' => return '1';

when 'Z' => return 'Z';

end case;

end CONVERT4VAL;

...

process (ABC) . . . calls the conversion function
variable ABC: FOURVAL;

variable XYZ: VALUE4;

...

XYZ := CONVERT4VAL (ABC);

...

IEEE 1164 { Std Logic Vector

Special operators are de�ned for the std (u)logic vector data type. In order
to distinguish between unsigned and signed (2's complement) binary represen-
tations either explicit type conversion are required (see Section 2.5.3) or one
of the two packages std logic unsigned or std logic signed must be used.
These two packages as well as the basic package std logic 1164 are de�ned in
the IEEE library. They are especially useful for the evaluation of comparison
operations. These packages are:

4Functions are described in Section 6.2, page 47.

41

std logic 1164

logic and nand or nor xnor not

std logic unsigned / std logic signed

relational = /= < <= > >=

arithmetic + -, + - abs, *

In addition, these packages contain a number of conversion functions as well
as shift operations for vectors.

Example: library IEEE; specify the Library
use IEEE.STD LOGIC 1164.ALL; specify packages
use IEEE.STD LOGIC SIGNED.ALL;

...

VARA := "1011"; = -5

VARB := "0011"; = 3

if (VARA > VARB) then false

...

If the unambiguous classi�cation of an object with respect to the number
system is not possible, as is the case with literal characters, subtypes (unsigned,
signed) can be explicitly given.

Example: signed'("1011") > signed'("0011") false

42 6 SEQUENTIAL MODELING

6 Sequential Modeling

A process plays the central role in sequential VHDL descriptions. The process-
Statement is used for behavioral descriptions of architectures. It de�nes code
segments where internally all statements are processed in sequence, one after
another.

Process-Statements behave like concurrent statements with respect to the
rest of a design. At any given time there may be many di�erent processes
active, and their order of execution in VHDL code is irrelevant.5

Syntax: [proc label:] process [(sensitivity list)]
[subprogram decljsubprogram body]
[type decl]
[subtype decl]
[constant decl]
[variable decl]
[�le decl]
[alias decl]
[attribute decl]
[attribute spec]
[use clause]

begin

[sequential statements]
end process [proc label];

Note that the optional label (proc label) is extremely useful for debugging
purposes during the simulation, and therefore should not be omitted.

The example below demonstrates the use of two processes to determine the
maximum and minimum values which appear on the input ports.

Example: entity LOW HIGH is

port (A, B, C: in integer; Inputs
MI, MA: out integer); Outputs

end LOW HIGH;

architecture BEHAV of LOW HIGH is

begin

L: process �nd minimum
variable LOW: integer := 0;

begin

wait on A, B, C;

if A < B then LOW := A;

else LOW := B;

end if;

if C < LOW then LOW := C;

end if;

MI <= LOW after 1 ns;

end process;

5Additional information on process-statements and their execution during the simulation
is found in Section 8, page 57.

6.1 Assignments 43

H: process �nd maximum
variable HIGH: integer := 0;

begin

wait on A, B, C;

if A > B then HIGH := A;

else HIGH := B;

end if;

if C > HIGH then HIGH := C;

end if;

MA <= HIGH after 1 ns;

end process;

end BEHAV;

6.1 Assignments

Signal Assignments: Signal assignments within processes are covered in de-
tail in section 7.2, page 52. Although signal assignments may appear in
the sequential order within a process, the way they are handled during
the simulation does not necessarily follow that order.

Variable Assignment: changes the value of a variable. Both variable and
expression types must be compatible, otherwise conversion functions or
attributes must be employed.

Syntax: variable := expression;

If: is a ow control statement for conditional execution of sequential state-
ments. In the hardware sense it represents simple decoding.

Syntax: if condition then

sequential statements
felsif condition then

sequential statementsg
[else

sequential statements]
end if;

Case: executes one of several sequences of statements depending on the value
of expression. In the hardware sense it means decoding of complex codes,
for example, buses.

Syntax: case expression is

fwhen choices => sequential statementsg
end case;

choices must be of the following types:
value => sequential statements exactly one value
value1 j value2 ... => sequential statements

Range of values
value1 to value2 => sequential statements chosen range
others => sequential statements remaining range

44 6 SEQUENTIAL MODELING

All possible values of expression must be covered by the set of choices.
Alternatively, when others could be used as a last statement matching
the remaining (uncovered) choices.

Example: case BCD is Decoder: BCD to 7-Segment
when "0000" => LED := "1111110";

when "0001" => LED := "1100000";

when "0010" => LED := "1011011";

when "0011" => LED := "1110011";

when "0100" => LED := "1100101";

when "0101" => LED := "0110111";

when "0110" => LED := "0111111";

when "0111" => LED := "1100010";

when "1000" => LED := "1111111";

when "1001" => LED := "1110111";

when others => LED := "-------"; don't care

end case;

Loop: allows repeated execution of a sequence of statements; represents repe-
tition of elements (for example, corresponding to the bit-width) in hard-
ware.

Syntax: [loop label:] while condition loop j with condition test
[loop label:] for identi�er in value1 to value2 loop j counter
[loop label:] loop forever loop. . .

sequential statements
end loop [loop label];

The identi�er of the for-loop doesn't need to be declared anywhere; it
serves as a local variable of the loop. Value assignments to the identi�er
are not possible.

Next: statement forces the current loop iteration to terminate. Additional
conditions associated with the termination may be speci�ed.

Syntax: next [loop label][when condition];

Example: for I in 0 to MAX LIM loop

if (DONE(I) = true) then next; Jump to end loop

end if;

Q(I) <= A(I);

end loop;

L1: while J < 10 loop outer loop
L2: while K < 20 loop inner loop
...

next L1 when J = K; jump out of the inner loop
...

end loop L2;

end loop L1; jump destination

6.1 Assignments 45

Exit: terminates a loop; optional conditions may be speci�ed.

Syntax: exit [loop label][when condition];

Example: for I in 0 to MAX LIM loop

if (Q(I) <= 0) then exit; jump out of the loop
end if;

Q(I) <= (A * I);

end loop;

... jump destination

Assert: allows to check whether certain conditions are satis�ed during the
program execution under the VHDL-Simulator. This option is helpful
for double-checking time restrictions (set-up, hold . . .), range constraints,
and so on.

Syntax: assert condition
[report string expr]
[severity failurejerrorjwarningjnote];

If a condition is evaluated to the boolean false, the user-speci�ed string expr
is displayed along with the severity level indicator.

Example: process (CLK, DIN) behavior of a D-FF
variable X: integer;

...

begin

...

assert (X > 3)

report "setup violation"

severity warning;

...

end process;

Wait: dynamically controls execution and suspension of processes. At the
behavior level it makes possible to give a realistic representation of a
process by modeling signal-dependent activities. Furthermore, through
the wait statement signal values are updated in a circuit6.

Syntax: wait

[on signal name f, signal nameg]
[until condition]
[for time expr];

A sensitivity list of a process is functionally equivalent to the waiton ...
appearing at the end of the process. There are four di�erent ways to use
the wait-statement:

6Section 7.2 (page 52) explains the way wait-statements work in greater detail.

46 6 SEQUENTIAL MODELING

{ wait on A, B; : suspends a process until an occurrence
of a change is registered. As shown here,
execution will resume when a new event
is detected on either signal A or B.

{ wait until X > 10; : suspends a process until the condition is
satis�ed; in this case, until the value of
a signal X is > 10.

{ wait for 10 ns; : suspends a process for the time speci-
�ed; here, until 10 ns of simulation time
elapses.

{ wait; : suspends a process inde�nitely. . . Since
a VHDL-process is always active, this
statement at the end of a process is
the only way to suspend it. This tech-
nique may be used to execute initializa-
tion processes only once.

The example below models an architecture which simulates a Producer/
Consumer problem using two processes. The processes are synchronized
through a simple handshake protocol, which has two wires, each with two
active states.

Example: entity PRO CON is

...

end PRO CON;

architecture BEHAV of PRO CON is

signal PROD: boolean := false; item produces a semaphore
signal CONS: boolean := true; item consumes a semaphore

begin

PRODUCER: process producer model
begin

PROD <= false;

wait until CONS;

...produce item
PROD <= true;

wait until not CONS;

end process;

CONSUMER: process consumer model
begin

CONS <= true;

wait until PROD;

CONS <= false;

...consume item
wait until not PROD;

end process;

end BEHAV;

6.2 Subprograms 47

6.2 Subprograms

In VHDL, procedures (one or more return parameters) and functions (only one
return value) are available as subprograms. Functions are often used for type
conversions or as resolution functions (see Section 7.3, page 53).

Local variables can be declared within subprograms and their values are
de�ned only until the return from a subprogram occurs. In contrast, variables
of a process correspond to the local memory locations.

A subprogram must be declared prior to its call. Therefore, if it is called
within a process, it must be declared in its respective architecture, entity
or package.

During the subprogram call, passing of parameters is done by either the
proper position in the parameter list or by the name, such that declaration name
=> actual parameter.

Function: may have several parameters but produces only one return value
(analogous to the VHDL expression).

Syntax: function func name (parameter list)
return type name is

[variable declaration]
[constant declaration]
[type declaration]
[use clause]

begin

[sequential statements]
return expression;
[sequential statements]

end [func name];

In the following example, function VEC2INT converts a bit-vector into
an integer value.

Example: architecture ...

...

function VEC2INT (S: bit vector range 1 to 8)

return integer is

variable RES: integer := 0; local variable
begin

for I in 1 to 8 loop

RES := RES * 2;

if S(I) = '1' then RES := RES + 1;

end if;

end loop;

return RES;

end VEC2INT;

...

begin

...

process ...

...

XVAL := VEC2INT (XBUS); function call

48 6 SEQUENTIAL MODELING

...

end process;

...

end ...

Procedure: can have zero or more parameters with the following modes:

in : readable only within the procedure
out : writable only; the use of these parameter is allowed only on

the left side of an assignment.
inout : read/write paramenter, which can be universally used within

a procedure.

Procedure parameters can be both variables and signals (after their ex-
plicit declaration). In VHDL code procedures are handled similarly to
the assignments.

Syntax: procedure proc name (parameter list) is

[variable declaration]
[constant declaration]
[type declaration]
[use clause]

begin

sequential statements
end [proc name];

parameter list:
[variable] name list [injoutjinout] type name

[:= expression]; j
signal name list [injoutjinout] type name;

The example below shows a procedure which performs the same bit-vector
conversion into an integer value as the function of the previous example.
In addition, the procedure also sets a Flag.

Example: architecture ...

...

procedure VEC2INT Declaration
(S: in bit vector;

ZFLAG: out boolean;

Q: inout integer) is mode assignments
begin

Q := 0;

ZFLAG := true;

for I in 1 to 8 loop

Q := Q * 2; Q allowed on the right side
if S(I) = '1' then

Q := Q + 1;) Mode is: inout

ZFLAG := false;

end if;

end loop;

end VEC2INT;

6.2 Subprograms 49

begin -- architecture statement part

...

process ...

...

VEC2INT (XBUS, XFLG, XVAL); procedure call
...

end process;

...

end ...

Overloading

VHDL, similarly to other programming languages, allows Overloading of prode-
cures and functions. Overloading means that two or more subprograms have
the same name but di�er in the number of parameters and base types. When an
overloaded subprogram is called its name, number of actual parameters, order
of arguments and their types, are used to determine which function/procedure
should be invoked. Overloading overcomes strong typing and allows a more
general use of operators and functions.

Argument-Type: overloaded subprograms are distiguished through the dif-
ferent types of their arguments (parameters).

Example: function DECR (X: integer) return integer is

begin

...

end DECR;

function DECR (X: real) return real is

begin

...

end DECR;

...

variable A, B: integer;

...

B := DECR(A); call the �rst (integer) function

Argument-Number: overloaded subprograms are distinguished based on the
di�erent number of parameters.

Example: function CONV ADDR (A0, A1: bit) return integer is

begin 2 arguments
...

end;

function CONV ADDR (A0, A1, A2: bit) return integer is

begin 3 arguments
...

end;

In general, overloading permits extension of already existing operators found
in the default package STANDARD. This is particularly useful for writing vendor/

50 6 SEQUENTIAL MODELING

user-speci�c packages. Some of the most commonly used extended packages are
n-value logic packages MVL7, MVL9 and STD LOGIC 1164. They de�ne logic
values 'X' (unknown), 'Z' (high-impedance), etc., as well as drivers of di�erent
strengths, in addition to the conventional '0' und '1'. Logical (and, or, not,
xor. . .), arithmetic (+, �, �. . .) and comparison operators (=, = =, >, <. . .)
for the new types are also provided. For the often used STD LOGIC 1164
package an extension exists which de�nes operators for unsigned and signed
(2's complement) binary representations. The user can then take advantage of
overloading and conveniently use these types with their respective operators.
For functions with only two arguments it is possible to use the in�x-Notation.

In the following example, a new addition function for a 4-bit bit vector is
de�ned.7

Example: function "+" (A, B: bit vector (3 downto 0))

return bit vector is

variable SUM: bit vector (3 downto 0);

variable CARRY: bit;

begin

CARRY := '0';

for I in 0 to 3 loop

SUM(I) := A(I) xor B(I) xor CARRY;

CARRY := ((A(I) and B(I)) or (A(I) and CARRY)

or (B(I) and CARRY));

end loop;

return SUM;

end;

7There is no standard bit vector addition in VHDL!

51

7 Signals

VHDL elements at the behavior level (processes, variables and sequential assign-
ments) �nd their naturally corresponding elements in programming languages.
Signals and parallel blocks, on the other hand, have characteristics that are
typical for structure-level descriptions and their simulations.

In VHDL signals are the only way to tie together elements of structural
descriptions or to enable processes to communicate. They act like wires. In the
simulation, signals are handled in a time dependent manner, in the sense that
every action is preceded by a cause.

7.1 Signal Declaration

In VHDL code signals may be declared:

1. within a package for global signals.

2. as ports ... in the entity declaration for entity-global signals.

3. within an architecture as architecture-global signals.

Syntax: in package or architecture

signal signal name: type name [:= expression];

as a port of an entity

... signal name: injoutjinoutjbuffer type name;

When ports of an entity are declared, direction of the information ow must
be speci�ed:

in input | read port; such signals may appear only on the right side
of variable/signal assignment.

out output | write port; must be used on the left hand side of a signal
assignment.

inout bidirectional wire; no restriction in the usage.
buffer generally, it is an output port (driver); however, it may be used

on the right hand side of assignments.

Example: package SIGDECL is

signal VCC: std logic := '1'; global signals
signal GND: std logic := '0';

end SIGDECL;

entity MUXFF is entity-global signals
port (DIN, SEL, CLK: in bit;

DOUT: buffer bit); used internally
signal NOUT: bit;

end MUXFF;

...

architecture STRUCT of MUXFF is

signal MOUT: bit; architecture-global signal
begin

52 7 SIGNALS

...

O

MUX

B

A

S

.................................... DFF

C

D Q

OI NOT

- --

--

6

-

DOUT

NOUT

MOUT

CLK

SEL

DIN

7.2 Signal Assignments in Process

In general, processes can communicate with the outside world (other processes,
entities. . .) only through signals, and signal values (for example, output ports)
are assigned in processes. There are, however, important factors to keep in
mind.

Delay time: The goal of VHDL description is to simulate real circuits with
their respective delays (time constants of electric circuits). These delay
values are speci�ed during signal assignment statements. For the circuit
simulation this means that new signal values are updated only after the
speci�ed delay time elapses.

Syntax: signal name <= expression [after time expr f,
expression after time exprg];

The delay time speci�ed in the signal assignemt (after ...) is considered
relative to the simulation time reached before the assignment. Zero delay
time is also allowed. In a single signal assignment several delays may be
given. The simulation algorithm then arranges the time sequence of the
future events in a list (scheduling).

Example: R <= "1010";

S <= '1' after 4 ns, '0' after 7 ns;

T <= 1 after 1 ns, 3 after 2 ns, 6 after 8 ns;

CLK <= not CLK after 50 ns;

Activation of Assignment: Although signal assignments within a process
are surrounded by statements which are processed in sequential order,
they are not activated in the same apparent sequential order. Signal as-
signments are activated once the wait statement of a process is reached.
Alternatively, when a process is used with the sensitivity-list, signal as-
signments occur at the end of the process. This leads to the following
consequences:

1. Within a process signals can not be used as variables for temporary
value storage.

7.3 Implicit Type Resolution and Drivers 53

2. There should be only one assignment per signal in a process; thus
indicating a single driver.

Due to the peculiarities associated with signal assignments, erroneous
circuit behavior is often produced (especially by the VHDL beginners).
Therefore, here is one more example on the topic:

Example: X <= Y; both assignments will be processed at the wait statement
Y <= X;) the values of X and Y will be exchanged
wait ...) the sequence of these two statements is irrelevant

V := 1; V becomes 1 | immeditately
S <= V; S will be V (also 1) | at the wait statement
A := S; A receives the old value of S | immediately
wait ...

X <= 1; Caution: will be ignored due to the second assignment!
Y <= 3; Y will be 3 | at the wait statement
X <= 2; this assignment overwrites the �rst assignment above:
wait ...) X will be 2 | at the wait statement

7.3 Implicit Type Resolution and Drivers

All previously discussed signal assignments were assumed to have a single driver
for each signal. In order to describe such hardware structures as (bidirectional)
buses, wired-or, wire-and, and so on, special mechanisms, known as resolution
functions, are used.

In general, VHDL was not designed to handle signals with multiple drivers.
The reason is that either wired-or, wired-and or some other logical behavior
is produced depending on the employed circuit implementation methodology.
Therefore, it was assumed that a vendor is responsible to deliever required
packages with multi-valued logic type declarations and corresponding resolution
functions.

There are, however, methods to deal with situations when several drivers
are driving a signal. To have multiple drivers usually means that a signal
is assigned concurrently by parallel processes, concurrent signal assignments,
concurrent procedure calls, and so on.

Types and Subtypes: A subtype, which has an associated resolution func-
tion, is declared for the speci�ed data type.

Syntax: subtype subtype name is resolution func name type name;

With this approach, when a signal assignment of type subtype name hap-
pens, an associated function, which determines the �nal signal value, is
implicitly called.

Analogous to the subtype, a resolved signal can also be declared as: sig-
nal name : resolution func name type name;

54 7 SIGNALS

Resolution Functions: A resolution function is declared as a conventional
function and has following characteristics:

as usual:
{ arguments are of the input mode and are passed by value.
{ a function returns only one value.
additional features of resulution functions:
{ an array of variable length with elements of the type type name

is passed as the function argument.
{ the return value of the function is of the original type:

type name.
{ the function is associated with a subtype; the function is called

every time a signal of this type is assigned.

In the following example, a wired-or resolution function with a four-value
data type is described. A tristate driver is modeled by two processes which
write to the same output signal.

Example: | 4-value type and the corresponding array type for the function |
type BIT4 is ('X', '0', '1', 'Z');

type BIT4 VECTOR is array (integer range <>) of BIT4;

| resulution function |
function WIRED OR (INP: BIT4 VECTOR) return BIT4 is

variable RESULT: BIT4 := '0'; result, bus with a pull-down
begin

for I in INP'range loop for each input
if INP(I) = '1' then

RESULT := '1';

exit; jump out of the loop
elsif INP(I) = 'X' then

RESULT := 'X';

else null; INP(I) = 'Z' or = '0'

end if;

end loop;

return RESULT;

end WIRED OR;

| subtype with the resolution function |
subtype RESOLVED BIT4 is WIRED OR BIT4;

...

architecture BEHAVE of TRISTATE is

signal ASEL, BSEL: boolean; select signals
signal SIGA, SIGB: BIT4; inputs
signal SIGS: RESOLVED BIT4; resolved output signal

begin

SOURCE1: process (ASEL, SIGA) �rst output source
begin

SIGS <= 'Z';

if (ASEL) then

SIGS <= SIGA;

end if;

end process;

7.3 Implicit Type Resolution and Drivers 55

SOURCE2: process (BSEL, SIGB) second output source
begin

SIGS <= 'Z';

if (BSEL) then

SIGS <= SIGB;

end if;

end process;

end BEHAVE;

��
�H

HH-
?

��
�H

HH-
?

-

ASEL

BSEL
SIGS

SIGB

SIGA

The STD_LOGIC_1164 package de�nes resolution functions for std_logic

data types. Types std_logic / std_logic_vector, which implicitly have reso-
lution functions, are subtypes of std_ulogic / std_ulogic_vector (unresolved).

The following example illustrates modeling of bidirectional buses. Here is
the description of a 4-bit bus driver/receiver.

Example: library IEEE;

use IEEE.std logic 1164.all;

entity BUSIO is

port(OEN: in std logic;

IBUS: in std logic vector (3 downto 0);

OBUS: out std logic vector (3 downto 0);

IOBUS: inout std logic vector (3 downto 0));

end BUSIO;

architecture BEHAV of BUSIO is

begin

P: process (OEN, IBUS, IOBUS)

begin

if (OEN = '1') then drive bus
IOBUS <= IBUS;

else read bus
IOBUS <= "ZZZZ"; explicit assignment of 'Z'

end if;

OBUS <= IOBUS;

end process;

end BEHAV;

56 7 SIGNALS

7.4 Signal Attributes

Besides attributes associated with types, VHDL also provides attributes that
are related to signals. Using these attributes it is possible to produce VHDL
descriptions that take into consideration dynamic signal behavior. These at-
tributes allow to incorporate simulation events and time instances at the time
of simulation execution.

Syntax: current point in time
signal'event true, if event (signal transition)
signal'active true, if transaction (signal assignment)

past events
signal'last event elapsed time from the last signal change
signal'last value previous signal value
signal'last active elapsed time from the last signal assignment

Example: entity DFLOP is D-Type FF
port (CLK, D: in std logic;

Q: out std logic)

end DFLOP;

architecture BEHAV of DFLOP is

begin

process (CLK)

begin

if (CLK = '1') and CLK = 1
(CLK'event) and and a new event
(CLK'last value = '0')

and previous value was 0 (because of `X`...)
then Q <= D;) rising edge

end if;

end process;

end BEHAV;

57

8 Concurrent Modeling

Concurrent statements serve to model the behavior of hardware components
where events often occur simultaneously.

Process: A process as a whole is treated as a concurrent assignment. It
was already presented as a module which contains a set of sequentially
executed statements.8 It has the following features:

{ all processes are active in parallel.
{ a process de�nes a region in the code where statements are ex-

ecuted sequentially (similarly to the conventional programming
languages). It describes behavior employing sequential algo-
rithms.

{ a process must contain either a sensitivity-list or explicit wait
statements.

{ within a process, signals belonging to an entity or
architecture could be read and assigned new values.

Process Execution

Since processes are supposed to model the behavior of hardware elements
which in real-world are always active, VHDL processes possess some spe-
cial features.

Execution: A process can be viewed as a forever loop. At the begin-
ning of the simulation, as some sort of initialization, every process
is activated and executed up to the �rst wait. Subsequently, the
execution of processes suspends according to the conditions enforced
by the wait statements.

Processes whose conditions of wait statements are satis�ed, are re-
activated. They continue the execution of statements in sequential
order until the next wait statement suspends them. If the end of a
process is reached (end process;), the execution continues from the

beginning of a process. This is illustrated by the following example:

Example: process ...

begin

loop beginning of the loop
...

wait ... at least one wait, or a sensitivity-list
...

end loop; end of the loop
end process;

Activation: As mentioned above, the simulator executes a process se-
quentially, statement by statement. It is then suspended at one or
more locations by the waits. The execution is again re-activated by
the arrival of speci�c events.

8See section 6, page 42

58 8 CONCURRENT MODELING

It follows then, that a process must have at least one wait statement,
or a process must be declared with a sensitivity-list. The sensitivity-
list is functionally equivalent to a wait on ... statement appearing
at the end of a process.

Example: process (A, B) sensitivity-list
begin

...

end process;

| is equivalent to |
process

begin

...

wait on A, B;

end process;

When describing a data ow, each transaction would correspond to a process,
which contains only one statement inside. There is a simpler way to model
this by using concurrent assignments. These assignments are located within an
architecture and each of them corresponds to a process. The order of concurrent
assignments in VHDL is irrelevant.

Concurrent Signal Assignment: is functionally equivalent to a process which
contains only one statement and has a sensitivity-list.

Syntax: [label:] signal name <= expression [after time expr];

The assignment is activated when at least one signal on the right side of
the assignment statement changes.

Example: architecture VER1 of MUX is

begin

OUTPUT <= A (INDEX);

end VER1;

| is equivalent to |
architecture VER1 of MUX is

begin

process (A, INDEX)

begin

OUTPUT <= A (INDEX);

end process;

end VER1;

Selected Signal Assignment: corresponds to a process with a single signal
assignment which is enabled through the case statement.

Syntax: [label:] with expression select

signal name <= expression when valuef,
expression when valueg;

59

The selected signal assignment is activated as soon as one of the signals
belonging to the selection condition or expression changes.

Example: with MYSEL select

Z <= A when 15,

B when 22,

C when 28;

Concurrent Procedure Call: is equivalent to a process which contains only
one statement | a procedure call. The procedures' parameters are of one
of the following modes: in, out or inout. When one of the parameter
signals changes, the procedure call is activated.

Example: architecture ...

procedure VEC2INT

(signal S: in bit vector;

signal ZFLAG: out boolean;

signal Q: inout integer;) is

...

begin

VEC2INT (BITVEC, FLAG, NUMBER);

...

| is equivalent to |
architecture ...

procedure VEC2INT ... declaration, same as above
begin

process (BITVEC, NUMBER)

begin

VEC2INT (BITVEC, FLAG, NUMBER);

end process;

...

Block: In order to eÆciently group concurrent assignments, block statements
may be used. A block may contain declarations of data types, signals,
and so on, all of which are locally used. The body of the block statement
contains any of the concurrent statements mentioned previously.

A guarded block contains an additional boolean expression guard expres-
sion, which drives an implicit signal GUARD of boolean type. This signal
can be used within a block for the control of concurrent assignments. If
concurrent statements have an associated GUARD signal, they are known
as Guarded Signal Assignments.

Syntax: label: block [(guard expression)]
[use clause]
[subprogram decl subprogram body]
[type decl]
[subtype decl]
[constant decl]
[signal decl]
[component decl]

60 8 CONCURRENT MODELING

begin

[concurrent statements]
end block [label];

Guarded Signal Assignment: is a special form of the concurrent assign-
ment. The assignment is activated after the GUARD signal, which must
be of the boolean type, is evaluated to true. The GUARD signal can be
explicitly declared and used; however, it is more common to use it implic-
itly within a Guarded Block.

Syntax: [label:] signal name <= guarded expression [after time expr];

Conditional Signal Assignment: is equivalent to a process with a single if
statement and a signal assignment. Building complex if ... elsif ...

conditions is also allowed.

Syntax: [label:] signal name <= expression when condition else

fexpression when condition elseg
expression;

The conditional signal assignment is activated as soon as one of the signals
belonging to the condition or expression changes.

Example: Z <= A when (X > 3) else

B when (X < 3) else

C;

61

9 Structural Descriptions

A description style where di�erent components of an architecture and their
interconnections are speci�ed is known as a VHDL structural description. Ini-
tially, these components are declared and then components' instances are gener-
ated or instantiated. At the same time, signals are mapped to the components'
ports in order to connect them like wires in hardware. VHDL simulator handles
component instantiations as concurrent assignments.

Syntax: component declaration:
component component name
[generic (generic list: type name [:= expression] f;

generic list: type name [:= expression]g);]
[port (signal list: injoutjinoutjbuffer type name f;

signal list: injoutjinoutjbuffer type nameg);]
end component;

component instantiation:
component label: component name port map (signal mapping);

The mapping of ports to the connecting signals during the instantiation can
be done through the positional notation. Alternatively, it may be done by using
the named notation, using the already familiar format:

Syntax: signal mapping: declaration name => signal name.
If one of the ports has no signal connected to it (this happens, for example,

when there are unused outputs), a reserved word open may be used. A function
call can replace the signal name. This allows direct type conversions at the
component instantiation.

Example: entity RSFF is

port (SET, RESET: in bit;

Q, QBAR: inout bit);

end RSFF;

architecture NETLIST of RSFF is

component NAND2

port (A, B: in bit; C: out bit);

end component;

begin

U1: NAND2 port map (SET, QBAR, Q);

U2: NAND2 port map (Q, RESET, QBAR);

end NETLIST;

| named notation instantiation: |
U1: NAND2 port map (A => SET, C => Q, B => QBAR);

62 9 STRUCTURAL DESCRIPTIONS

�
�
cA

B
C

�
�
cA

B
C

-

-

-

-

XXX
XXXX

-

�������
-

RESET

SET
Q

QBAR

U1

U2

9.1 Generation of Instances

Some repetitive structure descriptions, such as elements corresponding to the
bus width, memory size, etc., bene�t from the array-like arrangement of com-
ponents. Descriptions of this type may be done with the generate statements,
which allow:

1. repetition of structures corresponding to the for ... loop.
2. selection of speci�c instantiations through the if ... then conditions.

Syntax: generate label: for variable in range generate

concurrent statement general instantiations
end generate [generate label];

generate label: if (condition) generate

concurrent statement
end generate [generate label];

....................................

DFF

D Q

....................................

DFF

D Q

....................................

DFF

D Q

....................................

DFF

D Q- --- -

CLK

Z(1)
SIN

Z(2) Z(3)
SOUT

Example: entity SHIFT is

port (SIN, CLK: in bit;

SOUT: out bit);

end SHIFT;

| iterative construction of a shift register |
architecture NETLIST1 of SHIFT is

component DFF

port (D, CLK: in bit; Q: out bit);

end component;

signal Z: bit vector (0 to 4);

begin

Z(0) <= SIN;

GF: for I in 0 to 3 generate

UI: DFF port map (Z(I), CLK, Z(I+1));

end generate;

SOUT <= Z(4);

9.2 Use of Packages 63

end NETLIST1;

| separate handling of input and output |
architecture NETLIST2 of SHIFT is

component DFF

port (D, CLK: in bit; Q: out bit);

end component;

signal Z: bit vector (1 to 3);

begin

GF: for I in 0 to 3 generate

GI1: if (I = 0) generate

U0: DFF port map (SIN, CLK, Z(I+1));

end generate;

GI2: if ((I > 0) and (I < 3)) generate

UI: DFF port map (Z(I), CLK, Z(I+1));

end generate;

GI3: if (I = 3) generate

U3: DFF port map (Z(I), CLK, SOUT);

end generate;

end generate;

end NETLIST2;

9.2 Use of Packages

In the previous examples component declaration always took place within an
architecture. It could easily become tedious to repeat declarations of fre-
quently used components in various architectures of a design. This unnecessary
work can be avoided by the use of packages. Semiconductor vendors often pro-
vide packages containing complete cell libraries which could be conveniently
accessed from di�erent design entities within a design.

The desired package could be referenced with the use statement. A package

itself may contain only component declarations; declarations of entities and
belonging architectures may be placed in other design units.

Example: architecture S of COMPARE is

component XR2

port (X, Y: in bit; Z: out bit);

end component;

component INV

port (X: in bit; Z: out bit);

end component;

signal I: bit;

begin

U0: XR2 port map (A, B, I);

U1: INV port map (I, C);

end S;

| is equivalent to |

64 9 STRUCTURAL DESCRIPTIONS

package XYZ GATES package with declarations of components
component XR2

port (X, Y: in bit; Z: out bit);

end component;

component INV

port (X: in bit; Z: out bit);

end component;

end XYZ GATES;

use WORK.XYZ GATES.ALL; use the XYZ GATES package

architecture T of COMPARE is

signal I: bit;

begin

U0: XR2 port map (A, B, I);

U1: INV port map (I, C);

end T;

9.3 Con�gurations

One of the useful features in VHDL is that it allows di�erent architecture
realizations of an entity. This enables the design process to be more eÆcient
through the following steps:

{ Step-by-step top-down re�nement (from the black-box behavior down
to the structure);

{ Investigation of alternatives;
{ Support of versions.
In structural descriptions, con�gurations assign speci�c architectures to the

components. A con�guration speci�cation may be employed in two places:

1. within an architecture: in form of a con�guration assignment.

Syntax: for label: entity name
use entity [lib name.]entity name(architecture name);

If an explicit con�guration is not speci�ed, the last (with respect to time)
analyzed architecture, known as a null con�guration, is used.

Example: entity XR2 is entity declaration
port (X, Y: in bit; Z: out bit);

end XR2;

architecture SLOW of XR2 is the �rst architecture

begin

Z <= X xor Y after 1.0 ns;

end SLOW;

architecture FAST of XR2 is alternative architecture

begin

Z <= X xor Y after 0.5 ns;

end FAST;

9.3 Con�gurations 65

| use of XR2 in COMPARE |
architecture U of COMPARE is

for U0: XR2 use entity WORK.XR2(FAST);

con�guration for XR2

signal I: bit;

begin

U0: XR2 port map (A, B, I); explicit con�guration
U1: INV port map (I, C); implicit con�guration

end U;

2. outside an architecture: Di�erent architectures may be selected with a
configuration statement. In this case a con�guration is treated as a
separate design unit which can be analyzed and simulated. Following
arrangements using the con�guration statement are used:

Architecture | Entity

When an entity has several architectures de�ned for it, the desired
architecture to be used in the simulation of a design can be se-
lected.

Syntax: configuration con�guration name of entity name is

for architecture name
end for;

end con�guration name;

The example shows two con�gurations, CFG ONE and CFG TWO, de-
scribing the XOR gate. For the simulation of XOR the desired ar-
chitecture (FAST or SLOW) may be chosen.

Example: configuration CFG ONE of XR2 is ONE selects FAST

for FAST

end for;

end CFG ONE;

configuration CFG TWO of XR2 is TWO selects SLOW

for SLOW

end for;

end CFG TWO;

Architecture | Component

In this case, the selection of an appropriate architecture is made
during the description of the hierarchy. When a design is structurally
described () Hierarchy) and for the instantiated components there
are several corresponding architectures, a configuration statement
may be used to specify which architecture should be associated with
a particular instantiation.

Syntax: configuration con�guration name of entity name is

for architecture name
for labeljothersjall: comp entity name use

entity [lib name.]comp entity name(comp arch name); j
configuration [lib name.]con�guration name;

end for;

66 9 STRUCTURAL DESCRIPTIONS

...

end for;

...

end con�guration name;

In the following example, MCOMP is a circuit where di�erent instances
of XR2 and INV are used.

Example: configuration CFG TRY1 of MCOMP is

for STRUCT

for U0: XR2 use entity WORK.XR2(FAST);

end for;

| or |
for U0: XR2 use configuration WORK.ONE;

end for;

for others: XR2 use configuration WORK.TWO;

end for;

for all: INV use configuration WORK.INV(FAST);

end for;

end for;

end CFG TRY1;

Note:

Most of the VHDL simulators allow simulation of an entity, which
instantiates components, only through the con�guration. Therefore,
it is necessary to include a con�guration statement also in those
cases, where for each component of a (hierarchical) design there exist
only one architecture.

This is normally the case when a test environment references the
actual design during the simulation. It is suÆcient to include the
default con�guration statement.

Syntax: configuration con�guration name of entity name is

for architecture name
end for;

end con�guration name;

Con�gurations also allow to map ports of the component declaration (locals)
to the ports of the underlying design (formals). Normally, the port declaration
in the component declaration is a copy of the port declaration in the submoduls'
entity. In this case a port map in the con�guration is not required. However,
in some cases it is more eÆcient to map ports in the con�guration section.

� For instance, generic cell libraries may be used during the design. Through
the con�guration statements the design could be then mapped onto cell
libraries supplied by di�erent vendors.

� Furthermore, it is possible to replace the elements of a design by their
functional equivalents. In the example below, properly wired NAND gates

9.4 Generics 67

are substituted for all inverters.

Example: configuration CFG NANDY of COMPARE is

for S

for all: INV use entity WORK.NAND2(BEHAVE)

port map (A => A, B => Vcc, Z => Z);

end for;

end for;

end CFG NANDY;

9.4 Generics

While VHDL designs are structurally connected to the environment through
the input and output signals, their behavior can be altered through generic
values, which are treated somewhat like variables.

For example, this mechanism allows de�nitions of the elements' delay times
to take place outside an entity. Thus, in order to update the component
library (for instance, when switching from 1.0�m to 0.7�m process), a vendor
needs only to specify new transition times of the components without modifying
their behavioral descriptions.

Generic values appear in the entity declaration prior to the declaration of
input and output ports. They can be used as constants in the corresponding
architecture.9 The passing and assignment of generic values can be done in
the following places:

1. a default value in the entity declaration
2. a default value in the component declaration in the architecture or

in the package
3. a value can be mapped in the architecture, in the component in-

stantiation
4. a value can be mapped in the con�guration of the architecture

Generics are mapped to the actual values using this notation:
declaration name => actual value.

Syntax: | Declaration inside an entity or a component |
generic (generic name : type name [:= default value]f;

generic name : type name [:= default value]g);

| Instantiation |
component label: component name
generic map (value mapping)
port map (signal mapping);

Cell libraries usually contain generic values along with the declaration of
components in separate packages. Furthermore, generics may be speci�ed in
con�gurations. This way, di�erent con�gurations can be investigated, in order
to examine various (min-, typ-, max-delay) implementations.

9In the following examples, generics are used to specify delay times in structural descritions.
Similarly, they can be used as constants for the description of behavior (process).

68 9 STRUCTURAL DESCRIPTIONS

Example: entity XR2 is

generic (DELAY: time := 1.0 ns);default delay time as a parameter
port (X, Y: in bit; Z: out bit);

end XR2;

architecture GENERAL of XR2 is

begin

Z <= X xor Y after DELAY; use as a constant
end GENERAL;

| instantiation with a generic values |
architecture S of COMPARE is

signal I: bit;

component XR2

generic (DELAY: time);

port (X, Y: in bit; Z: out bit);

end component;

...

begin

U0: XR2 generic map (DELAY => 1.5 ns)

port map (A, B, I);

...

end S;

| a generic value in the component declaration |
architecture S of COMPARE is

signal I: bit;

component XR2

generic (DELAY: time := 1.5 ns);

port (X, Y: in bit; Z: out bit);

end component;

...

begin

U0: XR2 port map (A, B, I);

...

end S;

| a generic value in the component declaration within a package ---

package XYZ COMPONENTS is

component XR2

generic (DELAY: time := 1.5 ns);

port (X, Y: in bit; Z: out bit);

end component;

...

end XYZ COMPONENTS;

| a generic value in the configuration ---

configuration CFG LATE of COMPARE is

for S

for U0: XR2 use entity WORK.XR2(GENERAL)

generic map (DELAY => 1.5 ns);

end for;

end for;

end CFG LATE;

69

10 Packages and Libraries

A package is an element of VHDL that contains a collection of commonly used
declarations and subprograms. A package can also be compiled and conse-
quently used by more than one design or entity. Following declarations may be
placed in a package:

� types, subtypes

� constants

� components

� subprograms (procedures and functions)

Packages can be (do not necessarily have to be) further subdivided into the
declaration and the body. The declaration part consists of public, or visible to the
rest of the design, information, such as the above mentioned declarations, which
essentially de�ne the interface for the package. The body contains the actual
implementations, such as de�nitions of the objects found in the declaration. The
advantage of keeping these two parts separate is fully realized by the ease of
making changes during the reiteration of design cycles. Provided the interface
is correct, only the body would need to be modi�ed and re-analyzed. This is
particularly bene�cial in the following two cases (note that subprograms must

be subdivided into the declaration and the body):

1. deferred constants: the name and type of a deferred constant is declared
in the package declaration section, while the actual value assignment takes
place in the package body section.

2. subprograms | functions and procedures: the package declaration section
lists declarations of subprograms. Their implementations are described
within the package body section.

Syntax: package package name is

[type decl]
[subtype decl]
[constant decl]
[deferred constant decl]
[subprogram header decl]
[component decl]

end [package name];

package body package name is

[deferred constant value]
[subprogram body]

end [package name];

70 10 PACKAGES AND LIBRARIES

Packages, or rather their declarations, can be accessed from other design
units with the use statement. To include only one element of a package, its
name item name must be speci�ed at the end of the use statement. Usually
several elements should be accessible. In this case the whole package can be
included by specifying all at the end of the use statement. If the packages
are not located in the library WORK (default), then the appropriate library name
must be explicitly speci�ed.

Syntax: [library library name list;] the default library is WORK

use [library name.]package name.item name; j
[library name.]package name.all;

The desired elements of a package can be accessed by the item name. If the
name is not unique, e.g. because elements with the same name are de�ned in
di�erent packages, the elements must be explicitly called using the notation:
[library name.]package name.item name.

Example: | use of constant declarations |
package MY DEFS is

constant UNIT DELAY: time := 1 ns;

end MY DEFS;

entity COMPARE is

port (A, B:in bit;

C: out bit);

end COMPARE;

...

library DEMO LIB; other than the default library WORK

use DEMO LIB.MY DEFS.all;

...

architecture DFLOW of COMPARE is

begin

C <= not (A xor B) after UNIT DELAY;

end DFLOW;

. . . { deferred constant |
package MY DEFS is

UNIT DELAY: time; declaration only
end MY DEFS;

package body MY DEFS is

constant UNIT DELAY: time := 1 ns; value assignment
end MY DEFS;

| subprogram |
package TEMPCONV is

function C2F (C: real) return real; declaration only
function F2C (F: real) return real;

end TEMPCONV;

package body TEMPCONV is

function C2F (C: real) return real is body of a function
begin

71

return (C * 9.0 / 5.0) + 32.0;

end C2F;

function F2C (F: real) return real is

...

end TEMPCONV;
Supplementary libraries and packages are used in the VHDL design for the

following purposes:

collection of declarations: as already shown in the previous examples, it is
possible to collect all declarations that should be shared among di�erent
(sub)designs. Usually the default library WORK is used for this arrange-
ment. Similarly, development teams or even whole departments may in-
crease the design eÆciency by utilizing other supplementary libraries.

extension of VHDL: VHDL-tools suppliers o�er extensions to the "Standard
VHDL" through the proprietary libraries and packages. Usually, these are
additional types and functions for:

� multiple-valued logic (std logic 1164) and corresponding opera-
tions;

� mathematical functions (root, exponential, trigonometric, etc.);

� routines like random function generators, queue models . . . ;

� conversion functions for di�erent data types.

use of cell libraries: ASIC vendors provide their proprietary cell libraries in
form of VHDL libraries. These libraries could then be used for the simu-
lation and synthesis of structural descriptions.

The actual mapping of VHDL libraries on the �le system of a computer
is beyond the scope of the VHDL language. It is normally controlled by the
computer system con�guration �les.

72 REFERENCES

References

[1] Bhasker J.: A VHDL Primer,
Englewood Cli�s: Prentice Hall, 1995.

[2] Lehman, Wunder, Selz: Schaltungsdesign mit VHDL,
Poing: Franzis-Verlag, 1994.

[3] Lipsett R., Schaefer C.F., Ussery C.: VHDL: Hardware Description
and Design,
Norwell, MA: Kluwer Academic Publishers 1989.

[4] M�ader A.: VHDL-Kurzanleitung,
Universit�at Hamburg: Fachbereich Informatik, Arbeitsbereich Technische
Grundlagen der Informatik

[5] Perry D. L.: VHDL,
New York: Mc Graw-Hill, 1993.

[6] IEEE Standard VHDL Language Refenrence Manual, Std 1076-1987

IEEE, NY, 1988

[7] IEEE Standard VHDL Language Refenrence Manual, Std 1076-1993

IEEE, NY, 1994

73

Appendix

A Package TEXTIO

package TEXTIO is

type LINE is access STRING;

type TEXT is file of STRING;

type SIDE is (RIGHT, LEFT);

subtype WIDTH is NATURAL;

file INPUT: TEXT open READ_MODE is "STD_INPUT";

file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";

procedure READ (L: inout LINE; VALUE: out BIT; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out BIT);

procedure READ (L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);

procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out CHARACTER; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out CHARACTER);

procedure READ (L: inout LINE; VALUE: out INTEGER; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out INTEGER);

procedure READ (L: inout LINE; VALUE: out REAL; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out REAL);

procedure READ (L: inout LINE; VALUE: out STRING; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out STRING);

procedure READ (L: inout LINE; VALUE: out TIME; GOOD: out BOOLEAN);

procedure READ (L: inout LINE; VALUE: out TIME);

procedure READLINE (F: in TEXT; L: out LINE);

function ENDFILE (F: in TEXT) return BOOLEAN;

procedure WRITELINE (F: out TEXT; L: out LINE);

procedure WRITE (L: inout LINE; VALUE: in BIT;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in CHARACTER;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in INTEGER;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in REAL;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

procedure WRITE (L: inout LINE; VALUE: in STRING;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0);

procedure WRITE (L: inout LINE; VALUE: in TIME;

JUSTIFIED: in SIDE := RIGHT; FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

end TEXTIO;

